

City, University of London Institutional Repository

Citation: Weyde, T. & Kopparti, R. M. (2019). Modelling Identity Rules with Neural

Networks. Journal of Applied Logics, 6(4), pp. 745-769.

This is the published version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/21601/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Modelling Identity Rules with Neural
Networks

Tillman Weyde
Research Centre for Machine Learning, Department of Computer Science, City,

University of London, United Kingdom
t.e.weyde@city.ac.uk

Radha Manisha Kopparti∗
Research Centre for Machine Learning, Department of Computer Science, City,

University of London, United Kingdom
radha.kopparti@city.ac.uk

Abstract
In this paper, we show that standard feed-forward and recurrent neural

networks fail to learn abstract patterns based on identity rules. We propose
Relation Based Pattern (RBP) extensions to neural network structures that
solve this problem and answer, as well as raise, questions about integrating
structures for inductive bias into neural networks.

Examples of abstract patterns are the sequence patterns ABA and ABB
where A or B can be any object. These were introduced by Marcus et al (1999)
who also found that 7 month old infants recognise these patterns in sequences
that use an unfamiliar vocabulary while simple recurrent neural networks do
not. This result has been contested in the literature but it is confirmed by our
experiments. We also show that the inability to generalise extends to different,
previously untested, settings.

We propose a new approach to modify standard neural network architec-
tures, called Relation Based Patterns (RBP) with different variants for classi-
fication and prediction. Our experiments show that neural networks with the
appropriate RBP structure achieve perfect classification and prediction per-
formance on synthetic data, including mixed concrete and abstract patterns.
RBP also improves neural network performance in experiments with real-world
sequence prediction tasks.

We discuss these finding in terms of challenges for neural network models and
identify consequences from this result in terms of developing inductive biases
for neural network learning.

We would like to thank the anonymous reviewers of this article for their valuable comments and
suggestions that helped to improve this article.

∗Funded by a PhD studentship from City, University of London

Vol. 6 No. 4 2019
Journal of Applied Logics — IfCoLog Journal of Logics and their Applications

Weyde and Kopparti

1 Introduction

Despite the impressive development of deep neural networks over recent years, there
has been an increasing awareness that there are some tasks that still elude neural
network learning or need unrealistic amounts of data. Humans, on the other hand,
are remarkably quick at learning and abstracting from very few examples. Marcus
[1] showed in an experiment that 7-month old infants already recognise sequences
by identity rules, i.e. which elements are repeated, after just two minutes of famil-
iarization. In that study a simple recurrent neural network model was also tested
and it failed to generalise these identity rules to new data.

In this study, we re-visit this problem and evaluate the performance of frequently
used standard neural network models in learning identity rules. More specifically,
we find that feed-forward and recurrent neural networks (RNN) and their gated
variants (LSTM and GRU) in standard set-ups clearly fail to learn general identity
rules presented as classification and prediction tasks.

We tackle this problem by proposing Relation Based Patterns (RBP), which
model identity relationships explicitly as extensions to neural networks for classifi-
cation and prediction. We show experimentally that on synthetic data the networks
with suitable RBP structures learn the relevant rules and generalise with perfect
classification and prediction. We also show that this perfect performance extends
to mixed rule-based and concrete patterns, and that RBP improves prediction on
real-world language and music data.

Identity rules are clearly in the hypothesis space of the neural networks, but
the networks fail to learn them by gradient descent. We identify that both the
comparison of related input neurons and of input tokens needs to be predefined in
the network to learn general rules from data. The RBP structures introduce this
inductive bias in the neural networks and thus enable the learning of identity rules
by standard neural networks.

Our contributions in this paper are specifically:

• we evaluate several common NN architectures: feed-forward networks, RNN,
GRU, and LSTM, in novel settings, and find that they fail to learn general
identity rules;

• we identify reasons that prevent the learning process from being successful in
this context;

• we propose the Relation Based Patterns, a new method to enable the learning
of identity rules within the regular network structure;

746

Modelling Identity Rules with Neural Networks

• we show in experiments that identity rules can be learnt with RBP structure
on artificial data, including mixed rule-based and concrete patterns, and that
they improve performance in real-world prediction tasks;

The remainder of this paper is structured as follows. Section 2 introduces related
work on modelling identity rules. Section 3 presents results of our experiments
with standard neural network architectures. Section 4 presents our RBP model
and its different variants. Section 5 presents the results of experiments using RBP
structures. Section 6 addresses the application of RBP to mixed patterns and real
data. Section 7 discusses the implications of the presented experimental results and
Section 8 concludes this paper.

2 Related work

Our task is the learning of rules from sequential data. This is often seen as grammar
learning, on which there have been many studies in psychology. [2] made an early
contribution on implicit learning and generalisation. Subsequently, [3, 4] studied
specifically the knowledge acquired during artificial grammar learning tasks.]

The specific problem we are addressing in this study is the recognition of abstract
patterns that are defined by the identity relation between tokens in a sequence. In
the well-known experiments by [1], infants were exposed to sequences of one of the
forms ABA or ABB, e.g. ‘la di la’ or ‘la di di’, for a few minutes in the familiarisation
phase.

In the test phase the infants were exposed to sequences with a different vocabu-
lary (e.g. ‘ba tu ba’ and ‘ba tu tu’) and they showed significantly different behaviour
depending on whether the sequences exhibited the form they were familiarised with
or not.

This type of pattern only depends on the equality between elements of the se-
quence and after successful learning it should be recognisable independently of the
vocabulary used. However, [1] also showed that simple recurrent Elman networks
were not able to perform this learning task. This finding sparked an exchange about
whether human speech acquisition is based on rules or statistics and the proposal
of several neural networks models that claimed to match the experimental results.
[5] and [6] proposed a solution based on a distributed representation of the input
and on pre-training where the network is first trained to recognise repeated items
in a sequence. The network is subsequently trained on classifying ABA vs ABB
patterns. Only [6] reports specific results and has only 4 test data points, but 100%
accuracy. However, [7] reported that they could not recreate these results.

