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Abstract

In this thesis we provide several different systematic methods for constructing
complex root spaces that remain invariant under an antilinear transforma-
tion. The first method is based on any element of the Weyl group, which
is extended to factorizations of the Coxeter element and a reduced Coxeter
element thereafter. An antilinear deformation method for the longest ele-
ment of the Weyl group is given as well. Our last construction method leads
to an alternative construction for q-deformed roots. For each of these con-
struction methods we provide examples. In addition, we show a method of
construction that for some special cases leads to rotations in the dual space
and vice versa, starting from a rotation we find the root space involved. We
then continue to apply these deformations to a generalized Calogero model
and Affine Toda field theory. We provide a general solution for the ground
state wave function of the Calogero model that is independent of a root rep-
resentation and we extend this to the deformed case. An important property
of this deformed Calogero model is that the amount of singularities in its
potential is significantly reduced. We find that the exchange of particles in
this model then leads to anyonic exchange factors. Following this we solve
the model and find the ground state eigenvalues and eigenfunctions for the
deformed Calogero model. We apply the q-deformed roots to an Affine Toda
field theory and find that one may formulate a classical theory respecting the
mass renormalisation of the quantum case.
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Introduction

For physically meaningful systems the standard assumption in Quantum Me-

chanics textbooks [4, 5] is that the operators in those systems have to be

Hermitian. An operator is referred to as being Hermitian, often referred to

as Dirac Hermitian, if it is equal to its own adjoint, or conjugate transpose

when it is a matrix. In general, when an operator H is Hermitian it satisfies

the condition ∫
ψ∗
1(Hψ2)dt =

∫
(Hψ1)

∗ψ2dt, (1)

for time t. The integration takes place over the entire domain on which

the spectrum is defined and * indicates complex conjugation. ψn are wave-

functions [5], which are used to describe the states of a particle in a system

and also to describe its particular behaviour. Hermiticity is a very strong

constraint and its usefulness stems from the fact that it guarantees real eigen-

values, which are the energy levels of the system.

H = H† =⇒ En = E∗
n (2)
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The preservation of probability densities ρ are also guaranteed by the Her-

miticity in a system, i.e.,

∂ρ

∂t
= 0, with ρ = |ψn|2 . (3)

∂ρ
∂t

is the change in probability of the observed quantities with time and ρ is

the probability of ψn having an eigenvalue En. To prove the reality of the

eigenvalues of a Hermitian Hamiltonian (2), we start with equation (1), and

insert into it the Schrödinger equation Hψn = Enψn, which gives∫
ψ∗
n(Hψn)dt =

∫
(Hψn)

∗ψndt, (4)∫
ψ∗
n(Enψn)dt =

∫
(Enψn)

∗ψndt,

En

∫
ψ∗
nψndt = E∗

n

∫
ψ∗
nψndt,

(En − E∗
n)

∫
|ψn|2 dt = 0.

Since
∫
|ψn|2 dt can never be negative and since

∫
|ψn|2 dt = 0 can only

occur for |ψn| = 0, which is not permissible for a favourable wavefunction,

we must therefore have that En = E∗
n. To prove equation (3) we start with

the left hand side

∂ρ

∂t
=

∂

∂t
|ψn|2 , (5)

=
∂

∂t
ψ∗
nψn,

=
∂ψ∗

n

∂t
ψn +

∂ψn

∂t
ψ∗
n,

= (
−i
~
Hψn)

∗ψn + ψ∗
n(
−i
~
Hψn),

= (
i

~
)ψ∗

nHψn + (
−i
~
)ψ∗

nHψn,

= 0.
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Since Hermiticity preserves the probability of the system, conventionally

it was assumed that non-Hermitian systems contained dissipation, which is

the permanent loss of some of the energy as the system evolves with time.

However, in 1960 EugeneWigner [6] made the observation that operators that

are invariant under an antilinear transformation possess real eigenvalues if

their eigenfunctions are also invariant under the same transformation. These

operators are not necessarily Hermitian. An antilinear transformation ω is a

transformation that satisfies

ω(ax1 + bx2) = a∗ωx1 + b∗ωx2, (6)

where a, b are complex numbers and x1, x2 are vectors. If the operator H,

not necessarily Hermitian, is invariant under the antilinear operator ω, then

H will commute with ω. As proof of the reality of the spectrum of H, we

assume we have a Hamiltonian H which is invariant under the antilinear

transformation ω, and we have an eigenfunction ψ of H with the eigenvalue

E

Hψ = Eψ and [H,ω] = 0 (7)

Assuming that H and ω commute, ψ has to be also an eigenfunction of ω

and we assume it has eigenvalue γ, then

ωψ = γψ. (8)

As ω is an antilinear operator and making the assumption that ω2 = 1, then

ω is an isometry. However, when (8) is not true then one encounters what

is known as broken PT -symmetry, which leads to eigenvalues that appear in
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complex conjugate pairs. Now acting on (8) with ω, gives

ωωψ = ωγψ ⇒ ψ = γ∗ωψ = γ∗γψ, (9)

and ψ = γ∗γψ is solved by γ = eiϕ for ϕ ∈ R, therefore

ωψ = eiϕψ. (10)

This means that since ω is an isometry, its eigenvalue is merely a phase.

If we now act on Hψ = Eψ with ω and use the fact that H and ω commute,

we have

ωHψ = ωEψ ⇒ Hωψ = E∗ωψ. (11)

Using (10) and the second equation in (7), we arrive at

Heiϕψ = E∗eiϕψ ⇒ eiϕHψ = eiϕE∗ψ ⇒ Hψ = E∗ψ ⇒ Eψ = E∗ψ. (12)

From this we deduce that E = E∗, i.e., the eigenvalue E of the Hamiltonian

H is real, E ∈ R.

There are many operators with exactly these properties and a good exam-

ple of this is the PT -operator [1]. Here P is the parity operator and T is the

time reversal operator. These operators have the actions on the momentum

p and coordinate x as follows:

P : x→ −x, p→ −p; (13)

T : x→ x, p→ −p, ı→ −ı.

A very important constraint on these operators is that one wants to preserve

the commutation relation between the position and momentum operators x̂

and p̂, [x̂, p̂] = i. It is easy to see that if you act on the left hand side of the

4



relation with T this is equal to −i, so to preserve the relation when acting on

the right hand side of this relation with T , it should conjugate it. In other

words we have that PT : [x̂, p̂] → −[x̂, p̂] ⇒ PT : i → −i. Therefore most

often one finds the T -operator employed as complex conjugation. There are

however cases where it is not the case that T is used as complex conjugation.

In [7] Bender and Mannheim showed that one can formulate a relativistic PT -

symmetric quantum theory, where instead of T being complex conjugation,

it directly sends the time coordinate t to −t. In addition to this, in most

cases one find that it is assumed that T 2 = 1, for time reversal being even.

However, it has been shown that it is possible to formulate a consistent theory

for the case of odd time reversal, i.e., T 2 = −1, see [8].

Since the PT -operator is an antilinear operator, having a Hamiltonian

that possesses PT -symmetry will ensure real eigenenergies when the eigen-

functions of the Hamiltonian possess the same symmetry. This means that

not only standardly acceptable Hermitian models are candidates for having

physical interpretation, but also a broad set of non-Hermitian Hamiltonians.

Thus non-Hermitian models that have previously been disregarded can be

made sense of by using their inherent PT -symmetry and/or broader antilin-

ear symmetry, or by employing deformations that will give these properties.

Over the years many methods have been built or borrowed to gather

some physical meaning from non-Hermitian Hamiltonians, such as quasi-

Hermiticity and pseudo-Hermiticity.

Consider a non-Hermitian Hamiltonian H and a Hermitian Hamiltonian
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h and relate them to each other via a similarity transformation such that

h = ηHη−1 = h† = (η−1)†H†η† ⇐⇒ H†ρ = ρH with ρ = η†η. (14)

If there exists such a metric ρ which is not necessarily positive definite,

although invertible, linear and Hermitian then this is known as pseudo-

Hermiticity, see for instance [9]-[14]. When the metric ρ is positive definite

but not invertible, this is known as quasi-Hermiticity. Quasi-Hermiticity was

first introduced in 1960 by Dieudonné [15] and has been studied in various

contexts, see [13][15]-[17].

Since h is a Hamiltonian that is Hermitian, it has real eigenvalues and

the Hamiltonians H and h now have the same eigenvalues as they are in the

same similarity class which then in turn implies the reality of the eigenvalues

of H. If we now define a new inner product as [17]

(ψ1, ψ2)ρ ≡ (ψ1, ρψ2), (15)

then H is Hermitian with respect to this new inner product since

(ψ1, Hψ2)ρ = (ψ1, ρHψ2) = (ψ1, H
†ρψ2) = (Hψ1, ψ2)ρ. (16)

Originally when Bender et al, [1] first started investigating PT -symmetry,

they were examining the Hamiltonian H = p2 + x2 + ıx3, which has eigenen-

ergies that are both real and positive. It is claimed in [1] that the reality of

the spectrum of this Hamiltonian is due to it having PT -symmetry. It is not

difficult to establish that this Hamiltonian is indeed invariant under the PT -

transformation (7). However, Bender et al, extended this to the investigation

of the whole class of Hamiltonians H = p2 +m2x2 − (ıx)N for N ∈ R, m the

mass. They find that for N ≥ 2 the energies are completely real and also

6



positive, where for N = 2, the Hamiltonian is the harmonic oscillator. For

1 < N < 2 there are a finite number of eigenenergies that are real and the

rest appear in complex conjugate pairs. For N ≤ 1 there are only complex

eigenvalues. These results are depicted in a well-known figure, see Figure 1.

One can now adopt this idea and use it to construct new models that will

Figure 1: [1] Graphical representation of the eigenvalues of the set of Hamil-
tonians H = p2 +m2x2 − (ıx)N

have real energies once it has been established that these models respect the

conditions mentioned above. For instance, one can investigate spin chains

such as was done in [18], where Korff and Weston analyzed the PT -symmetry

and quasi-Hermiticity of the XXZ spin chain. Another possibility is to in-

vestigate Kortweg de Vries type equations, which has been done by several

different people. For example in [19] the author proposed a PT -symmetric

extension of the KdV equation which he then related to some non-Hermitian

Hamiltonians and constructed the first few charges of the deformed model or

7



in [20] Bender et.al. also constructs extensions of the KdV equation which

then results in a new family of nonlinear wave equations. The quantum

brachistochrone problem has also been investigated [14][21]. Bender et.al.

[21] showed that when the operator that governs time-evolution in the quan-

tum brachistochrone problem is a PT -symmetric non-Hermitian operator,

one can make the evolution of time from a specified initial to a specified final

state arbitrarily small. Assis and Fring [14] showed that this can also be

achieved for a non-Hermitian Hamiltonian with no PT -symmetry.

PT -symmetry has even been observed and proved to be a useful concept

in the field of optics [22][23][24][25]. In order to draw an analogy between

optics and Quantum mechanics one starts with a set of equations which are

crucial to the field of optics, namely the Maxwell’s equations [26][27]

∇× E = −∂B
∂t
, (17)

∇×B = µ0E + µ0ε0
∂E

∂t
, (18)

∇.E =
σ0
ε0
, (19)

∇.B = 0, (20)

where E is an electric field, B is a magnetic field, J is the current density,

µ0 is the electric conductivity and ε0 is the magnetic permeability and σ0 is

the charge density. Equation (17) is derived from Ampere’s law, equation

(18) is derived from Faraday’s law, the third equations (19) is derived from

the Gaussian theorem for a magnetic field and the last equation is derived

from the Gaussian theorem for an electric field. From these equations one

notes that the magnetic and electric fields are coupled to each other [28].

[27].If one now takes the curl of equation (17) or (18) and use the identity

8



∇×∇× V̂ = ∇(∇.V̂ )−∇2V̂ for any vector field V̂ , we will obtain a wave

equation of the form

∇2E − σ0µ0
∂E

∂t
− µ0ε0

∂2E

∂t2
= 0, (21)

where ∇2 is the Laplacian operator [28]. If we then make an assumption on

the form of E = E0e
−iωt [27] and differentiate this twice we get

E = E0e
−ιωt, (22)

∂E

∂t
= −iωE0e

−ιωt = −ιωE,

∂2E

∂t2
= −ω2E0e

−ιωt = −ω2E,

and substitute this back into (21) we obtain

∇2E + σ0µ0ιωE + µ0ε0ω
2E = 0,

∇2E + µ0ω(σ0ι+ ε0ω)E = 0, (23)

which is known as the Helmholtz equation [28][29]. Often the wave number is

abbreviated as k2 = µ0ω(σ0ι+ε0ω). One can make a paraxial approximation

to equation (23), if we consider an element of the field having the form E =

Ae−ιkz, assuming we have a wave traveling in the, z-direction for instance.

To proceed any further it is intuitive to decompose the differential operators

in (23) by using the identity ∇ϕ = ∇Tϕ + ẑ ∂ϕ
∂z
, where ∇Tϕ = x̂∂ϕ

∂x
+ ŷ ∂ϕ

∂y
is

the transverse gradient of unspecified ϕ. Equation (21) then becomes

∇2
TA− ιk

∂A

∂z
+
∂2A

∂z2
= 0.

Now making the assumption that ∂2A
∂z2

≪ k ∂A
∂t
, which is the condition neces-

sary for making the paraxial approximation as this means that ∂A
∂z

≪ A, so

9



we ignore the third term leading to [27][29]

∇2
TA− ιk

∂A

∂z
= 0.

The paraxial approximation of the Helmholtz equation (23) leads to a

Schrödinger type equation that has the form [30, 31]

i
∂

∂z
ψ = −(

∂2

∂x2
+ V (x))ψ (24)

where ψ is the amplitude of the electric field, z is the propagation distance

and V (x) is the optical potential. An interesting difference between PT -

symmetric quantum physics and optics is that instead of seeking a system

with unbroken PT -symmetry, i.e., one where the eigenvalues are completely

real, in optics one is at present usually interested in systems or regions of

systems where the eigenvalues appear in complex conjugate pairs. This orig-

inates from the idea that when the optical potential V (x) is complex, it

represents a complex refractive index and the imaginary part of this is either

the loss or gain of the system. Recently it has been found and shown in ex-

periments that for certain PT -symmetric systems that as one increases the

loss in the system past a specific point known as an exceptional point, the

transmission in the system starts to increase, even though it was decreasing

before the loss passed through the exceptional point. The results of this

experiment is depicted in Figure 2 [2].

Another example of how PT -symmetry was used in the field of optics is the

idea of optical solitons [24] and some more recent investigations have been

into the concept of stabilizing the soliton solutions of particular systems [32],

as well as solitons in PT -invariant dimers [33].
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Figure 2: Passive PT -symmetry breaking observed in an experiment [2].
The graph depicts how the transmission decreases as the loss of the system
is increased up until an exceptional point is reached, where the transmission
starts to increase.

Assis and Fring [34] showed how the Benjamin-Ono1 equation

ut + uux + λH̃uxx = 0, (25)

where H̃ ≡ Hilbert transform, i.e., H̃u(x) = P
π

∫∞
−∞

u(z)
z−x

dz, can be related to

Calogero systems

HC(p, q) =
p2

2
+
ω2

4

∑
i<j

(xi − xj)
2 +

∑
i<j

g

(xi − xj)2
, (26)

if the poles of the solutions of the Benjamin-Ono equation satisfy the Calogero

equations of motion . i.e., zk satisfies the An-Calogero equation of motion

z̈k =
λ2

2

∑
k ̸=j

(zj − zk)
−3 (27)

1The Boussinesq equation utt + (αuxx + βu2 − γu)xx = 0 and the KdV equation
ut + (αuxx + βu2)x = 0 and the Burgers’ equation ut + αuxx + β(u2)x = 0 were also
investigated in the same publication and related to the Calogero model in a similar fashion
with additional constraints.
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for u(x, t) being a solution to (25)

u(x, t) =
λ

2

ℓ∑
k=1

(
i

x− zk
− i

x− z∗k

)
∈ R (28)

with g a coupling constant. They explore how PT -symmetric Calogero sys-

tems emerge naturally from solutions of these equations without having to

deform the Calogero systems themselves. Some of these systems have even

been found to have solitons and compactons [35][36]. In [37] the integrability

of PT -symmetric deformed models were investigated by use of the Painlevé

test and it was found that the Burgers’ equation allows for a large amount

deformations that indeed pass this test, but the Korteweg de Vries equation

does not pass the test in total generality.

Systems such as Calogero models and Toda field theories can be related

to root systems coupled to Coxeter groups or Weyl groups in complete gen-

erality [38][39][40]. In single particle systems it is easy enough to obtain

the symmetry of the system, which can and has been used to construct new

models that are physically meaningful. However, in field theories and multi-

particle systems it is not always a straight forward procedure to observe the

symmetries involved in these systems. Often it will involve elaborate trans-

formations on the level of the dynamical variables. The generalized Calogero

model takes the form

HC(p, q) =
p2

2
+
ω2

4

∑
α∈∆

(α.x)2 +
∑
α∈∆

g

(α.x)2
, (29)

where α are the roots of the Coxeter group, x = {x1, x2, ..., xn} the position

coordinates, p = {p1, p2, ..., pn} is the momentum and n is the number of

particles in the system. For example one could choose to deform the variables
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of the A2-Calogero model as [41]

x1 → x̃1 = x1 cosh ε+ i
√
3(x2 − x3) sinh ε, (30)

x2 → x̃2 = x2 cosh ε+ i
√
3(x3 − x1) sinh ε,

x3 → x̃3 = x3 cosh ε+ i
√
3(x1 − x2) sinh ε,

and then using the standard three dimensional representation of the simple

A2-roots, we would compute

α1.x̃ = x12 cosh ε−
i√
3
(x13 + x23) sinh ε, (31)

α2.x̃ = x23 cosh ε−
i√
3
(x21 + x31) sinh ε,

α3.x̃ = x13 cosh ε−
i√
3
(x12 + x32) sinh ε,

where we abbreviate xij := xi − xj and then the symmetries would be

S1 : x1 ↔ x2, x3 ↔ x3, i→ −i, (32)

S2 : x2 ↔ x3, x1 ↔ x1, i→ −i.

However, even though this deformation does work, there is no obvious reason-

ing as to why one would choose to deform the variables xi in this particular

fashion. Since the root systems remain invariant under the action of the

whole Weyl group, they possess a natural symmetry. So in the A2-Calogero

model one can deform the simple roots instead as

α1 → α̃1 = α1 cosh ε+ i
√
3(λ2) sinh ε, (33)

α2 → α̃2 = α2 cosh ε− i
√
3(λ1) sinh ε,

where the λi are the fundamental weights. It is a far less involved task to

identify these symmetries in these root spaces than it is in the dual space on
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the level of the dynamical variables, the symmetries in our example are

σε
1 : α̃1 ↔ −α̃1, α̃2 ↔ α̃1 + α̃2; (34)

σε
2 : α̃1 ↔ α̃1 + α̃2, α̃2 ↔ −α̃2.

Once the symmetry has been identified one can easily change it over to the

dual space by using the identity α.x̃ = α̃.x, which would lead to the symmetry

in the dual space

σε
1 : x1 ↔ x2, x3 ↔ x3, i→ −i, (35)

σε
2 : x2 ↔ x3, x1 ↔ x1, i→ −i.

