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Abstract

For safety-critical systems, the required reliability (or safety) is often extremely high. Assessing the
system, to gain confidence that the requirement has been achieved, is correspondingly hard, particularly
when the system depends critically upon extensive software. In practice, such an assessment is often carried
out rather informally, taking account of many different types of evidence—experience of previous, similar
systems; evidence of the efficacy of the development process; testing; expert judgement, etc. Ideally, the
assessment would allow all such evidence to be combined into a final numerical measure of reliability in a
scientifically rigorous way. In this paper we address one part of this problem: we present a means whereby
our confidence in a new product can be augmented beyond what we would believe merely from testing that
product, by using evidence of the high dependability in operation of previous products. The model we
propose could equally be applied to increase our confidence that a product will operate reliably in a novel
environment, using evidence of its past behaviour in previous environments. We present some illustrative
numerical results that seem to suggest that such experience from previous products or environments, even
where very high operational dependability has been achieved, can only modestly improve our confidence
in the reliability of a new product or of an existing product when transferred to a new environment.

1 Introduction

Critical systems are coming to depend more and more upon the correct functioning of software
to ensure their safe operation. At the same time, the size and complexity of these software
subsystems is increasing as designers take advantage of the extensive functionality that software
makes possible—functionality that sometimes enhances different aspects of safety.

There are important unresolved questions concerning how one might go about designing such
systems so that they will be sufficiently safe in operation. In this paper, however, we shall concen-
trate upon the difficult problems of evaluation that they pose. In particular, we shall be concerned
with the problem of how to measure the reliability of such a software system when that reliability
is likely to be very high.

In several recent papers different authors have pointed out some of the basic difficulties here,
[2, 7, 9]. They show that, if we are only going to use the evidence obtained from operational
testing of the software, we shall only be able to make quite modest claims for its reliability. For
example, Littlewood and Strigini show that even in the most favourable situation of all, that of a
system that has not failed during & hours of statistically representative operational testing, subject
to reasonably plausible assumptions, we can draw only the weak conclusion that there is a 50:50
chance that it will survive failure-free for the same time « in the future.



The limitations here seem intrinsic: they arise from the relative paucity of evidence (when
compared with the stringency of the reliability level that needs to be demonstrated) and will not
be ameliorated significantly by better statistical models. To make a very strong claim—that a
particular system is ultra-reliable—mneeds a great deal of evidence. If that evidence comprises only
observation of failure-free behaviour, then the length of time over which such behaviour is observed
needs to be very great. To assure the reliability goals of certain proposed and existing systems,
for example the 10~° probability of failure per hour for the “fly-by-wire’ computer systems in civil
aircraft [11, 10], would clearly require the systems to be observed and show no failures for lengths
of time that are many orders of magnitude greater than is practicable.

Faced with these limitations to what can be claimed from merely observing the system in
operation, it has been suggested that we should instead base our evaluations upon all the dis-
parate kinds of evidence that are available. This seems to be the way in which some safety-critical
software-based systems are currently assessed, although it must be said that the process of combin-
ing evidence here is somewhat informal and does not generally provide a quantitative assessment
[5]. The different kinds of potential evidence include, in addition to the operational data discussed
above, evidence of the efficacy of the development methods utilised, experience in building similar
systems in the past, competence of the development team, architectural details of the design, etc.
Most of these other sources of evidence about the dependability of a system will involve a certain
amount of engineering judgement in the evaluator, which might itself introduce further uncertainty
and potentiality for error. In addition, there are serious unresolved difficulties in combining such
disparate evidence in order to make a single evaluation of the overall dependability and thus to
make a judgement of acceptability.

In this paper we shall consider only a small part of this problem. We shall treat in detail
the situation where we wish to augment the evidence that can be gained from the operational
testing of a particular product within a particular environment by also taking into account the
data on success/failure sequences either of other products or of the current product executing
under operational conditions which differ from the present conditions. Thus these other failure
data sets may be records of the success (or not) in building and operating ‘similar’ products in the
past. Alternatively, they may originate as records of execution of the current product in different
environments. An important special case, of course, is the one where there is unreserved good
news from these previous data sets—i.e. where there have been no failures in any of the data sets
up till the present time.

It should be emphasised that the goal in all this work is to obtain a gquantification of the
reliability of a product within an operating environment. The model that is proposed in the
next sections, therefore, requires us to make certain assumptions about the failure process, and
about how we represent our beliefs about certain model parameters. We acknowledge that these
assumptions can be questioned, and are certainly very difficult to validate. However, we believe
that they are reasonably plausible. More importantly, our main aim is to demonstrate that this
kind of evidence can only improve our confidence in the reliability of a product quite modestly.
Thus, we would regard a critique of our results on the grounds that they are not sufficiently
conservative as being in the spirit of our own aims; suggestions, on the other hand, that the
assumptions here can be modified in order to arrive at much higher confidence in product reliability
we would regard with suspicion. It seems to us that, particularly in the case of safety-critical
applications, 1t 1s safest to adopt a conservative view of the informativeness of evidence unless
there are scientifically valid reasons to believe the contrary.

The model contained here may be applicable either to the data sets arising from a number of
different software products, or from a single software product executing in a number of different
operational environments. The ‘indifference’ assumption discussed below is all that is required in
either case. Thus we can think of our ‘experimental unit’ as a particular product operating in
a particular environment. From each such (product,environment) unit, we observe operational
data. Since we have chosen to work in terms of discrete time—a sequence of discrete demands on
the software, each resulting in a sequence of successes and failures—the operational data arising
from each (product,environment) unit is a binary sequence. We are interested in using data
from a family of such units to improve our ability to forecast a particular one of them, 1.e. a



particular one of the binary success-failure sequences. Here, we make what we see as the simplest
assumption which allows this kind of learning from one sequence to another: An assumption
of prior indifference between the members of our family of operational success-failure sequences.
For example, we assume that we are without prior’ beliefs of any kind which would cause us
to identify some particular pair A and B of testing data sequences about which we could say ‘I
expect that sequence A will show greater reliability than sequence B’. Our model says that such
beliefs about comparisons of reliabilities between different sequences will emerge only after we
begin to examine the numerical values of the failure-counts which those sequences contain. With
this understanding of our meaning, we refer in what follows to a set of success-failure sequences
about which we feel this indifference as a family of ‘similar’ sequences (emanating from a family
of ‘similar’ (product, environment) pairs). So in our usage here the ‘similarity’ of the success-
failure sequences within a family is nothing more than a prior statistical indifference between
these sequences. Of course, this idea might elsewhere be extended by means of an ordering of
the distinct sequences and some kind of process model for, say, increasing reliability expectations
from one (product, environment) to the next. But our indifference assumption is simpler, whilst
allowing us to explore mathematically the learning which might take place from one sequence
to the next and, we believe, being a plausible model in some circumstances. In particular, even
this simple model well illustrates the importance of prior belief—about the statistical relationship
between these failure-success sequences—for any conclusions we might wish to draw from data on
other products or operating environments.

In the next section a doubly stochastic Bayesian model of the failures (if any) of a family
of ‘similar’ software success-failure sequences is constructed. The intention is to augment the
relatively meagre evidence that can realistically be gained from testing of a particular product
in a single environment. We can now take account also of the success (or not) in conducting
similar operational trials in the past. The analytical results which follow in Section 3 lead to an
examination of an important special case in Section 4. Section 4 explores the conclusions which
can legitimately be drawn from observation of a number of sequences all of which contain no failure
up till the present time. We examine this no-past-failure case in some detail, and, after a brief
enumeration in Section 5 of some practical questions whose answers our model might be used to
explore, we proceed in Section 6, to obtain some algebraic and numerical results for a few example
cases of our general model. In discussing these special cases which arise from introducing specific
parametric distributional assumptions, we concentrate mainly on the no-failures case introduced
in Section 4. Some considerations about the difficulties of choosing a measure of reliability are
mentioned in Section 7. Our main conclusions are summarised in Section 8. The appendices
contain some of the mathematical details required for the main part of the report, including,
in Appendix C our procedure for calculating very high order non-central moments of the Beta
distribution which we used for the numerical work of Section 6.2.

2 Modelling Approach

We wish to use evidence we have obtained from building and operating previous products, or from
previous operational use (in different environments) of our current product, in order to try to im-
prove the accuracy of the predictions that we can make about the reliability either of an entirely
novel product or a previously used product which now operates in a novel environment. To do
this we must take account of two kinds of uncertainty. In the first place, there will be uncertainty
concerning the actual reliabilities that were achieved by these earlier (product, environment) ap-
plications. Even in those cases where there is extensive operating experience, we shall never know
the true reliability of a given product in a given environment and will have to use an estimate
based upon the finite amount of operational data collected during its use within the environment
concerned. In those situations where we are dealing with products that are likely to be very reli-
able in their intended environments, we shall probably only see a small number (or even none at
all) of failures even in quite extensive periods of operation. The second source of uncertainty will

Iprior to observing the success-failure data itself



concern the statistical ‘similarity’ to one another of the success-failure sequences that have been
observed in the past and the ‘similarity’ of the one under study to these past sequences. Clearly
it will be misleading (and give optimistic results) if we simply assume these earlier sequences, and
the present one, are ‘exactly similar’ in the sense that they all arise from exactly the same true
reliability [6].

In what follows, we shall assume that the true per-demand probabilities of failure of the different
sequences, past and present, can be assumed to be realisations of independent and identically
distributed random variables.

This assumption, although an idealisation, captures the essentials of what we mean by ‘sim-
ilarity’. Thus, it means that the actual reliabilities of the different sequences will be different,
as is clearly the case in reality. We would not expect the reliabilities of, say, two versions of a
software-based telephone switch to be identical, even though we might be prepared to agree that
the problems posed, and the quality of the processes deployed in their solution, and the operational
environments in which they are situated were similar. The notion of ‘similarity’ in the eye of an
observer here seems to be equivalent to a kind of ‘indifference’. You might agree that two different
success-failure sequences were similar for the purposes of the current exercise if you were indifferent
between them in reliability terms: if you were asked to predict which of two (product, environment)
pairs A and B would show the best reliability, you would have no preference. This is represented
by their probabilities of failure per single demand being identically distributed random variables:
any probability statements you would make about the reliabilities of demand sequences A and B
would be identical. The important point here is that this interpretation of ‘similarity’ in terms of
indifference does not mean that you believe that the two sequences will show identical reliabilities
- indeed you will know that the actual reliabilities of the sequences will differ. The two sources
of uncertainty here are both important. However, it is the nature of the uncertainty concerning
‘how similar’ the sequences actually are that will be most difficult to estimate in practice, since
this requires us to see as many different sequences as possible. That is, we would require oper-
ational data on a large number of {product, environment) pairs between any two of which, prior
to inspection of actual failure data, we felt indifferent. But in practice, it 1s far more likely that
we have large quantities of testing information about a few (product, environment) combinations
than it is that we have information on many such testing sequences.

Consider first the failure process of a single software success-failure sequence A. Assume
a Bernoulli trials process model of the failures of this (product,environment) in a sequence of
‘demands’ with neither debugging, maintenance, nor significant variation in the ‘stressfulness’ of
the software’s operational environment. An example might be the installed software protection
system of a nuclear reactor, where demands could be assumed to be sufficiently separated in
time as to be treated as independent. For flexibility of expression we will use A to refer to
both the (product, environment) pair and the ‘sequence’ of successes and failures on successive
demands on this software in this environment. Then strictly, ‘sequence’ means the exact probability
law? governing the sequence, rather than the realised boolean values of the sequence. With this
understanding, we can refer to .4 sometimes as a ‘pair’, at other times as a sequence, and even
as a single number p which we have an interest in estimating as accurately as possible. Thus, in
the first n trials of sequence A, let R be the random number of failures occurring and p be the
probability of failure on demand. Then the distribution of R for fixed n and p i1s binomial:

R~ (M) (1= m

Now think of p as unknown and construct a Bayesian model by assuming that p i1s a realisation of
a random variable P having a parametric distribution

P16~ fp(pl0)

with parameter 6, possibly a vector. Here we can think of the shape of this distribution f,(p|6) for
P as a representation of the general reliabilities of sequences in a particular family of

?by assumption in our model a Bernoulli trials process completely specified by a single numerical parameter p



(product, environment) pairs, perhaps representing the different failure histories of a single product
executing in multiple environments. Alternatively this family might consist of the failure histories
of a number of ‘similar’ products produced by a single development team, using a common devel-
opment method, and for similar applications. For example, a family of data sequences known to
have highly variable reliability levels would correspond to a distribution f,(p|6) with a large vari-
ance, whereas, for another family of sequences, an expected high ‘average’ reliability figure would
correspond to a small mean for f,(p|f). If we fully understood the true variation in reliabilities of
the sequences in each of these two success-failure sequence families then we could describe the two
families by specifying two different P-distributions having the required characteristics, and index
these P-distributions with two different 8-values, #; and #,, say. More generally, our parameter
space 8, say, for 8, could be said to represent a set of different conceivable reliability characteristics
each of which potentially characterises a different family of (product,environment) pairs. That
1s, given sufficient data on the reliability variation amongst the sequences of a particular family, a
value of # (and hence a particular distribution f,(p|#)) could in principle be assigned as descriptive
of that variation. In this way, we have defined a model in which # can be thought of as a parameter
characterising a family of (product, environment) pairs. For a {product, environment) chosen at
random from those of a particular family (i.e. particular ) and observed for the first n demands,
it follows that (R, P) has joint distribution®

(P~ (M) (= 1000, )

given n and 6. Integrating (2) over p gives the conditional distribution of R given n and @ as

fino~ (M) [ 00 hiolo) ®)

or, expressed in terms of moments of f,(-|6) (a form which will repeatedly be found in results
later),
Rin, 0~ (")E(PT(1—P)"—’“|9) . (4)
r

Note from (3) that mixing over p using this fixed #, not surprisingly, has the effect that the
distribution for the number of failures which will be seen during a given sequence of demands
18 now more dispersed than a corresponding binomial distribution. We can quantify this effect
precisely by verifying that from the distribution (3) we have mean

E(R|n,0) = nE(P16)
where .
BP10) = [ o5 (0l0)dr.

and

Var(R|n,0) = nE(P16) (1 —E(P10)) + n(n — 1)Var(P10) .

In this sum, the left-hand term is the variance of a binomial distribution with the same maximum
n and mean nE(P1#). As one might expect, the right-hand ‘excess’ term depends on the variance

Var(P10) = [ (p = B(P19)7F,(510)dy

of the mixing distribution f,(-|6).

3Notice that we keep to the usual notational convention of upper case for a random variable and lower case for
a numerical value obtained as a particular realisation.



If we observe that R = r failures actually occur during n demands, then we can condition on
this data by normalising (2) to give the updated distribution

Pr(1=p)"" o (pl6)

1 —

Jor (L=p)"7" fo(pl6) dp

of the probability of failure on demand for this program, given 8, n and the observation r.
The last three equations describe properties of a general mixture of Bernoulli trials processes

[3, pp213-4,217], where f,(-|6) is the mixing distribution. Note that although exchangeability® of

the original Bernoulli trials process has not been lost by mixing the processes, the property that

non-intersecting sections of the process are independently distributed does not hold in general for

the resulting mixed process. In fact the number R’ of failures in a subsequent set of n’ demands

from the same sequence now has an updated distribution obtainable from (5) as

Plr,n 6~ (5)

R'|r,n,n' 0

(n) St (L= p) T g (p]6) dp
' [ (L=p)" " fo(pl6) dp

A B(PT (1= Py )
( ’) E(PT(1—P)"="[0)

(6)

r

r

given n, r.