747

Weyde and Kopparti

[8] and [9] suggested solutions which are based on modified network architectures
and training methods. [10] could not replicate the results by [9] and found that
the models by [8] do not generalise. The claims by [10] were again contested by
[11]. A number of other methods were suggested that used specifically designed
network architectures, data representations, and training methods, such as [12, 13,
14, 15]. More recent work by [16] suggests that prior experience or pre-defined
context representation (“pre-training” or “pre-wiring”) is necessary for the network
to learn general identity rules when using echo state networks. While these works are
interesting and relevant, they do not answer our question whether more commonly
used network architectures can learn general identity rules.

The discussion of this problem is part of a wider debate on the systematicity
of language learning models, which started in the 1980s and 1990s [17, 18]. This
debate, like the more specific one on identity rules, has been characterised by claims
and counter-claims [19, 20, 21, 22, 23, 24], which, as stated by [25], often suffer from
a lack of empirical grounding. Very recently, the work in [26] has defined a test of
systematicity in a framework of translation, applied it to standard seq2seq neural
network models [27]. They found that generalisation occurs in this setting, but it
depends largely on the amount and type of data shown, and does not exhibit the
extraction and systematic application of rules in the way a human learner would.

In most of the studies above, the evaluation has mostly been conducted by testing
whether the output of the network shows a statistically significant difference between
inputs that conform to a trained abstract pattern and those that do not. From a
machine learning perspective, this criterion is not satisfactory as we, like [26], would
expect that an identity rule should always be applied correctly once if it has been
learned from examples, at least in cases of noise-free synthetic data. We are therefore
interested in the question whether and how this general rule learning can be achieved
with common neural network types for sequence classification.

This question also relates to recent discussions sparked by [28] about deep neural
networks’ need for very large amounts of training data, lack of robustness and lack
of transparency as also expressed, e.g., by [29, 30, 31]. We surmise that these issues
relate to the lack of generalisation beyond the space covered by the input data, i.e.
extrapolation, which is generally seen as requiring an inductive bias in the learning
system, but there is no general agreement about the nature or implementation of
inductive biases for neural networks, e.g. [32, 33]. In recent years, there was a trend
to remove human designed features from neural networks, and leave everything
to be learned from the data [34]. We follow here the inverse approach, to add
a designed internal representation, as we find that for the given problem standard
neural network methods consistently fail to learn any suitable internal representation
from the data.

748

Modelling Identity Rules with Neural Networks

3 Experiment 1: standard neural networks
We test different network architectures to evaluate if and to what extent recurrent
and feed-forward neural networks can learn and generalise abstract patterns based
on identity rules.

3.1 Supervised learning of identity rules
The problem in the experiment by [1] is an unsupervised learning task, as the infants
in the experiments were not given instructions or incentives. However, most common
neural network architectures are designed for supervised learning and there are also
natural formulations of abstract pattern recognition as supervised learning task in
the form of classification or prediction.

In our case, abstract patterns are defined by identity relations. Expressed in
logic, they can be described using the binary equality predicate eq(·, ·). For a se-
quence of three tokens α, β, γ the rule-based patterns ABA and ABB can be de-
scribed by the following rules:

ABA : ¬eq(α, β) ∧ eq(α, γ) (1)
ABB : ¬eq(α, β) ∧ eq(β, γ). (2)

These rules are independent of the actual values of α, β, and γ and also called ab-
stract patterns. Concrete patterns, on the other hand, are defined in terms of values
of from a vocabulary a, b, c, E.g., sequences a ∗ ∗, i.e. beginning with ‘a’, or ∗bc,
ending with ‘bc’, can be formulated in logic as follows:

a** : α = ‘a’ (3)
*bc : β = ‘b’ ∧ γ = ‘c’. (4)

For the remainder of this article we use the informal notations ABA and a ∗ ∗ as far
as they are unambiguous in their context.

For classification, the task is to assign a sequence to a class, i.e. ABA or ABB,
after learning from labelled examples. For prediction, the task is to predict the
next token given a sequence of two tokens after exposure to sequences of one of the
classes (e.g. only ABA, or ABB respectively). These tasks are suitable for the most
commonly used neural network architectures.

3.2 Experimental set-up
Network set-up We use the Feed-forward Neural Network (FFNN) (also called
Multi-layer Perceptron) [35], the Simple Recurrent Neural Network (RNN, also

749

Weyde and Kopparti

called Elman network [36]), the Gated Recurrent Unit (GRU) network [37], and
the Long Short Term Memory (LSTM) network [38]. For Prediction we only use the
RNN and its gated variants GRU and LSTM.

The input to the networks is a one-hot encoded vector representing each token
with n neurons, where n is the size of the vocabulary. In the case of the FFNN,
we encode the whole sequence of 3 tokens as a vector of size 3n. For the recurrent
models, we present the tokens sequentially, each as an n-dimensional vector. We set
the number of neurons in each hidden layer to (10, 20, 30, 40, 50), using 1 or 2 hidden
layers. We use Rectified Linear Units (ReLUs) for the hidden layers in all networks.
The output layer uses the softmax activation function. The number of output units
is 2 for classification and the size of the vocabulary for prediction. We train with the
Adam optimisation method [39], using initial learning rates of 0.01, 0.1, 0.2, 0.4, and
train with the synthetic datasets in one batch. We use regularisation with Dropout
rates of 0.1, 0,2, 0.4 and set the number of epochs to 10, within which all trainings
converged.