We will show that one can eliminate the singularities that exist in the

undeformed Calogero Hamiltonian (26) by deforming the root space, that the

Calogero model is related to, in an antilinear fashion. An interesting result

of this procedure is that, even though there are no more singularities in the

deformed model, one picks up a phase when some particles are exchanged and

we will identify this as anyonic behaviour. With this in mind we construct a

completely general, systematic method for deforming Coxeter groups in an

antilinear fashion. The aim is to make use of the inherent symmetry that

already exists in the Coxeter groups. Deforming the Coxeter groups in such

a way will ensure that the deformed groups will remain invariant under an

antilinear symmetry, which we will employ as analogues of the P-operator.

We begin by selecting any involutory element ω̂ ∈ W , ω̂2 = I, and deform

it antilinearly. There are several different possible choices for ω̂. In [41] the

authors make the choice of directly deforming the Weyl reflections σi ∈ W

themselves, however for this particular choice, it is only possible to deform
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the rank 2 algebras consistently. This was done explicitly in [34][41].

Another natural choice would be to deform the longest element ω0 ∈ W

of the Weyl group. This deformation is more general than the deformation of

the Weyl reflections themselves, but is still restricted to particular Coxeter

groups, Al, D2l and E6.

One can also deform the factors of the Coxeter element σ± ∈ W , however

for some groups this deformation results in trivial deformations. To address

these groups that had trivial deformations one can deform a new modified

Coxeter element which has a lower order than the original Coxeter element.

Except for the deformation of the Weyl reflections, we show the general-

ized constructions for these deformations. For the Weyl reflection deforma-

tions we give an explicit argument as to why this only works for the rank 2

algebras. We give case-by-case solutions in support of the other deformations.

We generalize the solution of the Calogero model that was originally con-

structed by Calogero [42][43][44] in 1969, such that it is independent of its

root space representation. Thereafter we extend this generalized solution to

that of a deformed model based on deformations of the root spaces of the

model. Additionally we calculate the groundstate eigenvalues and eigenfunc-

tions for the deformed model and give explicit examples of the symmetries

in the dual space after deforming the root systems of the model.

As mentioned above affine Toda field theories can also be related to Cox-

eter groups in complete generality. In 1+1 dimensions an affine Toda field

theory is a theory whose Lagrangian is of the following form [45][39][46]

L :=
1

2

ℓ∑
i=1

∂µϕi∂
µϕi −

m2

β2

ℓ∑
i=0

nie
βαi·ϕ, αi ∈ ∆. (36)
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A key feature of affine Toda field theories is that after renormalizing the

model, the classical mass spectrum is preserved in quantum field theory, when

the affine Toda field theory is related to a simply laced Lie algebra [47][48]-

[55]. For the non simply laced cases this property no longer holds [47][56]-[62]

and one has to consider pairs of dual algebras [63], in order to formulate a

consistent theory. Another property of the affine Toda field theory (36) is

that this theory has an infinite amount of conserved charges that commute

such that the theory is classically integrable. On the quantum level this

implies a factorisable S-matrix. When the coupling constant β is real this

leads to diagonal scattering matrices or S-matrices. A scattering matrix is

a matrix of a system, in the process of being scattered, that relates final

and initial states of the particles being scattered [64]. For integral systems

this implies that the n-particle S-matrix factorises into 2-particle S-matrices.

Scattering refers to the result of when two particles in a system collide [4].

The S-matrices of the Toda field theories based on simply laced algebras were

constructed in [48]-[55] where the authors use the building block

{x} =
(x− 1)(x+ 1)

(x− 1 +B)(x+ 1−B)
, (37)

(x) =
sinh 1

2
(θ + iπx

h
)

sinh 1
2
(θ − iπx

h
)
,

where the h is the Coxeter number, θ is the difference in rapidity of the

two particle scattering and B(β) = 2β2

β2+4π
for 0 ≤ B ≤ 2 as conjectured in

[48]-[55]. The elements of the scattering matrix then take the form

Sab(θ) =
h∏

x=1

{x}mab(x), (38)

where mab(x) are the multiplicities of {x} whose explicit form is known and
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yet another application of Coxeter elements. For the theories based on non

simply laced algebras there are many constructions for specific examples [56]-

[62] however a general construction was only found in 1997 by Oota [47][62].

Oota constructed a general S matrix for an unspecified dual pair of non

simply laced Coxeter groups (X
(1)
N , Y

(l)
M ). He uses the generalisation of the

building block [56]-[62][65] similar in form to (37), i.e.,

{x, y} =
< x− 1, y − 1 >< x+ 1, y + 1 >

< x− 1, y + 1 >< x+ 1, y − 1 >
, (39)

< x, y > = <
(2−B)x

2h
+

By

2h(l)∨
>,

< x > =
sinh 1

2
(θ + iπx)

sinh 1
2
(θ − iπx)

,

here h(l)∨ is the l-th dual Coxeter number and h∨ is the dual Coxeter number

of the group XN and B now takes the form

B(β) =
2β2

β2 + 4πh
h∨

for 0 ≤ B ≤ 2. (40)

Using (39) and (40) Oota then proposed the general elements of the S matrix

for the pair (X
(1)
N , Y

(l)
M ) as [62]

Sab(θ) =
h∏

x=1

h(l)∨∏
y=1

{x, y}mab(x,y), (41)

with the multiplicities of {x, y} being mab(x, y) [47].

The construction we propose here is a classical version to that proposed

in [47, 62]. We give a concrete example for the q-deformed Coxeter dual pair(
C

(1)
2 , D

(2)
3

)
after which we apply the deformation to our affine Toda field

theory.
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Outline

In chapter 1 we construct a general mathematical framework for the con-

struction of antilinear deformations of root spaces and we extend the general

framework to specific choices of elements in the Coxeter group. Section one

is dedicated to deforming factors of the Coxeter element, in section 2 we

extend this to a modified Coxeter element, we demonstrate in section 3 how

the Weyl reflections can only be consistently deformed for rank 2 algebras,

section 4 contains the deformation of two arbitrary elements of the Coxeter

group and in section 5 we obtain deformations from rotations in the dual

space. We present examples in each section.

In chapter 2 we investigate the deformation of the longest element of a

Coxeter group and present some examples of this.

In chapter 3 we build a q-deformation of Coxeter groups and calculate a

concrete example.

In chapter 4 we generalize the solution of the standard Calogero model

to be independent of the root space involved. Thereafter we apply the defor-

mation of the Coxeter groups to the generalized Calogero model and present

concrete examples.

In chapter 5 we apply the q-deformation to affine Toda field theories and

compute the mass spectra of the deformed models, which we demonstrate

with an example.

Chapter 6 is dedicated to some concluding remarks.
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Chapter 1

Root spaces invariant under

antilinear involutions

We start by defining some key concepts that are used throughout this thesis.

If we have Euclidean vector space E with a subset ∆ satisfying some specific

properties [66][3], then ∆ is known as a root space. The first property is that

the root system ∆ is finite and spans the Euclidean space. It also does not

include 0. Secondly if a nonzero vector α ∈ ∆, then the only multiples of

α in ∆ are ±α. The third property is that the reflection σα leaves the root

system invariant if α ∈ ∆, where σα(β) = β − 2(β · α)/α2α is known more

commonly as a Weyl reflection. The last property states that if α, β ∈ ∆

then the quantity 2(β · α)/α2 ∈ Z for the crystallographic groups, for the

non-crystallographic groups this is not an integer. This quantity is often

abbreviated to 2(β · α)/α2 = < β, α > in the literature and is known as the
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Cartan integers which become the elements of the Cartan matrix

Kij =
2(αi.αj)

α2
i

. (1.1)

Here the α are the roots of the system and one refers to them as simple roots

if they cannot be written as the sum of other roots in the system. Generally

we labeled the roots of a system by subscripts, i.e., αi ∈ ∆. The simple roots

of a root space form a basis from which every other non-simple root can be

calculated.

A Weyl group W is a group that is generated by the Weyl reflections σα

with α ∈ ∆. By the third property mentioned above, the set ∆ is permuted

by the Weyl group W . If one has a pair consisting of a group U ⊂ V where

V is a vector space and a set of generators S = {sk} ⊂ U such that

(sisj)
m(si,sj) = 1, (1.2)

where m(si, si) = 1, m(si, sj) = m(sj, si) ≥ 2 ∈ Z for si ̸= sj and sk ∈ S,

then such a system is called a Coxeter system and U is called a Coxeter group

[3]. One can redefine the generators si to be reflections given by the simple

roots of the vector space V as

σsi(αj) = αj− < αi, αj > αi (1.3)

which can be identified with the Weyl reflections of a Weyl group. The

Coxeter groups consists of the groups An, Bn, Cn, Dn, G2, E6, E7, E8, F4, H3

and H4. All of these groups are Weyl groups except for the groups H3 and

H4. The groups An, E6, E7, E8 and Dn are known as the simply-laced Coxeter

groups as their root systems consist of roots of only one length.

These groups can be classified by their Dynkin diagrams. A Dynkin
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diagram has the same number of vertices as there are simple roots in the

system and they are labeled by these roots. Each vertex is connected by

a line which corresponds to a generator of the system. If two roots have

different lengths then an arrow is drawn on the line pointing in the direction

of the shorter root. The number of lines drawn between 2 vertices corresponds

to the angle between the roots that are represented by those two vertices.

There are only three possible angles 2π
3
, 3π

4
and 4π

5
. One line is drawn for the

angle 2π
3
, two lines for 3π

4
and three for 4π

5
. For a complete set of Dynkin

diagrams please see the appendix. A Coxeter element σ of a specific Coxeter

group is defined as the product of all the simple Weyl reflections in that

Coxeter group i.e.,

σ =
l∏

k=1

σk for l ≡ the rank of U . (1.4)

The Coxeter number of a Coxeter group is the order h for which the Coxeter

element is equal to 1 i.e., σh = 11. The number of roots in a Coxeter group

is the rank of the group times its Coxeter number, N = l × h.

First of all we would like to present a mathematical framework that is

completely general at the onset, but which may be applied in a different

setting than outlined in this thesis. We, as of yet, are not considering any

concrete physical models but they serve as a guide in our construction. In

this section we mainly aim to construct a complex extended root system

∆(ε) which remains invariant under a newly defined antilinear involutory

map. To start off we deform the real roots αi ∈ ∆ ⊂ Rn in such a way that

we can represent them in a complex space depending on some deformation

1We provide a table of the different Coxeter numbers of the Coxeter groups in the
appendix, as well as the number of roots in each group.
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parameter ε ∈ R as αi(ε) ∈ ∆(ε) ⊂ Rn⊕ ıRn. We define a linear deformation

map as

δ : ∆ → ∆(ε), (1.5)

and this will relate the simple roots and deformed simple roots as

α 7→ α(ε) = θεα. (1.6)

where α is the column vector made up of all simple roots α = {α1, ..., αℓ},

θε is an ℓ× ℓ matrix and ℓ is the rank of the group W . In addition we want

to find an antilinear involutory map ζ which leaves this complex root space

invariant under its action

ζ : ∆(ε) → ∆(ε), α(ε) 7→ λα(ε). (1.7)

This means the map satisfies (1.5) in an antilinear fashion (6), i.e., ζ : α(ε) =

µ1α1(ε) + µ2α2(ε) 7→ µ∗
1λα1(ε) + µ∗

2λα2(ε) for µ1, µ2 ∈ C and ζ2 = I.

Assuming that λ can be decomposed into an element of the Weyl group

ω̂ ∈ W with ω̂2 = I and a complex conjugation τ , λ = τ ω̂ = ω̂τ . The

presence of τ ensures the antilinearity of ζ. In some concrete applications it

is understood that the maps ω̂ and τ correspond to analogues of the parity

operator P and time reversal operator T , respectively. Candidates for ω̂ are

simple Weyl reflections σi [41], the two factors σ± of the Coxeter element

[67], the longest element w0 of the Weyl group [67] and some more general

elements in W for the example of E8 in [68] and the other groups in [69].

Concretely we assume here that we have at least two different involu-

tions ζ of the type (1.7) at our disposal, say ζi with i = 1, 2, . . . With our

application in mind, namely to construct physically viable self-consistent
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non-Hermitian multi-particle systems, one such map would in principle be

sufficient. However, the presence of two maps leads immediately to some

extremely useful constraints. We take the associated rules of correspondence

to be of the form

λi := θεω̂iθ
−1
ε = τ ω̂i, for i = 1, . . . , κ ≥ 2. (1.8)

here both sides of the equality act on α(ε) so the equality actually reads

as θεω̂iθ
−1
ε α(ε) = τ ω̂iα(ε). For a detailed example as to how this equation

works please refer to 1.1.1.

Then by

λiλj = τ ω̂iτ ω̂j = τ 2ω̂iω̂j = ω̂iω̂j = θεω̂iω̂jθ
−1
ε , (1.9)

it follows directly that the composition Ωij := ω̂iω̂j of any two elements ω̂i

and ω̂j of the Weyl group commutes with the deformation matrix θε

[Ωij, θε] = 0. (1.10)

Note that in general Ωij ̸= Ωji. Since by construction Ωij ∈ W we can

expand θε in all elements ω̌i ∈ W which commute with Ωij, i.e., [Ωij, ω̌i] = 0,

θε =
∑
k

rk(ε)ω̌k for rk(ε) ∈ C, (1.11)

and subsequently determine the coefficient functions rk(ε) from additional

constraints. One further natural constraint, from a physical and mathemati-

cal point of view, is to assume the preservation of the dot products on ∆(ε),

and we do this by assuming that θε is an orthogonal matrix. So we have that

αi · αj = (θεαi) · (θεαj), (1.12)
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which means that θε is an isometry, since by definition an isometry is an

operator that preserves the inner product [70]. Since we are assuming that

θε is an orthogonal matrix we must have the property [70]

θ∗εθε = θεθ
∗
ε = I =⇒ θ∗ε = θ−1

ε . (1.13)

Now using the second equation in (1.13) we prove that

det(θεθ
∗
ε) = det(I), (1.14)

det(θε) det(θ
∗
ε) = 1,

det(θε)
2 = 1,

det(θε) = ±1.

Acting on 1.8 with τ from the left and then using 1.14 gives

θεω̂iθ
−1
ε α(ε) = τ ω̂iα(ε) ⇒ θεω̂iθ

−1
ε θεα = τ ω̂iθεα⇒ θεω̂i = ω̂iθ

∗
ε .

In summary, the task is to pick κ elements of the Weyl group ω̂i, expand the

deformation matrix θε in terms of the elements commuting with the products

of these elements, and finally determine the coefficient functions rk(ε) in these

expansions from the constraints

θ∗ε ω̂i = ω̂iθε, [ω̂iω̂j, θε] = 0, θ∗ε = θ−1
ε , det θε = ±1, lim

ε→0
θε = I,

(1.15)

or possibly in reverse, that is for given θε to identify meaningful involutions

ω̂i. It turns out that these constraints are quite restrictive and often allows

one to determine θε with only very few free parameters left. In some situ-

ations it might not be desirable to preserve the inner products (1.12) after

the deformation, in which case one may give up (1.14).
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With our applications to physical models of Calogero or Toda type in

mind, we may then easily construct a dual map δ⋆ for δ, meaning the de-

formation map associated to δ that acts on the coordinates of the Calogero

model, for example, once we have related the model to a Coxeter group

δ⋆ : Rn → ∆⋆(ε) = Rn ⊕ iRn, x 7→ x̃ = θ⋆εx; (1.16)

i.e., this map acts on the coordinate space with x = {x1, . . . , xn} or possi-

bly fields as we will see below. Throughout the manuscript we will denote

quantities in and acting on the dual space by ⋆, which is of course not to be

confused with the complex conjugation denoted by ∗. Given θε we construct

θ⋆ε by solving the ℓ equations

(αi(ε) · x) = ((θεα)i · x) = (αi · θ⋆εx) = (αi · x̃), for i = 1, . . . , ℓ, (1.17)

involving the standard inner product. This means (θ⋆ε)
−1αi = (θεα)i . Note

that in general θ⋆ε ̸= θ∗ε . Naturally we can also identify an antilinear involu-

tory map

ζ⋆ : ∆⋆(ε) → ∆⋆(ε), x̃ 7→ λ⋆x̃. (1.18)

corresponding to ζ but acting in the dual space. Concretely we solve for this

the κ× ℓ relations

(λiα(ε))j · x = αj · λ⋆i x̃, for i = 1, . . . κ; j = 1, . . . , ℓ, (1.19)

for λ⋆i with given λi.

Let us now look at different ways in which we can choose ω̂ and what the

various solutions look like.
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1.1 Deformations of Coxeter group factors

We will start with a Coxeter element of the Weyl group σ ∈ W . The Coxeter

element can, by definition, always be expressed as a product over ℓ simple

Weyl reflections σ =
∏ℓ

i=1 σi, where the Weyl reflections are defined as

σi(x) = x− 2(x · αi)/α
2
iαi, 1 ≤ i ≤ ℓ, (1.20)

with ℓ being the rank of the group.

Due to the fact that the Weyl reflections, in general, do not commute,

the Coxeter element (1.2) is not unique and only defined up to conjugacy. A

useful connection one can make is to assign the values ci = ±1 to the vertices

of the Coxeter graphs in such a fashion that every pair of linked vertices does

not have the same value. Consequently we are left with two disjoint sets of

the simple roots that are associated to each vertex, say V±, which means that

the Coxeter element can now be defined uniquely as

σ = σ−σ+ with σ± :=
∏
i∈V±

σi, (1.21)

[66, 3, 71, 52, 54, 72]. Since all elements in the same set now commute, i.e.,

[σi, σj] = 0 for i, j ∈ V+ or i, j ∈ V−, and σ2
i = I, the only remaining task

is to choose the ordering of the σ+ and σ−. Because of this we ensure that

the property that σ2
± = I is maintained and therefore we can use σ− or σ+ as

candidates for the analogue to the parity operator P which is what we want

to deform antilinearly to construct the map λ in (1.7).

We achieve this by defining the antilinear deformations of the factors of

26



the Coxeter element in the following way:

σε
± := θεσ±θ

−1
ε = τσ±, (1.22)

with complex conjugation τ, which we employ as the time reversal operator

and θε being the deformation matrix introduced in (1.6).

Defining the deformed Coxeter element in this way we ensure the invari-

ance of the root space under the action of this operator i.e.,

σε
± : ∆(ε) → ∆(ε). (1.23)

Our construction ensures that the deformed Coxeter element σε acts on the

deformed root space ∆(ε) in the same way as the undeformed Coxeter element

σ acting on the undeformed root space ∆, eg. :

σ : β1 ∈ ∆ → β1 + β2 ∈ ∆, (1.24)

σε : βε
1 ∈ ∆(ε) → βε

1 + βε
2 ∈ ∆(ε),

for βi being some element in ∆ and βε
i being some element in ∆(ε).

Therefore our deformation map commutes with the Coxeter element

[σ, θε] = 0. (1.25)

From (1.25) it follows that one equation in (1.22) implies the other, the

σ− deformation will give the σ+ deformation and the other way around.