The distributions which we have considered up till this point are parameterised by #. Under our
chosen model, (6) is not a predictive distribution of future failures given past failure behaviour since
it depends on the unknown value of the parameter ¢. This deliberate #-dependence is intended to
take account of the practical fact that we are unable with any confidence to accurately state the
distribution f,(-|6) of failure probabilities of the (product, environment) pair within our family.
This inability is captured in the model as our uncertainty about the {product, environment)-family
parameter #. This parameter uncertainty has yet to be expressed and incorporated into the picture.
We now adopt a Bayesian approach to handling this dimension of the problem by supposing a
prior distribution

© ~ Priorg(0),

with support set § € §. If we plan to observe and predict reliability only of a single software
(product, environment), this extension actually adds very little, if anything, useful to the model
as so far described, since, by integrating over ¢, the model is reduced to a degenerate (|S| = 1)
case of the assumptions described earlier. (Simply replace f,(p|6) by fees f»(p|0)Priory(d) do
in the distributions above.) However, the idea of a prior distribution for # becomes a useful
concept if we wish to address the problem of learning about a distribution of software reliabilities
by observing multiple sequences of software failure behaviour from a single family (A;), say, of
{product, environment) pairs. We can then represent a conservative® version of a process concept
for their reliabilities, from one {product, environment) to the next, by modelling these sequences
as individual failure processes of the Bernoulli-trials kind discussed above but with different p;,
and an assumption that each of these p; arises independently given @ for some unknown, common
parameter value @ characterising the entire family of {product, environment) pairs. We are then
able to learn from observation of the early data sequences about the likely behaviour of another
sequence through the medium of our improving knowledge of their common parameter 6.

Thus 6 and p now play distinct roles in terms of the model concepts: Whereas each p; still
captures a property of a single software testing sequence, 8 now represents a common unknown

4The property that any permutation of a portion of the boolean (success-failure) sequence has the same proba-
bility as the unpermuted sequence. Equivalently, we can say that the probability of a precise sequence of successes
and failures during a specified interval of discrete time (say from the 108 to the 20th demand, inclusive) can be
expressed as a function of the number, only, of successes during that interval.

5in the sense that we refrain from making any stronger assumption of any kind of systematic development of
reliability from one sequence to the next. For example, we do not assume an increasing trend in reliabilities of
different sequences in the family



characteristic of the whole family of such sequences. To obtain the value of # would be to capture
the reliability-relevant characteristic which these software pairs (product, environment) all have in
common. For this multi-sequence model, there is now a real purpose behind including separate
distributional assumptions for firstly €, and secondly p; given 8. Below, we do not in fact assume
that @ can ever be known®. However, we assume that we hold probabilistic prior beliefs about 0
(i.e. beliefs about the possible distributions f,(:|0) of reliabilities of sequences belonging to the
family (A;)). Then, any observation of failure behaviour of any subset of the sequence (A;)
can be regarded as information about 6 which we will use in order to learn about 6 by the
usual Bayesian learning mechanisms. Thus the second stage of our doubly stochastic model is
to represent our prior beliefs about a subjective random variable © of which the true value 8
for our particular family of sequences is a single unknown realisation. Figure 1 depicts these
conditional dependence relationships diagramatically. This popular DAG (directed acyclic graph)
representation of conditional independence assumptions is equivalent to the assertion that the joint
distribution of all the nodes is equal to the product of the conditional distributions of each node
conditioned on the values of its parents. Actually, we have tended to condition on the values <ni>f:1
throughout our probabilistic analysis so that the n;-nodes can be thought of as degenerate, constant
random variables. Note that we have used a notation for our mixtures and marginal distributions

Figure 1: Diagram of the dependencies of the model

which assumes that both the distributions f,,, for P given @, and the prior distribution, Priory for
f, are continuous. The cases where either or both of these distributions are discrete are also of
interest and correspond to the replacement of integrals by sums, or, alternatively, to the use of
the Dirac delta function in specifying definitions for our densities f, and Priors.

Before proceeding to consider in §6 specific distributional assumptions appropriate for the

6Loosely, we can say that in order to know the value of § characterising a family (A;) of executing software
products (product, environment), we would require a very large amount of operational failure data on each of a
very large number of sequences belonging to that family. We could then accurately describe from empirical data
the shape of the distribution fy( - |6)



ii.d. P; given ©, and for the {product, environment) family parameter @ itself, we obtain, in the
following sections, a few consequences of these model assumptions in the general case. Observe
firstly that, conditionally given 6 and <ni>f:1, our independence assumption for the (P;) tells us
that the first k& terms of our (R;) sequence are jointly distributed

iz 0 ~T1()

i=1

/p“u—WWﬂnmm@. (7)

0

Once we are in possession of data in the form of observed failure behaviour of these k software
products executing in their k& environments (i.e., 7; failures out of n; trials for each sequence A;)
then we can regard (7) as the likelihood function L(G; (ni, ri>f:1) of the parameter # given this

failure data. L(G; (ni, ri>f:1) is a product involving constant” combinatorial terms together with
moments of the parametric distribution f,(-|6)

Ny o) ~ TT (2B = Prro) (8)

7.
i=1 ’

We find, not surprisingly, in the following sections that, using this Bayesian model, our relia-
bility predictions turn out to depend heavily on our prior beliefs, and not only on the empirical
reliability data <ri>f:1 which is later observed. We have expressed the shape of these beliefs
formally by our selection of the distributions ({f,(-|6);8€S}, Priory) comprising our model for
the failure probabilities (P;) of our family (A4;) of sequences of Bernoulli trials. There are sev-
eral ways of understanding the entity ({f,(-]0);0€S}, Priorg) less formally, which may help with
the selection of appropriate distributions in the case of a particular family {A4;). To begin with,
{/fp(-18); €S}, Priorg) should contain at least

1. Our best guess, prior to observation, of the family average reliability level of the (A;),

i.e. the average reliability towards which our beliefs would hypothetically converge if we could ac-
quire arbitrarily large amounts of data from each of arbitrarily many distinct (product, environment)
pairs which were representative of this family. But ({f,(-|6);#&€S}, Priorg) is much more than
a complicated way of expressing a guess at the family average reliability. We emphasise that it
contains at least two other dimensions of expressed prior belief, each of which should be veri-
fied against intuition, and against any available objective prior knowledge, if this model is to be
applied. ({f,(-]0);0€S}, Priors) also contains

2. Our prior beliefs about the shape of the distribution of true reliabilities (as distributed around
the average value assessed in 1.) of this (A4;) family. How consistent will the reliabilities
governing success and failure in the testing sequences A; of our family eventually be found
to be?

Lastly, but of no lesser significance in terms of the reliability predictions emanating from our
approach, we recall that the entity ({f,(-|6); €S}, Priory) incorporates a Bayesian subjective
parameter distribution Priorg. Through this, the construction ({f,(-|6);6€S}, Priory) pays due
regard to our stated measure of

3. Our confidence (or lack of it) in own our ability to produce accurate a priori guesses at 1. and 2.
How confident are we that both of these initial assessments are close to the truths that would
ultimately be discovered given unlimited data from an unlimited number of representative
boolean valued sequences A;7

This third component of prior belief is a classic Bayesian subjective prior distribution describing
our uncertainty about a model feature which in this case 1s effectively an entire continuous prob-
ability distribution on the unit interval, and whose unknown true value characterises our whole
family of (product, environment) pairs. This is perhaps also the component whose effects on the
subsequent analysis are the most easy to overlook—or at least whose effects in our analysis can be

i.e. not depending on 6



the most difficult to follow intuitively. To simplify for the sake of illustration, suppose we make
¢ a one-dimensional real quantity (so that S C R), and suppose that we happen to have used a
parameterisation of our family of f,(-|#) distributions that orders these distributions according
to their means. Then, holding this parameterisation {f,(-|6); €S} fixed, the act of choosing a
relatively more dispersed distribution Priory will correspond to a statement of relatively lower
confidence in our ability to accurately guess the value of the family average of reliabilities (item
1. above). Similarly, if we adopt, say, the coefficient of variation of the unknown true distribu-
tion from which the P; are drawn as a numerical representation of an important attribute of the
shape (item 2. above) of this distribution of failure probabilities P; around this mean value, and
if we assume, again for simplicity, that our chosen #-parameterisation now orders the distribu-
tions f,(-|6) instead according to their coefficients of variation rather than their means, then the
choice of a relatively more dispersed Priory will represent our relatively lower confidence in our
ability to assess, a priori, the true amount of consistency amongst the different reliabilities of the
members of our family (A;). So in the case of such a parameterisation we could ask ourselves
whether we already possess a thorough understanding of reliability variability within this kind
of (product, environment) family. If so, then a highly concentrated Priors distribution would be
an appropriate choice. If instead we considered within-family reliability variation between the A;
to be rather difficult to assess, without spending some time accumulating an operational history
of a number of sequences from the family concerned, then we should choose a larger spread for
Priory : and by so doing admit a greater variety of distributions f,( - |#) on the unit interval which
could each plausibly represent the true nature of the variation of failure probabilities between the
sequences of our family.

Of course, we do not have to use the exact 3 items defined above in order to informally de-
compose the structure ({f,(-|6); 0€S}, Priory) of our prior belief into a number of salient features
whose effects will transmit themselves through the mathematical analysis of this model. The im-
portant point is that we must be aware of the profound implications—for the reliability predictions
obtained in the following sections—that each one of these components of our prior belief model
has. To summarise the last paragraph, the model introduced in this paper proposes a formal
representation of prior beliefs about a family of (product, environment) pairs between which we
are initially indifferent. This representation ({f,(-|0);0€S}, Priory) is expressive enough to allow
us—in fact it requires us—to state with precision how much we know (and often the extent to
which we are in fact ignorant) about the average level and the distribution of the achieved reliabil-
ities of the members of this family. Given an available amount (k,n1,ns, ..., ng) of testing data,
we go on 1n the following sections to show how this model of prior belief, combines with empirical
testing data (r1,7ra, ..., rg) to yield predictions of future reliability of an individual success-failure
sequence within the family. An important question running through the analysis of this model is
the amount of improvement in our ability to assess high reliabilities that i1s achieved by incorporat-
ing data on other sequences within the family. It is of interest to examine formally the dependence
of the answer to this question on the strength of our prior beliefs—particularly our prior beliefs
about reliability consistency—concerning the family (A4;).

3 Bayesian Updating of Distributions and Moments in the
General Case

To implement the Bayesian learning about © given observation of <ri>f:1 we need to calculate the
posterior distribution of ©

C] | (ni, m}le ~cL (9; (ni, rl>) Priorg (6)



where ¢ is a function of {(r;, ni>f:1 not involving 6, i.e.
k 1
[H/ P (1=p)" " fp(plo) dp] Priorg(0)
/ H/ )T E, (pl6) dp| Priore (0) d6
9es

Equation (9) draws the focus of attention away from failure probabilities P; of sequences A; by
the integrations over p. But it is now of great practical interest to know an up-to-date distribu-
tion for P given what has been observed (in order to make predictions about a particular new
(product, environment), for example). Then our learning could be expressed directly in terms
of the changing nature of the current uncertainty about a failure probability of some particular
sequence. At this stage 1t is instructive to distinguish three different circumstances under which
we will have learned, in different ways, about one of the failure probabilities, say Pj. These three
different circumstances will each result in an up-to-date Bayesian posterior distribution for this
failure probability, which may be compared with the prior marginal distribution of P

Ol (ni, i)y ~ (9)

Py~ I (pr|0)Priory (6) db , (10)
ES

which represents our initial state of uncertainty concerning the reliability of any given sequence,
Ay, prior to any observation either of that or of any other (product,environment) pair’s be-
haviour. At this point of no observation, (10) is the mixing distribution associated with our
mixture-of-Bernoulli-trials model for future failure of Aj. This comparison of (10) with sub-
sequent updated Pi-distributions determines the nature and limits of what we can learn from
observed failure behaviour alone, be it of a single sequence or of a number of sequences from a
particular (product, environment) family.

Firstly the most trivial case—observing only the past failure behaviour of the specific
(product, environment) pair of interest—has effectively already been covered by (5). Substituting
fees f»(p|6)Priory (#) d6 for f,(p|f) in (5) gives a conditional distribution

(1 —pr)™ ™ ”/ I (pr|0)Priory (4) dO
Py |ng, rg ~ (11)

/ / )™ f,(pl6) dp Priorg () df
9es

for Py, given ng and rg. Note that we will continually assume, as we have done in the denominator
here, that the families of densities chosen are such that changes of the order of integration are
legitimate.

Secondly replacing k by k—1 in (9) and then substituting this distribution in place of Priorg (6)
n (10) (or, alternatively, directly substituting ng = 7 = 0 in (13) below) gives the distribution

fo(pr10) lﬁ/ P (1=p)" " fp(pl6) dp] Priory (6) d6

/ees [H/ )T fp (10) dp] Priory (0) d6

of Py given observation of the failure behaviour (n;, ri>f:_11 only of other sequences (A;)

_ ves
Pe|(ni, i)z ~

(12)

k-1
i=1"
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Thirdly, replacing k by k—1 in (9) and then substituting this distribution in place of Priorg(f)
in (11) gives the distribution

k—1 1
PR (L —pg)™* ™™ / fo(pk6) lﬂ/ pr(l=p)" " £ (p]0) dp] Priory(6) df
k ves i=1 0
Py | (i, rii_g ~

k 1
/ [H/ P (1=p)" " f(plo) dp] Priorg(6) df
bes i=1 0
(13)
for Py given observation both of the failure behaviour (ny,r;) of the sequence Ay itself and also

the failures (n;, ri>f:_11 of other sequences <Ai>f:_11.

We remark here that the effects of observation respectively of past and of the present software
(product, environment) pair’s failure behaviour on our beliefs about the present pair’s per-demand
failure probability Py appear to obey a simple multiplicative property. Comparing the numerators
of the four different probability densities of Py given by equations (10-13) we see that these are
in common proportions to each other®. The denominators appear to spoil these relationships, but
the denominators are only normalising constants, i.e. they do not depend on Py. We can use this
fact to express the property more concisely in terms of the effect of the different observations on
the extent to which we favour one value, say pj, of Py over another, say py/. If, in this way, we
compare the values of the densities at this arbitrary pair of Py values, we see that

k k—1
pdf (pz|<m,m>i:1) pdf() _ pdf (p |na,m) P (pz|<m,m>izl)
pdf (pg (ni, ri>f:1) pdf(py)  pdf (P} |nk, 7x) pdf (pg (ni, ri>f:_11)

(14)

provided, of course, that pj is not a point of zero density for any of these four densities. Equation
(14) perhaps becomes more intuitively meaningful if converted to the form

pdf (p)))

k E—1
pdf (p;€|<”“”>i=1) pdf (p},) _ {pdf(pzlnk,m)/pdf(pz)}. pdf (p;€|<”“”>i=1) pdf (pj,)
pdf (p/’k’ (ni, ri>f:1) pdf (py [nx, )/ pdf (pf) pdf (p/’k’ (ni, ri>f:_11) pdf (pf)
(15)
In practical terms this says that observation of both the present and previous sequences changes
the ‘odds of Py = p}, vs. Py = p{’ by a factor which is the product of the corresponding changes in

odds resulting from observing, respectively, only the present sequence, or only previous sequences’ .

The same property is alternatively captured by the formula

pdf (pe s, m4) - pf (pi | (ns, r)S2) /ot (or)

Pk|<”iari>f:1~ 1 k—1

(16)

(defining this density to be zero wherever pdf (py) is zero).

On closer examination the model property captured by (14) and (15) is found to be merely
an instance of a quite general result in Bayesian statistical modelling which applies wherever the
construction of a probability model makes two observables, Y7 and Y5, conditionally independent
given the value of some model parameter &. Then if we ask the question: ‘How do the Bayesian
updated distributions of £ for the three possible cases relative to observation or non-observation
of Y1 and Y5 compare with the prior distribution of £7’, we obtain an answer of the above form.
Our model is clearly of this kind for £ = pg, Y1 = <Ri>f:_11, and Ys = Ri. Note that no similar

8 The algebraic product, as functions of Py, of the ‘most informed’ (13) and the ‘least informed’ (10) is equal to
the product of the other two (11) and (12) arising from the intermediate levels of information

20f course, it is likely that for some pairs <p;€,pg> the two terms in curly braces may not be on the same side
of unity, so that, for such pairs, when both sources of data are observed, a kind of cancellation will occur between
the tendency of each kind of data separately to cause us to prefer pﬁﬂ over pg, or vice versa.
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proportionate relationship holds when we consider updated reliability predictions, rather than
updated distributions of the per demand failure probability P of the current sequence Ay. Below,
on pl4, we compare the effects of these same four ‘states of observation’ on explicit reliability
predictions (equations (29-32)). Nor is it possible to further factorise the right-most term in
equations (14,15) since under our model we do not have the required conditional independence,
given the value of Py for the current observation sequence Ay, of observations on distinct previous
Ai, 1 < k.