We conduct a full grid search over all hyperparameters using four-fold cross-
validation to optimise the hyperparameters and determine test results. We run a
total of 10 simulations for each evaluation and average the results. All experiments
have been programmed in PyTorch and the code is publicly available.1

Datasets For performing the rule learning experiments, we artificially generate
data in the form of triples for each of the experiments. We consider our sample
vocabulary as a...l (12 letters) for both prediction and classification tasks. We
generate triples in all five abstract patterns: AAA, AAB, ABA, ABB, and ABC
for the experiments. The sequences are then divided differently for the different
cases of classification. For all the experiments we use separate train, validation,
and test sets with 50%, 25%, and 25% of the data, respectively. All sampling
(train/test/validation split, downsampling) is done per simulation.

3.3 Classification
First we test three different classification tasks as listed below. We use half the
vocabulary for training and the other half for testing and validation (randomly
sampled). We divide the sequences into two classes as follows, always maintaining
an equal size of both classes:

1) ABA/ABB vs other: In task a) class one contains only pattern ABA while the
other contains all other possible patterns (AAA, AAB, ABB, ABC) downsam-

1https://github.com/radhamanisha1/RBP-architecture

750

Modelling Identity Rules with Neural Networks

pled per pattern for class balance. The task is to detect whether eq(α, γ) ∧
¬eq(α, β) is true or false. Analogously, the task in b) ABB vs other is to
detect eq(β, γ) ∧ ¬eq(α, β). This case corresponds to the experiment in [1],
where only one rule-based pattern type is used for familiarisation.

2) ABA vs ABB: This task is like task 1 above, but only pattern ABB occurs
in the second class, so that this task has less variance in the second class.
We expected this task to be easier to learn because two equality predicates
eq(α, γ), eq(β, γ) change their values between the classes and are each sufficient
to indicate the class.

3) ABC vs other: In this case, class one (ABC) has no pair of equal tokens, while
the other class has at least one of eq(α, β), eq(α, γ), eq(β, γ) as true, i.e. de-
tecting equalities without localising them is sufficient for correct classification.

In our experiments, the training converged quickly in all cases and the classification
accuracy on the training data was 100%. The results on the test set are shown in
Table 1. In all cases the baseline, corresponding to random guessing is 50%. This
baseline is only exceeded for task 1) by the RNNs and their gated variants, and even
then the accuracy is far from perfect at 55%.

Classification task FFNN RNN GRU LSTM
1a) ABA/other 50% 55% 55% 55%
1b) ABB/other 50% 55% 55% 55%
2) ABA/ABB 50% 50% 50% 50%
3) ABC/other 50% 50% 50% 50%

Table 1: Three classification tasks based on abstract patterns over 10 simulations.
The numbers show test set accuracy after a grid search and cross validation as
described in section 3.2. All values are rounded to the next percentage point.

3.4 Prediction
We performed prediction experiments on two tasks. In task 1) we train and test on
ABA patterns and in task 2) on ABB. Training and test/validation set use different
vocabularies. The training converged quickly in less than 10 epochs, and after
training the classification accuracy on the training set is 100%.

The results on the test set are shown in Table 2. The baseline is 8.3 . . .% as
we have a vocabulary size of 12. We use again half the vocabulary (6 values) for
training and half for validation/testing. The results show that the tested networks

751

Weyde and Kopparti

fail completely to make correct predictions. They perform below the baseline at
0% accuracy, which is mostly because they predict only tokens that appear in the
training set but not in the test set.

Prediction task RNN GRU LSTM
1) ABA 0% 0% 0%
2) ABB 0% 0% 0%

Table 2: Prediction results for two different abstract patterns. The numbers show
test set prediction accuracy after a grid search and cross validation as described in
section 3.2.

3.5 Discussion
The results show clearly that FFNNs, RNNs, GRUs and LSTMs do not learn general
abstract patterns based on identity rules. This agrees with the previously reported
experiments by [1]. However, since there was some conflicting evidence in the liter-
ature, the clarity of the outcome was not expected.

Questions raised This result raises the question of why these neural networks do
not learn to generalise abstract patterns from data. There are two aspects worth
considering for an explanation: the capacity of the network and the necessary infor-
mation for the network to solve the problem.

Regarding the capacity: the solution to the task is in the hypothesis space of
the neural networks, since proofs exist of universal approximation properties for
feed-forward networks with unbounded activation functions [40] and of Turing-
completeness for recurrent networks [41]. We will present a constructive solution
below, putting that result into practice, with a design of network instances that
solve the problem.

The relevant question, as has been pointed out by [16], is therefore why learning
with backpropagation does not lead to effective generalisation here. There are three
different steps that are necessary to detect identity rules: a comparison of input
neurons, a comparison of tokens, represented by multiple neurons, and a mapping
of comparison results to classes or predictions.

Vocabulary hypothesis A possible reason for the failure of the networks to gen-
eralise what we call the vocabulary hypothesis. It is based on the separated vocabu-
lary in one-hot encoded representation. This leads to some input neurons only being
activated in the training set and some only in the validation and test sets.

752

Modelling Identity Rules with Neural Networks

In order to learn suitable weights for an input comparison, there would have to
be a suitable gradient of the weights of the outgoing connections from these inputs.
If parts of the vocabulary do not appear in the training data, i.e. the activation of
the corresponding input neurons is always zero during training, the weights of their
outgoing connections will not be adapted. We therefore expect that the separation of
the vocabulary prevents generalisation from the training to the test set as the weights
going out from neurons that are used during testing have not been adapted by the
gradient descent. Based on this consideration we conducted another experiment
with a shared vocabulary.

This experiment is called ABA-BAB vs other. We again represent our vocabulary
as a...l (12 letters) for this task with train/validation/test split as 50%/25%/25%.
Now we use the same vocabulary for training, validation, and testing, but we separate
different sequences of the form ABA that use the same tokens between the training
and validation/test sets. E.g., if ded is in the test set, then ede is in the training
or validation set, so that there is no overlap in terms of actual sequences. Like
in classification experiment 1), training converged quickly and resulted in perfect
classification performance on the training set.

Classification task FFNN RNN GRU LSTM
ABA-BAB vs other 50% 50% 50% 50%

Table 3: Classification results on test sets with the same vocabulary used in test,
validation and training set.