The undeformed root space ∆ can be constructed by using the quantity

γi = ciαi with ci = ±1 as introduced on page 25 and acting on it consecutively

with the powers of σ. We want the deformed root space to be constructed

in an analogous way by using γi(ε) = ciαi(ε) = ciθεαi, therefore we can
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construct the deformed Coxeter orbits as

Ωε
i :=

{
γi, σεγi, σ

2
εγi, . . . , σ

h−1
ε γi

}
= θεΩi, (1.26)

such that the deformed root space is given by

∆(ε) =
ℓ∪

i=1

Ωε
i = θε∆. (1.27)

By this we have that the entire deformed root space remains invariant

under the action of the deformed Coxeter element σε : ∆(ε) → ∆(ε). Crucial

to our intentions, that our root spaces are PT -symmetric, i.e., the root space

is invariant under the action of our map defined in (1.22)

σε
± : ∆(ε) → θεσ±θ

−1
ε ∆(ε) = θεσ±∆ = θε∆ = ∆(ε) (1.28)

Because of the way we construct the deformed root space, we demand

a one-to-one relation between the individual roots of the undeformed and

deformed root spaces such that ∆(ε) is isomorphic to ∆. To guarantee this

we impose the limit

lim
ε→0

θε = I, (1.29)

which then gives limε→0∆(ε) = ∆, i.e., limε→0 αi(ε) = αi.

Provided that we can construct θε, we can now formulate PT -symmetric

physical models based on root systems by using the deformation map (1.6),

δ : α 7→ α(ε). However, there is still a large amount of free parameters. To

remedy this we can impose some more constraints.

As mentioned before we keep physical applications in mind when per-

forming this construction, so we would like it that the kinetic energy and

possibly other terms to remain invariant under this deformation. This will
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be guaranteed by demanding that the inner products of the corresponding

root spaces remain invariant, i.e.,

αi · αj = αi(ε) · αj(ε), (1.30)

which is the same as saying,

θ∗ε = θ−1
ε and det θε = ±1. (1.31)

Now we have several constraints that will aid in the actual construction

of the deformation map θε, i.e., (1.24), (1.25), (1.31) and (1.29). We will

summarize them as follows

θ∗εσ± = σ±θε, [σ, θε] = 0, θ∗ε = θ−1
ε , det θε = ±1, lim

ε→0
θε = I. (1.32)

Considering now the fact the θε and the Coxeter element σ commute,

together with the last equation in (1.32), we make the following ansatz

θε =
h−1∑
k=0

ck(ε)σ
k, with lim

ε→0
ck(ε) =

 1 k = 0

0 k ̸= 0
, ck(ε) ∈ C (1.33)

Using equation (1.32) and the relations σ−σ
−1 = σσ− and σh = 1, we try

to satisfy the first relation in (1.33). The left hand side gives

θ∗εσ− =
h−1∑
k=0

c∗k(ε)σ
kσ− =

h−1∑
k=0

c∗k(ε)σ−σ
h−k (1.34)

and the right hand side equals

σ−θε =
h−1∑
k=0

ck(ε)σ−σ
k (1.35)

These two equations are equal when

ch−k(ε) = c∗k(ε) and c0(ε) = c∗0(ε), (1.36)
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One can obtain the relation (1.25) from the constraint θ∗εσ+ = σ+θε and using,

σ+σ = σ−1σ+ instead of σ−σ
−1 = σσ−, since one can obtain one equation

from the other in (1.22). Since c0(ε) ∈ R from the second equation in (1.36),

we insert this into the first equation in (1.36) and deduce that ch(ε) = c0(ε).

We set c0(ε) =: r0(ε) ∈ R and also deduce that ch/2(ε) =: rh/2(ε) ∈ R when

h is even. Finally by taking ck(ε) to be purely imaginary ck(ε) = ırk(ε) with

rk(ε) ∈ R, we reduced the number of free parameters even more. This then

leads to the equation for the deformation map θε

θε =


r0(ε)I+ ı

(h−1)/2∑
k=1

rk(ε)(σ
k − σ−k) for h odd,

r0(ε)I+ rh/2(ε)σ
h/2 + ı

h/2−1∑
k=1

rk(ε)(σ
k − σ−k) for h even.

(1.37)

Diagonalizing θε by recalling [3] the eigenvalue equation for the Coxeter ele-

ment

σvn = e2πisn/hvn, (1.38)

with sn being the exponents of a particular Coxeter group W . Defining the

matrix ϑ = {v1, v2, . . . , vℓ}, we diagonalize the Coxeter element simply as

σ = ϑσ̂ϑ−1 with σ̂nn = e2πısn/h, such that the deformation matrix diagonalizes

as

θε = ϑθ̂εϑ
−1, (1.39)

with eigenvalues

(θ̂ε)nn =


r0(ε)− 2

(h−1)/2∑
k=1

rk(ε) sin
(
2πk
h
sn
)

for h odd,

r0(ε) + (−1)snrh/2(ε)− 2
h/2−1∑
k=1

rk(ε) sin
(
2πk
h
sn
)

for h even.

(1.40)
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This means that the constraint det θε = ±1 in (1.32) is equivalent to det θ̂ε =

±1 and therefore

±1 =
ℓ∏

n=1

[
r0(ε)− 2

(h−1)/2∑
k=1

rk(ε) sin
(
2πk
h
sn
)]

for h odd,

±1 =
ℓ∏

n=1

[
r0(ε) + (−1)nrh/2(ε)− 2

h/2−1∑
k=1

rk(ε) sin
(
2πk
h
sn
)]

for h even.

(1.41)

Next we implement the third relation in (1.32), which, using (1.39), corre-

sponds to the ℓ equations

ϑ−1ϑ∗θ̂ε(ϑ
∗)−1ϑ = θ̂−1

ε . (1.42)

What is left is to find the (h−1)/2 or h/2+1 unknown functions ri(ε) when

h is odd or even, respectively, from the ℓ + 1 equations (1.41) and (1.42).

This task we carry out case-by-case.

1.1.1 Case-by-case solutions

Deformed root spaces, ∆(ε), for Aℓ

∆(ε) for A2 The simple roots forA2 are α1 = {1,−1, 0} and α2 = {0, 1,−1},

with Cartan matrix

K =

 2 −1

−1 2

 . (1.43)

Then we find the Weyl reflections for each root, σ1(α1) = −α1, σ1(α2) =

α1 + α2, σ2(α1) = α1 + α2 and σ2(α2) = −α2. Then we write the coefficients

in matrix form leading to the matrix form of the Weyl reflection σi and
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Coxeter element σ as follows

σ1 =

 −1 0

1 1

 = σ−, σ2 =

 1 1

0 −1

 = σ+, (1.44)

σ = σ1σ2 =

 −1 −1

1 0

 = σ−σ+. (1.45)

Inserting these into equation (1.33), then the deformation matrix becomes

θε = r0(ε)I+ ır1(ε)(σ − σ−1), (1.46)

=

r0 − ır1 −2ır1

2ır1 r0 + ır1

 , (1.47)

where we abbreviate the coefficients as ri = ri(ε). Then solving the constraint

det θε = 1, (1.41) with sn = n and h = 3 yields r20 − 3r21 = 1 with solutions

r0 = cosh ε, r1 = −1/
√
3 sinh ε leading to a deformation matrix

θε =

cosh ε− ı/
√
3 sinh ε −2ı/

√
3 sinh ε

2ı/
√
3 sinh ε cosh ε+ ı/

√
3 sinh ε

 . (1.48)

Next we inspect that all our constraints hold and we start by examining

equation (1.22), we have

θεσ−θ
−1
ε α(ε) = τσ−α(ε),

θεσ−θ
−1
ε θεα = τσ−θεα, (1.49)

θεσ−α = σ−θ
∗
εα,
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The left hand side of this is

θεσ−α =

 − cosh(ϵ)− i
√

sinh2(ϵ)√
3

cosh(ϵ)− i
√

sinh2(ϵ)√
3

2i
√

sinh2(ϵ)√
3

cosh(ϵ)− i
√

sinh2(ϵ)√
3

2i
√

sinh2(ϵ)√
3

− cosh(ϵ)− i
√

sinh2(ϵ)√
3

 ,

(1.50)

and this is equal to the right hand side. There are no further constraints re-

sulting from the equations (1.42) as with ϑ = {(eıπ/3, e−ıπ/3), eıπ2/3, e−ıπ2/3)}

it is trivially satisfied when r20 − 3r21 = 1. With (1.6) we obtain from this

exactly the roots presented later on in (2.18) and (2.19).

Next we apply the deformation to our undeformed simple roots

θεα = α(ε) =

 cosh(ϵ)− i
√

sinh2(ϵ)√
3

− cosh(ϵ)− i
√

sinh2(ϵ)√
3

2i
√

sinh2(ϵ)√
3

2i
√

sinh2(ϵ)√
3

cosh(ϵ)− i
√

sinh2(ϵ)√
3

− cosh(ϵ)− i
√

sinh2(ϵ)√
3

 ,

(1.51)

where we have that α(ε) = {α1(ε), α2(ε)}.

Note that in this case the constraint even holds for the individual Weyl

reflections, i.e., σ1θε = (θεσ1)
∗ and σ2θε = (θεσ2)

∗ as σ1 = σ− and σ2 =

σ+. This means we can view this deformation in an alternative way as

deformations across every hyperplane in the A2-root system. The latter was

the constraint imposed in [41], which explains that (2.18) and (2.19) are

precisely the deformations constructed therein.

The remaining positive nonsimple root is simply α1(ε) + α2(ε) as we

demand a one-to-one relationship between the deformed and undeformed

root spaces.
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∆(ε) for A3 For A3 the Weyl reflections σi, the factors of the Coxeter

element σ±, the Coxeter element σ and the diagonalising matrix ϑ takes the

form

σ1 =


−1 0 0

1 1 0

0 0 1

 , σ2 =


1 1 0

0 −1 0

0 1 1

 , (1.52)

σ3 =


1 0 0

0 1 1

0 0 −1

 , σ− =


−1 0 0

1 1 1

0 0 −1

 , (1.53)

σ =


−1 −1 0

1 1 1

0 −1 −1

 , ϑ =


1 −1 1

−(1 + ı) 0 ı− 1

1 1 1

 . (1.54)

Here σ2 = σ+ and σ− = σ1σ3. The ansatz (1.33) reads now

θε = r0I+ r2σ
2 + ır1

(
σ − σ3

)
(1.55)

=


r0 − ır1 −2ır1 −ır1 − r2

2ır1 r0 − r2 + 2ır1 2ır1

−ır1 − r2 −2ır1 r0 − ır1

 (1.56)

The constraints (1.41) and (1.42) yield

(r0 + r2)
[
(r0 + r2)

2 − 4r21
]

= 1, (1.57)

r0 − r2 + 2r1 = (r0 − r2 + 2r1) (r0 + r2) , (1.58)

(r0 + r2) = (r0 − r2)
2 − 4r21, (1.59)
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with sn = n and h = 4. This is solved for instance by

r0(ε) = cosh ε, r1(ε) = ±
√
cosh2 ε− cosh ε and r2(ε) = 1− cosh ε.

(1.60)

Then the three remaining positive nonsimple roots are α4(ε) := α1(ε) +

α2(ε), α5(ε) := α2(ε) + α3(ε), α6(ε) := α1(ε) + α2(ε) + α3(ε).

∆(ε) for A4 For A4 the Weyl reflections σi and Coxeter element σ are

σ1 =



−1 0 0 0

1 1 0 0

0 0 1 0

0 0 0 1


, σ2 =



1 1 0 0

0 −1 0 0

0 1 1 0

0 0 0 1


, (1.61)

σ3 =



1 0 0 0

0 1 1 0

0 0 −1 0

0 0 1 1


, σ4 =



1 0 0 0

0 1 0 0

0 0 1 1

0 0 0 −1


, (1.62)

σ = σ1σ3σ2σ4 =



−1 −1 0 0

1 1 1 1

0 −1 −1 −1

0 1 1 0


.

The ansatz (1.33) then reads

θε = r0(ε)I+ ır1(ε)(σ − σ4) + ır2(ε)(σ
2 − σ3), (1.63)
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The constraints (1.41) and (1.42) yield now

r40 − 5r20(r
2
1 + r22) + 5(r22 + r2r1 − r21)

2 = 1, (1.64)

2r20 +
(
−5 +

√
5
)
r21 −

(
5 +

√
5
)
r22 + 4

√
5r1r2 − 2 = 0, (1.65)

2r0 +

√
2
(
5 +

√
5
)
r1 +

√
10− 2

√
5r2 ̸= 0, (1.66)

with sn = n and h = 5, which is solved for instance by

r0(ε) = cosh ε, r1(ε) =
1

5

√
5− 2

√
5 sinh ε, r2(ε) =

1

5

√
5 + 2

√
5 sinh ε.

(1.67)

Explicitly this yields the deformation matrix

θε =



r0 − ır1 −2ır1 −ır1 − ır2 −2ır2

2ır1 r0 + 2ır1 + ır2 2ır1 + 2ır2 ır1 + ır2

−ır1 − ır2 −2ır1 − 2ır2 r0 − 2ır1 − ır2 −2ır1

2ır2 ır1 + ır2 2ır1 r0 + ır1


. (1.68)

Notice that in this case we also have w0θε = (θεw0)
∗.

∆(ε) for A4n−1 For A4n−1 we find a closed formula. Setting in (1.33) all

rk = 0, except for k = 0, n, 2n, the determinant in (1.41) takes on the simple

form

det θε = (r0 + r2n)
2n−1 (r0 − 4r2n − 2r0r2n + r22n

)n
, (1.69)

which equals one for r2n = 1− r0 and rn = ±
√
r20 − r0. We have verified up

to rank 11 that for these values

θε = r0I+ r2nσ
2n + ırn

(
σn − σ−n

)
, (1.70)
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also satisfies the first and fourth constraint (1.32). Once again r0 = cosh ε is

a useful choice to guarantee also the last constraint in (1.32).

Deformed root spaces, ∆(ε), for Bℓ

∆(ε) for B2 For B2 the ansatz (1.33) becomes

θε = r0I+ r2σ
2 + ır1

(
σ − σ−1

)
. (1.71)

The first four constraints in (1.32) are satisfied for r0 = r2±
√

1 + 4r21, which

in turn is conveniently solved for r0 = cosh ε, r2 = 0 and r1 = 1/2 sinh ε,

such that

θε =

 cosh ε− ı sinh ε −2ı sinh ε

ı sinh ε cosh ε+ ı sinh ε

 . (1.72)

∆(ε) for B3 For B3 the ansatz (1.33) gives

θε = r0I+ r3σ
3 + ır1

(
σ − σ−1

)
+ ır2

(
σ2 − σ−2

)
, (1.73)

which is solving the first four constraints in (1.32) when r0 = r3 − 1 and

r1 = −r2. However this corresponds to a trivial real solution with (θε)ii = −1

for i = 1, 2, 3.

∆(ε) for B4 For B4 the ansatz (1.33) yields

θε = r0I+ r4σ
4 + ır1

(
σ − σ−1

)
+ ır2

(
σ2 − σ−2

)
+ ır3

(
σ3 − σ−3

)
, (1.74)

solving the first four constraints in (1.32) when r0 = r4 ±
√

1 + 4r22 and

r1 = −r3. We may incorporate the last constraint in (1.32) by solving this
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with r0 = cosh ε, r4 = 0 and r2 = 1/2 sinh ε, such that

θε =



cosh ε 0 −ı sinh ε −2ı sinh ε

0 cosh ε+ ı sinh ε 2ı sinh ε 2ı sinh ε

−ı sinh ε −2ı sinh ε cosh ε− 2ı sinh ε −2ı sinh ε

ı sinh ε ı sinh ε ı sinh ε cosh ε+ ı sinh ε


.

(1.75)

∆(ε) for B2n For B2n we conjecture a closed formula

θε = r0I+
ı

2
rn
(
σn − σ−n

)
, (1.76)

for the solution of the first four constraints in (1.32). It is easily seen from

(1.41) that the determinant of θε in (1.76) results to

det θε =
n∏

k=1

[
r0 − 2rn sin

(
2πn

4n
sk

)]
=
(
r20 − 4r2n

)n
, (1.77)

when using the fact that h = 4n and sk = 2k − 1. Choosing r0 = cosh ε and

rn = 1/2 sinh ε will then ensure that the last two constraints in (1.32) are

satisfied. It turns out that the remaining equations are also solved, which we

verified on a case-by-case basis up to rank 8.

∆(ε) for B2n+1 Based on the example (1.73) and supplemented with several

for higher rank, not reported here, we conjecture that there are no complex

solutions for our constraints in the case of odd rank B2n+1

Deformed root spaces, ∆(ε), for Cℓ

This case can be solved in a completely analogous way to the Bn-case. Equa-

tion (1.77) is completely identical to B2n and we find that the ansatz (1.76)
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together with the relevant rn also solves the remaining constraints, which we

have verified up to rank 8. Once again we did not find any complex solutions

up to that order of the rank for C2n+1 and conjecture that also in this case

they do not exist.

Deformed root spaces, ∆(ε), for Dℓ

For the odd-rank subseries, that is D2n+1, we find a closed formula very

similar to the one for A4n−1. This is not surprising given the fact that these

two groups are embedded into each other as D2n+1 ↪→ A4n−1. We find that

the deformation matrix of the form

θε = r0I+ r2nσ
2n + ırn

(
σn − σ−n

)
, (1.78)

solves the first four constraints in (1.32).

There are no complex solutions for D2n based on ansatz (1.33). For

instance, considering the ansatz for D4 the constraining equations force us

to take r1 = −r2 and r3 = r0 − 1, which reduces θε to the identity matrix I.

Similarly the constraints (1.32) for D6 demand that r1 = −r4, r2 = −r3 and

r5 = r0 − 1, which reduces θε to the identity matrix I.

Deformed root spaces, ∆(ε), for En

∆(ε) for E6 As we have seen in the previous examples we have usually more

parameters at our disposal than we need to solve the constraining equations.

Thus instead of finding the most general solution we will be content here

to solve (1.33) for some restricted set of values and attempt to solve the
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constraints in (1.32) for

θε = r0I+ ırk
(
σk − σ−k

)
. (1.79)

Considering (1.41) for this ansatz yields

1 =
6∏

n=1

[
r0 − 2rk sin

(
πk

6
sn

)]
with sn = 1, 4, 5, 7, 8, 11, (1.80)

which reduces to

1 =
(
r20 − 3r2k

)3
for k = 2, 4. (1.81)

It turns out that in both cases the solution r0 = ±
√
1 + 3r2k for (1.81) also

solves the first three constraints in (1.32). For the deformation matrix we

then obtain for k = 2

θε =



r0 −2ır2 0 −2ır2 −2ır2 −ır2

2ır2 r0 + ır2 2ır2 2ır2 2ır2 2ır2

0 2ır2 r0 + 2ır2 4ır2 3ır2 2ır2

−2ır2 −2ır2 −4ır2 r0 − 5ır2 −4ır2 −2ır2

2ır2 2ır2 3ır2 4ır2 r0 + 2ır2 0

−ır2 −2ır2 −2ır2 −2ır2 0 r0


, (1.82)

and for k = 4

θε =



r0 − ır4 −2ır4 −2ır4 −2ır4 0 0

2ır4 r0 + ır4 2ır4 2ır4 2ır4 2ır4

2ır4 2ır4 r0 + 3ır4 4ır4 2ır4 0

−2ır4 −2ır4 −4ır4 r0 − 5ır4 −4ır4 −2ır4

0 2ır4 2ır4 4ır4 r0 + 3ır4 2ır4

0 −2ır4 0 −2ır4 −2ır4 r0 − ır4


.

(1.83)
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In each case we may specify further r0 = cosh ε and rk = 1/
√
3 sinh ε in order

to ensure also the right limiting behaviour, i.e., the last constraint in (1.32).