We remark that the approach used to obtain (13) is not limited to providing us with the updated
univariate distribution of a single sequence’s failure probability. The updated joint distribution of
say (Pr—_1, Px) can be obtained from a bivariate form of the arguments. Since (11) and (12) are
actually just special cases of (13) for certain of the n; set equal to zero, we will not go through the
extension to the bivariate case separately for each of the three observation cases distinguished in
(11-13). In the general case where the observations take the form (n;, ri>f:1, which includes the
three cases previously distinguished, we obtain an updated joint distribution

(Pk—l,Pk)|<ni,7“i>f:1 ~

Pt (1=pror) k=17 Tk=1p] (1—pk)"k—rk/ To(ro118) 5o (rlO TTEZE fap™ (1=p)™ =731, (p|#) dp|Priors (8) d
ses (17)
/ [Tz, Sfdpmi(1—p)™i="i £, (pl6) dp]Priors (8) df
8eS

from which we can, if we wish, investigate the sign and magnitude of any correlation between
Py_1 and Py, (or powers of these) conditional on the observed data. For higher dimensional joint
posterior distributions of the (P;), (17) extends in the way you would expect, to give for the
k-dimensional joint distribution

k

{HP (1—p)™~ h}/e B pl|9)}Pr10r9(9) df
(PiYizy [(niy iy ~

/eesui

We will not pursue this investigation further in this paper and will concentrate on the updated
distribution of the univariate Py, and its consequences for reliability predictions of the single
sequence A given the various combinations of observations discussed above.

Depending on the choice of the distribution family {f,(:|¢);# € S} and of the distribution
Priorg, we may anticipate some analytic and computational difficulties in obtaining these updated
distributions for P;. However, we can perhaps more easily obtain expressions for the effect of the
learning on the moments of the distribution of P;. In fact the moments of these three alternative
updated Py-distributions (which will play the role of mixing distribution in Bayesian reliability
prediction for Ay ) are important since any probability prediction of future failures of Ay, is equiv-
alent to the expectation, with respect to one of these updated Pi-distributions, of the equivalent
prediction conditioned on Pg; and the latter conditional probability will generally involve positive
integer powers of Py. (See e.g. (1).) This follows because our model assumptions tell us that the
three quantities past failure behaviour of Ay, future failure behaviour of Ay, failure behaviour of
other sequences are conditionally independent given Pg. For example, the predictive probability
of R=r failures in n further demands on Ay is obtained by substituting the appropriate one of
(11), (12), or (13) for f,(p|f) in (3).

More generally if:—

1
/0 P (=) fo(pl0) dp} Priorg (6) df

1. the term observations refers to some partial or complete joint observation of past failure
behaviours of Ag and of other sequences A;; and

2. the term future failure behaviour of Ay refers to some pre-specified event concerning the
pattern of future failure of sequence Ag;

12



then we have

P(future failure behaviour of Ay |observations) =
E( P(future failure behaviour of Ay | Py) | observations ) (18)

where, on the right-hand side, the value of the inner probability will be a function of Py, (calculated
as for an ordinary Bernoulli trials process) and where the outer expectation is calculated with
respect to the updated distribution of Py given ‘observations’, which distribution will be one of
equations (11), (12), and (13) when ‘observations’ is of one of the three specific kinds we have
discussed explicitly.

For an alternative perspective on the same predictions we remark that we are not obliged to
think of them in terms of the updated distributions (11-13) of P,. We can instead use the doubly
stochastic structure of our model and its two layers of conditional independence'® assumptions to
show that a prediction of the form (18) will in fact assume a ratio form which can be understood
directly in terms of two layers of nesting of probabilities and expectations with respect to our initial
model distributions. In fact, our independence assumptions tell us that whenever ‘observations’
is of such a ‘product’ form that we can decompose it into /\le(past behaviour of A;) (i.e. if it is
actually a conjunction of separate events concerning each .4; in isolation) then (18) can be shown
to be equivalent to the formula

P (future failure behaviour of Ay |observations)

E(P(future and past failure behaviour of Ay |0) Hfz_ll P(past failure behaviour of A; |9))

E(Hf:1 P(past failure behaviour of A; |9))
E(E[P(futuref. b. of Ay | Py) P(past f. b. of A | Py)|0] T2 B[P (past f. b. ofAilPZ»)|9])
E(HleE[P(pastf. b. ofAZ»|PZ»)|9])

(19)

where this last form is a prediction expressed as a ratio directly in terms of the distributions used
to construct the model. In both numerator and denominator the inner probabilities are calculated
as for a Bernoulli trials process, the inner expectations are obtained using the distribution f,( - |6),
and the outer expectations are taken with respect to our prior distribution Priory.

th

Before making any observations, Py has a marginal distribution whose m"™ non-central moment

is given by

E(P) = /ees /Olpmfp (p|f) dp Priore (6) do = /ees E(P;"|8) Priory(f) do (20)

This moment of Py is updated, by our three distinguished observation assumptions, to give ex-
pressions for the moments of the distributions (11), (12), and (13) which take the general form
of ratios of expectations with respect to Priory of multinomials in the moments of f, (which mo-
ments are of course functions of ©). This is a consequence of the fact that (11), (12), and (13)
are simple linear transforms of this -parameterised p.d.f. of our assumed conditional distribution
for Py given ©. (Or it can also be explained as a particular case of (19).) Specifically, taking the
three observation cases in the same order as earlier, the m™ updated non-central moment of P is

/ E(Pm+” (1— P+ |9) Priory (0) df

E(Pén“lk,?“k): bes
/ E(P” (1— Py |9) Priory (0) df
9esS

, (21)

106f (P;) given ¢ for the sequence family, and of success/failure on separate demands given P; for a particular
sequence A;
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or
k-1

/ E(P™|0) HE(P“(I—P)”"“ 9)] Priorg () df
B(Pp | (o, )l ) = S @)
/ HE(P“(I—P)”"“ 9)] Priory (0) df
E(Pﬁ|<ni,ri>f:1) =
/ ] R S ) lﬁE(P“(l—P)"’_“ 9)] Priors(d) df
bes : ey @
/ HE(P“(I—P)”"“ 9)] Priory (0) df

respectively, under the three different assumptions: observation of A only; observation only of
other sequences <Ai>f:_11; or observation of all of <Ai>f:1. Note that here the left hand sides are up-
dated expectations conditioned on observed data: The right-hand sides are ratios of unconditional
expectations taken with respect to the original, prior ©-distribution Priory. The random variables
whose unconditional expectations form these ratios are ‘binomial-like’ expressions in the moments
of the distribution f,(-|¢), which, being deterministic functions of ©, inherit their distributions
from our chosen Priorg distribution. To emphasise this role played by these moments of Py given

@, and at the same time to shorten equations (20-23) slightly, if we define

1
fir,s (6) =/ p"(1—p)* fp(pl0) dp, (24)
0
then we can write
E(P") = E(tm,0) (25)
E m+re ng—r
E(P;Tlnk,m): (F‘ 7Nk k)’ (26)

E(ﬂm,nk—m)

k—1
E (um,o H ur,,n,—r,)
i=1

m k=1 =
B (P |(ni,m)Z)) = ——— , (27)
E(H /ir,,n,—r,)
i=1
k—1
E (ﬂm+rk,nk—rk H ﬂr,,n,—r,)
B |(ni, )iy ) = . (28)

k
E (H Nm,m—h)
i=1

Equations (18) and (19) tell us that up-to-date reliability predictions may be similarly expressed
as ratios of expectations of moments of f,(-|#). Firstly, given no observation data at all, we have

Pl = (7 ) Bl (29

and, once having observed (only) that Ry = rg, if v}, is the number of failures predicted in a
further nj, demands on sequence Ay,

n%) E (/’er+7‘;€,nk+n;—rk—r2)

P(ry |nk, ng, r) = (
el D Tr—

, (30)
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For our other two observation assumptions we can write

k
E (H ﬂr,,n,—r,)
P(?“k |nka<niari>k_1) = (nk) =

i=1 - P ; (31)
E(H ur,,n,_r,)
i=1
k—1
) E(urkw;,n”n;—rk—r; H ﬂr,,n,—r,)
P(r2|n2,<niari>f:1) = (Z,k) = : (32)
k

k
E (H ﬂr,,n,—r,)
i=1

(Note that the updated Py-moments (25-28) are merely a special case of this prediction : the
probability that the next m demands result in a string of m successive system failures.) In
equation (29-32), the expectations occurring within the right-hand sides are taken with respect
to the prior Priory. So the conditioning observations are present in the right-hand expressions
only through the specification of which moment-terms i, ; () comprise the products whose prior
expectation is to be taken. Indeed, it may be useful to think of the distribution f,(-|6), given a 6
value, as represented by an infinite, 2-dimensional matrix of its moments p, (). Then our choice
of Priory can be viewed as a distribution over these matrices. Our future reliability predictions
will be expressed as product-expectations (over ©) of certain elements from these matrices, where
these elements are selected from the matrix at positions determined by the values of the failure
counts we have observed in the past and by the precise future failure-count value whose predictive
probability we wish to obtain.

4 An Upper Bound on Reliability Prediction : The Case of
No Observed Failures

Consider the special case in which no failures at all have been observed—mneither failures of the
(product, environment) pair for which we specifically wish to predict reliability, nor failures of other
pairs (product, environment) within the same family. This case may have importance as an upper
limit for the reliability levels which can be objectively measured in a given amount of observation
time purely from observation of failure behaviour of sequences within the family. Specialising the
equations above to this case is simply a matter of substituting the observation (r;) = (0). If we
similarly specialise the form of our predictions by considering the Bayesian predictive probability
of a further period of failure-free operation, we find that these predictions can be expressed in
rather a simple form as ratios of expectations of products of the non-central moments™* of 1—P,
with P coming from the distribution f,(-|f). So, conclusions about the best reliability levels
potentially measurable using this model can be thought of as dependent exclusively'? on our
decision about what may be considered realistic assumptions for our subjective prior distribution
of the moment-vector

(po,1, fto,2, po 3, - - ) = (E(1=P10) ,E((1-P)*|6) ,E((1-P)?|0) ,...) (33)

of the (product, environment) family.
Assuming that we do begin by believing that our family is highly reliable (to be more exact,
that any individual (product,environment) pair within the family is highly likely to be highly

11i.e. moments of the probability of successful completion of an individual demand

12As far as reliability prediction is concerned, the significance of our specification and parameterisation
-|6); €S} of a collection of possible P-distributions, and the significance of our choice of prior Priorg over this
P g
collection, is contained entirely in the resulting distribution of the moment-vector (33).
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reliable), then the conditional distribution of P given ¢ will be concentrated very close to 0 (for
all except, perhaps, some values of the family parameter 8 which we consider to be very unlikely,
i.e. that are assigned small probability (density) values Priorg(#) by our prior for ¢). Suppose a
particular f,(-|0), i.e. a particular value of the parameter ¢, were highly reliable. This  might
correspond to say a particularly good design process, or perhaps a single product which is successful
in achieving high operating reliability in a number of different operating environments. Then the
first few at least of these moments po; ought to be very close to 1. But it now appears that it
is the relative amounts by which we, at the outset, stochastically believe the higher moments are
less than 1, and certain kinds of correlations in our beliefs about these moments (as functions

of ©) which determines how much our confidence in failure-free operation for Ay should grow
when we observe failure-free operation of other sequences <Ai>f:_11. To understand precisely the
sense in which the last statement is true substitute (r;) = (0) and 7, = 0 in equations (29-32).
This yields three expressions for the reliability function, i.e. the Bayesian predictive probability
that the next m demands on A will be failure-free, given previous observation of failure-free
execution of respectively: Ay only; <Ai>f:_11; or, lastly, all of <Ai>f:1. These three alternative
predictive probabilities of future consecutive successful demands on Ay should be compared with
the unconditional

E((1=P)") = E(po,m) , (34)

the probability that the next m demands on A will be failure-free given no conditioning obser-
vation of either Ay or any other sequences. Indeed it is the comparison of (29) with (31), and
the comparison of (30) with (32) which indicate the impact of evidence from other sequences
on our beliefs about the probability of failure-free operation, or reliability function, of sequence
Apg. In each case, the admission of evidence from sequences <Ai>f:_11 introduces a common factor
Hf:_ll fo,n; into the arguments of the unconditional E-operators in both the numerator and the
denominator.

5 Some Questions About Model Implications

Some particular questions of interest are:—

e How does our confidence in Ay behave as a function of the number of previous sequences,
when these have all been observed to contain no failures for an equal number n; = n of
demands?

e For a fixed number k—1 of previous sequences, observed for fixed periods, how much does
one failure in one sequence spoil things as far as our confidence in sequence Ay is concerned?
Then, how much does one failure in each of two of these sequences affect our conclusions?
And so on, for 1,2,3, ... out of the k—1 previous sequences exhibiting one failure each, and
the rest no failures?

e Is it best, given a fixed number, in total, of demands on previous (product,environment)
pairs, to know that fewer (product, environment) pairs have shown failure-free operation over
a larger number of demands each, or that a larger number of such pairs have each worked
perfectly over a relatively small number of demands each? How important is this distinction,
in terms of its effect on the size of the amount by which our confidence in Ay is improved by
observation of the previous sequences?

e Where there have been some previous failures, and again keeping the total number of previous
demands constant, do we prefer to hear that those failures have been concentrated amongst a
small number, or even a single, previous sequence, or is 1t less depressing news for the current
(product, environment) pair if we find that the previous sequences all showed a similar level
of unreliability? (It seems obvious that, if we are especially interested in the reliability of the
current sequence A, then, given the choice, we should in general prefer observed failures to
have been found in previous sequences, i.e. to be failures associated with software products
or environments other than the current one.)
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e Which, if any, of the answers to the above four groups of questions holds quite generally for
all possible parametric distribution families {f,(:|6) ; 6€S}, and for all possible prior beliefs
Priorg? Does a preference for, say, all failures to have occurred in a single previous sequence,
rather than for the same total number of failures to have been distributed between several
previous sequences, depend on specific characteristics of our assumed prior distributions?

e Extending further such consideration of the influence of our choice of Priorg, we might even
ask, the family {f,(-|6) ; €S} being assumed specified, about variation in the quantities of
interest over the space of all priors Priory, and, in particular, ask various, probably math-
ematically non-trivial, questions about extrema here. In practice Priory ought ideally to
capture genuine prior belief. However, given that the conclusions from this model are likely
to be highly dependent on the shape of our prior belief, it is important to try to gain a
general understanding of more precisely how, and to what extent, various different distribu-
tions Priorg will effect our conclusions. What are the extremes, in both the sense of extreme
favourability and extreme unfavourability to high current reliability predictions, of the prior
beliefs we might hold? Are the mathematical extremes here at all plausible in practice? Can
we introduce geometric constraints on the shape of the prior distribution, such as unimodal-
ity, or continuous density function, or upper and lower limits on the values of P; admitted as
having positive probability, and how do such constraints effect the answers to our questions
about extrema?

There are several other similar questions that can be asked, given our general model structure.
We plan to address some of these issues in more detail in our on-going work. The next section
contains some tentative results relating to some of these questions in the context of some simple
instantiations of our general model.

Generally, in terms of the basic model structure of this paper, there is of course an added
complication to these questions: It may well turn out that the questions as we have just listed
them are insufficiently precise. What precisely does ‘high current reliability’ mean in the last
bullet point above? It might transpire that the answers will depend on specifically how we choose
to quantify the reliability of the present (product,environment) pair. For example, in terms of
the updated distribution (13) of Py, or in terms of the associated!® reliability function. And
in each of these two cases, how do we compare two functions? Two alternative Ag-reliability
functions resulting from different observed behaviours of previous sequences might cross at future
demand m=10*, for example. That is to say, the previous-sequence observations which give the
greater confidence in the current sequence’s long-term reliability may give lower confidence in
its short-term reliability. In such a case, the set of previous-sequence observations which we
would prefer to see would depend on factors such as our predicted operational lifetime of the
(product, environment) pair Ay.