The results on the test set presented in Table 3 show performance at the baseline
with no evidence of generalisation. This shows that activating all inputs by using a
shared vocabulary is not sufficient to enable generalisation in the learning process.

Other explanations A second potential problem is which neurons should be com-
pared. The FFNN has no prior information about neurons belonging to the same or
different tokens or about which input neurons correspond to the same token values.
In the RNN, one token is presented per time step, so that a comparison between
the previous hidden state and the current input is possible as the same neurons
are activated. However, with a full set of connections between the previous hidden
layer and the current, there is no reason that relations between the same neurons at
different time steps would be processed differently from different neurons.

On the other hand, if we had a representation that includes the information
of which tokens are identical or different, then we would have all the information
we need for a mapping, as these are the relations in which our defining rules are

753

Weyde and Kopparti

formulated (e.g. ABA is defined as eq(α, γ) ∧ ¬eq(α, β)). This idea has led to the
Relation Based Pattern (RBP) model that we introduce in the next section and then
evaluate with respect to its effect on both abstract and concrete pattern learning.

4 Design of Relation Based Pattern models
To address the inability of neural networks to generalise rules in neural network
learning, we developed the Relation Based Pattern (RBP) model as a constructive
solution, where the comparisons between input neurons and between tokens and the
mappings to outputs are added as a predefined structure to the network. The pur-
pose of this structure is to enable standard neural networks to learn abstract patterns
based on the identity rules over tokens while retaining other learning abilities.

In the RBPmodel there are two major steps. The first step is defining comparison
units for detecting identity relations, called DR units, and the second step is adding
the DR units to the neural network.

4.1 Comparison units
Comparing neurons We assume, as before, that input is a one-hot encoded
vector of the current token along with the n− 1 previous vectors for a given context
length n (in this study context length 3 for classification and 2 for prediction).
We use comparison units, called DR units (differentiator-rectifier). As the name
suggests, they apply a full wave rectification to the difference between two inputs:
f(x, y) = |x−y|. The first level of DR units are DRn units that are applied to every
pair of corresponding input neurons (representing the same value) within a token
representation, as shown in Figure 1.

Comparing tokens The next level of DR units are the DRp units that sum the
activations of the DRn values that belong to one pair of tokens. Based on the
sequence length n and vocabulary size a we create k = a × n(n − 1)/2 DRn units
for all the possible pairs of tokens and i.e. in our classification example, we have
a sequence of 3 tokens and a vocabulary size of 12, i.e. 12 × 3(3 − 1)/2 = 36 × 3
DRn units. All the DRn units for a pair of tokens are then summed in a DRp unit
using connections with a fixed weight of +1. E.g. we have 5× (5− 1)/2 = 10 DRp

units for a context of length 5. Figure 2a shows the network structure with DRn

and DRp units.
For the prediction case, we also use the same approach to represent the difference

between each input token and the next token (i.e., the target network output).
We create n DRpout units that calculate the difference between each input in the

754

Modelling Identity Rules with Neural Networks

Figure 1: DRn units comparing related inputs with an absolute of difference acti-
vation function. In one-hot encoding, there are k DRn units for every pair of input
tokens, where k is the vocabulary size.

given context and the next token. There are k × n DRnout units that compare the
corresponding neurons for each pair of input/output tokens, in the same way as for
the pairs of input tokens. The overall network structure is shown in Figure 2b.

4.2 Neural network integration

We combine the DR units (DRn and DRp) with the neural network models in early,
mid and late fusion approaches we call RBP1, RBP2 and RBP3, as outlined below.
The weights that connect DRn units to input and output, and the DRn to DRp

units and the offset layer are fixed, all other weights that appear in the following
models are trainable with backpropagation.

Early Fusion (RBP1n/p) In this approach, DRn or DRp units are added as
additional inputs to the network, concatenated with the normal input. In Figure 3,
the RBP1n/p structure is depicted. We use early fusion in both the prediction and
classification tasks.

Mid Fusion (RBP2) The DRp units are added to the hidden layer. Figure 4a
shows the mid fusion structure for the feed-forward network and Figure 4b for the
recurrent network respectively. The RBP2 approach is used for classification and
prediction tasks.

755

Weyde and Kopparti

(a) The DRp and DRn units that
are used in the RBP1 and RBP2
structures with 3 × k DRn and 3
DRp units for a vocabulary size k
and sequence length 3.

(b) The DRout structure for detecting
identity relations between input and tar-
get. The DRpout values are calculated at
training time and a model is trained to
predict them conditional on DRpin (see
Figure 5).

Figure 2: DRn and DRp units for inputs (all RBP) and outputs (RBP3).

Figure 3: Overview of the RBP1n/RBP1p structure.

756

Modelling Identity Rules with Neural Networks

(a) RBP2a (b) RBP2b

Figure 4: Overview of RBP2 approaches, where the DRpout units are concatenated
to the hidden layer.

Late Fusion (RBP3) In this approach, we use the same structure as in RBP2
(we call it DRnin and DRpin in this context), and in addition we estimate the
probability of identity relations between the input and the output, i.e., that the
token in the current context is repeated as the next token. We use a structure called
DRpout for this, and from there we project back to the vocabulary, to generate a
probability offset for the tokens appearing in the context.