∆(ε) for E7 Our convention for labeling of the roots is the same as for E6

by linking the additional root α7 to α6. There exists no complex solution to

(1.32) based on the ansatz (1.33) with h = 18. Together with the explicit

representation for σ we substitute this into constraints (1.32) and find the

unique real solution for the unknown functions r0 = 1 + r5, r1 = −r4 − r5 −

r8, r2 = −r4 − r5 − r7 and r3 = −r6, which reduced the deformation matrix

θε to the identity matrix I.

∆(ε) for E8 Our convention for labeling of the roots is the same as for E7

by linking the additional root α8 to α7. There exists no complex solution to

(1.32) based on the ansatz (1.33) with h = 30. Together with the explicit

representation for σ we substitute this into constraints (1.32) and find the

unique real solution for the unknown functions r0 = 1 + r5, r1 = −r5 − r6 −

r9 − r10 − r14, r2 = −2r5 − r7 − r8 − 2r10 − r13, r3 = −r5 − r7 − r8 − r10 − r12

and r4 = r5− r6− r9+ r10− r11. However, this simply corresponds to θε = I.

∆(ε) for F4

In the F4-ansatz (1.33)

θε = r0I+ r6σ
6 + ı

5∑
k=1

rk
(
σk − σ−k

)
, (1.84)
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we have seven unknown quantities left. We find two inequivalent solutions

for the first four constraints in (1.32)

r1 = −2r3 − r5 ±
√

(r0 − r6)2 − 1 and r2 = −r4, (1.85)

and

r1 = −2r3 − r5 and r2 = −r4 ±
1√
3

√
(r0 − r6)2 − 1. (1.86)

This leaves five functions at our disposal, which we may choose in accordance

with the last constraint in (1.32). Taking for instance r3 = r4 = r5 = r6 = 0

in (1.85) yields

θε =



r0 − ıa0 −2ıa0 −2ıa0 0

2ıa0 r0 + 3ıa0 4ıa0 2ıa0

−ıa0 −2ıa0 r0 − 3ıa0 −2ıa0

0 ıa0 2ıa0 r0 + ıa0


, (1.87)

for the deformation matrix where we used a0 =
√
r20 − 1 for a more compact

matrix. One may now choose r0 = cosh ε, which will then satisfy all the

constraints in (1.32).

∆(ε) for G2

As mentioned, this case has been solved before [41], but nonetheless we re-

port it here for completeness and to demonstrate that it fits well into the

framework provided. The ansatz (1.33) with h = 6 solves the first four con-

straints (1.32) uniquely with r3 = 0 and r0 = ±
√

1 + 3(r1 + r2)2. The choice

r1 = 1/
√
3 sinh ε− r2 reproduces the result of [41].
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This concludes the study of all crystallographic Coxeter groups. We will

also consider one noncrystallographic example.

∆(ε) for H3

In this case there are no complex solutions of the type we are seeking here.

Substituting the ansatz (1.33) with h = 6 into the constraints (1.32) leads to

the unique solution r0 = 1, r5 = 0 and r1+r4 = −ϕ(r2+r3) with ϕ being the

golden ratio ϕ = (1 +
√
5)/2 appearing in the off-diagonal of the H3-Cartan

matrix. However, this solution simply corresponds to θε = I.

1.2 Deformations of modified Coxeter elements

As explained in the beginning of this chapter, in principle the involution ω̂i

could be any element in the Weyl group. We will now present a construction

based on the selection of two specific, albeit still fairly generic, elements

ω̂1 = σ̃− and ω̂2 = σ̃+ defined as

σ̃± :=
∏
i∈Ṽ±

σi. (1.88)

The σi in (1.88) are simple Weyl reflections (1.20). The sets V± are still

defined via the bi-colouration of the Dynkin diagram as explained above.

The difference towards the treatment above is that the products in (1.88) do

not have to extend over all possible elements in V±, such that Ṽ± ⊆ V±.

Denoting by σ± the factors of σ̃ when σ̃ = σ, we may therefore express

the reduced elements as σ̃± := σ±
∏

j∈V̆±
σi for some values j, which follows

by recalling [σi, σj] = 0 for i, j ∈ V+ or i, j ∈ V− and σ2
i = 1. Thus V̆± is the

43



complement of Ṽ± in V±, that is V± = V̆± ∪ Ṽ±. This ensures that we have

maintained the crucial involutory property σ̃2
± = 1

From the above follows that the element Ωij in (1.10) can be viewed as a

modified Coxeter element σ̃ := σ̃−σ̃+ with property

σ̃h̃ = I, with h̃ ≤ h. (1.89)

Therefore σ̃ equals a Coxeter element σ when the order h̃ becomes the Coxeter

number h.

The reduced root space ∆̃ is then constructed by acting with σ̃ on rep-

resentatives γ̃i = ciα̃i of a particular orbit Ω̃i containing now h̃ instead of h

roots

Ω̃i :=
{
γi, σ̃γi, σ̃

2γi, . . . , σ̃
h̃−1γi

}
. (1.90)

The corresponding entire root space containing ℓ× h̃ roots is the union of all

orbits

∆̃ =
ℓ∪

i=1

Ω̃i. (1.91)

In analogy to the deformations defined to before we construct therefore

the map ϖ as

σ̃ε
± := θεσ̃±θ

−1
ε = σ̃±τ, (1.92)

where we assumed an additional property with θε being the deformation ma-

trix as introduced in (1.6). Defining the deformed reduced Coxeter element

as σ̃ε := σ̃ε
−σ̃

ε
+ we use a similar line of reasoning as in the deduction of (1.10)

to show that [σ̃, θε] = 0. Therefore we make the following ansatz for the
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deformation matrix

θε =
h̃−1∑
k=0

µk(ε)σ̃
k, with lim

ε→0
µk(ε) =

 1 k = 0

0 k ̸= 0
, µk(ε) ∈ C. (1.93)

The assumption for the coefficients µk(ε) ensures the appropriate limit limε→0 θε =

I. Equation (1.92) yields the constraint θ∗ε σ̃± = σ̃±θε, from which we deduce

with (1.93)

θε =


r0(ε)I+ ι

(h̃−1)/2∑
k=1

rk(ε)(σ̃
k − σ̃−k) for h̃ odd,

r0(ε)I+ rh̃/2(ε)σ̃
h̃/2 + ι

h̃/2−1∑
k=1

rk(ε)(σ̃
k − σ̃−k) for h̃ even,

(1.94)

where µ0(ε) =: r0(ε) ∈ R, µh̃/2(ε) =: rh̃/2(ε) ∈ R when h̃ is even. In addition

we defined µk(ε) = ιrk(ε). Demanding next that θε is an isometry, we invoke

the constraint det θε = 1. By means of the eigenvalue equations for σ̃

σ̃ṽn = e2πis̃n/h̃ṽn with n = 1, . . . ℓ, (1.95)

we define a set of “modified exponents” s̃ = {s̃1, . . . , s̃ℓ}. Unlike as for the

standard case, the eigenvalues may be degenerate in the modified scenario.

In general, they take the values

s̃ =
{
1λ1 , 2λ2 , . . . , (h̃− 1)λh̃−1 , h̃λh̃

}
with

h̃∑
k=1

λk = ℓ, (1.96)

with λi indicating the degeneracy of certain eigenvalues in (1.95). Due to the

degeneracy there could be several solutions to (1.95) with different elements

σ̃(i) for i = 1, . . .m forming a similarity class

Σs̃ =
{
σ̃(1), σ̃(2), . . . , σ̃(m)

}
. (1.97)

Similar to before we demand the preservation of the inner product between
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the original and deformed roots, which implies that det θε = 1 and θ∗ε = θ−1
ε .

Diagonalizing (1.94) the constraint det θε = 1 simply becomes

1 =
ℓ∏

n=1

[
r0(ε)− 2

(h̃−1)/2∑
k=1

rk(ε) sin
(

2πk
h̃
s̃n

)]
for h̃ odd,

1 =
ℓ∏

n=1

[
r0(ε) + (−1)s̃nrh̃/2(ε)− 2

h̃/2−1∑
k=1

rk(ε) sin
(

2πk
h̃
s̃n

)]
for h̃ even.

(1.98)

Solving these constraints for θε allows us to construct the simple roots α̃i

and therefore the entire deformed reduced root space ∆̃(ε). Note that just

as in (1.26) for simplicity we use the same notation for the undeformed

and deformed root space, distinguishing the latter always by the explicit

mentioning of the deformation parameter ε. Hence we have

Ω̃ε
i = θεΩ̃i, (1.99)

and therefore

∆̃(ε) =
ℓ∪

i=1

Ω̃ε
i = θε∆̃. (1.100)

This construction guarantees that the σ̃ε
± are indeed representations of the

map ϖ in (1.7). Evidently it leaves the root space invariant

σ̃ε
± : ∆̃(ε) → θεσ̃±θ

−1
ε ∆̃(ε) = θεσ̃±∆̃ = θε∆̃ = ∆̃(ε). (1.101)

For the latter property to hold we may also exclude some of the orbits Ω̃ε
i in

the union
∪ℓ

i=1, whenever they are mapped into themselves σ̃ε
± : Ω̃ε

i → Ω̃ε
i .

1.2.1 Antilinearly deformed Aℓ root systems

When engaging into a case-by-case description previously mentioned, we

characterized different solutions group by group. Here we will take equation
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(1.98) as more fundamental and classify the solutions according to different

values of the modified Coxeter number. In this manner different types of solu-

tions to (1.98) are then characterized by different sets of modified exponents

(1.96). This means we need to verify subsequently whether a corresponding

σ̃ really exists.

We find various similarity classes Σs̃ characterized by different sets of

modified exponents s̃.

The class with modified exponents {1, 2, 3, 4ℓ−3} and h̃=4

We find that the simplest similarity class Σ for which x4 = 1 when x ∈ Σ is

Σ{1,2,3,4ℓ−3} =
{
σ̃(1), . . . , σ̃(ℓ−2)

}
, (1.102)

where the elements of that class are defined as

σ̃(i) := (σi+1σiσi+2)
ci for i = 1, . . . , ℓ− 2. (1.103)

It is clear that each element σ̃(i) in (1.103) has order 4, since it is formed

from three consecutive elements on the Dynkin diagram and thus being iso-

morphic to the Coxeter element of A3 when acting on the three corresponding

roots.

Furthermore, by definition all elements of Σ have to be related by a

similarity transformation. Indeed we find:

Proposition 1 Two consecutive elements in Σ{1,2,3,4ℓ−3} are related as

κiσ̃
(i) = σ̃(i+1)κi with κi := σiσi+1σi+2σi+3σi+1. (1.104)

Therefore all elements in Σ can be related to each other by an adjoint action
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simply by successive applications of (1.104).

Proof. Let us now prove the relation (1.104). The starting point is the

identity

σi−1σiσi+1σi = σi+1σi−1σiσi+1, (1.105)

which follows by applying the left and right hand side to some arbitrary x

using the definition of the simple Weyl reflection (1.20) consecutively. Nor-

malizing the length of the roots to be 2, we find in both cases

x− [(x · αi−1) + (x · αi) + (x · αi+1)]αi−1 − [(x · αi) + (x · αi+1)] (αi + αi+1).

(1.106)

Multiplying (1.105) from the left by
∏i−2

k=1 σk and
∏ℓ

k=i+2 σk from the right

and noting that for Aℓ we have [σi, σj] = 0 for |i− j| ≥ 2, it follows

σ̂σi = σi+1σ̂, with σ̂ :=
ℓ∏

k=1

σk. (1.107)

The element σ̂ is the standard Coxeter element. Multiplying next the iden-

tity (1.104) from the left by
∏i−1

k=1 σk and σi+1

∏ℓ
k=i+4 σk from the right and

recalling that σ2
i = 1 yields

σ̂ (σiσi+2σi+1)
ci = (σi+1σi+3σi+2)

ci σ̂. (1.108)

This relation is now easily established by commuting all three simple Weyl

reflections through the Coxeter element using the identity (1.107), which in

turn also proves (1.104).

Proposition 2 Some special elements in Σ are related by the adjoint ac-

tion of the Coxeter element σ. We find: The first and the last element in
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Σ{1,2,3,4ℓ−3} are related as

σ̃(ℓ−2)σ
h−cℓ

2 = σ
h−cℓ

2 σ̃(1), (1.109)

Proof. We prove (1.109) by using the more elementary relations

σℓ+1−iσ
h
2
+

ci+cicℓ
4 = σ

h
2
+

ci+cicℓ
4 σi. (1.110)

For even h we compute by a successive use of (1.110)

σ̃(ℓ−2)σ
h
2 = σℓ−2σℓσℓ−1σ

h
2 = σℓ−2σℓσ

h
2 σ2 = σℓ−2σ

h
2 σ1σ2 = σ

h
2 σ3σ1σ2 = σ

h
2 σ̃(1).

(1.111)

Similarly we compute for odd h

σ̃(ℓ−2)σ
h−1
2 = σℓ−1σℓ−2σℓσ

h−1
2 = σℓ−1σℓ−2σ

h−1
2 σ1 = σℓ−1σ

h−1
2 σ3σ1, (1.112)

= σℓ−1σ
h+1
2 σ−1σ3σ1 = σ

h+1
2 σ2σ

−1σ3σ1 = σ
h−1
2 σ−σ+σ2σ+σ−σ3σ1,

= σ
h−1
2 σ3σ1σ2 = σ

h−1
2 σ̃(1).

Thus we have established that the first element σ̃(1) in the similarity class Σ

is related via the similarity transformation (1.109) to the last element σ̃(ℓ−2)

in this class. In comparison to one rank less the last element is the only

additional one. For the other elements we can use the same argumentation

but employing the Coxeter element for one rank less.

Expl.: A8 We illustrate now the working of these formulae for a concrete

example. We consider A8 and generate the entire root space ∆̃ as described

in (1.99) from σ̃(1). The results are depicted in Table 2.1.

For convenience we used the following conventions: For any non-simple

root β =
∑

i µiαi we present only the non-vanishing coefficients µi in the table
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(σ̃(1))j\αi α1 α2 α3 α4 α5 α6 α7 α8

σ̃(1) −1,2 1,2,3 −2,3 2, 3, 4 5 6 7 8

σ̃(1)σ̃(1) −3 −2 −1 1, 2, 3, 4 5 6 7 8

σ̃(1)σ̃(1)σ̃(1) 2,3 −1,2,3 1,2 3, 4 5 6 7 8

Table 1.1: The reduced A8-root space ∆̃ generated from the orbits of σ̃(1).

with the overall sign written in front, e.g. α1+α2+α3 is represented as 1, 2, 3

and −α1 − α2 as − 1, 2. We indicate the A3 substructure in bold. Further

examples for root spaces obtained from different elements in Σ{1,2,3,4ℓ−3} are

presented in appendix A.

Crucial to our construction is the invariance under the action of σ̃
(1)
± .

Acting on the roots as depicted in table 1 with σ̃
(1)
± we recover all the elements

in table 1, albeit in a permuted way as indicated in Table 2.2.

σ̃
(1)
− (∆̃) −1 1, 2, 3 −3 3, 4 5 6 7 8

−2, 3 2 −1, 2 1, 2, 3, 4 5 6 7 8
3 −1, 2, 3 −1 2, 3, 4 5 6 7 8
1, 2 −2 2, 3 4 5 6 7 8

σ̃
(1)
+ (∆̃) 1, 2 −2 2, 3 4 5 6 7 8

−1 1, 2, 3 −3 3, 4 5 6 7 8
−2, 3 2 −1, 2 1, 2, 3, 4 5 6 7 8
3 −1, 2, 3 1 3, 4 5 6 7 8

Table 1.2: The invariance of the A8-root space ∆̃ generated from σ̃(1) under
the action of σ̃

(1)
± .
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The class with modified exponents
{
1, 22, 3, 4ℓ−3

}
and h̃=4

Other classes become considerably more complicated. We present here only

some examples to indicate this. For instance in the class

Σ{1,22,3,4ℓ−4} =
{
σ̃(1,1,1), σ̃(1,1,2), . . . , σ̃(2,1,ℓ−4)

}
, (1.113)

we have to label the elements by three indices

σ̃(1,i,j) := σiσi+2σi+3+jσi+1 and σ̃(2,i,j) := σiσi+1+jσi+3+jσi+j+2,

(1.114)

with i = 1, . . . , ℓ − j − 3 and j = 1, . . . , ℓ − 4. It is easy to convince oneself

that these elements have order 4. In both types of labeling we have three

consecutive elements and one additional factor which commutes with all the

other elements, that is σi+3+j in σ̃(1,i,j) and σi in σ̃
(2,i,j), respectively. Thus

by the same argument as in the previous class and the fact that σ2
i = 1 it

follows that the order of all elements in (1.114) is 4.

Arguing along similar lines as for the class presented in the previous

subsection, we can also show that all elements in Σ{1,22,3,4ℓ−4} are indeed

related by a similarity transformation. We will not present this proof here.

The similarity class structure with h̃=4

It is clear that for higher ranks more and more possible sets of exponents

characterizing different classes may exist. Here we only indicate in table 3

the general structure but do not report a detailed construction of the elements

of these classes and their interrelations as the argumentation goes along the

same lines as in the two previous subsections. By inspection of the table we
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notice the onset of two new classes when we increase the rank by two, that

is the number of classes increases by 2 for ℓ = 2n+5 for n = 1, 2, . . . We also

observe that the number of classes for ℓ = 2n+1 and ℓ = 2n+2 is the same.

ℓ
3 {1, 2, 3}
4 {1, 2, 3, 4}
5 {1, 2, 3, 42} {1, 22, 3, 4}
6 {1, 2, 3, 43} {1, 22, 3, 42}
7 {1, 2, 3, 44} {1, 22, 3, 43} {1, 23, 3, 42} {12, 22, 32, 4}
8 {1, 2, 3, 45} {1, 22, 3, 44} {1, 23, 3, 43} {12, 22, 32, 42}
9 {1, 2, 3, 46} {1, 22, 3, 45} {1, 23, 3, 44} {12, 22, 32, 43} {12, 23, 32, 42}
10 {1, 2, 3, 47} {1, 22, 3, 46} {1, 23, 3, 45} {12, 22, 32, 44} {12, 23, 32, 43}
...

...
...

...
... . . .

ℓ {1, 2, 3, 4ℓ−3} {1, 22, 3, 4ℓ−4} {1, 23, 3, 4ℓ−5} {12, 22, 32, 4ℓ−6} . . .

Table 1.3: Similarity classes in Aℓ with h̃ = 4.

In addition we note that the number of factors in the elements of a simi-

larity class increases by one in the table in each column from the left to the

right, starting with three factors on the very left.

The class with modified exponents
{
1, 2, . . . , 4n− 1, 4nℓ−4n+1

}
and

h̃=4n

Let us now generalize the previous considerations towards classes with larger

amounts of eigenvalues, such that they are related to modified Coxeter num-

bers of higher powers. The class (1.102) acquires the more general form

Σ{1,2,...,4n−1,4nℓ−4n+1} =
{
σ̃(n,1), . . . , σ̃(n,ℓ+2−4n)

}
, (1.115)
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when x4n = 1 for x ∈ Σ. In this case the elements of the class

σ̃(n,i) : =

[(
n∏

k=2

σi−1+4(k−1)σi+1+4(k−1)

)
(1.116)

σi+1

(
n∏

k=1

σi+4(k−1)σi+2+4(k−1)

)]ci
,

are characterized by two indices, n distinguishing the particular type of class

and i = 1, . . . , ℓ + 2 − 4n labeling the individual elements in that class.