6 Examples of Particular Choices of Prior Distributions for
P given O, and for ®

We shall retain throughout what follows our original assumptions that each sequence A; consti-
tutes a Bernoulli trials failure process with unknown parameter P;, and that the (P;) sequence
is 1.1.d. conditionally given an unknown sequence-family characterising parameter #. To generate
particular cases of our model we are then left with the tasks of choosing the distribution family
{fp(-16);6€S} and the single prior distribution Priors over this family. To begin with, we will
investigate a simple two-point distribution f,(-|0) in §6.1. Though clearly a simplification, this
model instantiation can be argued to have some practical relevance to attempts to certify ‘ultra-
high reliability (product, environment)s’ as well as illustrating in a simple way the structure of our
general model.

1% using equation (18)

17



6.1 Two-point f,, with 8 interpreted as mass at fixed points of support,
one of which is p=0

Suppose P18 has a two-point distribution with # equal to the probability'* assigned to p = 0. So
we assume

Thus we assume that, for each sequence A; in the family, @ is the probability that P; = 0. For
example, we could imagine a formal verification technique is applied to each software product and
that this technique fails—to deliver a perfect (p = 0) {product, environment)—with an unknown
probability 1 — 8. When this happens, we assume that the resulting program failure probability is
known; for example 7 = 10~° might be used, if these are high-integrity products. This assumption
of a single known value for p whenever p # 0 would perhaps better be relaxed by allowing a
distribution for p, but it simplifies the application of our general model, retains sufficient flexibility
to provide a useful illustration of the model, and could perhaps be justified on the grounds of
conservatism by assuming a worst case value 7 for the non-zero p. We can now apply our previous
results to the analysis of this model. Though now containing a discrete distribution component,
the model can if desired be obtained directly from the results of sections 2-3 by defining the
common density of each of the P; in terms of Dirac delta functions®

P10 ~ [, (pl6) = 08(p) + (1 — ) 3(p — ), (35)

say, where 0 < 7 < 1 is fixed.

The likelihood of ¢ given periods (n > _, of observation of k sequences (c.f. equation (7)) is
then

L (niri)i) = [ () [ ~a-m"" -6 J[ {Q1-m"(1-06)+06)

1<i<k 1<i<k, 1<i<k,
- - ;>0 r;=0

To within a factor which does not depend on # we can write this as

Lo (nirayi) o< Le(@) = J] =0y J] {0—m™(1—0)+0}

1<i<k, 1<i<k,
r;>0 ;=0

6.1.1 1%t Case: General Priorg

It follows that the posterior distribution of © given this data is now

Ly (0)Priorg(6)
Joes Li(0)Priors (0) df

O (ni, ri)i_, ~

In fact, since the parameter 6 has a direct interpretation here as a probability, we must have
S C [0, 1], and we can assume without loss of generality that Priorg is extended in such a way that
S = [0, 1]. We shall assume this has been done for the remainder of this section. If there has been
a failure in the observed part of the current sequence (i.e. if r; > 0), then the updated posterior
distribution of Py given our observation is trivially just Py = m with certainty. In this case, future
reliability prediction is simply that of a Bernoulli trials failure process with parameter 7. In the

14 Contrast with the also interesting case where § defines the position of the points of support of f,—Ort perhaps
further generalisations where the positions and masses of two points of support for P are represented by a two or
three dimensional 6.

15Provided we agree either to slightly extend our usual range 0< p < 1 of integration with respect to p, or to

modify the usual definition of the §-functions so that fo p) dp and fo — 1) dp should evaluate to 1 rather than
1

2
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interesting case where the current sequence Ay has so far exhibited no failure we have!®

fl 0 Ljs_1(0)Priors (8) dO .

[ = 7)™ (1= 6) + 6} Li—1(6)Priorg (6) d6
fo 1_7r)"k (1= 6)Ly_1(6)Priors (6) d6

[ (L =m)™ (1= 0) + 0} Ly_1(0)Priorg (0) d6

P(Pk = 0|<ni,ri>f:_11 ,nk,rkZO) =

P(Pk = 7T|<ni,7°i>f:_11 ,nk,rkZO) =

Equation (18) tells us that this pair of probabilities may now be substituted in the following
equation to obtain a reliability prediction for sequence Ay

P (No failure in next m demands | (n;, m>f 11 Mk, rkZO) =
P(Pk = 0|<n2, 7°Z'>f:_11 , Nk, TkZO) +P (Pk = 7T|<77,Z', 7°Z'>f:_11 , Nk, TkZO) (1 — 7T)m (36)

This is equivalent to the r; = r, = 0, nj, = m case of equation (32), where for this model structure
we have

l—-m*(1-8)+1, ifr=0,

e ={ 0 7Y )

a(l—m)*(1—=46), ifr>0.

Expressing the up-to-date distribution of Py slightly more concisely using the ‘odds’ form men-
tioned in equations (14) and (15), we can compare it with the odds obtained from observation of
only the present or only previous sequences. Cancelling some constants from the likelihood term
Ly (9) which occurs in both the numerator and the denominator, we find that

P( 0| Yiz1 (7 >f:1 = <0>) _ (14 w) fo i ( 9 + y;) OPriory (0) df (38)
P(Pk = 7T| Yieq ,<m>f = <0>) Yk fo "0 + vi) (1 — 6)Priorg(6) d6
p (Pk = 0| Yie 1 ) <ri>f:_11 = <0>) _ fo i ( 9 + y;) OPriorg(6) d (39)
P(Pk = | ()5l )t = <0>) JITTEEX0 + w) (1 — 6)Priorg (6) o

P(Pk =0|ng, TkZO) _ (1 + yk) P(Pk = 0)

P(Pk = 7T|nk,7°k:0) a Yk P(Pk = 7T) ’ (40)

where the second term on the right-hand side of (40) is just the prior odds that Py = 0 (before
any portion of any sequence has been observed) and where we introduce the notation

1

yi:(l—ﬂ')—_”l—l’ t=1...k. (41)
Note that for this two-point model with 7 assumed known, improving reliability estimates of the
current sequence translate directly into an improving up-to-date probability of current
(product, environment) perfection. This can be simply expressed in terms of the odds values
given by equations (38)—(40). If the prior odds of Ag-perfection is denoted o, and if equations
(39) and (40) represent, respectively, improvements on this by factors of R, achieved by means of
previous A;-observation, and R’, by means of direct observation of (product,environment) pair

Ay, then we will have a prior Ag-perfection probability of (1 + %) = fol @Priorg(#) df, improving

to posterior Ag-perfection probabilities of (1 + Rl,o)_l, (1 + %)_1, and, (1 + ﬁ)_l, respec-
tively, under the three different observation scenarios of equations (11-13). Clearly, it is the factor
R which is of particular interest since it represents the advantage to be gained from incorporating
data on the previous A;. There is a need to understand the way that this factor is determined by
the combined effect of observations and of our prior distribution Priory.

16 This formula holds also for k = 1 if we put Lo(8) = 1
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If failures in some previous sequences Aj ..., Ag_1 have been observed then this is handled
(irrespective of how many of these failures there were for each A; which was seen to fail at
least once) by replacing the corresponding factors (6 + y;) by (1 — ) in both the numerator and
denominator of equations (38) and (39). The expression in terms of y; here brings to light an
interesting limiting case .

Yi — P

(42)
which is likely to be a good approximation to reality for pairs (product, environment) which are
very reliable, and which is obtained by letting 7 — 0 and n; — oo (for those A; which have been
observed not to fail) whilst holding n; 7 constant for each of these sequences. In this limiting case,
the updated distribution of P; comes to depend only on the products n;m, and not other than
via these products on the values of n; and m. Some idea of closeness to this limiting case can be
obtained, in terms of the value of 7, from the crude bounds

1
eTom — <U< eni™ — 1 ( )
which are respectively obtained by applying the two well known inequalities
T\ T\ ~"
(1-1——) <e", n>0,z>0 and (1——) >e”, 0<z<n. (44)
n n

For an interpretation of y; we can say that y; is a kind of inverse measure of the informativeness
to us of our no-failures observation on sequence A;. Precisely, y; is the odds of observing what
has been observed (i.e. no failures) of sequence A;, under the assumption that its true failure
probability is Pij=n. So 7;=0 with a y; which is close to zero means that we have observed
something about sequence .4; which would be extremely unlikely under the assumption P;=r.
Conversely, ;=0 with a very large y; means that, even if we somehow knew for certain!? that
P;=m, we would still be virtually certain not to observe any failures of A; in the n; trials we have
carried out. Equations (38-40) confirm that there is virtually no effect on our beliefs about Py,
arising from the observation that r;=0, if the value of y; 1s very large : In terms of inferences about
Py, large y; makes the the observation r;=0 almost equivalent to no observation of sequence A;
(i.e. almost equivalent to n;=0)*®.

We developed our model of §§2-3 in a very general setting from which these two-point f, results
are a very special case. However, even for this simple model instantiation, several interesting and
non-trivial questions can be asked about how much extra confidence in a current sequence Ay
can be gained from the observation that previous pairs (product,environment) have performed
well. The information that previous products have been observed to perform perfectly in their
assigned environments over finite observation periods <nl>f:_11 1s a special case of obvious interest
for reasons stated earlier.

By concentrating first on this simple two-point case of our general model, we can avoid imme-
diately having to grapple with many of the complications concerning alternative quantifications of
reliability. For this two point model, it is effectively true to say that high reliability of the present
(product, environment) Ay is unarguably equivalent to a large value of the updated probability

P (PkZO | (ni, ri>f:1). So in the case of this 2-point model there does exist a single number which

can be said to represent the current Ay reliability prediction. Thus we can unambiguously order
the reliability predictions which would result from two different sets of past failure observations.
For instance, (36) shows us that, with a fixed numerical value for 7 specified by the model, we will
not experience the complication of two reliability functions, produced by different past-sequence
behaviours, which cross at some number m of demands into the future. We proceed to examine
some of the questions of §5 for this simple model.

17the worst possible belief we can hold about A;, however much observing we do, under this two-point model
18For a logically consistent definition of y; in the vacuous n;=0 case, we might use y; =co on the understanding
that we can then simply cancel from equations (38—40) all the infinite factors involving y;
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Firstly, we can easily see from (40) that observation of failure-free operation in sequence Ay,
itself, will improve the odds that this sequence has P,=0. The odds in favour of Py=0 increase
by a factor 14+ 1/yg, or (1 —m)~"*. (We note that this factor is not influenced by our prior beliefs
about ©.) This remains true, and by an identical proportion (see comments on p11), irrespective of
whether observation of previous sequences has occurred, and irrespective of what failure behaviour
was observed for those sequences. Intuitively we might expect that observing perfect failure-free
behaviour in previous sequences should improve the odds that P,=0 in a similar sort of consistent
way, if not to the same extent. To confirm such an effect, and to investigate its magnitude we
need to look at the ratio

k
P (Pk 0| z 1a< >i=1:<0>)/P(Pk:0|nk,rk:0)
P(Pk 7T| z 1a<rl>f 1—<0>) P(Pk:ﬂ'“lk,rk:())
1k—1
/ HG-I—yZ @Priorg (0 9Pr10r9 (60) do

1k1

/ H 0+ yi) (1 —@)Priory (0 / (1 — 0)Priory (0) do

To do this we will first introduce some slightly more concise versions of our existing notation and
make some definitions. Define

k-1

1) = H(@ +v), 6 =P(P=0)= /OlﬁPriorg(H) do, and 6y =171 (/Oll(H)Priorg(H) db’).

i=1

Note that we know from the convexity of [, using Jensen’s inequality, and from {’s monotonicity,
that, for any Priorg, we must have 0 < #; < 2 < 1. In fact we will have strict inequalities here
except in some degenerate cases such as y; =co, or where Priory is a single point mass. With this
notation it can be shown that the ratio representing our improvement of odds simplifies as follows

1 1
/ [(6)0Priorg (6)d0 | / 1(6)8Prior, () df — 1(02)6,
0 Y1 0

R =
01

(45)

i i
/ L(0)(1 — @)Priory(0) df 6y / L(B)(1 — 6)Priory(0) db
0 0
where here the numerator and denominator of the ratio on the right-hand side are both positive
and, together through this term, express the ‘amount of benefit’ obtained from observing the non-
failure in the previous sequences. We know that the numerator of this ratio (i.e. of the amount by
which the ratio R of the odds exceeds 1) on the right-hand side of (45) is non-negative because
it expresses the covariance’® of the random variables © and {(©) : A random variable cannot
be negatively correlated with any variable obtained by applying to it a non-decreasing function.
In fact we can express this numerator as an integral of a non-negative function, in either of two
slightly different ways

/11(9)9Prior9(9) do — 1(65)0, /1(9 — 61) (1(6) — 1(8,)) Priory (6) d6

/0 (0 = 02)(1(0) — 1(02)) Priors(0) do . (46)

It is clear from (45) that the improvement in the odds that P,=0 which results from the previous
sequence observations can be thought of as the result of three interacting influences: the original
odds (prior to observation of either this or any other sequence) captured in terms of the value of

19 deriving from our assumed prior distribution Priorg
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f1; the actual detailed description of the observation of previous sequences (both their number,
and what is observed of each), which we can think of as being summarised by the function 1(6)2°;
and, going beyond the simple expectation 61, the exact shape Priory of our prior beliefs about 8. In
terms firstly of the previous sequence observations, we can see that [(#)=constant, corresponding
to a large y; value for each sequence observed, is equivalent to a lack of useful information observed
from the previous sequences. At the opposite extreme, the function {(§) = #*~! is the upper bound
on the proportionate variability of [ over the unit interval. This represents an upper bound on
the improvement of our beliefs about a k™ sequence that can arise from observation of periods of
perfect operation of the k—1 previous sequences.

Now, looking instead at the influence on R of the form of Priorg, we see that, for whatever set
of past-sequence observations, (45) will have approximately the value 1 in the case where Priorg
approaches the distribution of a degenerate, constant, random variable. IL.e. if we are already more
or less certain before observation commences, that © & 61, then one sequence will have little to
tell us about another. At the other extreme of the form of Priory for the same fixed mean 64, it
seems that high levels of variation or spread in our prior subjective ©-distribution will have the
opposite effect, magnifying to its limits the significance for sequence Ay of what we have observed
from previous sequences. For a particular function [(6), these limits are finite, and so we might
investigate them further. But we do this as a way of obtaining a slack upper bound on how much
previous sequences could ever tell us (within the two-point f, model of this section) rather than
because we believe the extreme of Priorg-variance is likely to be a realistic model of a person’s true
prior beliefs about reliability variation within the family of software (product, environment) pairs.
For fixed mean #; the most extreme spread in prior beliefs about © is given by the distribution
Priory which consists of two point masses: #; at ©=1 and 1 — 0; at ©=0. It is easy to see that
this Priorg?!, when substituted in the left-hand side of (45) gives the P,=0 odds-increase of

WY Hitw [y,
R_W_g - = (1—m) (T} (47)

In considering the influence of the shape of Priorg on the usefulness of previous sequence
observations, a point worth making about the form of the obtainable odds-improvement (45) is
the following. If we consider the set of probability distributions Priory on the unit interval having
some common fired mean 61, and if we hold fixed the previous-sequence observations (i.e. specify
some fixed function [(f)), then, as we vary Priorg within this set (which, mathematically, is a
convex set in a suitable vector space of real measures), we will find that the extrema of (45) must
be attained somewhere on the boundary of this set of distributions. This 1s because R, regarded
as a function of the distribution Priory, has a monotonicity property along ‘straight lines’ in the
set of candidate Priory distributions : When Priory is a mixture??, say,

Priorg(8) = Ap1(8) + (1 — N)p2(8), 0< A <1, (48)

of two probability distributions on the unit interval, having a common mean 6, but different
values, say R(p1) < R(p2), of the ratio (45), then the value R(Priorg) of (45) corresponding to
the mixture will satisfy R(p1) < R(Priorg) < R(p2). This in turn follows from the fact that
the numerator?® and denominator of (45) are both non-negative-valued linear functionals of the
probability distribution Priorg?*. This kind of reasoning can be used to confirm that (47) is indeed

20although, as we have already mentioned, it is the vector of products n;w, or to be more exact, in the case
where 7 is not very small, of y; values defined by (41), which contains the significant part of the previous
(product, environment) pairs’ influence on our beliefs here, i.e. 7 as well as the n; determine [

2lstrictly speaking a weighted sum of two Dirac delta functions, but note footnote 15 on p18

22the argument extends easily to more general mixtures than the discrete mixture of just two distributions used
here

23 use either the left-hand side of (45), or the right-hand side of (45) with the first form of the right-hand side of
(46) used as the numerator

24 essentially we are using the identity % =pg+(1—-p) % (a convex combination) for any pair of ratios
b
N (1—NB -

% and % of positive numbers, where y =
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the maximum possible value of R for a fixed observation function [ and mean ¢; (and in fact, as
we see in (47), that the value of this maximum is actually the same for all 0 < #; < 1). The value
in (47) tends (using the same reasoning as for (43)) to a limit exp (Zfz_ll n;w) as © — 0 keeping
each of the the product terms n;7 in the exponent constant. In addition to this limiting value, we
also have, for finite n;, an upper bound exp (Zf:_ll nlﬁ) by the same reasoning as that used to
produced (43).