Figure 5 gives an overview of the RBP3 late fusion scheme. The DRpin units
detect identities between the input tokens in the current context as before. The
DRpout units model the identities between the context and the next token, as shown
in the Figure 4b, where a repetition is encoded as 1, and a non-repeated token
as a −1. During training we use teacher-forcing, i.e., we set the values of the
DRpout units to the true values. We use a feed-forward neural network with one
hidden layer to learn a mapping from the DRin to the DRout. This gives us an
estimate of the DRout units given the DRin units. The DRout values are then
normalised subtracting the mean, and then mapped back to the output space (the
one-hot vocabulary representation), using a zero value for the output values that
don’t appear in the input. These output offsets are then combined in a weighted sum
(mixture of experts) with the output distribution estimated by the standard neural

757

Weyde and Kopparti

Figure 5: Overview of the RBP3 approach. The DRpin values are calculated as in
RBP2. From there, we use a fully connected layer to predict DRpout (trained with
teacher-forcing). The predicted DRpout values are mapped back to the vocabulary
(based on the context tokens) and used as probability offsets in a mixture of experts
with the standard neural network in the left part of the diagram. All connections
are trainable except Input to DRpin and DRpout to Output offsets (dotted arrows).

network (on the left side in Figure 5). The weights in the mixture are trainable. The
outputs from the combined distribution of mixture of experts are clipped between
[0,1] and renormalised. The final output distribution is a softmax layer providing
the probability distribution over the vocabulary for the next token.

5 Experiment 2: neural networks with RBP structures

In the following we repeat the experiments from section 3 but also test networks
with added RBP structures. For convenience we repeat the previous results in the
tables in this section.

758

Modelling Identity Rules with Neural Networks

5.1 Classification experiments
This experiment is analogous to the first classification experiment. In the case of
the feed-forward network, RBP2(a) was used in the mid fusion approach and for
recurrent network, RBP2(b) was used. We trained again for 10 epochs and all
networks converged to perfect classification on the training set. Table 4 provides
the overall test accuracy for the three approaches.

Task RBP FFNN RNN GRU LSTM

1a) ABA vs other

- 50% 55% 55% 55%
RBP1n 50% 55% 55% 55%
RBP1p 65% 70% 70% 70%
RBP2 100% 100% 100% 100%

1b) ABB vs other

- 50% 55% 55% 55%
RBP1n 50% 55% 55% 55%
RBP1p 65% 70% 70% 70%
RBP2 100% 100% 100% 100%

2) ABA vs ABB

- 50% 50% 50% 50%
RBP1n 50% 60% 65% 65%
RBP1p 75% 75% 75% 75%
RBP2 100% 100% 100% 100%

3) ABC vs other

- 50% 50% 50% 50%
RBP1n 55% 65% 65% 65%
RBP1p 55% 70% 70% 70%
RBP2 100% 100% 100% 100%

4) ABA-BAB vs other

- 50% 50% 50% 50%
RBP1n 55% 72% 75% 75%
RBP1p 69% 74% 75% 76%
RBP2 100% 100% 100% 100%

Table 4: Classification experiments with RBP: test accuracy for the different models
and tasks, as explained above. Results with ‘-’ in the RBP column are the same as
in section 3 and shown here again for comparison.

The results with RBP1n models already show some improvement over the base-
line in most configurations, but the result are only slightly above the standard net-
works, with RNNs, GRUs and LSTMs benefiting more than FFNN. This supports
our hypothesis that learning to compare corresponding input neurons is a challenging
task for neural networks. However, the results show that providing that comparison

759

Weyde and Kopparti

is not sufficient for learning identity rules.
RBP1p structures also aggregate all the l DRn neurons that belong to a pair of

input tokens. The results show that providing that information leads to improved
accuracy and provide evidence that this aggregation is another necessary step that
the networks do not learn reliably from the data.

The RBP2 models enable the neural networks to make predictions and classifica-
tions that generalise according to identity rules that it learns from data. The RBP2
leads to perfect classification for all network types tested. This confirms the design
consideration that comparing pairs of tokens provides the relevant information in
the form required for classification, as the classes are defined by equals relations, so
that the activations of the DRp units are directly correlated with the class labels.

A surprising result is the big difference between the generalisation using the
RBP1p and the RBP2 structures. They both provide the same information, only in
different layers of the network, but RBP1p only reaches at most 75% with a 50%
baseline. We hypothesize that the additional expressive power provided by the non-
linearities in the hidden layer here hinders effective learning. This effect deserves
further investigation.

5.2 Prediction experiments

Here we performed two experiments separately on ABA and ABB patterns as in
experiment 1 on prediction. The tasks are the same as previously and we trained
again for 10 epochs after which all networks had converged to perfect prediction
accuracy on the training data. Table 5, summarises the accuracy for RNN, GRU
and LSTM without RBP, and with RBP1n, 1p, 2, and 3.

Overall, we observe that only the LSTM benefits from RPB1n, RBP1p, and
RBP2 structures, all other networks can apparently not make use of the information
provided. The RBP3 model, on the other hand, leads to perfect classification on
our synthetic dataset.

Our interpretation is that standard recurrent networks do not learn the more
complex mapping that prediction requires, as not only recognition of a pattern but
also selecting a prediction on the basis of that pattern is required. The somewhat
better results of the LSTM networks are interesting. In the RBP3 model, the map-
ping between the identity patterns and back to the vocabulary adds considerable
prior structure to the model and it is very effective in achieving the generalisation
of rule-based patterns.

760

Modelling Identity Rules with Neural Networks

Pattern RBP RNN GRU LSTM

1) ABA

- 0% 0% 0%
RBP1n 0% 0% 16%
RBP1p 0% 0% 18%
RBP2 0% 0% 20%
RBP3 100% 100% 100%

2) ABB

- 0% 0% 0%
RBP1n 0% 0% 17%
RBP1p 0% 0% 20%
RBP2 0% 0% 22%
RBP3 100% 100% 100%

Table 5: Test set accuracy in prediction experiments for patterns ABA and ABB. As
before, results are averaged over 10 simulations and rounded to the nearest decimal
point. Results with ‘-’ in the RBP column are the same as in section 3 and shown
here again for comparison.

6 Experiment 3: mixed tasks and real data
The results presented here were all obtained with synthetic data where classification
was exclusively on rule-based abstract patterns. This raises the question whether the
RBP will impede recognition of concrete patterns in a mixed situation. Furthermore,
we would like to know whether RBP is effective with real data where the abstract
and concrete patterns may interact.