The case n = 1 reduces to our previous simpler example with σ̃(n,i) = σ̃(i) as

defined in (1.103). Evidently the element σ̃(n,i) contains the 4n−1 consecutive

factors σi to σi+4n−3 separated into odd and even indices. This means each

element can be viewed as a Coxeter element for the A4n−1-Weyl group and

therefore the order of σ̃(n,i) is h̃ = 4n.

In this case we will also establish that all elements in Σ are indeed related

by a similarity transformation. Two consecutive elements in this class are

related as

κ(n)
i σ̃(n,i) = σ̃(n,i+1)κ(n)

i with κ(n)
i :=

4n∏
k=1

σi+k−1

2n−1∏
k=1

σi+2k−1, (1.117)

which in turn implies that all elements in Σ are related by a similarity trans-

formation. The proof for this identity goes along the same line as the one

for the particular case n = 1 of the identity (1.104).

The class with modified exponents
{
1, 22, . . . , 4n− 1, 4nℓ−4n

}
and h̃=4n

For higher order the similarity class (1.113) generalizes to

Σ{1,22,...,4n−1,4nℓ−4n+1} =
{
σ̃(1,1,1,1), σ̃(1,2,1,1), . . .

}
, (1.118)
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where we label its elements

σ̃(1,n,i,j) : =
n∏

k=1

σi+4(k−1)σi+2+4(k−1)σi+j+(h̃−1)σi+1

×
n∏

k=2

σi−1+4(k−1)σi+1+4(k−1), (1.119)

σ̃(2,n,i,j) : = σi+j+2

n∏
k=1

σi+j+4(k−1)σi+j+2+4(k−1)σi

×
n∏

k=2

σi+j+1+4(k−1)σi+j+3+4(k−1), (1.120)

now by four indices with j = 1, · · · , ℓ−4n and i = 1, · · · , ℓ−j−(4n−1). We

recover the case discussed in the previous section for n = 1. Using similar

arguments as before we can show that all elements in this class have order

h̃=4n. For instance for the element σi+j+(h̃−1) in (1.119) the subscript obeys

i+ j + (h̃− 1) > i+ h̃, which means that the element may be commuted to

the left. Taking then the h̃-th power of the entire expression we find

[
(σi+j+(h̃−1))

h̃
[( n∏

k=1

σi+4(k−1)σi+2+4(k−1)

)
σi+1

( n∏
k=2

σi−1+4(k−1)σi+1+4(k−1)

)]h̃]
.

(1.121)

Since h̃ is even we have (σi+j+(h̃−1))
h̃ = 1 and since the expression in the

bracket is a reduced Coxeter element for Ah̃=4n the expression in (1.121)

equals 1, thus establishing the order of σ̃(1,n,i,j) to be h̃ = 4n . Similar ar-

guments can be used for σ̃(2,n,i,j) to prove that this element has the same

order.
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Antilinearly invariant complex root spaces

Based on the various classes constructed in the previous sections we may

now compute the deformation matrix with the help of (1.37) subject to the

mentioned constraints. As reported above we found some relatively simple

solutions for h = 4n. We present now similar solutions for h̃ = 4n. Taking

in (1.98) all but three coefficients to be zero

ri(ε) = 0 for i ̸= 0, n, 2n, (1.122)

the equation reduces with the help of (1.96) to

1 = (r0 + r2n)
2
∑n

k=1 λ2k
[
(r0 − r2n)

2 − 4r2n
]∑n

k=1 λ2k−1 . (1.123)

As can be seen directly, this equation is solved by

r2n = 1− r0 and rn =
√
r0(r0 − 1) =: ϑ. (1.124)

Thus the corresponding deformation matrix resulting from (1.94) reads

θε = r0(ε)I+ [1− r0(ε)] σ̃
2n + iϑ(σ̃n − σ̃−n). (1.125)

All what remains left to establish whether the set of modified exponents in

(1.96) really exists for some concrete elements of σ̃ ∈ W of order h̃ = 4n and

possibly to specify the function r0(ε).

It is useful to consider a concrete example. For instance, the deformed

roots resulting from σ̃(3) of the class Σ{1,2,3,4ℓ−3} for A8 according to (1.125) are

The θε resulting from different elements in the same class have a similar form

with the A3-substructure displaced similarly as for the undeformed roots. We

do not report these solutions here. Unlike as in (1.126) all eight roots are

deformed when constructing θε (1.127) for instance from σ̃(2,1) as specified
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α̃1 = α1, α̃7 = α7, α̃8 = α8,

α̃2 = α2 + (1− r0)α3 + (1− r0 + iϑ)α4 + (1− r0)α5,

α̃3 = (r0 − iϑ)α3 − 2iϑα4 + (r0 − iϑ− 1)α5, (1.126)

α̃4 = 2iϑα3 + (2r0 + 2iϑ− 1)α4 + 2iϑα5,

α̃5 = (r0 − iϑ− 1)α3 − 2iϑα4 + (r0 − iϑ)α5,

α̃6 = (1− r0)α3 + (1− r0 + iϑ)α4 + (1− r0)α5 + α6.

in (1.116). Here we abbreviate κ0 = r0 − 1 and λ0 = r0 − iϑ to achieve a

θε =



r0 0 iϑ 2iϑ iϑ 0 κ0 0
0 λ0 −2iϑ −2iϑ −2iϑ κ0 − iϑ 0 0
iϑ 2iϑ r0 + 2iϑ 2iϑ κ0 + 2iϑ 2iϑ iϑ 0

−2iϑ −2iϑ −2iϑ 2λ0 − 1 −2iϑ −2iϑ −2iϑ 0
iϑ 2iϑ κ0 + 2iϑ 2iϑ r0 + 2iϑ 2iϑ iϑ 0
0 κ0 − iϑ −2iϑ −2iϑ −2iϑ λ0 0 0
κ0 0 iϑ 2iϑ iϑ 0 r0 0
−κ0 −κ0 −κ0 −κ0 − iϑ −κ0 −κ0 −κ0 1


.

(1.127)

compact notation. The dual map δ⋆ is obtained by solving (1.17) for the

dual deformation matrix θ⋆ε (1.2.1) with the explicit form for θε. Taking the

latter to be given by (1.127) we compute for the standard (ℓ+1)-dimensional

representation of Aℓ (αi)j = δij−δ(i+1)j, i = 1, 2, . . . , ℓ, j = 1, 2, . . . , ℓ+1. By

construction the corresponding dual root space ∆̃⋆(ε) is invariant under the

action of some antilinear maps ϖ⋆, obtained by solving (1.19). For antilinear

symmetry ω1 = τσ2σ4σ6 we compute the dual antilinear transformation to

(1.129)

where we abbreviated π = ϑν, ν := 2r0−1 and µ := 4(r0−r20). The action
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θ⋆ε =



r0 0 0 iϑ −iϑ 0 0 1− r0 0
0 r0 −iϑ 0 0 iϑ 1− r0 0 0
0 iϑ r0 0 0 1− r0 −iϑ 0 0

−iϑ 0 0 r0 1− r0 0 0 iϑ 0
iϑ 0 0 1− r0 r0 0 0 −iϑ 0
0 −iϑ 1− r0 0 0 r0 iϑ 0 0
0 1− r0 iϑ 0 0 −iϑ r0 0 0

1− r0 0 0 −iϑ iϑ 0 0 r0 0
0 0 0 0 0 0 0 0 1


.

(1.128)

ω⋆
1 = τ



ν2 0 0 −2iπ 2iπ 0 0 µ 0
0 −2iπ ν2 0 0 µ 2iπ 0 0
0 ν2 2iπ 0 0 −2iπ µ 0 0

−2iπ 0 0 µ ν2 0 0 2iπ 0
2iπ 0 0 ν2 µ 0 0 −2iπ 0
0 µ −2iπ 0 0 2iπ ν2 0 0
0 2iπ µ 0 0 ν2 −2iπ 0 0
µ 0 0 2iπ −2iπ 0 0 ν2 0
0 0 0 0 0 0 0 0 1


,

(1.129)

on the deformed and original variables amounts with (1.129) simply to

ω⋆
1 : ∆̃∗(ε) → ∆̃∗(ε), (1.130)

x̃1 7→ x̃1, x̃2 ↔ x̃3, x̃4 ↔ x̃5, , x̃6 ↔ x̃7, x̃8 7→ x̃8, x̃9 7→ x̃9, (1.131)

x1 7→ x1, x2 ↔ x3, x4 ↔ x5, , x6 ↔ x7, x8 7→ x8, x9 7→ x9, i 7→ −i.

A similar computation leads to the dual antilinear symmetry corresponding

for ω2 = τσ1σ3σ5σ7.

Obviously these solutions only capture part of all possibilities as we may

of course also consider the cases h̃ = 4n and since (1.125) is a restriction

of the most general ansatz (1.93). Some solutions filling these gaps were
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presented in [67]. Having been fairly detailed for the Aℓ-Weyl group, we will

only indicate some selected examples for reference for the other cases.

1.2.2 Antilinearly deformed Bℓ root systems

For the deformation in section 1.1 we conjectured that odd ranking Bℓ Cox-

eter groups does not admit a non trivial solution for the deformation ma-

trix (1.37). We will show that this is remedied for the current deformation

method. We will report an explicit example of this.

The simplest class for h̃ = 4 contains only one element comprised of two

Weyl reflections

Σ{1,3,4ℓ−2} = {σ̃ = σℓ−1σℓ} . (1.132)

The next class with h̃ = 4 contains 2ℓ− 6 elements

Σ{1,2,3,4ℓ−3} =
{
σ̃(1,1), . . . , σ̃(1,ℓ−3), σ̃(2,1), . . . , σ̃(2,ℓ−3)

}
, (1.133)

build from a composition of three Weyl reflections

σ̃(1,i) := σiσi+2σi+1 and σ̃(2,i) := σℓσℓ−i−2σℓ−1 for i = 1, · · · , ℓ− 3.

(1.134)

In table 4 we indicate the different types of classes with increasing rank ℓ.

We note that whenever the rank increases by one, a new type of class emerges

with one additional Weyl reflection in the element σ̃.

Using for B5 the same general ansatz as for the Aℓ-case in (1.125), we
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ℓ
3 {1, 3, 4}
4 {1, 3, 42} {1, 2, 3, 4}
5 {1, 3, 43} {1, 2, 3, 42} {1, 22, 3, 4}
6 {1, 3, 44} {1, 2, 3, 43} {1, 22, 3, 42} {12, 2, 32, 4}
7 {1, 3, 45} {1, 2, 3, 44} {1, 22, 3, 43} {12, 2, 32, 42} {1, 23, 3, 42}
8 {1, 3, 46} {1, 2, 3, 45} {1, 22, 3, 44} {12, 2, 32, 43} {1, 23, 3, 43}
9 {1, 3, 47} {1, 2, 3, 46} {1, 22, 3, 45} {12, 2, 32, 44} {1, 23, 3, 44}
10 {1, 3, 48} {1, 2, 3, 47} {1, 22, 3, 46} {12, 2, 32, 45} {1, 23, 3, 45}
...

...
...

... . . . . . .
ℓ {1, 3, 4ℓ−2} {1, 2, 3, 4ℓ−3} {1, 22, 3, 4ℓ−4} {12, 2, 32, 4ℓ−5} . . .

Table 1.4: Similarity classes in Bℓ with h̃ = 4.

obtain for the antilinearly deformed symmetry of σ̃(1,1) the solution

θε =



r0 − iϑ −2iϑ r0 − iϑ− 1 0 0

2iϑ 2r0 + 2iϑ− 1 2iϑ 0 0

r0 − iϑ− 1 −2iϑ r0 − iϑ 0 0

1− r0 1− r0 + iϑ 1− r0 1 0

0 0 0 0 1


. (1.135)

We compute the dual map δ⋆ by solving (1.17) for the dual deformation

matrix θ⋆ε with the explicit form for θε as in (1.135). For the standard root

representation of the Bℓ-roots (αi)j = δij−δ(i+1)j, (αℓ)j = δℓj, i = 1, 2, . . . , ℓ−

1, j = 1, 2, . . . , ℓ we obtain

θ⋆ε =



r0 −iϑ iϑ 1− r0 0

iϑ r0 1− r0 −iϑ 0

−iϑ 1− r0 r0 iϑ 0

1− r0 iϑ −iϑ r0 0

0 0 0 0 1


. (1.136)
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By construction the corresponding root space ∆̃⋆(ε) is invariant under the

action of some antilinear maps ϖ⋆, obtained by solving (1.19). For ω1 =

τσ1σ3 we compute the dual antilinear transformation to

ω⋆
1 = τ



−2iϑµ (−µ)2 −4νr0 2iϑµ 0

(−µ)2 2iϑµ −2iϑµ −4νr0 0

−4νr0 −2iϑµ 2iϑµ (−µ)2 0

2iϑµ −4νr0 (−µ)2 −2iϑµ 0

0 0 0 0 1


. (1.137)

As abbreviation we use ν = r0−1 and µ = 2r0−1. The action on the variables

amounts with (1.137) simply to

ω⋆
1 : ∆̃∗(ε) → ∆̃∗(ε), x̃1 ↔ x̃2, x̃3 ↔ x̃4, x̃5 7→ x̃5, (1.138)

x1 ↔ x2, x3 ↔ x4, x5 7→ x5, i 7→ −i. (1.139)

A similar computation leads to the dual antilinear symmetry corresponding

to ω2 = τσ2.

1.2.3 Antilinearly deformed Cℓ root systems

A simple class for h̃ = 4 with only one element σ̃ = σ1σ3σ2 is the case

Σ{1,2,3,4ℓ−3}. We present the deformation matrix for the C4-case resulting

from this element
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θε =



r0 − iϑ −2iϑ r0 − iϑ− 1 0

2iϑ 2r0 + 2iϑ− 1 2iϑ 0

r0 − iϑ− 1 −2iϑ r0 − iϑ 0

2 (1− r0) 2 (1− r0) + 2iϑ 2 (1− r0) 1


. (1.140)

Note that the classes for Cℓ are the same as those for Bℓ, albeit the defor-

mation matrices are different due to the difference of the Weyl reflections.

1.2.4 Antilinearly deformed Dℓ root systems

In this case a simple class for h̃ = 4 contains ℓ− 1 elements

Σ{1,3,4ℓ−3} =
{
σ̃(1), σ̃(2), . . . , σ̃(ℓ=2), σ̃(ℓ)

}
, (1.141)

with

σ̃(i) = σiσi+2σi+1 and σ̃(ℓ) = σℓ−3σℓσℓ−2 for i = 1, · · · , ℓ− 2. (1.142)

As an example for a deformation matrix for D4 we present the one resulting

from σ̃(1) = σ1σ3σ2

θε =



r0 − iϑ −2iϑ r0 − iϑ− 1 0

2iϑ 2r0 + 2iϑ− 1 2iϑ 0

r0 − iϑ− 1 −2iϑ r0 − iϑ 0

1− r0 − iϑ 2− 2r0 1− r0 − iϑ 1


. (1.143)
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1.2.5 Antilinearly deformed E6+n root systems

We may treat the exceptional algebras together using for the labeling the

E8-convention as explained above and in the appendix and removing vertices

from the long end Dynkin diagram to obtain the E7 and E6-cases. A simple

class for h̃ = 4 contains n+ 5 elements

Σ{1,2,3,43} =
{
σ1σ3σ4, σ1σ5σ4, σ

(2), σ(3) . . . , σ(n+4)
}
, (1.144)

with σ(i) = σiσi+2σi+1 for i = 2, .., n + 4. The deformation matrix for σ(2) =

σ3σ2σ4 is computed to be

θε =



1 1− r0 −r0 − iϑ+ 1 1− r0 0 0 · · ·

0 r0 + iϑ 2iϑ r0 + iϑ− 1 0 0 · · ·

0 −2iϑ 2r0 − 2iϑ− 1 −2iϑ 0 0 · · ·

0 r0 + iϑ− 1 2iϑ r0 + iϑ 0 0 · · ·

0 1− r0 −r0 − iϑ+ 1 1− r0 1 0 · · ·

· · · · · · · · · · · · · · · · · ·

0 0 0 0 0 1



.

(1.145)

A further class is Σ{1,22,3,42+n} with elements σ̃ = σ1σ4σ2σ5, . . .

1.2.6 Antilinearly deformed F4 root systems

The simplest class for h̃ = 4 contains only one element

Σ{1,3,42} = {σ3σ2} . (1.146)
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The deformation matrix is computed to

θε =



1 2 (1− r0) 2 (1− r0)− 2iϑ 0

0 2r0 + 2iϑ− 1 4iϑ 0

0 −2iϑ 2r0 − 2iϑ− 1 0

0 1− r0 + iϑ 2 (1− r0) 1


. (1.147)

1.3 Deformations of two arbitrary elements

in W

The procedure outlined in section 2 is entirely generic and may of course also

be carried out by starting from any arbitrary elements in W different from

σ+ and σ−. Due to the random choice we allow for the symmetries, we have

to consider now concrete cases. It is instructive to discuss some examples for

which no nontrivial solutions were found in the previous sections.

Let us therefore consider B3. As an abstract Coxeter group, B3 is fully

characterized by three involutory generators σ2
1 = σ2

2 = σ2
3 = I together with

the three relations σ1σ3 = σ3σ1, σ1σ2σ1 = σ2σ1σ2 and σ2σ3σ2σ3 = σ3σ2σ3σ2.

Choosing now in (1.8) the involutions different from the previous section as

ω̂1 = σ1 and ω̂2 = σ1σ3 yields Ω12 = σ3. Thus we have taken ω̂1 and ω̂2 both

to be factors in σ−. According to (1.11) we have to identify next all elements

in B3 commuting with σ3. Using the three relations and the three generators

we find {I, σ1, σ3, σ1σ3, σ2σ3σ2, σ1σ2σ3σ2, σ2σ3σ2σ1, σ2σ3σ2σ3} leading to the
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ansatz

θε = r0(ε)I+r1(ε)σ1 + r2(ε)σ3 + r3(ε)σ1σ3 + r4(ε)σ2σ3σ2 (1.148)

+r5(ε)σ1σ2σ3σ2 + r6(ε)σ2σ3σ2σ1 + r7(ε)σ2σ3σ2σ3.

which unfortunately, leads to a trivial solution when solved for the constraints

(1.15).

The same ansatz (1.148) can be used for the choice ω̂1 = σ2 and ω̂2 = σ2σ3,

but in that case we are led to the trivial solution θε = I.

1.4 Deformations from rotations in the dual

space

So far we have started with a given antilinear involution ϖi and constructed

the deformation map δ by solving the constraints (1.15) for a given Weyl

group, i.e., given some ωi we determined the deformation matrix θε. Subse-

quently we constructed the corresponding maps δ⋆ and ϖ⋆acting in the dual

spaces. We may also try to reverse the procedure and start with the dual

space with given maps δ⋆ andϖ⋆ and determine the mapsϖi and δ thereafter.

In view of the last section it is natural to assume the θ⋆ε to be an element of the
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special orthogonal group. We define therefore the (2n+1)× (2n+1)-matrix

θ⋆ε =



R

R 0

. . .