It is difficult to imagine how a two-point Priorg, such as that required above to attain the
maximum (47) effect of past sequences, could possibly arise in practice as a realistic model of
subjective prior belief. Some further, more realistic restriction on the set of admissible shapes
of the Priory distributions which have some particular mean é; is probably worth exploring. For
example the question of how big (45) can become (for some fixed #; and /) when we require that
the prior distribution Priory should be unimodal looks a more interesting one from a practical
point of view, if, unfortunately, more difficult mathematically to solve.

6.1.2 279 Case: Parametric Restriction of Priorg to Beta Family

Consider a further model specialisation in the form of the assumption that Priory is a Beta
distribution?®. This assumption is convenient for numerical reasons since it allows us to expand
out the @-polynomials in (38) and integrate analytically, term by term, using

1
i Bla+ m,b+m)
8™ (1 — 6)™ Priorg(0) db = 49
| o= oy priony o) S (49
a a+1 a+m—1 b b+1 b+m' —1

et btm—1D(a+b+m)(at+tb+m+1) T (atb+m+m —1)

C(a+b)(a+b+1)

Hence problems of optimisation (of say the ratio (45)) within this parametric restriction of the
choice of prior beliefs Priory become scalar optimisation problems with respect to the two inde-
pendent variables a and b, rather than mathematically more difficult optimisations in which the
independent variable is a ‘point’ lying in a convex set of general probability measures (contained
within a larger vector space of general measures on the unit interval).

Note also that the Beta Priors assumption contains, as the limiting cases a,b — 0 with a/b
constant, the largest-variance?®, 2-point Priory distribution of a given mean, as mentioned above,
and also contains, as the cases a,b — co with a/b constant, the degenerate Priors under which
there is no possibility to learn about Py from observation of other A;, i =1...k—1.

It is of interest?? to fix the prior probability P(P,=0) and to examine how variation of the
parameters a, b of the Beta distribution for ©, subject to such a constraint, affects the amount
that can be learned from previous sequences. In fact, fixing this prior probability is equivalent
simply to fixing the ratio a/b, i.e. the prior odds, say o, that P,=0. If we reparameterise the Beta
distribution in terms of this odds o and the parameter b, then, as we have just said, for fixed o, the
greatest (or least) possibility, as measured by the ratio R of equation (45), for learning about the
current (product, environment) pair from perfect behaviour of all observed previous A;, 1 < i < k,
corresponds to the extreme limiting case b — 0 (or & — o0). In fact, for this model, we can
verify that, as we might expect, in this situation where all previous sequences have shown perfect
behaviour over their fixed observation periods, R is a monotonic non-increasing function of b. See
Appendix A for the details of this proof. This R(b)-monotonicity provides us some information,
at least in the Beta case, about what happens as we vary the shape of the distribution Priory, for
fixed mean 6y (i.e. fixed o given by o = /(1 —01)), between the two extreme cases of the constant
(zero variance) prior distribution corresponding to R = 1 at one extreme, and the other extreme of

25Not to be confused with the assumption, in the example of the next sub-section, that 8 is (a,b) the parameter-
pair of a Beta distribution, where that Beta distribution is our fp-distribution for F; given 6.

26the coefficient of variation of the Beta(a,b) distribution is 1/b/{a(a + b+ 1)}

2Thecause this will provide an upper bound on ‘how much’ a given amount of previous-sequence data can tell us,
under this model : not because we wish to suggest that such an optimisation is a valid method of ‘eliciting’ the
shape of genuine Bayesian prior beliefs, nor even that this bound will be close to approachable in a genuine analysis
of real systems
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the maximal-variance, 2-point distribution with mass only at ©=0, 1 corresponding to the largest
possible value of R, given by (47). Fixing o = a/b and varying b for our Beta Priory is equivalent to
moving along the line b = oa in the {a, b)-plane. In this plane of Beta distribution parameters, it is
precisely the points inside the unit square (i.e. the pairs {a, b) with min(a, ) < 1) which correspond
to bimodal Beta distributions. The Beta distributions corresponding to the outside or boundary of
this square (those for which min(a,b) > 1) are unimodal Beta distributions. Hence, in the case of
a Beta Priorg, we can conclude that, moving back from infinity (the degenerate constant © = o-|0-1
prior) along the line b = a/o towards the origin gives a steadily increasing variance of Priorg, and
simultaneously an increasing value of R, with both the maximal variance, and the maximal R,
which can arise from a unimodal Beta prior, being attained on the boundary of the square at
(a,b) = <1, %>, if o > 1, or at {a,b) = (0, 1), if 0 < 1. Expressions for the accompanying R values
are obtained by substituting Priors () o (1 — 9)0_1_1 and Priorg(#) o< 6°~1 in the formula (45). If
this movement towards the origin of the (a, b)-plane is continued inside the unit square, then, as
the origin is approached, increasingly extreme forms of bimodality in the prior for © result in the
variance of Priorg approaching a maximum value of 0/(0 + 1)%, and R approaching the extreme
limiting case of (47). This latter extreme case has the rather absurd interpretation of all sequences
being known to have the same P; value in advance of observation, but with uncertainty somehow
persisting (despite such a strong belief in uniformity of failure rates) as to whether the actual value
of this universal failure probability is 0 or 7. It seems that this smaller R4« arising from the
restriction to unimodal priors might be a more realistic upper bound on the attainable size of the

improvement R. However, we have not answered the general question under a unimodal Priorg
of how large R can be for given fixed observations periods throughout which the k—1 previous
sequences have all been failure-free. We do not know how much greater we might be able to make
R if we experiment with unimodal Priory outside the Beta family. Mathematically this appears
to be a difficult constrained optimisation problem.

We can also use the analytic tractability gained by this Beta restriction on Priory to investigate
the question®® of how the shape of our prior beliefs affect the preferred allocation of a fixed number
of demands between a number of past (product, environment) pairs A;, i=1,2,... ,k-1. The algebra
is a bit awkward, but even with this Beta family assumption for Priory, and while limiting ourselves
to the more tractable cases of small k, we are still able to establish the following result: Our prior
beliefs about the (product,environment) perfection probability 0 = P(P;=01]6) are of sufficient
importance that the answer to the question posed in the third bullet point at the beginning of §5
may be ‘No’, ‘Yes’, or something more complicated, depending on the combined effects of the shape
Priory of our prior beliefs and the total amount N (or 7, see below) of past product data we have
available. This establishes a principle that there are qualitative, as well as quantitative, questions
concerning what our model says about the influence of observations of past (product, environment)
pairs which cannot be answered until we have described the shape of our prior uncertainty about
reliability variation between the (product, environment) pairs of our family (4;). Suppose we have
a total number N of demands to distribute between k—1 previous (product, environment) pairs
Aq, As, ... Ak_1 and that our objective is to increase our confidence in the reliability of A as much
as possible. To simplify the notation slightly, we work in terms of 7 = N(—log(1 — x)), which
we might choose to think of as a quantification of the total amount of past-sequence observation
‘adjusted’ for the difficulty of our task of discriminating between Py,=0 and P,=n. (Clearly, the
closer 7 1s to zero, the more difficult 1t becomes to discriminate, by means of data, between the two
possibilities Py=0 and Pr=w.) We can describe our allocation of this past data between the k—1
previous sequences by means of a vector (v, va, ..., vp_1), with 0 <, <1, vi+va+.. Frp_1 =1
where v; = n;/N.

Taking first the simplest case of just two previous sequences, i.e. k = 3, equation (45) (using

28 The third bullet point at the beginning of §5
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(39) and (41)) can be written

1[6y129+ (1=0)] [e70+(1—6)]6°(1—6)"""do
/ [e70 + (1= 0)] [e"70 + (1 - 0)] 0“1 (1 - 0)" db

Expanding the products of square-bracketed terms and using (49), this reduces to

p _ @+ 2)(at+ el tI7 4 (a+ 1)b (17 +e7) + (b + 1)b 51
(a4 Daertv2)Z (b + 1) (enrZ 4 ev2Z) 4 (b+2)(b+ 1) (51)

Remembering that v1 4+ v» = 1 and taking |1/1 — %| as our measure of unevenness of allocation of
the N (or Z) past observations between .4; and Az, we find that

o lat2)(at DeZ 4+ 2(a+ 1)be? cosh[(v1 — 1) Z] + (b + 1)b
(a4 1ae? +2a(b+ 1)e% cosh[(v1 — ) 2] + (b+2)(b+ 1)
b(b+1)
_ a+lb (a+b+2) (eZ_a(a-I—l) (52)
b+1|a  (a+1)ae? +2a(b+ 1)e? cosh[(v — ) Z] + (b+2)(b+ 1)
and it 1s apparent that R is a monotonic function of |1/1 — %| with bounds
R1 = M achieved at v = 0,1 (53)
1 — an+b+1 ) 1 — Y

(a+2)(a+1)e +2(a+ 1)be? + (b+1)b
(a+1)ae? +2a(b+ 1)e= + (b+2)(b+1)

Ry = achieved at v| = % (54)

We showed earlier that, irrespective of how much direct observation of A3 has been done, R is
the factor by which the odds that Az is perfect are improved by the past sequence (in this case
Aj and Ajy) observation. Thus we conclude, for this simple & = 3 case, that

o If our prior beliefs for ¢ are Beta(a,b) with %(%—% = ¢?, then our posterior probability
that P3=0 is unaffected by changes in allocation of a fixed total amount Z of past sequence
observation between A; and As. In this case, the observation of A4; and A- improves our

odds that Aj is perfect by a fixed factor R = (at+1)b

a(b+1) "
o If our prior beliefs are Beta(a, b) with % > ¢ then our posterior probability that Ps=0
is a strictly increasing function of |1/1 — % (i.e. we prefer our previous observations to have

been allocated as unevenly as possible between the two previous sequences A; and As). In
this case we have Ra < R < R; as we vary v;. If all of these previous observations are
concentrated on only one past A;, then the maximum possible improvement R of odds that
P3=0 1s attained as R=R .

o If our prior beliefs are Beta(a, b) with b(b+1)

a(a+1)
is a strictly decreasing function of |1/1 — % (i.e. we prefer our previous observations to have
been allocated as evenly as possible between the two previous sequences). Here we have
R1 <R < Ro as we vary v;. If these previous observations are exactly evenly allocated
between A; and As, then the maximum possible improvement R of odds that P3=0 is

attained as R=R. (Of course this is only possible to do ezactly when N is even.)

< ¢Z then our posterior probability that Ps=0

So, in general, we have shown that, supposing N and 7 to be given (so that 7 is fixed) then we can-
not answer the question about whether a person prefers the observation of previous
(product, environment) pairs to be allocated evenly between those previous A; without first clari-
fying the shape of that person’s prior beliefs about the unknown perfection probability parameter
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f. However we can draw a few conclusions of a more general nature for this k=3 case. Suppose
that the person’s prior probability that a randomly selected A; is perfect E(©) has been stated,
and we know that their Priory is in the Beta family. Then the ratio a/b is determined, and so, if
E(©) > %, i.e. if @ > b, it must be true for any value of 7 that

b(b+1) ) 7
ala+1)

giving a preference for even allocation of observations between A; and As, whatever the exact
values of a and b. Similarly it can be shown that if £ > E(©) > (1 + e%)~! then the same
preference will be found; whereas if E(©) < (1 4+ ¢Z)~! then the converse must apply and we will
prefer the past observations to be concentrated as much as possible on a single A;. In terms of
the stated prior expectation for @, the remaining possibility < (1 +¢?)~! < E(©) < (1 + e%)_1
corresponds to the situation in which the preference may be for or against even distribution of
past observations between A; and As, depending on the exact values of the parameters a,b and
the value of Z. These conclusions follow easily, with the restriction to a Beta Priorg, from the
facts that %(%—% will lie between ¢ and Z—z for all @ > 0, b > 0, and that the prior expectation is

defined in terms of the Beta parameters by E(©) = (1 + g)_l.

We can, without too much difficulty, gain some understanding of what happens when we are
considering the effects of the allocation of a fixed amount of observations between three previous
sequences Aj, Aa, Ag, i.e. in the case k=4. We take the Euclidean distance (which is proportional
to the sample standard deviation of {11, v2, v3})

L N e I B

between the points (1, v2, v3) and <%, %, %> as a measure of how unevenly the past observations

are distributed between the three available previous (product, environment) pairs A;, A2, As. The

maximum allowable value of r is clearly (1 — %)2 + (%)2 + (%)2 = \/g Equation (45), with the

Beta(a, b) Priorp, now expands to

(a+3)(a+2)(a+1)e?+(a+2)(at1)be? (e 717 47727 4737 ) 4 (a+1)(b+1)b(e"17 +6727 4737 ) 4 (b4+2)(b+1)b
(a+2)(at1)ae?+(at1)a(b+1)e? (eT¥1% 4727 4 o737 ) fa(b+2)(b+1) (€17 +6727 £6737 )4 (b+3)(b+2) (b+1) o

R=

2Z

(a+3)a+2)a+1)e7+(at 2 at1)be s (3025 d5=VD7) 1 (a g1 )bt 1)be (17 D D2~ DA 5= D)4 (b4 2)b41)b

3
1
3

—VE DA ED P (b )ba1)e (1T DAL DAL D)L (g b2y b+1)
(55)

(a+2) at1)ac?+(a+1)a(b+1)e s (o

Note, for a,b fixed, and fixed (v;), we have a limiting case, representing an upper bound on R,
of limz_eo R = (a+ j)/a, where j is the number of the v; that are non-zero. This limiting case
corresponds to conclusive information that j of Ay, A3, As are perfect, accompanied by a complete
absence of operational observation on the other 3—j previous (product, environment) pairs. The
expression (55) is more difficult to analyse as a function of (v, va, vs) (with v +v2 +v3 = 1) than
its one-dimensional counterpart (52) because of R’s dependence on the direction as well as the
modulus r of the 3-vector <1/i—%> of differences from the uniform allocation of observations between
the previous three sequences A1, Ay, A3. However, as a first approach to understanding something
of the behaviour of this expression we can try replacing both numerator and denominator?® by
low order Taylor expansions in the v;. For some argument values, such as Z sufficiently small®°,
and the Beta parameters ¢ and b lying within certain ranges, this results in an approximate form
for R in a case where both the numerator and denominator depend much more on the modulus

of <1/1 — %, vy — %, vy — %> than they do on its direction. In fact, we are able in each case (i.e.

29We note that the denominator is obtained from the numerator by replacing a,b by a — 1,b + 1 so the reasoning
only has to be done once.

30 7 will tend of necessity to be small for small = (which we hope 7 should be for highly reliable systems) since
it becomes infeasible to carry out the very large number of demands then necessary to make Z larger
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for both numerator and denominator) to contain the influence of the direction of this vector
entirely within a remainder term which is negligible under these conditions on the parameters.
Furthermore, in each case, this dependence on r can be approximated by a non-negative quadratic
whose minimum is at r=0. This approximation, though somewhat simplistic and consequently
restricted in terms of the range of parameter values for which it is accurate, is sufficient to guide us
in the identification of some examples, analogous to the alternatives found in the £=3 case above,
where the uniform allocation of observations to previous sequences, is either a global minimum, or
a global maximum of R, as desired. However, for this k=4 case, we can also show that for certain
values a, b, 7, the two remainder terms which, only, are the terms influenced by the direction as
well as the modulus 7 of the deviation <1/1 — %, vy — %, vy — %> from uniformity may become larger
and acquire a significant role in determining R’s behaviour. In some of these cases, in contrast to
what we found above for the k=3 situation, the uniform allocation v; = %, ¢t = 1,2,3, may turn
out to be neither the global minimum nor the global maximum point of R.