6.1 Mixed abstract and concrete patterns
We conducted an experiment where the classes were defined by combinations of ab-
stract and concrete patterns. Specifically we defined 4 classes based on the abstract
patterns ABA and ABB combined with the concrete patterns a ∗ ∗ and b ∗ ∗. E.g.,
the class ABA, a ∗ ∗ can be expressed logically as

eq(α, γ) ∧ ¬eq(α, β) ∧ α = ‘a’. (5)

We use a vocabulary of 18 characters, out of which 12 are used for training and 6
are used for validation/testing in addition to ‘a’ and ‘b’, which need to appear in
all sets because of the definition of the concrete patterns. For class 1/3 and class
2/4, abstract patterns ABA and ABB are used respectively. Class 1/2 and 3/4 start
with tokens ‘a’ and ‘b’ respectively. The train, validation and test split is 50%, 25%,
and 25% respectively. We trained the network for 10 epochs, leading to perfect

761

Weyde and Kopparti

classification on the training set. A total of 10 simulations has been performed. We
test a feed forward and a recurrent neural network without and with RBP1p and
RBP2. The results are shown in Table 6.

RBP FFNN RNN
- 23% 42%
RBP1p 49% 57%
RBP2 100% 100%

Table 6: Test set accuracy for mixed abstract/concrete pattern classification.

As in the previous experiments, networks without RBP fail to generalise the
abstract patterns. The results for RBP1p and RBP2 show, that the ability to learn
and recognise the concrete patterns is not impeded by adding the RBP structures.

6.2 Language models with RBP
In order to test the capability of networks with RBP structure, we use them in two
language modelling tasks. One is to predict characters in English text, and one is
to predict the pitch of the next note in folk song melodies. We selected both tasks
because of the prevalence of repetitions in the data, as notes in music and characters
in English tend to be repeated more than words. Our RBP structures are designed
to model identity-rules and we therefore expect them to be more effective on tasks
with more repetitions.

Character prediction We conducted a character prediction experiment on a sub-
set of the Gutenberg electronic book collection2, consisting of text with the dataset
size of 42252 words. We used 2 hidden layers with 50 neurons each. In the RBP2
model, the DRp units were concatenated with the first hidden layer. The learning
rate is set to 0.01 and the network training converged after 30 epochs. Each char-
acter is predicted without and with the RBP variants using a context size of 5. The
prediction results are summarized in Table 7.

Pitch prediction In another experiment we applied RBP to pitch prediction in
melodies [42] taken from the Essen Folk Song Collection [43]. We performed a grid
search for each context length for hyper parameter tuning, with [10,30,50,100] as
the size of the hidden layer and [30,50] epochs with learning rate set to 0.01 with
one hidden layer. The results for context length 5 are summarized in Table 8. RBP

2https://www.gutenberg.org/

762

Modelling Identity Rules with Neural Networks

RBP RNN GRU LSTM
- 3.8281 3.8251 3.8211
RBP1p 4.4383 4.4368 4.4321
RBP2 3.7512 3.7463 3.7448
RBP3 3.4076 3.4034 3.4012

Table 7: Character prediction task. The numbers show the average cross entropy
loss per character on the test set (lower is better, best values are set in bold), without
and with RBP structures using context length 5.

improved the network performance for RNN, GRU, and LSTM. Overall, LSTM
with late fusion produces the best result and also improves over the best reported
performance in pitch prediction with a long-term model on this dataset with a cross-
entropy of 2.547, which was achieved with a feature discovery approach by [44].

RBP RNN GRU LSTM
- 2.6994 2.5702 2.5589
RBP1p 2.6992 2.5714 2.5584
RBP2 2.6837 2.5623 2.5483
RBP3 2.6588 2.5549 2.5242

Table 8: Pitch prediction task on the Essen Folk Song Collection. The numbers
show the average cross entropy per note (lower is better, best values are set in
bold), without and with RBP using context length 5.

Results In both character and pitch prediction, the addition of RBP3 structures
improves the overall results consistently. RBP1n leads to a deterioration in character
prediction and to inconsistent effect on pitch prediction, while RBP2 leads to a slight
but consistent improvement in both tasks. This provides further evidence that the
RBP structure enables the learning of relevant patterns in the data.

7 Discussion
7.1 Standard neural networks
The results of the experiments described above confirm the results of [1] and others
that standard recurrent (and feed-forward) neural networks do not learn generalis-
able identity rules. From the tested models and settings of the task we can see that

763

Weyde and Kopparti

the lack of activation of input neurons impedes learning, but avoiding this lack is not
sufficient. The task assumes that the identity of input tokens is easy to recognise,
classify and base predictions on, but the models we tested do not learn to generalise
in this way. These results confirm our view that in order to generalise it is necessary
to know which input neurons are related, similarly on the next level, which compar-
isons of input belong to a pair of tokens so that they can be aggregated per token.
The structure of neural networks does not provide any prior preference for inputs
that are related in this way over any other combinations of inputs. This makes it
seem plausible that the solutions by [5, 6, 9] could not be replicated by [7, 10].

7.2 Constructive model with RBP

The RBP model addresses the learning of identity rules by adding neurons and
connections with fixed weights. From the input neurons we add connections to a DR
(differentiator-rectifier) unit from each pair of corresponding input neurons within
any pair of tokens (represented in one-hot encoding). These DR units calculate the
absolute of the difference of the activations of the two input neurons. They are
followed by DRp units that aggregate by taking the sum of the DR unit activations
for each pair of tokens. The fact that the DRp units relate to the difference between
each pair of neurons makes the learning task for classification much simpler, as has
been confirmed by our results. An open question in this context is why the RBP2 is
so much more effective than RBP1p for classification, although the only difference
is the layer in which the information is added into the network.