0 R

1


with R =

 cosh ε i sinh ε

−i sinh ε cosh ε

 ,

(1.149)

and construct the deformation matrix θε by solving (1.17). We note that

this constraint might not admit any solutions for certain Weyl groups. In

fact for the standard representation for Aℓ it is easy to verify that indeed

there exists no solution. However, for the special orthogonal Weyl groups

Bℓ ≡ SO(2ℓ + 1) and Dℓ ≡ SO(2ℓ) one can solve (1.17). Since previously

in section 1.1 we did not find solutions for odd ranks in the B-series based

on the assumptions made in 1.1, we present here some solutions for B2n+1.

Solving (1.19) for θε using the standard representation for the Bℓ-roots we

compute the deformed roots to

α̃2j−1 = cosh εα2j−1 + i sinh ε

(
α2j−1 + 2

ℓ∑
k=2j

αk

)
for j = 1, . . . , n,

α̃2j = cosh εα2j − i sinh ε

(
2j+2∑
k=2j

αk + 2
ℓ∑

k=2j+3

2αk

)
for j = 1, . . . , n− 1,

α̃ℓ−1 = cosh ε(αℓ−1 + αℓ)− αℓ − i sinh ε (αℓ−2 + αℓ−1 + αℓ) ,

α̃ℓ = αℓ. (1.150)

By construction we have satisfied the last three constraints in (1.15). Fur-

thermore, we find that θ∗εσ− = σ−θε but θ
∗
εσ+ ̸= σ+θε with σ− =

∏n+1
k=1 σ2k−1

and σ+ =
∏n

k=1 σ2k. Thus in this case τσ+ does not constitute an antilin-
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ear symmetry which implies that [σ, θε] ̸= 0. This is the reason why this

solution has escaped the above mentioned analysis in 1.1. However, besides

under the action of ω− := τσ− = σε
− the root space ∆̃(ε) remains invariant

under various other antilinear maps which consist of subfactors of σ−. For

B3 we observed this in section 4 with σ− = σ1σ3 and σ3 being the additional

symmetry. A generalization to B2n is straightforward simply by starting in

(1.149) with an (2n)× (2n)-matrix of the form (1.149) without the entry 1.

Similarly as for B2n+1 we may also solve (1.17) for the D2n Weyl group for

which we demonstrated in [67] that no solution to the constraining equations

(1.15) based on (1.94) could exist, that is for a given invariance σε
− and

σε
+. Starting with θ⋆ε in the form (1.149) we construct the deformed roots

with standard representation for the Dℓ-roots (αi)j = δij − δ(i+1)j, (αℓ)j =

δj(ℓ−1) + δjℓ, i = 1, 2, . . . , ℓ− 1, j = 1, 2, . . . , ℓ as

α̃ℓ−(2j+1) = cosh εαℓ−(2j+1) + i sinh ε

 ℓ∑
k=ℓ−(2j+1)

αk +
ℓ−2∑
ℓ−2j

αk

 ,
α̃ℓ−(2j+2) = cosh εαℓ−(2j+2) − i sinh ε

[
ℓ∑

k=ℓ−2j−3

αk +
ℓ−2∑
ℓ−2j

αk

]
,

α̃ℓ−2 = cosh εαℓ−2 − i sinh ε(αℓ−3 + αℓ−2 + αℓ),

α̃ℓ−1 = cosh εαℓ−1 + i sinh εαℓ,

α̃ℓ = cosh εαℓ − i sinh εαℓ−1. (1.151)

Similarly as for the B2n+1 case we find that θ∗εσ− = σ−θ whereas θ∗εσ+ ̸=

σ+θ with σ− =
∏n

k=1 σ2k−1 and σ+ =
∏n−2

k=1 σ2k. Again it is easy enough to

generalize this to the D2n+1 case.

For the standard (n + 1)-dimensional representation of Aℓ a rotation on
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a subspace of ∆̃∗(ε) for the first two coordinates and its conjugate momenta

was suggested in [73, 74]. In that case, and for its generalization (1.149), the

corresponding deformation ∆̃(ε) cannot be constructed since (1.17) admits

no solution.
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Chapter 2

Deformations of the longest

element

Intuitively it would be more natural to have just one deformed involutory map

from the start instead of two. In fact there exist one very distinct involution

in U , called the longest element. The length of an element in the Coxeter

group U is defined as the smallest amount of simple Weyl reflections σi needed

to express that element, see e.g. [3]. Since Coxeter groups are finite, there

exists an element in U of maximal length, i.e., the longest element, which we

denote as w0. The length of this element equals the number of positive roots

hℓ, with h being the Coxeter number of U and ℓ is the rank of the group.

The map w0 is involutive, mapping the set of positive roots ∆+ ⊂ Rn to

negative ones ∆− ⊂ Rn and vice versa

w0 : ∆± → ∆∓, (2.1)
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where w2
0 = 1. Two specific simple roots αi, αı̄ are linearly related by w0 as

αi 7→ −αı̄ = (w0α)i. (2.2)

Here we have borrowed the notation from the context of affine Toda field

theories, where it was found [72] that the longest element serves as charge

conjugation operator C, mapping a particle of type i to its anti-particle ı̄.

From a mathematical point of view this map is a particular symmetry of the

Dynkin diagrams, see e.g. [40].

The longest element admits a concrete realization in terms of products of

Coxeter transformations σ. The unique longest element can be expressed as

[72]

w0 =

 σh/2 for h even,

σ+σ
(h−1)/2 for h odd.

(2.3)

For the individual algebras the roots αı̄ in (2.2) are calculated directly or

identified from the symmetries of the Dynkin diagrams [40] as

Aℓ : αı̄ = αℓ+1−i,

Dℓ :

 αı̄ = αi for 1 ≤ i ≤ ℓ, when ℓ odd

αı̄ = αi for 1 ≤ i ≤ ℓ− 1, αℓ̄ = αℓ−1, when ℓ even,

E6 : α1̄ = α6, α2̄ = α5, α3̄ = α3, α4̄ = α4,

Bℓ, Cℓ, E7, E8 :

F4, G2 :
αı̄ = αi.

(2.4)

Defining then a CT -operator in analogy to (1.22) in two alternative ways,
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Figure 2.1: The action of −w0 on the Dynkin diagrams.

Aℓ :
α1 α2 α3

· · ·
αℓ−1 αℓu u u u u −w0−→

α1α2α3αℓ−1αℓ
· · · uuuu u

D2l :
α1 α2 α3

· · · α2l−2

α2l−1

α2l

@@

��u u u u u
u

−w0−→
α2l−1

α2l

α2l−2

α3α2α1
· · ·

@@

��u u u u u
u

E6 :
α1 α2 α3

α4

α5 α6

u
uu u uu −w0−→

u
u u u uu α1α2α3α5

α4

α6

we have

wε
0 = θεw0θ

−1
ε = τw0. (2.5)

When [σ, θε] = 0 this equation has no solution for even h, since wε
0 =

θεσ
h/2θ−1

ε = σh/2 = τσh/2, which is evidently a contradiction. Whereas for

odd h the realization (2.3) in (2.5) yields θεσ+σ
(h−1)/2θ−1

ε = θεσ+θ
−1
ε σ(h−1)/2 =

τσ+σ
(h−1)/2, which equals (1.22) when canceling σ(h−1)/2, such that this case

is equivalent to the one described in the first section of the previous chapter.

This means to obtain a new solution from (2.5) we need to assume [σ, θε] ̸= 0.

This fact implies immediately that we have now two options to construct

the remaining nonsimple roots. We may either define in complete analogy to

(1.26) and (1.27) a root space which remains invariant under the action of the

deformed Coxeter transformation. This root space is then also CT -symmetric

wε
0 : ∆̃(ε) → θεw0θ

−1
ε ∆̃(ε) = θεw0∆(ε) = θε∆(ε) = ∆̃(ε). (2.6)

Alternatively we could also define

Ω̂ε
i :=

{
γ̃i, σγ̃i, σ

2γ̃i, . . . , σ
h−1γ̃i

}
, (2.7)
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and the entire root space as ∆̃(ε) :=
∪ℓ

i=1 Ω̂
ε
i . However, this root space will

only remain invariant under the action of σ instead of σε and in addition

it will not be CT -symmetric. This definition is therefore unsuitable for our

purposes here.

Using the two definitions in (2.5) leads on one hand to

wε
0α̃ = θεw0θ

−1
ε θεα = θεw0α = −θεᾱ, (2.8)

and on the other to

wε
0α̃ = τw0α̃ = −τ ¯̃α = − ¯̃α∗, (2.9)

such that

(θε)ij = (θ∗ε)ı̄ȷ̄ . (2.10)

As in the first chapter we require the inner products to be preserved (1.12),

such that in summary the set of determining equations results to

θ∗εw0 = w0θε, [σ, θε] ̸= 0, θ∗ε = θ−1
ε , det θε = ±1 and lim

ε→0
θε = I.

(2.11)

In this case it is instructive to separate θε into its real and imaginary part

(θε)ij = Rj
i (ε) + ıIji (ε) and therefore expand an arbitrary simple deformed

root in terms of the ℓ simple roots as

α̃i(ε) :=
ℓ∑

j=1

(
Rj

i (ε)αj + ıIji (ε)αj

)
, (2.12)

with Rj
i (ε) and I

j
i (ε) being some real valued functions satisfying

lim
ε→0

Rj
i (ε) =

 1 for i = j

0 for i ̸= j
and lim

ε→0
Iji (ε) = 0. (2.13)
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The relation (2.10) then implies that

Rj
i (ε) = Rȷ̄

ı̄(ε) and Iji (ε) = −I ȷ̄ı̄ (ε). (2.14)

This means a nontrivial complex CT -symmetric deformation of the longest

element does not exist for Coxeter groups in which for all simple roots are

self-conjugate αi = αı̄.

2.1 Case by case solutions for the Longest el-

ement deformation

2.1.1 ω0 for A2

Let us start with the construction of a CT -symmetric deformation as out-

lined in section 2. According to (2.4) the two simple roots are conjugate to

each other in the A2-case, i.e., 1̄ = 2. Using the expansion (2.12) and the

constraints (2.14) the deformed roots acquire the form

α̃1 = R1
1(ε)α1 +R2

1(ε)α2 + ı(I11 (ε)α1 + I21 (ε)α2), (2.15)

α̃2 = R2
1(ε)α1 +R1

1(ε)α2 − ı(I21 (ε)α1 + I11 (ε)α2). (2.16)

Demanding next that the inner products are preserved (1.12) amounts to

three further constraint, such that the four free functions in (2.15), (2.16)

are reduced to only one. We obtain the two solutions

R2
1 = 0, I21 = 2I11 ,

(
R1

1

)2 − 3

4

(
I21
)2

= 1 and 1 ↔ 2. (2.17)

The third relation in (2.17) is solved for instance by R1
1 = cosh ε, I21 =

2/
√
3 sinh ε satisfying also the limiting constraint (2.13) for ε → 0. The
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deformed simple roots are therefore

α̃1 = cosh εα1 + ı
1√
3
sinh ε(α1 + 2α2), (2.18)

α̃2 = cosh εα2 − ı
1√
3
sinh ε(2α1 + α2). (2.19)

If we compare these deformed simple roots (2.18) and (2.19) with the de-

formed simple roots in section 1.1.1, we find that they are exactly the same

deformed simple roots.

2.1.2 ω0 for A3

We obtain an additional non-equivalent solution when [σ, θε] ̸= 0 by solving

(2.5). For A3 we read off from (2.4) that 1̄ = 3, 2̄ = 2, such that (2.10) leads

to the deformation matrix

θε =


θ11 θ12 θ13

θ21 θ22 = θ∗22 θ∗21

θ∗13 θ∗12 θ∗11

 . (2.20)

Substituting this into (2.11) yields a set of constraining equations. Assuming

θ12 to vanish they simplify to

θ22 = |θ11|2 − |θ13|2 , θ222 = 1, |θ11|2 − θ213 = 1, (2.21)

θ11θ
∗
21 = θ21(θ22 + θ∗13), θ11 Re θ13 = 0. (2.22)
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Making now only the one further assumption that θ11 = cosh ε all remaining

entries are fixed by (2.21) and (2.22). We obtain

θε =


cosh ε 0 ı sinh ε

(− sinh2 ε
2
+ ı

2
sinh ε) 1 (− sinh2 ε

2
− ı

2
sinh ε)

−ı sinh ε 0 cosh ε

 . (2.23)

It is easily verified that the corresponding roots have the desired behaviour

under the CT -transformation, namely w̃0(α̃1) = −α̃3, w̃0(α̃2) = −α̃2. This

solution does not correspond to a deformation of σ± as now θ∗εσ± ̸= σ±θε.

In this case the nonsimple roots cannot be constructed from a simple

analogy to the undeformed case as σε ̸= σ. Instead we have to act successively

with σε on the simple deformed roots. In this way the set of all positive

deformed roots results to

α̃1 = cosh εα1 + ı sinh εα3, (2.24)

α̃2 = α2 − sinh2 ε

2
(α1 + α3) +

ı

2
sinh ε(α1 − α3), (2.25)

α̃3 = cosh εα3 − ı sinh εα1, (2.26)

α̃4 = cosh ε(α1 + α2)− ı sinh ε(α2 + α3), (2.27)

α̃5 = cosh ε(α2 + α3) + ı sinh ε(α1 + α2), (2.28)

α̃6 = cosh εα2 + cosh2 ε

2
(α1 + α3) +

ı

2
sinh ε(α3 − α1). (2.29)

Notice that the nonsimple roots no are no longer just simple roots added

together.
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2.1.3 ω0 for A4

For this case we have that the longest element is

ω = σ2σ4σ
2 =



0 0 0 −1

0 0 −1 0

0 −1 0 0

−1 0 0 0


, (2.30)

and it turns out that the deformation of the longest element is of the form

ω0θε = (θεω0)
∗ where θε is the deformation matrix in (1.68).

2.1.4 ω0 for D2ℓ+1

For the odd rank subseries we should also be able to construct an alternative

solution by solving (2.11). As a special solution valid for the entire subseries

we find

θε =

 I 0

0 θ̂ε

 , (2.31)

with

θ̂ε =


1 (− sinh2 ε

2
− ı

2
sinh ε) (− sinh2 ε

2
+ ı

2
sinh ε)

0 cosh ε −ı sinh ε

0 −ı sinh ε cosh ε

 , (2.32)

and I ≡ (2ℓ−2)× (2ℓ−2) unit matrix. The solutions (1.78) and (2.31) do not

coincide.
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2.1.5 ω0 for E6

We obtain an additional solution by means of the construction laid out in

section 2. As a particular solution we find

θε =



1 0 0 0

0 1 0 0

0 0 θA3
ε 0

0 0 0 1


, (2.33)

with θA3
ε given in (2.23). This means the fact that the subsystem made from

the vertices 3, 4 and 5 is identical to A3 also reflects in the solution for the

deformation matrix. Clearly this solution is different from (1.82) as well as

(1.83).

We have constructed a general deformation based on the longest element

of the Coxeter group. However, this deformation is only possible for the

simply-laced algebras. For the A2,4-longest element we have that ω0θε =

(θεω0)
∗ where θε is the deformation matrix constructed in chapter 1.1 for

each case. This is however, not true for the other cases.

2.2 Solutions from folding

One deficiency of the above constructions is that in some cases they do not

lead to any complex solution for ∆̃. However, we demonstrate now that in

these cases one may still construct higher dimensional solutions by means of

the so-called folding procedure, see e.g. [40, 75, 76, 77, 78]. This construction

makes use of the fact that some root systems are embedded into larger ones.
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Identifying roots which are related by the involution (2.4), one obtains a root

system associated to a different type of Coxeter group. At the same time we

may use the folding procedure for consistency checks.

Bn ↪→ A2n We showed that there exist no complex deformations for the

B2n−1-series based on the ansatz (1.33). However, making use of the embed-

ding Bn ↪→ A2n we demonstrate now that one can construct higher dimen-

sional solutions from the reduction of A4n−2 to B2n−1. We illustrate this in

detail for the particular case of B3 ↪→ A6. Starting with the solution to the

constraints (1.32) for A6-deformation matrix

θε = r0I+ ır1
(
σ − σ−1

)
+ ır2

(
σ2 − σ−2

)
+ ır3

(
σ3 − σ−3

)
, (2.34)

with r0 = cosh ε and r1 = r2 = −r3 = 1/
√
7 cosh ε, we employ the explicit

form for σ to obtain the simple deformed A6-roots from (1.6)

α̃1 = cosh εα1 − ı/
√
7 sinh ε(α1 + 2α2 + 2α3 + 2α4 − 2α6), (2.35)

α̃2 = cosh εα2 + ı/
√
7 sinh ε(2α1 + 3α2 + 4α3 + 2α4),

α̃3 = cosh εα3 − ı/
√
7 sinh ε(2α1 + 4α2 + 3α3 + 2α4 + 2α5 + 2α6),

α̃4 = cosh εα4 + ı/
√
7 sinh ε(2α1 + 2α2 + 2α3 + 3α4 + 4α5 + 2α6),

α̃5 = cosh εα5 − ı/
√
7 sinh ε(2α3 + 4α4 + 3α5 + 2α6),

α̃6 = cosh εα6 − ı/
√
7 sinh ε(2α1 − 2α3 − 2α4 − 2α5 − α6).
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Following the folding procedure we can now define deformed simple B3-roots

as

β̃1 = α̃1 + α̃6 (2.36)

= cosh ε(α1 + α6)− ı/
√
7 sinh ε[3(α1 − α6) + 2(α2 − α5)],

β̃2 = α̃2 + α̃5

= cosh ε(α2 + α5) + ı/
√
7 sinh ε[2(α1 − α6 + α3 − α4) + α2 − α5],

β̃3 = α̃3 + α̃4

= cosh ε(α1 + α6)− ı/
√
7 sinh ε[2(α2 − α5) + α3 − α4].

When substituted into (1.1), these roots reproduce theB3-Cartan matrix, but

it is not possible to express the imaginary part in terms of the undeformed

B3-roots. As expected from section 1.1.1, it is therefore impossible to find a

three dimensional deformation matrix of the type (1.6). When identifying the

undeformed A6-roots related by the involution (2.4) according to α1 ↔ α6,

α2 ↔ α5 and α3 ↔ α4, the deformed B3-roots will all become real.

F4 ↪→ E6 Having found some new solutions for a case which could not be

solved previously, let us see next how some solutions we have found are related

to each other through the folding procedure. In analogy to the undeformed

case we may define the deformed F4-roots in terms of the deformed E6-roots

as

β̃F4
1 = α̃E6

1 + α̃E6
6 , β̃F4

2 = α̃E6
3 + α̃E6

5 , β̃F4
3 = α̃E6

4 and β̃F4
4 = α̃E6

3 .

(2.37)
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This means the F4-deformation matrix is constructed as

θF4
ε =



θ
E6
11 +θ

E6
61 +θ

E6
16 +θ

E6
66

2

θ
E6
13 +θ

E6
63 +θ

E6
15 +θ

E6
65

2
θE6
14 + θE6

64 θE6
12 + θE6

62

θ
E6
31 +θ

E6
51 +θ

E6
36 +θ

E6
56

2

θ
E6
33 +θ

E6
53 +θ

E6
35 +θ

E6
55

2
θE6
34 + θE6

54 θE6
32 + θE6

52

θ
E6
41 +θ

E6
46

2

θ
E6
43 +θ

E6
45

2
θE6
44 θE6

42

θ
E6
21 +θ

E6
26

2

θ
E6
23 +θ

E6
25

2
θE6
24 θE6

22


.