Taking the two p;-dependent summands in the numerator obtained above, it is shown in

Appendix B that if we define

1 b+1 Z
— llog (2T} _Z
473 Og(a—l—?) 6 (56)
then a Taylor expansion of degree 2 at the point <%, %, %> in v, i = 1,2,3 (still assumed confined

to the plane v1+vo+vs = 1), with remainder term, gives us

3
(a+2)(a+ 1)be™ D" ™97 4 (a4 1)(b+ e T Y elm5)7

i=1 i=1

=eF(a+ )b/ (a+2)(b+ 1)x

3
{6 cosh(a) + cosh(oz)er2 + % Z (1/2' — %)Ssinh[a + u(ui — —)Z]}
i=1
for some value 0 < u < 1 (u probably varies with a,b, Z and the v; but is constrained to the unit
interval). Of the terms inside the curly brackets, the final, remainder term is the only term that
depends on the allocation proportions v; in a way not confined purely to a dependence on their
modulus r. Hence, this term and a corresponding term (with different «) in the analogous Taylor
expansion of the denominator of R are the two which when small enough to ignore, lead to a much
simplified behaviour of R. Note that this approximation (obtained by disregarding the remainder
term) is best thought of as a quadratic in r—mnot rZ—because the coefficients are functions of 7,
but not of ». We will not look in detail®! at the general conditions affecting the size of the two
remainder terms as proportions respectively of the numerator and denominator of R. We merely
clarify the situation a little by remarking that we can expand

73 &

5 Z_: (1/2' — %)SSinh [oz + u(ui — %)Z] =
%{sinh(a) 2 (1/2' — %)BCOSh [u(ul — %)Z] + cosh(a) ZZ:; (1/2' — %)SSinh[u(w — %)Z] } ,

that the three different arguments of the hyperbolic function in each sum all fall in an interval
of length less than 7, and that, simply by virtue of the constraints v; > 0, 2?21 v; = 1 we can
obtain by elementary calculus the constraints

_i< (_i _l+ﬁ)<§:<,_l)3<r_<g
36 =" T 2 2T 2T

31Lengthier analyses are possible, such a transformation of <1/,‘ - %> to polar coordinates (r, ¢) allowing a further
expansion of both the numerator and the denominator of R into double series, each of whose terms is of the form
ai;r' {5k }(j¢) where ¢ is an angle describing the direction of the vector <yl‘—%> in the plane 2?21 v; =1 (Le.
using a Fourler series expansion in terms of ¢).
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Thus, we have reduced R to an expression of the form

1 + 017“2

R K ———m—
* 1—|—027°2’

with K,Cy1,Cy > 0, and 0 < 7 < @ (57)
where (K, Cq, C3) can be thought of as a transform of the parameters (a, b, 7) of our model, but
with the caveat that this approximation (57) is accurate (enough to serve as a useful model of
the behaviour of the of the more complicated function R of (55)) only within some subdomain—
defined by the requirement that the two neglected remainder terms should be sufficiently small—of
the set of all possible values a,b, 7 > 0. Then it 1s straightforward to conclude that if we hold
a, b, 7 fixed at some point within this subdomain, and vary the allocation vector (v;), we will find
R to be a monotonic function of r with r=0 being the global maximum, or minimum, respectively,
as O < Cy or O > O,

We have plotted R as a function of (11, vs,v3) below for four different example values of
(a,b,7). Note that in each case it is the exact value (55) which is plotted. The approximation
(57) was merely used as a guide to obtaining values of a,b, Z which achieve the three alternative
general forms which R seems to display in this k=4 case, classified here as: decreasing from max
at r=0 with approximate rotational symmetry3?; increasing from min at r=0 with approximate
rotational symmetry; and a third, catch-all category of ‘other’ more complex general behaviour.

If r is small and the parameters (a,b, 7Z) are within the right range, e.g. 7, a(a,b, 7) and
ala—1,b+1,7) are not too large, then we have seen from (57) that R will be approximately
an increasing function of r if C7 > (5, and a decreasing function if Cy < C5. Figure 2 shows
two graphs illustrating this case. In these graphs, the base is the equilateral triangular surface:

_1.263 1.814

\ 1167 1.549
Left plot : (a,b, Z) = (5,0.25,2); Right plot : {a,b, 7) = (0.25,5,2)

Figure 2: Plots of R vs. v1+va+v3=1

vi,va,v3 > 0, vi+va+rs = 1. The vertical axis is the gain R of (55) obtained from observing
that the three previous (product,environment) pairs have not failed. In the left plot we have
<01, Cz> = <03, 16> In the I'lght <Cl, Cz> = <38, 13>

Figure 3 shows examples where the situation is more complex with the remainder terms be-
ginning to play a significant role so that we lose our approximate rotational symmetry of the plot.
The left hand plot illustrates a case where the situation of even allocation among three previous
(product, environment) pairs is intermediate (in terms of how much extra confidence it buys us in
the current Ay) to the cases of the same number of previous demands being either concentrated
on a single previous (product, environment) pair, or being evenly allocated between two previous
pairs. The right hand plot in Figure 3 is included to make the point that we are not suggesting
that such odd behaviour of R will necessarily occur everywhere outside the domain of accuracy
of our approximation (57). Here, the remainder terms are large but we still do have relatively

32} e. approximately circular contours
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-3.18

~5.24

4.55 2.00

Left plot : (a,b, Z) = (0.25,20,5.3); Right plot : {(a, b, 7) = (1,20, 10)

Figure 3: Plots of R vs. v14+va+v3=1

uncomplicated behaviour in the sense that there is a global maximum at {v;) = <%, %, %>, with R
a decreasing function of r.

It is worth underlining that it is often the interaction between prior beliefs and amount of past
(product, environment) data that determines which of the cases illustrated in these plots applies;
rather than either one of these things alone. These findings about the effects of the shape of a Beta
Priory on the preference for an even or an uneven allocation of previous sequence observations
between 2 or 3 previous sequences raise two interesting questions which in this paper we have not
explored:—

e What, if anything, can we say generally about the preferred allocation among larger numbers
k—1 of previous sequences?

e To what extent are the precise results we found here arbitrary, accidental consequences of
the fact that we happen to have restricted our priors to the Beta family? Perhaps some of
these results are in fact particular cases of effects that could be stated in a framework of
more general geometric constraints on the Priory distribution without the need to constrain
Priory to a particular parametric family?

6.2 Use of a Beta family for f,

The Beta-family of distributions

a—l( )b—l

p(l—p

Bla,b) 7
is conjugate to both the binomial and the negative binomial (including geometric) distributions
and also provides a unique representation? of each possible®* (mean standard deviation) pair for
a random variable P confined to the interval [0, 1]. If we use this as our f, distribution family,
we obtain a mixed process for the failures in each single sequence for which the probability of »

fo(pl0) = 0= {a,b), a,b>0

failures in n demands is given by equation (4) to be

(MB(r+a,n—r+b)
Bla,b) ’
obtained by integrating over p the joint distribution of equation (2) which would be

Rin,a,b~
n\_ r+a—1 n—r+b—1
")y (1-p)
R, P)|n,a,b~ =L
(& P)l Bla,b)

33provided that limiting cases of the Beta parameters a, b are included
34j.e., all pairs in the closed half disk {(x,0) ; g,0 > OA (u — %)2 +0%2< %}
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in this case.
The likelihood (8) resulting from observation of k products operating in k allocated environ-

ments 1s .
i +ri,b+n — 1)
R;) W ab)~ (“)ﬁ(“ ’
< z 1| z 1 ) 21;[1 - ﬁ(a,b)
with
ﬁﬁa"i'rhb"i'nz_rz)
i=1 Clb)

as an expression proportional to the likelihood of (a, b).

Having decided to investigate the Beta f,,, the choice of Priorg over S, the positive quadrant®,
remains problematic. In real life there would be an ‘expert’ from whom we would wish to elicit the
distribution that truly reflects his/her a priori belief. This is not an easy task in such a complex
model, and the expert may find it difficult to represent his/her beliefs in a distribution for {(a, b). A
way out of this difficulty is to assume that the expert is ‘ignorant’, and use that prior distribution
which represents ignorance. Even this is a non-trivial task. As an example we consider the simple
case of distributions uniform on some finite rectangle with sides parallel to the a and b axes,

1 .
Priorg(a,b) = { (@b a1 <a<ay by <b<b

, elsewhere.

Firstly we can examine characteristics of the prior distribution (10) for Py implied by these

model assumptions,
/az/bz pa—l(l _ p)b_l db da
Py~ .
a; Jby Bla,b) (az —ay)(bs — b1)

ala+1
a+b)(a+b+1) "
grated analytically with respect to our ignorance Priorg(a, b) (first expanding in partial fractions

with respect to b in the case of the second moment) to give the first two cases of equation (20).
But the centrally important effect of our model is to represent the effect of observed failure be-
haviour on both the distribution of Pj, and perhaps even more of interest, the reliability function,
or probability of a future period of failure-free behaviour of a given length. The prior reliability
function is given from equations (24) and (29) by

- B 626 (a, b _|_ n) db da
P(Xk > n) = E(NO,H) - / /b (az — a1)(bz - bl)

/ /b2 b—i—l) (b+n—1) db da
b, (a+b)(a+b+1)...(a+b+n—1)(az—ar)(bs—b1)’
where the first failure of Ay occurs on the X * demand.

Now to explore the effects of learning from observation we examine the realisations under
these particular distributional assumptions of: firstly the posterior distributions for Pj given
by equations (11-13); and secondly the predictions of Xy, the time to next failure of Ay using
equations (30-32)3°. In the most general case of arbitrary periods of observation of some finite
number of previous sequences, each of the probabilities entailed by these questions takes the form

of the ratio of a pair of integrals (over the chosen rectangle in the (a, b)-plane), where the integrands
in the numerator and denominator are each equal to some product of terms of the form

The first and second non-central moments of P|a,b are aaﬁ and i These may be inte-

1 a=1(1 _ p)b-1 b —
prserlast) = BP (1= PP~ fat) = [ (1 =ppt ﬁ((a b];) ip="2 S !

35possibly extended to include points representing a,b — co with a/b constant, and a,b — 0 with a/b constant,

to include the all the limiting cases of the Beta family
36

—given that we choose to concentrate on the no-failures case, for reasons of its interest as an upper bound on
assurable reliabilities. In the case where past failures have been observed, we simply use the obvious analogues of
(30-32), derived similarly from (11-13) and (18)
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ala+1)...(a+r—=1b0b+1)...b+n—-r—1)
(a4+bd)(a+b+1). ..o (a+b+n-1)

In practice, since this kind of inference is most likely to be called for in dealing with very high
reliability systems, the values n; of n used with these sequences are likely to be rather large, and
the values of r are likely to be small, and ideally zero. So some very large products will be involved
in the above term. We found that from the numerical point of view, both the asymptotic form of
the log-gamma function, and also the Euler-Maclaurin series for sums of form

n—1
Zlog(l—ﬁj) , where 0 <y <z
7=0

were useful in approximating and bounding the integrals of these terms for large n. (See Ap-
pendix C for details.) For the sake of illustrating the algebraic form of the formulas, however,
we give examples of the predictions of our model for hypothetical cases in which a very small
number of observations have been seen. Suppose we wish to predict the probability that A4 will
fail » times in its next 6 demands. In the absence of any knowledge of the past we obtain the
distribution

()/ /b2 afa+1).. (a+r—1b0b+1)...(b+5—7) db da
b, (@a+b)a+bdb+1)............... (a+b+5) (a2 —a1)(bay — b1)

If we are now informed that A4 has in fact failed in the past 2 times out of 4, then our posterior
distribution of P4 1s

b2 Py 1 —pa) b-1 db da
pi(l—pa)” [° @b (aa=a1)(bs=b1)

4~ f a(a+1) (b+1) db da
bl (a+b)(a+b+1)(a+b+2)(a+b+3) (az—ai)(ba—b1)

and our updated distribution for the number of failures in the next 6 demands on A4 is

f b2 ala+1)...(a+r+1)b(b+1)...(b+7—7r) db da
R~ bl (a+b)( a+b+1) ............... (a+b49) (az—a1)(b2a—b1)
f ala+1)b(b+1) db da
b1 (a+b)(a+b+1)(a+b+2)(a+b+3) (az—a1)(ba—b1)

If we retract the information about the past 2 out of 4 failures of A4 (i.e., suppose it has not
been seen), and instead suppose that pairs Ay, Az, and Asg, have been observed to fail 0 times out
of 2, 2 times out of 3 and 1 time out of 4, respectively, then our posterior distribution of Py is

f b2p (1—p4)b_1/ b(b+1) )( a(a+1)b )( ab(b41)(b42) ) db da
P ﬂ(a b) \(atb)(a+b+1) A\ (at+b)(a+b+1)(a+b+2) /\ (at+b)(a+b+1)(a+b+2)(a+b+3) /{ag—ay)(ba—b1)
f b(b+1) )( a(at1)b )( ab(b+1)(b+2) ) db da
(a+b)(a+b+1) (a+b)(a+b+1)(a+b+2) \ (a+b)(a+b+1)(a+b+2)(a+b+3) /(az—a1)(ba—b1)

Now, the updated distribution for R in the next 6 demands on Ay is

()

f 62 a(a+1) (atr— 1)b(b+1)~~~(b+5—r))( b(b+1) )( a(at+1)b )( ab(b+1)(b+2) ) db da
(e (at575) Nt N Groetern o) N Gioarot) (e t6+2)(aT653) JTaz—a1) (b3 =51)
f b(b+1) )( a(a+1)b )( ab(b+1)(b+2) ) db da
(e emeran e | e Dt e ) =m0 =)

If this information about A4, A5, and A3 is supplemented by the knowledge that A4 has failed
2 times out of 4 in the past, then the two corresponding updated distributions are

Py~

fa2fb2p4 (1—p4)b+1/ b(b+1) )( a(at+1)b )( ab(b41)(b+2) ) dbda
6(a,b) \ (atb)(a+b+1) A\ (a+b)(a+b+1)(a+b+2) /\ (a+b)(a+b+1)(a+b+2)(a+b+3) /Tag—a1)(ba—b1)

f a(a+1)b(b+1) )( b(b+1) )( a(a+1)b )( ab(b41)(b42)
(e  mmar  ereran e G e e o) ) e =e D =o)
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and

()

a(a+1) (a+r+1)b(b+1)...(b+7—r))( b(b41) )( a(a41)b )( ab(b4+1)(b+2)
(a+b)(a+b+1) ............... (ato+9) N @Fo)(atb+1) N (@Fb)(atb+1)(atbF2) (a+b)(a+b+1)(a+b+2)(a+b+3)}(a2—a1)(b2—b1)

f

a(at+1)b(b+1) )( b(b+1) )( a(at1)b )( ab(b+1)(b+2)
(erermer e ) e ers ) ee e | Gt T ) —ad =
The above example is intended to provide an illustration of the general form of the results for
this Beta f,( - |a,b) case with prior Priory uniform on a rectangle. Table 1 shows some results that
are more representative of what we might see when dealing with real safety-critical systems. These
illustrative numerical results are based upon the observation of three previous sequences, each for
a period of 107 demands without a single failure. In Table 1 we can see how various different

Given no failure of Given no failure of Given failure neither
Region of Uniform Prior Given no Data this previous 3 of this nor of previous
{product, envir.) (product, envir.)s 3 (product, envir.)s
a1 as b1 b E(P,) R(107) E(P,) R(107) | E(Ps) R(107) | E(Ps) R(107)
0 1 T 2 2384 6229E-1 | .3966E-1 9585 1388E-1 7498 1047E-1 9893
0 1 1 10 1037 6828E-1 | .1577TE-1  .9547 5398E-2 7499 4062E-2  .9883
0 1 1 100 2077E-1  .8048E-1 | .3020E-2  .9469 1019E-2 7500 7655E-3  .9862
0 1 1 1000 .3207E-2 9877E-1 4636E-3 9355 .1556E-3 L7500 .1168E-3 9831
0 2 1 2 3692 3114E-1 .3966E-1 9585 .1388E-1 7498 .1047e-1 9893
0 2 1 10 1781 .3414E-1 1578e-1 9547 .5398E-2 7499 4062E-2 9883
0 2 1 100 .3833E-1 .4024E-1 .3020E-2 .9469 .1019E-2 L7500 .7655E-3 9862
0 2 1 1000 .6091E-2 4939E-1 4637E-3 9355 .1556E-3 L7500 .1168E-3 9831
.01 .0101 10 10.1 9990E-3 .8700 9990E-3 9931 9990E-3 .8700 9990E-3 9931
0 b/999 1 1000 .5002E-3 1824 .2056E-3 .9401 .9494E-4 7545 .7593E-4 9832
0 b/99999 1 1000 .5000E-5 .9689 4947E-5 9977 .4843E-5 9703 4791E-5 9978
0 5/9999999 1 1000 .5000E-7 199968 4999E-7 .999977 4998E-7 199968 4998E-7 .999977

XXXXB-n means 0.XXXX x 107"

Table 1: Effect on Reliability Predictions of Observation of Non-Failure of Previous
(product, environment) pairs

assumptions for Priory affect the strength of the inferences concerning a fourth sequence in the
same family which can be drawn from this sort of evidence of high reliability of three previous,
similar (product, environment) pairs.