For prediction, we need a more complex structure, as beyond recognition of
identity, also the selection of the token to predict is required, that depends on the
tokens in the context and their similarity relations. The constructive RBP solution
requires a transformation into a representation of identity relations in the input that
is mapped to identities between input and output and that is mapped back to the
token space by adding prediction probability to the tokens that are predicted to be
identical between input and output. This created a complex predefined structure,
but without it even the models that achieved prefect classification failed to make
correct predictions with new data. Only the LSTM models could use the RPB1
and RBP2 information to make prediction above the baseline (22% vs 8.3%). We
hypothesise that the gating structure of the LSTMs enables at least some effec-
tive mapping. The 100% correct predictions by all models using RBP3 shows the
effectiveness of this structure.

764

Modelling Identity Rules with Neural Networks

7.3 Applications

Adding a bias into the network with a predefined structure such as RBP raises the
question whether there is a negative effect on other learning abilities of the network
and whether interactions between the abstract and concrete tasks can be learnt. In
the mixed pattern experiment, RBP is still effective and showed no negative effect.
In experiments with real language and music data we found that RBP3 has a positive
effect on the prediction of characters in language and pitches in folk song melodies.
The small negative effect of RBP1 on character prediction seems to indicate that
there may be confounding effect where identity rules are less relevant. This effect
did not appear in melody prediction, where repetition is more important.

7.4 Extrapolation and inductive bias

The results in this study confirm that an inductive bias is needed for extrapolation,
in the terminology of [28], in order to generalise in some sense outside the space
covered by the training data. This general challenge has recently attracted some
attention. E.g., [45] provided several solutions to the related problem of learning
equality of numbers (in binary representation), which does not generalise from even
to odd numbers as pointed out already by [46]. As the authors point out in [45],
an essential question is which biases are relevant to the domain and problem. The
identity problem addressed here is in itself fundamental to learning about relations
[47], as relations depend on object identity. This further raises the question what is
needed to enable more complex concepts and rules to be learnt, such as more general
logical concepts and rules.

The identity rules also point to the lower-level problem that the natural relations
of position and belonging to objects are not naturally addressed in neural networks.
Other tasks may require different structures, relating for example to arithmetics,
geometry or physics [48]. We therefore see as an important task the definition or
predefined structures in neural networks, so that they create useful inductive bias,
but do not prevent learning of functions that do not conform to that bias.

8 Conclusions
Our experiments show that the observation by [1], that neural networks are unable
to learn general identity rules, holds for standard feed-forward networks, recurrent
neural networks, and networks of GRUs and LSTMs. The solution we propose
here, the Relation Based Patterns (RBP), introduce an additional structure with
fixed weights into the network. Our experiments confirm that the RBP structures

765

Weyde and Kopparti

enable the learning of abstract patterns based on identity rules in classification and
prediction as well as in mixed abstract and concrete patterns. We have further found
that adding RBP structures improves performance in language and music prediction
tasks.

Overall, we find that standard neural networks do not learn identity rules and
that adding RBP structure creates an inductive bias which enables this extrapolation
beyond training data with neural networks. This outcome raises the question on how
to develop further inductive biases for neural networks to improve generalisation of
learning on other tasks and more generally.

References
[1] G. F. Marcus, S. Vijayan, S. Rao, P. Vishton, Rule learning by seven-month-old infants,

Science, 283 283 (5398) (1999) 77–80.
[2] P. C. Gordon, K. J. Holyoak, Implicit learning and generalization of the mere exposure

effect., Journal of Personality and Social Psychology, 45, 492–500.
[3] B. J. Knowlton, L. R. Squire, The information acquired during artificial grammar

learning., Journal of Experimental Psychology: Learning, Memory, and Cognition, 20,
79 –91.

[4] B. J. Knowlton, L. R. Squire, Artificial grammar learning depends on implicit ac-
quisition of both abstract and exemplar-specific information, Journal of Experimental
Psychology: Learning, Memory, and Cognition, 22, 169 –181.

[5] M. Seidenberg, J. Elman, Do infants learn grammar with algebra or statistics?, Science
284 (5413) (1999) 433–433.

[6] J. Elman, Generalization, rules, and neural networks: A simulation of Marcus et. al,
https://crl.ucsd.edu/˜elman/Papers/MVRVsimulation.html.

[7] M. Vilcu, R. F. Hadley, Generalization in simple recurrent netrworks, in: Proceedings
of the Annual Meeting of the Cognitive Science Society, Vol. 23, 2001, pp. 1072–1077.

[8] T. R. Shultz, A. C. Bale, Neural network simulation of infant familiarization to artificial
sentences: Rule-like behavior without explicit rules and variables, Infancy, 2:4, 501-536,
DOI: 10.1207/S15327078IN020407.

[9] G. Altmann, Z. Dienes, Rule learning by seven-month-old infants and neural networks,
In Science 284 (5416) (1999) 875–875.

[10] M. Vilcu, R. F. Hadley, Two apparent ‘counterexamples’ to Marcus: A closer look,
Minds and Machines 15 (3-4) (2005) 359–382.

[11] T. R. Shultz, J.-P. Thivierge, D. Titone, Generalization in a model of infant sensitivity
to syntactic variation, in: Proceedings of the Annual Meeting of the Cognitive Science
Society, 2005, pp. 2009–20014.

[12] L. Shastri, S. Chang, A spatiotemporal connectionist model of algebraic rule-learning,
Tech. Rep. TR-99-011, Berkeley, California: International Computer Science Institute

766

Modelling Identity Rules with Neural Networks

(1999).
[13] M. Gasser, E. Colunga, Babies, variables, and connectionist networks, in: Proceedings

of the 21st Annual Conference of the Cognitive Science Society, Lawrence Erlbaum,
1999, p. 794.

[14] P. F. Dominey, F. Ramus, Neural network processing of natural language: I. sensitivity
to serial, temporal and abstract structure of language in the infant, Language and
Cognitive Processes 15 (1) (2000) 87–127.