(2.38)

In this reduction the two inequivalent deformed E6-root systems (1.82) and

(1.83) produce the same solution for F4

θF4
ε =



r0 − ırk −2ırk −4ırk −4ırk

2ırk r0 + 5ırk 8ırk 4ırk

−2ırk −4ırk r0 − 5ırk −2ırk

2ırk 2ırk 2ırk r0 + ırk


. (2.39)

This solution corresponds to a special solution we found in the context of F4,

namely (1.86) with r4 = r6 = 0.

Using the same identification between the F4 and E6 roots as in (2.37),

we obtain from the solution based on the deformation of the longest element

(2.33)

β̃F4
1 = αE6

1 + αE6
6 , (2.40)

β̃F4
2 = (cosh ε− ı sinh ε)αE6

3 + (cosh ε+ ı sinh ε)αE6
5 ,

β̃F4
3 =

1

2
(1− cosh ε+ ı sinh ε)αE6

3 + αE6
4 +

1

2
(1− cosh ε− ı sinh ε)αE6

5

β̃F4
4 = cosh εαE6

3 + ı sinh εαE6
5 .

When substituted into (1.1), these roots reproduce the F4-Cartan matrix,

but it is not possible to express them in terms of the undeformed F4-roots.
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This reflects the fact that the longest elements acts trivially in this case and

therefore also no nontrivial deformation of this involution exists.
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Chapter 3

Non-Hermitian Calogero

models

We have constructed various different types of deformation maps δ which

replace each root α by a deformed counterpart α̃ as specified above. We will

now employ these constructions and replace the set of n-dynamical variables

x = {x1, . . . , xn} and their conjugate momenta p = {p1, . . . , pn} by means of

one deformation maps δ : (x, p) → (x̃, p̃).

3.1 The groundstate wavefunctions and eigenen-

ergies in the undeformed case

Let us first generalize Calogero’s construction [42] for the solution of the

l = 0 wavefunction to generic Coxeter groupsW . We consider the generalized

81



Calogero Hamiltonian

H0(p, x) =
p2

2
+
ω2

4

∑
α∈∆+

(α · x)2 +
∑
α∈∆+

gα
(α · x)2

, (3.1)

with gα being real coupling constants, which for the moment may be dif-

ferent for each positive root α ∈ ∆+ associated to any Coxeter group W .

Generalizing [42] we define now the variables

z :=
∏

α∈∆+

(α · x) and r2 :=
1

ĥtℓ

∑
α∈∆+

(α · x)2, (3.2)

where ĥ denotes the dual Coxeter number and tℓ is the ℓ-th symmetrizer of

the incidence matrix I defined through the relation Iijtj = tiIij with ℓ being

the rank of the Coxeter group. We now assume that the wavefunction can

be separated in terms of these variables

ψ(x) → ψ(z, r) = zκ+1/2φ(r) (3.3)

with κ being an undetermined constant for the moment. Using this ansatz

we try to solve the n-body Schrödinger equation in position space H0ψ(x) =

Eψ(x) with p2 = −
∑n

i=1 ∂
2
xi
. Changing variables for the Laplace operator

then yields{
−1

2

n∑
i=1

[(
κ2 − 1

4

)
1

z2

(
∂z

∂xi

)2

+

(
κ+

1

2

)
1

z

(
∂2z

∂x2i
+ 2

∂z

∂xi

∂r

∂xi

∂

∂r

)

+
∂2r

∂x2i

∂2

∂r2
+

(
∂r

∂xi

)2
∂

∂r

]
+
ω2

4
ĥtℓr

2 +
∑
α∈∆+

gα
(α · x)2

− E

}
φ(r) = 0.

(3.4)
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Taking now gα = gα2/2 and using the identities (B.7)-(B.11) from appendix

A this reduces to{
−1

2

[
∂2

∂r2
+

[(
κ+

1

2

)
hℓ+ (ℓ+ 1)

]
1

r

∂

∂r

]
+
ω2

4
ĥtℓr

2

}
φ(r) = Eφ(r).

(3.5)

The key feature is that due to the identity (B.7) the first term in (3.4)

combines with part of the potential term to[
g

2
− 1

2

(
κ2 − 1

4

)] ∑
α∈∆+

α2

(α · x)2
. (3.6)

This term vanishes when choosing the free parameter κ to κ = ±1/2
√
1 + 4g.

The positive solution is the only physical acceptable one, as we would obtain

singularities in (3.3) and therefore a nonnormalizable wavefunction otherwise.

The equation (3.5) is a second order differential equation which may be

solved by standard methods. Imposing as usual the physical constraint that

the wavefunction vanishes at infinity, the energy quantizes to

En =
1

4

[(
2 + h+ h

√
1 + 4g

)
ℓ+ 8n

]√ ĥtℓ
2
ω, (3.7)

with corresponding wavefunctions

φn(r) = cn exp

−

√
ĥtℓ
2

ω

2
r2

La
n

√ ĥtℓ
2
ωr2

 . (3.8)

Here La
n(x) denotes the generalized Laguerre polynomial, cn is a normaliza-

tion constant and a =
(
2 + h+ h

√
1 + 4g

)
ℓ/4− 1.

A key feature of the model is that the last term in the potential in (3.1)

becomes singular whenever xi = xj for any i, j ∈ {1, 2, . . . , n}. This means

that the wavefunction is vanishing at these points and we may encounter

nontrivial phases for any two particle interchange. In fact, as the variable z
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defined in (3.2) is antisymmetric and r symmetric in all variables it is easy

to see that the associated particles obey anyonic statistics

ψ(x1, . . . , xi, xj, . . . xn) = eıπsψ(x1, . . . , xj, xi, . . . xn), for 1 ≤ i, j ≤ n,

(3.9)

with

s = 1/2 + 1/2
√

1 + 4g. (3.10)

This feature will change in the deformed case.

When one has bosons the statistics of the particles is

ψ(x1, . . . , xi, xj, . . . xn) = ψ(x1, . . . , xj, xi, . . . xn), for 1 ≤ i, j ≤ n, (3.11)

and for fermions the statistics are

ψ(x1, . . . , xi, xj, . . . xn) = −ψ(x1, . . . , xj, xi, . . . xn), for 1 ≤ i, j ≤ n.

(3.12)

Anyonic statistics (3.9) can be viewed as a continuous interpolation between

bose and fermionic statistics [79]. When g = 0 then (3.9) gives fermions and

when g = 2 then (3.9) gives bosons.

3.2 The groundstate wavefunctions and eigenen-

ergies in the deformed case

Now we consider the antilinear deformation of the Hamiltonian H0(p, x)

Hε,q(p, x) =
p2

2
+
ω2

4

∑
α̃∈∆̃+

(α̃ · x)2 +
∑
α̃∈∆+

gα̃
(α̃ · x)2

, (3.13)
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where H0(p, x) is the undeformed Calogero model. In analogy to the de-

formed case we attempt to solve this model by a similar ansatz, i.e., defining

the variables

z̃ :=
∏

α̃∈∆̃+

(α̃ · x) and r̃2 :=
1

ĥtℓ

∑
α̃∈∆̃+

(α̃ · x)2, (3.14)

and separating the wavefunction as

ψ(x) → ψ(z̃, r̃) = z̃1/2+1/2
√
1+4gφ(r̃). (3.15)

As a consequence of our construction for the deformed roots in which we de-

manded that inner products are preserved, we find that r̃ = r. Furthermore,

we observe that due to this fact the relations (B.2) and (B.4) also hold when

replacing α by α̃ and consequently the solution procedure for the eigenvalue

equation does not change. We obtain

ψ(x) = ψ(z̃, r) = z̃1/2+1/2
√
1+4gφn(r), (3.16)

as solution with φn(r) given in (3.8) and unchanged energy eigenvalues (3.7).

When generalizing the ansatz (3.15) to take also values for l ̸= 0 into account

the energy eigenvalues will, however, change, as was demonstrated in [41] for

A2 and G2. The main difference between the deformed and undeformed case

for the solution provided here is the occurrence of the variable z̃ instead of

z. As a consequence the wavefunction (3.16) no longer vanishes when two xi

values coincide, which in turn is a reflection of the fact that all singularities

resulting from a two-particle exchange have been regularized through the

deformation. However, we still encounter singularities in the potential when

all n values for the xi coincide. The wavefunction vanishes in this case and
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we obtain nontrivial statistics exchange factors. Let us see in detail for some

concrete models how to obtain nontrivial statistics for an n-particle exchange.

The deformed A2-model

The potential in (3.13) and the variable z̃ in (3.14) are computed from the

inner products of all 3 roots in ∆̃+
A2

with the vector x. Using the standard

three dimensional representation for the simple A2-roots α1 = {1,−1, 0} and

α2 = {0, 1,−1}, we find with (2.18) and (2.19)

α̃1 · x = x12 cosh ε−
ı√
3
(x13 + x23) sinh ε, (3.17)

α̃2 · x = x23 cosh ε−
ı√
3
(x21 + x31) sinh ε, (3.18)

(α̃1 + α̃2) · x = x13 cosh ε+
ı√
3
(x12 + x32) sinh ε. (3.19)

For convenience we introduced the notation xij := xi−xj. The new feature of

these models is that the last term in the potential (3.13) resulting from these

products is no longer singular when the position of two particles coincides. It

is easy to see that the PT -symmetry constructed for the α̃ may be realized

alternatively in the dual space, that is on the level of the dynamical variables

σε
− : α̃1 ↔ −α̃1, α̃2 ↔ α̃1 + α̃2 ⇔ x1 ↔ x2, x3 ↔ x3, ı→ −ı, (3.20)

σε
+ : α̃2 ↔ −α̃2, α̃1 ↔ α̃1 + α̃2 ⇔ x2 ↔ x3, x1 ↔ x1, ı→ −ı. (3.21)

A crucial difference to the undeformed case is that z̃ will, unlike z, not vanish

in the two particle scattering process when two positions xi and xj coincide.

In fact in that case z̃ will be purely imaginary as follows directly from the
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PT -symmetry

σε
−z̃(x1, x2, x3) = z̃∗(x2, x1, x3) = −z̃(x1, x2, x3) (3.22)

⇒ z̃(x1, x1, x3) ∈ ıR,

σε
+z̃(x1, x2, x3) = z̃∗(x1, x3, x2) = −z̃(x1, x2, x3) (3.23)

⇒ z̃(x1, x3, x3) ∈ ıR.

The remaining possibility z̃(x1, x2, x1) ∈ ıR follows from the previous cases

together with the cyclic property z̃(x1, x2, x3) = z̃(x2, x3, x1), which in turn

results when combining (3.22) and (3.23). Under these circumstances a new

symmetry arises

α1 = 0, α2 → −α2 ⇔ α̃1 → −α̃1 , α̃2 → −α̃2 ⇔ x1 = x2, x2 ↔ x3,

(3.24)

leading to z̃(x2, x2, x3) = −z̃(x3, x3, x2). By (3.3) this means

ψ(x2, x2, x3) = eıπsψ(x3, x3, x2), (3.25)

with s given in (3.10). Hence we obtain a nontrivial exchange factor in the

three-particle scattering process when particle 1 and 2 have the same position

and are simultaneously scattered with particle 3.

Similarly we observe

α2 = 0, α1 → −α1 ⇔ α̃1 → −α̃1, α̃2 → −α̃2 ⇔ x2 = x3, x1 ↔ x2,

(3.26)

leading to z̃(x1, x2, x2) = −z̃(x2, x2, x1) and therefore

ψ(x1, x2, x2) = eıπsψ(x2, x2, x1). (3.27)

Now a nontrivial exchange factor emerges in the three-particle scattering
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process when particle 2 and 3 have the same position and are simultaneously

scattered with particle 1. We depict various possibilities in Figure 3.1.

Figure 3.1: Anyonic exchange factors for the 3-particle scattering in the A2-
model.

u u ux y z

q1 q2 q3
= u u u

q2 q3 q1

x y z

uu ux y

q1 = q2 q3
= eıπs u uu

q1 = q2q3

x y

u uux y

q2 = q3q1
= eıπs uuu

q2 = q3 q1

x y

Notice that the first case in Figure 3.1, leading to a bosons exchange

possesses an analogue in the undeformed case. This process can be viewed

in two alternative ways, either corresponding to two consecutive two particle

exchanges, i.e., 1 ↔ 2 and subsequently 1 ↔ 3, or equivalently to a simulta-

neous three particle scattering process that is the ordering 123 goes to 231

in one scattering event. This is the typical factorization of an n-particle

scattering process into a sequence of two-particle scattering encountered in

integrable models, see e.g. [80]. In fact, as this feature is so central it is often

used synonymously with integrability. In our deformed model we encounter

new possibilities, namely that a compound particle can exist in the first place

and then also scatter with a single particle; giving rise to anyonic exchange

factors in this case.
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Deformed A3-models

Based on PT -symmetrically deformed Coxeter group factors In

this case the potential and z̃ are computed from the inner products of all 6

roots in ∆̃+
A3

with x. Taking the simple roots in the standard four dimensional

representation α1 = {1,−1, 0, 0}, α2 = {0, 1,−1, 0}, α3 = {0, 0, 1,−1}, we

evaluate with (1.55) and (1.60)

α̃1 · x = x43 + cosh ε(x12 + x34)− ı
√
2 cosh ε sinh

ε

2
(x13 + x24), (3.28)

α̃2 · x = x23(2 cosh ε− 1) + ı2
√
2 cosh ε sinh

ε

2
x14, (3.29)

α̃3 · x = x21 + cosh ε(x12 + x34)− ı
√
2 cosh ε sinh

ε

2
(x13 + x24), (3.30)

α̃4 · x = x42 + cosh ε(x13 + x24) + ı
√
2 cosh ε sinh

ε

2
(x12 + x34), (3.31)

α̃5 · x = x31 + cosh ε(x13 + x24) + ı
√
2 cosh ε sinh

ε

2
(x12 + x34), (3.32)

α̃6 · x = x14(2 cosh ε− 1)− ı
√
2 cosh ε sinh

ε

2
x23. (3.33)

Once again the last term in the potential (3.13) resulting from these products

is no longer singular in any two particle exchange. However, in this case it

could become singular in two simultaneous two-particle scattering processes,

e.g. x14 = x23 = 0. We may realize the PT -symmetry constructed for the α̃

σε
− : α̃1 → −α̃1, α̃2 → α̃6, α̃3 → −α̃3,α̃4 → α̃5, α̃5 → α̃4, α̃6 → α̃2, (3.34)

σε
+ : α̃1 → α̃4, α̃2 → −α̃2, α̃3 → α̃5, α̃4 → α̃1, α̃5 → α̃3, α̃6 → α̃6, (3.35)

also in the dual space

σε
− : x1 → x2, x2 → x1, x3 → x4, x4 → x3, ı→ −ı, (3.36)

σε
+ : x1 → x1, x2 → x3, x3 → x2, x4 → x4, ı→ −ı. (3.37)
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As in the A2-case z̃ will not vanish when two positions xi and xj coincide,

but once again we may pick up nontrivial exchange factors when involving

all particles in the model in the scattering process. We observe

σε
−z̃(x1, x2, x3, x4) = z̃∗(x2, x1, x4, x3) = z̃(x1, x2, x3, x4), (3.38)

σε
+z̃(x1, x2, x3, x4) = z̃∗(x1, x3, x2, x4) = −z̃(x1, x2, x3, x4). (3.39)

Combining (3.38) and (3.39) then yields

z̃(x1, x2, x3, x4) = −z̃(x2, x4, x1, x3), (3.40)

and therefore we will encounter nontrivial exchange factors in a 4-particle

scattering process

ψ(x1, x2, x3, x4) = eıπsψ(x2, x4, x1, x3). (3.41)

We depict various possibilities in Figure 3.2.

Figure 3.2: Anyonic exchange factors for the 4-particle scattering in the A3-
model.
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q1 q2 q3 q4
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q2 q1 = q4 q3

uu uux y

q1 = q2 q3 = q4
= eıπs uu uux y

q1 = q3 q2 = q4

uuu ux y

q1 = q2 = q3 q4
= u uuux y

q4 q1 = q2 = q3

As in the previous case we encounter several possibilities which have no

counterpart in the undeformed case.
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Based on CT -symmetrically deformed longest element We keep now

the representation for the simple roots, but use the construction for the

deformed roots as provided in the second part of section 1.1.1. The potential

is obtained again by computing the inner product of all the roots with the

position vector

α̃1 · x = cosh εx12 + ı sinh εx34, (3.42)

α̃2 · x = cosh2 ε

2
x23 − sinh2 ε

2
x14 +

ı

2
sinh ε(x12 + x43), (3.43)

α̃3 · x = cosh εx34 + ı sinh εx21, (3.44)

α̃4 · x = cosh εx13 − ı sinh εx24, (3.45)

α̃5 · x = cosh εx24 + ı sinh εx13, (3.46)

α̃6 · x = cosh2 ε

2
x14 + sinh2 ε

2
x23 +

ı

2
sinh ε(x21 + x34). (3.47)

Clearly the potential is different from the one resulting from (3.28)-(3.33).

Despite the fact that it is a simpler potential, it cannot be solved analogously

to the previous case since the crucial relations (B.1)-(B.4) no longer hold.