All the results in the Table involve assuming uniform distributions over different regions of the
(a, b)-space. We have excluded values of b smaller than one, since these entail Beta distributions
with infinite density at 1; but we have allowed values of a smaller than one, since infinite density
at the origin seems plausible. The region in the positive quadrant where a and b are both large
can also be ruled out, since any point here corresponds to a Beta distribution with very small
variance—i.e. it implies that different sequences will have essentially identical probabilities of
failure upon demand, which runs counter to the spirit of this whole exercise.

The first nine rows of the Table involve several rectangles of the kind described above. The
ninth row shows a small rectangle, effectively approximating to a known point value for (a, b).
Rows 10 to 12 show thin ‘wedges’ adjacent to the b-axis. The informal reasoning here is that it
may be reasonable to believe a priori that the mean E(P|a,b) of the distribution of probability
of failure on demand does not exceed a certain value 0 < E(P]a, b) < M < 1, say, and this is
equivalent to the restriction to 3 < 7 M . We used M = 1073, 1075, and 10~7. Once again, all
points in the wedge are given equal Welght.

In the Table we show how ‘the reliability’ of a (product, environment) pair A4, is affected by
the type of evidence that could be available. For brevity here we have chosen to present the
mean of the distribution of P4, and the reliability function evaluated at 107 demands (i.e. the
probability of surviving this number of demands), in each of the four cases: given no data; given
only evidence of failure-free operation of this sequence; given only evidence of failure-free working
of earlier sequences; and given both these latter items of evidence.

The most interesting and important results concern the different predictions of future opera-
tional behaviour, expressed as the probability R(107) of surviving 107 further demands without

32




failure: the information from the perfect working of previous sequences makes only a modest
contribution to our confidence in the current sequence when compared with actual evidence of
failure-free working during that sequence itself (compare columns 8 and 10). Thus when we only
have evidence from the previous A;, 1 < ¢ < 3, although this is of extensive perfect working for
each, it only allows us to claim, in the case of the rectangular priors, about 0.75 probability of
similarly extensive perfect working (i.e. surviving 10" demands) for the new sequence®”.

The evidence from previous perfect working during the same sequence, however, is more in-
formative. It allows us to be much more confident that this product will work perfectly in this
environment in the future: the probability of it surviving 107 demands, given that it has already
survived 107 demands, exceeds 0.9 in all cases.

On the other hand, the small increase in confidence that comes from experience of previ-
ous sequences may be useful in the case of safety-critical systems, especially as it is likely to
come with little or no cost to developers. Thus, in the first row of the Table, the a prior: be-
lief of the 107 demand survival is .062, this increases to .96 after we have actually seen the
{product, environment) survive 10” demands, and to .99 when we are told, in addition, that three
other (product, environment) pairs have also survived 107 demands. Putting it another way, this
evidence of survival in previous sequences has reduced the chance of a failure in the next 107
demands by a factor of 4 (from .04 to .01) compared with the result based only on the evidence
from operational experience of this sequence.

We have shown the columns for the means of the various distributions for P, mainly as a
warning that these can be misleading if used to represent ‘the reliability’ of the pair A4. Thus the
mean probability of failure on demand can be quite large (0.24 in the first line prior distribution),
but still the chance of surviving 10” demands may be non-negligible (0.063 in this case). The
informal reason is that the distribution is such that the mean is not a good summary statistic,
and 1n particular cannot be used in a geometric distribution to approximate to the more complex
model that applies here.

In fact, decreasing values of E(Py) do not necessarily imply increasing chance of surviving 107
demands, as might naively be expected: see, for example, columns 7 and 8 of rows 1 to 4. Imagine
that we have two experts, let us call them James and Peter, represented by two different prior
distributions (rows of the Table), who observe the system to survive for 107 demands. They are
then asked to tell us how reliable the system is. If the question is posed as ‘what is the mean
of P,7’, then James is more optimistic than Peter; if, however, the question is posed as ‘what is
the chance of surviving a further 107 demands’, Peter is more optimistic than James. Such (only
apparent) paradoxes underline the importance of using the right formulation for our purposes
when we ask questions about the reliability of a system.

7 Some General Remarks about Expressing Reliability

It 1s common to speak loosely of system reliability using terms such as: ‘a 10 to the minus 5 system’;
or ‘a system with MTTF3® 10”. Here the units implied would typically be failures/demand
and demands, respectively®®. Whilst it is of course possible to give a precise meaning to these
terms, some care is required in comparing predictive distributions and rates based on a relatively
sophisticated Bayesian model such as the one discussed here. We have taken the decision to extend
an originally Bernoulli Trials process model with simple geometrically distributed time-to-failure
distributions by including explicitly within the mathematics a probabilistic representation of our
own subjective uncertainty about each Bernoulli trials parameter P;. One of the consequences of
this decision 1s that our subjective uncertainty about the P; may never now remain static, so long
as some form of observation is allowed to take place. Hence, as has been apparent in the formulae

37We conjecture that some limiting result may be indicated here : perhaps the probability that sequence Aj will

survive its first X demands, given that k—1 previous sequences have done so, tends to (k— 1)/k as X — co.
38

39

mean-time-to-next-failure
or perhaps, in the continuous time case, failures/hour and hours, but we continue to concentrate for simplicity
on the discrete demand-count time metric.
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derived above (e.g. (30-32)), our predictive distributions of time to next failure are no longer
restricted to the geometric family. Then if we retain the notion of geometric time to failure as a
psychological standard of comparison, we must be careful when we speak of ‘a 10 to the minus 5
system’ to be clear whether we intend ‘a system whose probability of failure on the next demand 1s
identical to that of a geometric random variable with parameter 10~°’; or ‘a system whose MTTF
is that of a geometric random variable with parameter 107°’; or perhaps ‘a system whose median
(or, say, upper 99.9 percentile) is that of a geometric random variable with parameter 107°’; etc.

It follows from (18) that the Bayesian predictive distribution of the process of future failures of
a particular sequence, based on our model, will always take the form of a mixture of Bernoulli trials
process distributions. Such mixture processes are exchangeable. (Conversely [3, p217] states that
there are no other exchangeable, boolean valued, infinite random sequences than those obtained
by mixing Bernoulli trials processes.) A few properties of these mixture processes were given
earlier in equations (3-6), with f,(-|¢) playing the role of mixing distribution in these equations.
Since these mixed processes form a more general class than the class of Bernoulli trials processes
used as a model for each Ay given its parameter pg, the theoretical possibility is introduced that
1t may also require some care to compare two different predictions which may emanate from our
model (i.e. resulting from two different hypothetical findings from observation). How do we state
unambiguously that one observation scheme gives rise to a prediction of ‘higher program reliability’
than another? If we were dealing with pure Bernoulli trials process predictions, then we would be
able to say, for two predictions with parameters (i.e., per-demand failure probabilities) say 7 and
mo, with m < w9, that prediction 1 predicts ‘higher reliability’” than prediction 2 in every possible
sense: mean time to failure, median time to failure, failure rate, reliability function, etc. On the
other hand for many exchangeable process predictions such as will be produced by a Bayesian
analysis of our model, the mean time to failure does not exist (is infinite). Also we may well find
that the median time to failure of prediction 1 may be greater than the median for prediction
2, whilst the order of say the 75%-iles could be reversed, i.e. the reliability functions obtained
from two different observation schemes, such as two of equations (30-32), as functions of n, could
conceivably intersect so that prediction 1 asserts better short term reliability than prediction 2
but the comparison might turn out to be reversed for longer term reliability predictions.

We might choose to compare predictions based on different observation assumptions in terms of
their instantaneous ‘reliability” measure, given (for the observation scenarios we have considered
explicitly) by the n = 1 case of expressions (30— 29). However, in doing so we should bear in
mind that such a measure does not necessarily tell us which prediction has the highest up-to-date
‘mission survival probability’ for a mission of a given length n # 1. It may be possible to overcome
some of these difficulties by suitable restrictions upon the mathematical forms of Priory and f,,
but these would need to be ‘obviously reasonable’ in their own right. Clearly it would be wrong
for example to force an unreasonable (i.e. not believed) prior upon a human expert.

8 Conclusions and Future Work

A major motivation for research of this kind i1s to make the process of assessing safety-critical
systems more open to analysis. Currently, particularly in those cases where complex software is
involved, such assessments have a high degree of informality and rely a great deal upon expert
judgement. Whilst this process is usually carried out responsibly, and with great rigour, it is
difficult for an outsider to analyse how the final judgement has been reached, and much has to
be taken on trust. Since there is some evidence of experts being unduly optimistic about their
judgemental abilities [4], simply checking their honesty is insufficient. What is needed is a more
formal means of argumentation, where the assumptions and reasoning processes are visible and can
be questioned. This new model treats a small part of this problem by providing a representation,
and means of composition, of two important types of evidence that are commonly used to make
claims for the reliability of a software product operating in a particular environment: evidence
from testing of the (product,environment) pair itself and evidence from previous experience of
‘similar’ pairs.
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Whilst we make no great claims for the realism of the example we have used, it does indicate the
way in which a formal model of this kind could be used to question whether an optimistic conclusion
drawn from past experience might be ill-founded. Essentially, if you were to claim that great trust
could be placed in a particular system because of past experience of other environments or systems,
you would have to justify this by trying to claim that your prior distribution is reasonable within
the model. It is clear that some of the examples of prior distributions we have used could be said
to be ‘unreasonable’ in the sense that they represent beliefs about the reliability, prior to seeing
any evidence, that are very strong.

The particular numerical examples used here are meant only to be illustrative. Clearly further
work is needed to identify classes of ‘plausible’ prior distributions, even for the case in which the
expert professes ‘complete prior ignorance’. For example, in section 6.1.2 or section 6.2, rather
than addressing the raw (a,b) parameters, it may be easier for the subject to think in terms of
a reparameterisation - the mean and coefficient of variation are possibilities. Another area of
future work concerns the further exploration of the impact of different kinds of evidence upon the
conclusions. For example, in our examples here we concentrated most of our attention on what
i1s in many respects the most interesting case : that of complete perfection of operation of the
previous sequences. This 1s the best news that it is possible to have, but it would be interesting
to look more carefully at some cases where there have been failures in the earlier sequences.

The possibility that conclusions about the reliability of a system can be highly dependent
upon the precise way in which they are formulated is somewhat surprising and needs further
investigation. However, the results here support those obtained in a different context, concerning
stopping rules for software testing [8].

Finally, all this modelling depends upon the reasonableness of notions of statistical ‘similarity’
between different demand sequences. In this we are merely making more formal the extremely
informal claims that experts make when they argue that the failure behaviour of one demand
sequence can be used as a means of inferring the likely behaviour of another. Justification of such
assumptions of similarity in particular cases is, of course, outside the direct scope of our studies—
presumably it will come, in the case of software, from knowledge of the application domain (the
problems being solved were similar), the development process (the methods used were similar),
the design teams (they were the same or of comparable competence), etc. However, we believe
that our model can be used to provide a curb on the enthusiasm of experts: specifically, the use
of ‘similarity’ arguments to make stronger claims than would be warranted via the model should
be treated with suspicion.
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Appendices

A Proof that the Best Attainable Improvement R of the
Odds that P,=0 which is Obtained by Incorporation of
Previous Demand-Sequence Data is, for Fixed Prior ©-

Mean, an Increasing Function of Our Prior Variance of
®

This proof concerns the influence of the spread of our prior distribution for © on the improvement
in P(P;=0) which results from taking account of fixed observations of non-failure of previous
sequences. See p23 for a more complete statement of the context. We will show this result
specifically for the two-point P-distribution of §6.1 where, under our further restriction of §6.1.2
to a Beta assumption for Priors, the result translates into the property that R of equation (45)
is a decreasing function of the Beta parameter b, for o = a/b fixed. So we work in terms of the
reparameterised beta Priory

906—1(1 _ g)b—l 91
B3(ob, b) ’ 1—6;
Questions remain about the precise form and extent of any generalisations of the monotonicity

result beyond this case. On expanding the polynomial I(6) = Zf:_ol ci0, the left-hand side of (45)
becomes

Priorg (0) = =o0 (see p21). (58)

zk‘ol clﬁ(ob—i—i—i—l b)

0 Z i0(ob+i,b+ 1)
Since we are assuming that the £—1 previous products have all performed perfectly in their
respective environments over the numbers of trials observed for each, {(#) remains defined as
on p21 so the coefficients (¢;) are all non-negative. Now, holding the odds parameter o constant
and differentiating R with respect to b, we can verify a non-increasing function R(b) for all b > 0
as follows.

(59)

OR
=5 =
k=1 k—1
{Z ci [ov(ob+i+1) +(b) — (o+ 1) (ob+b+i+1)] Blob+i+1,b) > ¢; B(ob+], b+1)
=0 7=0
k—1 k—1

— > ciBlob+j+1,b) > e [ov(ob+i) + (b+1) — (o—i—l)w(ob—i—b—i—i—i—l)]ﬁ(ob—l—i,b—l—l)} (60)

7=0 =0
k-1 2
/0 {Z ¢ B(ob+4, b—i—l)}
i=0

where ¢ is the digamma function (put » = 0 in (78)) and where we have used the relations
%%(a,b) = B(a, b)[¢(a) — ¥(a +b)], %%(a,b) = B(a, b)[¢(b) —P(a+b)].  (61)

The two double sums of the numerator of (60) can be expanded out and their corresponding terms
subtracted to express the numerator as a single double sum of the form

k—1k-1

Numerator = ZZ“J@%

i—Oj—O

= Ztuc + ZZ tz] +t]z CiCj . (62)

i=1 j<i
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We proceed to show that neither of the summands in the second form (62) can be greater than 0.
In examining the terms of (62) it simplifies matters to first extract from ¢;; a positive factor

b T(0b + i)T'(0b + j)T (b + 1)T(b)

S b b T S R T Db bt g+ 1)

(63)

which is symmetricin ¢, j. It can then be shown by selecting the relevant terms from the numerator
of (60) and using the recurrence formula ¢(z 4+ 1) = ¢(z) + 1/z that t;;/s;; = —i/b < 0. To do the
same for the off-diagonal sums of pairs of terms from (62) is slightly more cumbersome. Selecting
the relevant terms from (60) and simplifying in a similar way, we are left with (assuming without
loss of generality that ¢ > j > 0)

= (i=§){ o[t (ob+i) — w(ob+)] — (o4 1) [¢(ob+b+it1) — v(obtbtit)] } — L (64)

lij + 15
iy b

Sij

The problem here is the curly-bracketed term: 1 is monotonic increasing and the fact that o+1 > o
suggests that this term might be negative, finishing our task rather easily. But perhaps the ratio
(o + 1)/0 is insufficiently large to compensate for the fact that the function ¢ is concave. To
verify that the whole expression (64) cannot be positive we manipulate it as follows, beginning by
expanding the two i-differences

i—1 . .
g+t .. 0 o+ 1 i+
el j)Z,(obJrh (o—|—1)b—|—h—|—1) b
J h=j
. L 0 o+1 . o+1 0 i+J
B (Z_])hz_:j<05+h_(0+1)b+h)+(Z_j)((o—l—l)b—l—j_ob—l—i)_ b
B (i—j)i —h (i 4)olo + 1)b* +ij(i + j + 2b + 40b)
= (ob+ h)((o+1)b+ h) b(ob +14)((o+ 1)b+ j)

We can therefore finally conclude that % < 0, making R a monotonic non-increasing function
of b > 0 for o = a/b fixed. Examining the reasoning above, we see that R will almost always be
a strictly decreasing function of b, the exceptional cases occurring only when we consider a few
special or limiting conditions on the number k—1 of previous sequences, the beta parameters 0,5,
and the possibility of zero values for the coefficients (¢;) in the expansion of the polynomial {(#).
For R(b) to be constant over some b-interval would require all terms in the sum (62) to be zero
inside that interval.