[15] M. H. Christiansen, C. M. Conway, S. Curtin, A connectionist single-mechanism ac-
count of rule-like behavior in infancy, in: Proceedings of the 22nd annual conference of
the cognitive science society, 2000, pp. 83–88.

[16] R. G. Alhama, W. Zuidema, Pre-wiring and pre-training: What does a neural network
need to learn truly general identity rules, CoCo at NIPS.

[17] J. A. Fodor, Z. W. Pylyshyn, Connectionism and cognitive architecture: A critical
analysis, Cognition 28 (1-2) (1988) 3–71.

[18] R. F. Hadley, Systematicity in connectionist language learning, Mind & Language 9 (3)
(1994) 247–272.

[19] P. Smolensky, The constituent structure of connectionist mental states: A reply to
Fodor and Pylyshyn, Southern Journal of Philosophy 26 (Supplement) (1987) 137–161.

[20] J. Fodor, B. P. McLaughlin, Connectionism and the problem of systematicity: Why
Smolensky’s solution doesn’t work, Cognition 35 (2) (1990) 183–204.

[21] D. Chalmers, Why Fodor and Pylyshyn were wrong: The simplest refutation, in: Pro-
ceedings of the Twelfth Annual Conference of the Cognitive Science Society, Cambridge,
Mass, 1990, pp. 340–347.

[22] L. Niklasson, T. van Gelder, Systematicity and connectionist language learning, Mind
and Language 9 (3) (1994) 28–302.

[23] M. H. Christiansen, N. Chater, Generalization and connectionist language learning,
Mind & Language 9 (3) (1994) 273–287.

[24] R. F. Hadley, Systematicity revisited: reply to Christiansen and Chater and Niklasson
and van Gelder, Mind & Language 9 (4) (1994) 431–444.

[25] S. L. Frank, Getting real about systematicity, in: P. Calvo, J. Symons (Eds.), The
architecture of cognition: Rethinking Fodor and Pylyshyn’s systematicity challenge,
MIT Press, 2014, pp. 147–164.

[26] B. Lake, M. Baroni, Generalization without systematicity: On the compositional skills
of sequence-to-sequence recurrent networks, in: International Conference on Machine
Learning, 2018, pp. 2879–2888.

[27] I. Sutskever, O. Vinyals, Q. V. Le, Sequence to sequence learning with neural networks,
in: Advances in neural information processing systems, 2014, pp. 3104–3112.

[28] G. F. Marcus, Deep learning : a critical appraisal, arXiv:1801.00631.
[29] S. Sabour, N. Frosst, G. E. Hinton, Dynamic routing between capsules, in: Advances

in Neural Information Processing Systems, 2017, pp. 3856–3866.
[30] K. Kansky, T. Silver, D. A. Mély, M. Eldawy, M. Lázaro-Gredilla, X. Lou, N. Dorfman,

767

Weyde and Kopparti

S. Sidor, S. Phoenix, D. George, Schema networks: Zero-shot transfer with a generative
causal model of intuitive physics, arXiv preprint arXiv:1706.04317.

[31] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J. Goodfellow, R. Fergus,
Intriguing properties of neural networks, CoRR abs/1312.6199. arXiv:1312.6199.
URL http://arxiv.org/abs/1312.6199

[32] R. Feinman, B. M. Lake, Learning inductive biases with simple neural networks (2018).
arXiv:1802.02745.

[33] D. G. T. Barrett, F. Hill, A. Santoro, A. S. Morcos, T. Lillicrap, Measuring abstract
reasoning in neural networks (2018). arXiv:1807.04225.

[34] Y. Bengio, A. Courville, P. Vincent, Representation learning: A review and new per-
spectives, IEEE transactions on pattern analysis and machine intelligence 35 (8) (2013)
1798–1828.

[35] D. E. Rumelhart, G. E. Hinton, R. J. Williams, Learning internal representations by
error propagation, Tech. rep., California Univ San Diego La Jolla Inst for Cognitive
Science (1985).

[36] J. L. Elman, Finding structure in time, Cognitive science 14 (2) (1990) 179–211.
[37] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,

Y. Bengio, Learning phrase representations using rnn encoder-decoder for statistical
machine translation, arXiv preprint arXiv:1406.1078.

[38] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Computation 9 (8)
(1997) 1735–1780. doi:10.1162/neco.1997.9.8.1735.
URL https://doi.org/10.1162/neco.1997.9.8.1735

[39] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv:1412.6980.
[40] M. Leshno, V. Y. Lin, A. Pinkus, S. Schocken, Multilayer feedforward networks with

a nonpolynomial activation function can approximate any function, Neural networks
6 (6) (1993) 861–867.

[41] H. Siegelmann, E. Sontag, On the computational power of neural nets, Journal of
Computer and System Sciences (1995) Volume 50, Issue 1, pp. 132–150.

[42] R. M. Kopparti, T. Weyde, Evaluating repetition based melody prediction over different
context lengths, ICML Joint Workshop on Machine Learning and Music, Stockholm,
Sweden, July 14.

[43] H. Schaffrath, The essen folksong collection in the humdrum kern format, Menlo Park,
CA, Centre for Computer Assissted Research in the Humanities, 1995.

[44] J. Langhabel, R. Lieck, M. Rohrmeier, Feature discovery for sequential prediction of
monophonic music, International Society for Music Information Retrieval Conference
(2017) 649–655.

[45] J. Mitchell, P. Minervini, P. Stenetorp, S. Riedel, Extrapolation in NLP,
arXiv:1805.06648.

[46] G. F. Marcus, The algebraic mind: Integrating connectionism and cognitive science,
Cambridge MIT Press.

[47] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi, M. Ma-

768

Modelling Identity Rules with Neural Networks

linowski, A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, et al., Relational inductive
biases, deep learning, and graph networks, arXiv preprint arXiv:1806.01261.

[48] N. Cohen, A. Shashua, Inductive bias of deep convolutional networks through pooling
geometry (2016). arXiv:1605.06743.

Received 21 June 2018769