B Taylor Expansion of Numerator of Improvement R in
Odds of A;-Perfection that Results From Observation of
(A, ...y Ar_1)

We wish to expand the two middle terms of the numerator of (55) on p26 as a Taylor series in
powers of (v, va,vs), at the point <%, %, %> Our expansion is required to hold only within the
plain v14+vo4vs = 1. Tt is clear from the development on p27 that what it remains to do, is to
show that the Taylor expansion for the term

3 3
a—|—2 Z 1 b—l— 1 Z 1
t = 6 (g—l/,)Z - % (l/,—g)Z
1/ ¢ ;_1 e + 3¢ E e (65)

is given by the series

78 & 1.3
s = 6 cosh(a) + cosh(a)Zr? + 5 Z (1/2' — g) smh[a + u(ui — §>Z] (66)

i=1

37



By (56) we can write ¢ as

= Z cosh[a + ( ;)Z] (68)
= F(Z), say. (69)

We can now use a Taylor expansion for the function ¥

7? A
F(Z) = F(0)+ F'(0)Z + F"(0) 5 + F(S)(UZ)?, where 0<u<1

with
F(z) = 250 (vi — Drcoshlo+ (v;— 3)Z], n=0,2,4,...
2l i — Yyrsinh[a+ (- 1) 2], n=1,35,...

to deduce the result that ¢ = s for some 0<u<1 (with « depending on a,b, 7 and (14)). The first
order term is zero because 2?21(1/2'—%) = [2?21 I/Z'] —-1=0

C Numerical Approximation to Very High Order Non-Central
Moments of the Beta Distribution

We require for the purpose of plotting and numerical integration in §6.2 to have an efficient
algorithm for calculating the expectation of (1 — P)™ for large n when P is distributed with a beta
distribution with parameters a,b. Thus we require an algorithm to calculate*®

I'(b+n)T(a+b)

L) (a+b+n)
bb+1)...(b+n—1)

(a+b)(a+b+1)...(a+b+n—-1)"

Problems with overflow, long computation times, and loss of precision due to subtraction of very

similar numbers were experienced when attempting to compute using standard beta, gamma and

log-gamma library functions in the obvious ways directly from the forms above. To avoid these

problems some bounds are obtained below by directly working with the specific function po »(a, b).
Firstly, we note that

log (po n(a,b)) Zlog( a—|—b—|—z)

so we can apply the ‘integral test’ approximation to sums of any strictly decreasing function f

/f dt<Zf < 10 /f

40 Although, for our purposes we are only interested in integer n, we note in passing that moments of non-integer
order are perfectly well defined and that for the beta distribution we have the curious symmetry pg n(a,b) =
#0,a(n,b), apparent from the Gamma-function representation here.
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where f(t) = —log (1 - ﬁ), to give the interesting bounds

Flt— (t — 1)log(t)] < log (po,n(a, b)) < Flt — tlog(t)] (70)
where F (or, strictly, Fy ) is the linear functional given by
Flgl=—gla+b+n)+g(b+n)+gla+b)—g(b), forfunctions g,

i.e., intuitively, F applies to its scalar function argument a difference operator the ‘spacing’ of
whose differences is specified by a and n and the ‘location’ of application of which is specified by
b. Note that, when F’s argument g can be differentiated twice, the identity

Flgl = —/ / g (t1 + a4 b) dty dty (71)
o Jo

will sometimes be used in what follows to demonstrate monotonicity of expressions which involve
F. Since we are interested in cases where n (and sometimes b also) are large compared to a, there
are likely to be subtraction problems with numerical accuracy in calculating the bounds in (70)
and some other bounds and approximations which also turn out to be defined by the application
of F to some function. These can be solved by rearrangement and perhaps also Taylor series
approximations. E.g. for the upper bound, if n 1s much larger than a we can use

—(a+b+n)log(a+b+n)+ (b+n)log(h+ n) + (a + b)log(a + b) — blog(b) =

iiﬁiﬁ)+«m+mbga+m—bby®

_alog(a—i—b—i—n)—(b—l—n)log( -

—unless b is also much larger than a, in which case

—(a+b+n)log(a+b+n)+ (b+n)log(h+n) + (a + b)log(a + b) — blog(b) =
a+b
—alog <7a—|—b+n)
M RICREIT S R TR TS

should produce an accurate answer. Once these rather minor subtraction problems have been
tackled, the resulting bounds*!

(b—l— n)(b+n—1)(a+ b)(a+b—1)
b(b—l)(a + b_|_ n)(a+b+n—1)

(b+ n)(b+”)(a + b)(a‘l'b)
bo(a + b+ n)latbtn)

< pon(ab) < (72)
on pon(a,b) can be used for many values of n and ranges of (a,b) to produce quite tight bounds
on the reliability predictions discussed in §6.2. These bounds are themselves in the ratio

an

1 e
a0

so that, for example, when « is small compared to b, we know that these bounds are at least
correspondingly accurate approximations to ug ,(a,b). Returning to our application in §6.2, it is
worth remarking that such values of @ and b give very plausible distributions for P to characterise
a family of (product, environment) pairs designed for very high reliability.

But, for those values, e.g. when g is small, where these bounds are not known to give sat-
isfactory accuracy, we can use the more general*? and tighter bounds obtained using the Euler-
Maclaurin summation formula, as follows.

41but note the improvement to the upper bound mentioned later on p41
42in that they are useful over a wider region of (a,b,n)
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Abramowitz and Stegun [1, p257] give bounds on the remainder S, (¢) of the asymptotic ex-
pansion of the log-gamma function

log(T()) = (t — %) log(t) —t+ = log (2m) + Z 2]{23;77)1521@1—1 + Sp(t). (73)

Here, By, B1, Ba, ... are the Bernoulli numbers 1, — 2, é, ..., see [1, pp804—10]. Note that if the
terms in negative powers of ¢ here, and the remamder term S, (t) are all neglected, and the
remaining part of the right-hand side of (73) is then substituted in the definition of log (10, (a, b)),
we obtain the approximation F[t — (t — %) log(t)], where we have used the same linear functional
notation F introduced above. It is straightforward to show®® that this asymptotic approximation
to log (¢o.n(a, b)) lies between the two ‘integration test’ bounds obtained above. If, in place of
(73), we consider instead the slightly easier problem of asymptotic approximation to difference
of two values of the log-gamma function at arguments separated by an integer**, then we can
obtain information about the corresponding remainder term directly from the Euler-Maclaurin
summation formula®® [12, pp478-82]

)= [ s B - LS e (ki) - ) o (o)

!
— (2k)!
where6 .
Qr = B (1) HZfZ’““ +t)d (75)
"= Jy @r+ 1) (i
i=0

which holds for any function f possessing the appropriate derivatives. (74) and (75) can be
obtained from the integral form of the remainder terms for the ordinary Taylor series calculated
for f and also for its derivatives using unit displacement from the series expansion point. (See [12]
for details.) Applying this formula to the functions f(z) = log(b + #) and f(z) = log(a + b+ )
and subtracting yields the formula

log (0, (a, b)) =
Flt = (t = 3) log(t)]

+;; 2k(2k — 1) (_ (a+b+ n)Zk_1 + b+ n)zk_l + TEDES — bzk—l) (76)
+R,

with remainder

1
R, :/ B () {—1/)(2T)(t—|—a—|—b+n) + P+ b+ n)+ 0Pt + a+b) —1/)(2’“)(t+b)} dt .
0

(2r 4+ 1!
(77)
In this remainder term, Ba,41(¢) is the Bernoulli polynomial [1, 804-6], and
. d2r+1
v = L og(r) (™)

43¢ither directly by subtraction, or by using (71) with g(t) = (¢t + ¢)log(t), g"(¢) = % - t%’ monotonic decreasing
inc

44This integer is the order of the (1 — P)-moment. Does the E-M series which results (i.e. equations (76) and
(77)) also hold exactly for non-integer n? For our purposes, this does not matter.

45Note that we do not use the E-M formula as given in [1, p806] since this contains errors.

46 There are some alternative forms for the remainder in the Euler-Maclaurin summation formula. Note that,
unlike some others which require r > 1, the form @, of remainder used here continues to be correct for » = 0
(provided that the ‘empty sum’ convention that 22:1 - =0 is used in (74)).
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is the polygamma function [1, pp258—60]. The term in the integrand in square brackets is actually
a shorthand, based on the basic polygamma recurrence relation

Yt +n) =" (@) + (=1)"m! (th +..+ (t+n—1)m+1) ,
for the expanded form (in which it was derived, as (75)).

The partial sum in (76) is a sum of alternating terms, since, for each term, the bracketed part
F[t — t=(2=1] is negative, and the even Bernoulli numbers (excluding By) are known to alternate
in sign. We can show that, as one might hope to find, the sequence of remainder terms (R, ) of the
approximation also alternates. To see this notice firstly that the square-bracketed term, £(t), say,
in (77) is a positive decreasing function of ¢. This fact is a consequence of putting g = 1(*") in (71)
(and replacing b by b+ t), since then we have ¢” = ¢(?"+2) and the even polygamma functions*”
are known to be increasing (and negative) on the positive real axis. Alternatively, we obtain the
same conclusion by leaving £(¢) in its original expanded form and rearranging the terms to give

n—1 1 1
0= (QT)!Z ((t+b+i)2’“+1 - (t—l—a—l—b—l—i)?’““) ’

i=0

which is positive decreasing in ¢ by the convexity of the inverse power function. The second
requirement to deduce that (R,) alternates in sign is the well-known property of the odd Bernoulli
polynomials. [1, pp804-5] tells us that Bsy41(f) has a zero at ¢ = %, has sign (—1)"*! on the
interval 0 < t < % and satisfies the identity Ba,y1(1 —¢) = —Bar41(t). Putting the above facts
together we can deduce that the integrand in (77) has sign (—1)"*! on the interval 0 < ¢ < %,
sign (—1)" on 5 < ¢ < 1 and conclude that

v = [t
> | St [ B eaha
ey [ DT By (1)
B 5(5)/0 (2r+1)+! a
= 0

Thus R, has sign (—1)"*! and we can conclude that we have obtained bounds

Flt = (t — 3)log(t)]

2541
Boy 1 1 1 1
+ 1; 2k (2k — 1) (_ (atb+n) + (b4 n)? ! + (@t b)ZF-1 bzk—l)

< log (pt0,n(a, b))
< Flt = (t = 5)log(t)]

2s
Bog 1 1 1 ]
+;; 2k(2k — 1) (_ (Cl—I—b—i—n)zk_l + (b—i—n)%_l + (a + b)2F-1 - b2k—1) )
fOI'S:O’l’Q’.“. (79)

Note that the s = 0 case tells us that, in fact, F[t — (¢ — %) log(t)] is a strict upper bound for
log (0,0 (@, b)). This enables a simple improvement to the right-hand side of (72).

Since we have now shown the sequence Ry, R1, R ... to be alternating in sign, we have imme-
diately

|Rr| < |RT—R,«+1|

4"meaning the functions (78) with » > 1
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Borys - 1 . 1 . 1 1
(2r+2)2r+ 1)\ (a4b+n)”T  (b+n)T" 0 (ab)FH pFH

(=1)" Bopgo 1 1 1 L]
(27“—1—2)(27“—1— 1) (a+b+n)2r+1 (b+n)2r+—1 (a+b)2r+1 b2r+1

(—1)" Bapyo L 1 (—1)" Bapyo
@ 2)2r+ 1)\ (ax o2t ) < @rt )2 4 per

as a crude bound on the error of our approximation, so that, summarising our findings about the
remainder term, we can say that

A

(80)

(=1)" Baria
2r +2)(2r + )eF

0< (-1)"*'R, < (81)

In the numerical results presented in §6.2, we chose to work with » = 3 and r = 4 to give
us our lower and upper bounds (respectively) on g n(a,b). With these numbers of terms in the
series, (81) becomes

<Ri<0< Rs< (82)

- 1188b° 168067
Two further problems remained to be addressed in order to implement an algorithm. The
first problem is that of the size of the error bounds when & is small. Although for high reliability
software families we would probably not expect an asymptote in the distribution of P|(a,b) at
P = 1, we might nevertheless in our prior distribution for (a,b) wish to assign a very small
quantity of probability to such values. For this reason we prefer to use a numerical algorithm for
ton(a,b) which is able to cope well with values of b close to or even less than 1. Fortunately,
there is a relatively painless solution to this requirement. Examination of the remainder term
(77) leads one to conclude that for small b the remainder is largely accounted for by the Euler-
Maclaurin series’ comparative inability to approximate the first few terms of the original series
Z?:_Ol(log(b +4) — log(a 4+ b + 4)). This suggests removing these few terms from the sum, say
remove the first j terms.

log(10,n(a, b)) (Zlog b+1) —log(a + b—l—i)) + log(pon—j(a,b+ j))

Then these removed terms can be calculated directly, and the Euler-Maclaurin approximation
used only for the later part of the sum which is equal to log(pto,n—j(a, b+ j)). For j large enough
so that we have b4 j greater than about 5 or 6, the new Euler-Maclaurin remainder will be very
small. To be precise, for b+ j > 5 as we in fact used in §6.2, we have from (82) an Euler-Maclaurin
remainder satisfying

—4.310x107*Y <« R4 < 0 < R3 < 7.619x107°.

Using this approach we avoided ever having to use the expansion (76) with any value of b < 5.

The second of the two problems mentioned is purely computational and has to do with the
avoidance of a loss of precision on subtraction of very similar numbers, which could occur in several
places due to the multiple occurrences of differences of the form F| and to the fact that a, b and
n may differ by quite large orders of magnitude. Our approach to avoiding such problems for the
F[t — (t — £)log(t)] term in (76) is to write it as

Flt = (1—1) log(t)] = —alog(%)—I—(b—%)log(a—;b)—(b—l—n—%)log<7a—£i:n)

except when b > 100a in which case we note that the second and third of these three terms will
begin to become very similar. (They are both asymptotic to @ as § — 0.) Therefore, under this
condition we replace each by a Taylor series approximation with a subtracted to give

it 1 st = oo (40 o 2) o)
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where

h(l‘,y)=—y<<(<(%—%)y+%)y—é)y+%) (l‘—%)-i—%) .

Note also that the terms in the Euler-Maclaurin sum itself are also of the F form and so could
likewise give rise to imprecision via subtraction. We avoid this problem by removing a factor a,
rewriting (also for computational efficiency reasons) 1 (1/(a+ b)2*=1 —1/6%*~1) as a function of
a?, and b(a +b), and similarly rewriting % (—1/(a +b+n)kt /(b + n)%_l) as a function of
a?, and (b+ n)(a + b+ n), to give, for r = 4

. Bay 1 1 1 1
§:2M%%4)(_m+b+nf“4+(h+m%—f+m+wywl_b%ﬁ)
= a[l((b—i—n)(a—l—b—i—n),az)—l(b(a—i—b),az)],

where )
(a )_L_3x—|—y 5x(x+y)+y2_7x(x+y) +¢°3
T Tor T 36043 126025 168027
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