The deformed F4-model

In order to unravel any features which might differ in the non-simply laced

case, which is usually the case, we also present here one example for a

non-simply laced model. To allow a direct comparison with the previous

4-particle case, we have selected F4. The positive root space ∆̃+
F4

contains

now 24 roots. Employing the simple roots in the standard four dimensional

representation α1 = {0, 1,−1, 0}, α2 = {0, 0, 1,−1}, α3 = {0, 0, 0, 1} and

α4 = {1/2,−1/2,−1/2,−1/2} we compute the following factorization for z̃,
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with each factor corresponding to one of the 24 products α̃i · x :

(x1 cosh ε+ ı sinh εx4) (x2 cosh ε− ı sinh εx3)

× (x3 cosh ε+ ı sinh εx2) (x4 cosh ε− ı sinh εx1)

× (x12 cosh ε+ ı sinh εx̂34) (x14 cosh ε+ ı sinh εx̂14)

× (x34 cosh ε+ ı sinh εx̂12) (x23 cosh ε− ı sinh εx̂23)

× (x̂13 cosh ε+ ı sinh εx̂24) (x̂24 cosh ε− ı sinh εx̂13)

× (x̂34 cosh ε− ı sinh εx12) (x̂23 cosh ε+ ı sinh εx̂23)

× (x̂12 cosh ε− ı sinh εx̂34) (x̂14 cosh ε− ı sinh εx14)

× (x24 cosh ε+ ı sinh εx13) (x13 cosh ε− ı sinh εx24)

×
[
x̂12 + x̂34

2
cosh ε− ı

2
sinh ε(x12 + x34)

]
×
[
x̂12 − x34

2
cosh ε− ı

2
sinh ε(x̂12 + x34)

]
×
[
x12 − x̂34

2
cosh ε+

ı

2
sinh ε(x12 + x̂34)

]
×
[
x̂12 − x̂34

2
cosh ε+

ı

2
sinh ε(x12 − x34)

]
×
[
x12 + x̂34

2
cosh ε− ı

2
sinh ε(x12 − x̂34)

]
×
[
x12 − x34

2
cosh ε− ı

2
sinh ε(x̂12 − x̂34)

]
×
[
x12 + x34

2
cosh ε+

ı

2
sinh ε(x̂12 + x̂34)

]
×
[
x12 + x34

2
cosh ε+

ı

2
sinh ε(x̂12 − x34)

]
,

where we used the abbreviation x̂ij := qi+qj. Once again, several singularities

have disappeared through the deformation. The PT -symmetry constructed
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for the simple deformed roots α̃

σε
− : α̃1 → −α̃1, α̃2 → α̃1 + α̃2 + 2α̃3,α̃3 → −α̃3, α̃4 → α̃3 + α̃4, (3.48)

σε
+ : α̃1 → α̃1 + α̃2, α̃2 → −α̃2, α̃3 → α̃2 + α̃3 + α̃4, α̃4 → −α̃4, (3.49)

is now realized in the dual space as

σε
− : x1 → x1, x2 → x3, x3 → x2, x4 → −x4, ı→ −ı, (3.50)

σε
+ : x1 →

1

2
(x̂12 + x̂34), x2 →

1

2
(x̂12 − x̂34), x3 →

1

2
(x12 − x34), (3.51)

x4 →
1

2
(x12 + x34), ı→ −ı. (3.52)

Now we observe

σε
−z̃ = z̃∗(x1, x3, x2,−x4) = z̃(x1, x2, x3, x4), (3.53)

σε
+z̃ = z̃∗

[
x̂12 + x̂34

2
,
x̂12 − x̂34

2
,
x12 − x34

2
,
x12 + x34

2

]
(3.54)

= z̃(x1, x2, x3, x4). (3.55)

A consequence of this we find the symmetry

ψ(x1, x2, x3, x4) = ψ(
x̂13 + x24

2
,
x̂13 − x34

2
,
x13 − x̂24

2
,
x13 + x̂24

2
). (3.56)

3.3 A new metric and Hermitian counterpart

As was seen in the previous chapter we have various options for deforming the

Calogero Hamiltonian (3.1). We may consider new types of non-Hermitian

generalisations of Calogero models

H0,ε,q(p, x) =
p2

2
+
ω2

4

∑
α

(α·x)2+
∑
α

gα
(α · x)2

, αi ∈ ∆, ∆̃(ε),∆q, (3.57)
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or the analogues of Calogero-Moser-Sutherland models when replacing the

rational potential by a trigonometric or elliptic one. The model Hε for the

rational potential has been investigated in the previous chapter and was found

to have remarkable properties when compared with the standard undeformed

models H0. As a result of the deformation into the complex domain the

singularities in the potential are regularized. Therefore the models no longer

have to be defined in separate disjointed regimes and continued by phase

factors corresponding to some selected statistics. As was shown in [67], in

the Hε-models the anyonic phase factors are automatically present and the

models can be defined on the entire domain of the configuration space. As a

consequence the energy spectra of these models will also be different. Various

ground state wavefunctions and those corresponding to exited states were

computed in [67] and [41], respectively. Since the Hamiltonians Hε,q in (3.13)

are not Hermitian the canonical variables p and x are non-observable in

the standard Hilbert space. However, it is by now well understood how to

reconcile this by constructing a well defined metric operator ρ [81, 82, 83,

84, 85, 86, 87, 88, 89, 13, 90]. One seeks a linear, invertible, Hermitian

and positive operator acting in the Hilbert space, such that Hε,q becomes a

self-adjoint operator with regard to this metric such that p and x become

observable in this space. For this purpose one constructs a so-called Dyson

map η [17][91], which maps the non-Hermitian Hamiltonian H adjointly to

a Hermitian Hamiltonian h

h = ηHη−1 = h† = (η−1)†H†η† ⇔ H†ρ = ρH with ρ = η†η. (3.58)
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Depending on the assumptions made on the metric such type of Hamiltonians

are referred to with different terminology. When no assumption is made on

the positivity of the ρ in (3.58), the relation on the right hand side constitutes

the pseudo-Hermiticity condition, see e.g. [92, 93, 10], whenever the operator

ρ is linear, invertible and Hermitian. In case the operator ρ is positive but not

invertible this condition is usually referred to as quasi-Hermiticity [15, 17].

Different terminology is used at times with a less clear meaning.

In general we cannot map the Hamiltonians Hε,q to some Hermitian coun-

terparts in a very obvious way, but in some case we can provide the explicit

transformation η. We recall that the rotations in (1.149) on two variables can

be realized by means of the angular momentum operators Lij = xipj − xjpi(
z̃i
z̃j

)
= Rij

(
zi
zj

)
= ηij

(
zi
zj

)
η−1
ij , for z ∈ {x, p}, ηij = eε(xipj−xjpi).

(3.59)

Noting furthermore that

H0(p̃, x̃) = Hε(p, x), (3.60)

we can find many explicit transformations of the type (3.58), which map

these Hamiltonians to some isospectral Hermitian counterpart

H0(p, x) = ηHε(p, x)η
−1. (3.61)

For instance for the Bℓ-models based on the deformations (1.149) the Dyson

map is simply

η = η−1
12 η

−1
34 η

−1
56 . . . η

−1
(ℓ−2)(ℓ−1). (3.62)

In other cases based on special orthogonal groups the rotations involved
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might not commute. For instance, for the B5-model based on the deformation

(1.136) with r0 = cosh2 ε we find that

x̃ = θ⋆εx = R−1
24 R13R34R

−1
12 x = ηxη−1, with η = η−1

24 η13η34η
−1
12 . (3.63)

When the deformation in the configuration space is not based on rotations

such that inner products are not preserved it remains a challenge to find the

corresponding Dyson maps and isospectral Hermitian counterparts. We also

leave the investigation for the Hq(p, x)-models for further investigations.
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Chapter 4

Non-Hermitian affine Toda

theories

One of the main obstacles to overcome when passing from a classical descrip-

tion of a field theory to a full-fledged quantum field theory is renormalisation.

In 1+1 space-time dimensions many miracles occur which allow one to ex-

press a number of physical quantities in an exact, that is non-perturbative,

manner. In particular it is possible to formulate classical Lagrangians which

are in some sense exact from the quantum field theoretical point of view.

The classical affine Toda field theory is a prototype for this kind of be-

haviour and has the remarkable property that its classical mass ratios that

remain preserved in the quantum field theory after renormalisation, when-

ever the associated Lie algebra is simply laced [48, 49, 50, 51, 52, 53, 54, 55].

This property ceases to be valid when the algebra becomes non-simply laced

[56, 57, 58, 59, 60, 61, 47, 62], in which case one has to consider a dual pair

of affine Lie algebras [63] and the quantum mass ratios interpolate via an
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effective coupling constant between the values obtained from these two alge-

bras. In the strong and weak limit of the coupling constant either of these

two cases is obtained.

One may now pose the question whether it is also possible to formulate

some naturally modified Lagrangians for non-simply laced algebras which

already capture some exact features from the quantum level, such as pre-

serving the classical mass ratios when renormalised. In addition, we may

study models in which the roots are elements of the antilinearly invariant

space. In terms of simple roots we consider now the three different versions

of affine Toda field theories defined by the Lagrangians

L0,ε,q :=
1

2

ℓ∑
i=1

∂µϕi∂
µϕi −

m2

β2

ℓ∑
i=0

nie
βαi·ϕ, αi ∈ ∆, ∆̃(ε),∆q. (4.1)

The Lagrangian L0 corresponds to the standard version whereas Lε,q are

newly proposed models. The ℓ components of ϕ are real scalar fields, m an

overall mass scale and the β is the coupling constant. The α’s are simple

roots with α0 being the negative of the longest root, whose expansion in

terms of simple roots in the relevant spaces α0 = −
∑ℓ

i=1 niαi is the defining

relation for the integers ni, often referred to as Kac labels. The L0 theories

are known to fall roughly into two different classes characterized by β taken

to be either real or purely complex in which case the Yang-Baxter equation

obeyed by the scattering matrix is either trivial or non-trivial, respectively.

When β ∈ iR the theory is in general non-Hermitian, except for the A2-case

corresponding to the sine-Gordon model, but the classical mass spectra were

still found to be real and stable with respect to small perturbations [94].

Here we conjecture that the Lε,q-models are also meaningful.
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The classical mass matrix for the scalar fields is simply given by the

quadratic term in the fields of the Lagrangian and is easily extracted from

the formulation (4.1)

M2
ij = m2

ℓ∑
a=0

naα
i
aα

j
a , αi ∈ ∆, ∆̃(ε),∆q. (4.2)

The mathematical fact that the overall length of the roots is a matter of

convention is reflected in the physical property that the overall mass scale is

not fixed. This is captured in the constant m.

4.1 Construction of Q-deformed Coxeter groups

Mainly motivated by an applications to affine Toda field theories in mind,

we provide in this section a construction for q-deformed roots, meaning that

we are seeking a map

δq : ∆ ⊂ Rn → ∆q ⊂ Rn[q], α 7→ αq = Θqα, (4.3)

with Rn[q] denoting a polynomial ring in q ∈ C. In this case the complex

deformation matrix Θq depends on the deformation q in such a way that

limq→1Θq = I. Our construction is centered on a q-deformation of the Cox-

eter element in the factorized form already used in this manuscript σ := σ−σ+

as introduced in [47, 62]

σq := σq
− τq σ

q
+ τq . (4.4)

The deformations of the Coxeter factors σ± are defined by

σq
± :=

∏
i∈V±

σq
i , (4.5)
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where the product is taken over q-deformed Weyl reflections, whose action

on simple roots αi ∈ ∆ is given as

σq
i (αj) := αj − (2δij − [Iji]q)αi . (4.6)

We employed here one of the standard definition for a q-deformed integer1

[n]q :=
qn − q−n

q − q−1
. (4.7)

A further deformation in q results from the map τq also employed in (4.4)

τq(αi) := qtiαi , (4.8)

where I = 2I−K is the incidence matrix, I is the unit matrix and K is the

Cartan matrix (1.1). The integers ti are the symmetrizers of the incidence

matrix I, i.e., Iijtj = Ijiti. From these definitions it is evident the q-deformed

Coxeter element is only different from the ordinary one when the associated

Weyl group is related to non-simply laced algebras.

Since σq is defined by its action on the simple roots α, it is natural to

seek an operator Oq acting on elements αq ∈ ∆q with the appropriate limit

limq→1Oq = σ. Recalling that the order of σ is the Coxeter number h,

i.e., σh = 1, whereas the order of σq is deformed σh
q = q2H , it is obvious that

the relation cannot be a simple similarity transformation. Here H is the ℓ-th

Coxeter number of the dual algebra, see e.g. [63] for more details. Therefore

we make the ansatz

σqα = q2H/hΘ−1
q σΘq α = q2H/hΘ−1

q σ αq. (4.9)

and readily identify the operator Oq = q2H/hΘ−1
q σ. The relation (4.9) serves

1We will frequently use the identities [1]q = 1, [2]q = q + q−1 and [3]q = 1 + q2 + q−2.
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as the defining relation for the q-deformed simple roots αq = Θq α.

In analogy to the undeformed situation we introduce a q-deformed simple

root dressed by a colour value as a separate quantity (γq)i := ci (αq)i. This

serves as a representant to introduce the q-deformed Coxeter orbits

(Ωq)i :=
{
(γq)i , σ (γq)i , . . . , σ

h−1 (γq)i
}
. (4.10)

The entire q-deformed root system ∆q is then spanned by the union of all ℓ

q-deformed Coxeter orbits

∆q :=
ℓ∪

i=1

(Ωq)i . (4.11)

At this stage it is not obvious under which type of symmetry ∆q remains

invariant.

4.2 The q-deformed root space for
(
C

(1)
2 , D

(2)
3

)
Let is now illustrate the working of the above formulae with a simple explicit

example. The incidence matrix for C2 is in this case defined as I12 = 1,

I21 = 2, such that the symmetrizers are t1 = 1 and t2 = 2. The Coxeter

numbers are h = 4 and H = 6. Therefore we obtain

σq
− =

 −1 0

[2]q 1

 , σq
+ =

 1 1

0 −1

 , τq =

 q 1

0 q2

 ,

σq = q2

 −1 −q

[2]q 1

 . (4.12)
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Solving equation (4.9) then yields the deformed roots

(αq)1 = r1α1 +
q

1 + q
(r1 − r2)α2, (4.13)

(αq)2 =
r2 + (r2 − 2r1)q

2

q + q2
α1 + r2α2, (4.14)

where r1, r2 depend on q with the limiting behaviour limq→1 r1 = 1 and

limq→1 r2 = 1.

We have now constructed a systematic method for q-deformations of Cox-

eter elements and substantiated the construction with a concrete example.

We will apply this deformation to a physical model.

4.3 The mass spectrum of
(
C

(1)
2 , D

(2)
3

)
-Lq

Taking the two q-deformed simple roots to be of the form (4.13), (4.14), not-

ing that the Kac labels for C2 are n1 = 2, n2 = 1 and using the non-standard

representation for the undeformed C2-roots α1 = {0, 1}, α2 = {1,−1} we

compute the mass matrix in (4.2). The virtue of this basis is that in the

limit q → 1 the mass matrix is diagonal. For q ̸= 1 the direct evaluation

leads to a nondiagonal matrix. However, imposing the additional constraint

r2 = r1q
3q2 − 5q + 2 + (q + 1)

√
(16− 7q)q − 8

2 (2q3 − q2 + q − 1)
, (4.15)

eliminates the off-diagonal elements. We obtain

M2
11 = r21q

32q
3 + 8q2 − 7q + (1− 2q2) ξ

(1− 2q3 + q2 − q)2
,

(4.16)

M2
22 = r21q

11q5 − 18q4 + 19q3 − 10q2 + q + (q4 + 2q3 − 3q2 + 2q − 1) ξ

(2q3 − q2 + q − 1)2
,

(4.17)
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with m1 = M11, m2 = M22 being the classical masses of the two scalar

fields and we abbreviate ξ =
√

16q − 7q2 − 8. As can be found in the above

mentioned literature, the quantum mass ratios of the L0-theory are given by

m1

m2

=
sin
[

1
24
(6−B)π

]
cos
(
Bπ
12

) , with B =
2Hβ2

Hβ2 + 4πℓh
, (4.18)

where B ∈ [0, 2] denotes the effective coupling constant. From (4.16), (4.17)

and (4.18) we can therefore fix the deformation parameter such that the

quantum mass ratios of L0 correspond to the classical mass ratios of Lq. We

find

q =
1

1 +
√
3
(
cos Bπ

24
+ sin Bπ

24

)
+ 2 sin Bπ

12
− 3

, (4.19)

= 1− 1

2

√
7π

6

√
B +

7πB

24
− 193π3/2B3/2

192
√
42

+
95π2B2

1152
+O

(
B5/2

)
.(4.20)

Notice that deformation parameter q(B) is a decreasing real valued function

of B taking values between 1 and ≈ 0.435936. Consequently the coefficients

in (4.13) and (4.14) in front of the simple roots acquire a complex part when

the effective coupling constant varies between 0 and 2. We find that the

classical mass spectrum of Lq equals the quantum mass spectrum of L0. One

may now seek to generalise this behaviour for other algebras.
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Chapter 5

Conclusion

In this thesis we have systematically formulated several different construction

methods for antilinearly deformed complex root spaces. Firstly we proposed

a construction that is based on two arbitrary elements of the Coxeter group.

These elements are then employed as analogues to the P-operator, which

together with complex conjugation constitutes our analogue PT -operator.

The construction is of such a nature that the entire root space remains in-

variant under the antilinear deformation. We then extend this construction

to a specific choice for the elements of the Coxeter group, namely the factors

of the Coxeter element.

After solving this particular choice on a case-by-case basis we found that

there are some cases where the deformation leads to a trivial solution. To

address the fact that there were some groups that only resulted in a trivial

solution, we modified the formulation of the specific Coxeter element to that

of a newly reduced Coxeter element, which is of a lower rank than the original

element. This leads to a large amount of possible choices for the elements
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we want to employ as a P-transformation, however, we did find that many

of these elements lie in the same similarity class. By making use of some

identities we even proved how the elements of some of these similarity classes

are related to each other.

We found that after deforming certain orthogonal groups that we could

identify in the dual space their corresponding rotations. In addition we found

that it is possible to operate in the opposite direction, by starting with a

rotation in the dual space and then identifying their corresponding roots.

Another method of construction of an antilinear operator is that of the

longest element. A specific feature of this deformation type is that it leads

to a unique PT -symmetry. One drawback about this construction is that it

is limited to only some of the Coxeter groups, namely An, D2n+1 and E6.

We show that a construction based on the deformation of the Weyl reflec-

tions themselves, can only be consistently formulated for the rank 2 algebras

and cannot be generalized to higher ranking algebras, this was explicitly done

in [41][34].

The key point behind these constructions is that non-Hermitian Hamil-

tonians that admit antilinear symmetry will have real eigenvalues when their

eigenfunctions also possess the same symmetry. Since models such as Calogero

models and Toda field theories can be related to root spaces [38][39][40], the

task of identifying the symmetries of the deformations of these models be-

come significantly easier if one deforms the root spaces these models are

related to.

After constructing the deformed root spaces, we applied them to some

physical models, namely Calogero models and Toda field theories. For the

105



Calogero system this deformation eliminates the singularities that exist in

the potential of the undeformed model when two particles’ position coincide

or are exchanged. However, one might still pick up a phase when the position

of two particles are exchanged or coincide,which is due to anyonic exchange

factors. After building a general solution for the undeformed Calogero model,

that is independent of the root space it is based on, we extended this same

general solution to the deformed case and were able to find the ground state

eigenvalues of the deformed model. We were even able to construct a Dyson

map η, that relates non-Hermitian HamiltonianHε,q to some Hermitian coun-

terpart. This is a very difficult task and we were able to do it for specific

cases, however, formulating a construction for this Dyson map independent

of the algebra representation remains an open problem.

After analyzing the above mentioned constructions we turned our atten-

tion to q-deformed Coxeter elements, which we still aimed to be antilinearly

deformed, however, with a different physical model in mind. We applied

these q-deformed Coxeter elements to affine Toda field theories and we found

that mass ratios between the classical case and the quantum case, for all

orders of the coupling constant, are identical.

There are several questions that one can still ask about these models and

the deformations. One of which is what will happen if we were to relax the

constraint where we demanded the preservation of the inner products between

the deformed and undeformed roots. Naturally this will lead to more free

parameters in the deformation matrix, which might not be straightforward

to solve, as one might have to make some choices for some. Another natural

question to ask is can we find the eigenvalues of the excited states of the
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deformed Calogero model. We may also ask ourselves the Lax pairs for these

models, so as to completely prove their integrability. Additionally, a rigorous,

algebra independent proof for the identities used to construct the general

solution of the Calogero Hamiltonian is yet to be formulated. Furthermore,

one may ask how these deformations would act upon new other models that

are based on roots.
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Appendix A

Coxeter Groups

Figure A.1: The Dynkin diagrams for the Coxeter groups.[3]

Aℓ :
αℓαℓ−1α3α2α1

· · ·u u u u u Bℓ :
αℓαℓ−1α3α2α1

· · · →u u u u u
Dℓ :

αℓ

αℓ−1

αℓ−2α3α2α1
· · ·

@
@

�
�u u u u u

u F4 :
α4α3α2α1

→u u u u
E6 :

α6α5α4α3α1

α2

u u u u uu
E7 :

α7α6α5α4α3α1

α2

u u u u uu u
E8 :

α8α7α6α5α4α3α1

α2

u u u u u uuu
G2 :

α2α1
→u u

A.1 Case-by-case data

For convenience we present in this appendix some numerical data for individ-

ual Coxeter groups. We present the values for the Coxeter number h defined

as the total number of roots divided by the rank, the order of the Coxeter
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element σ or 1+
∑ℓ

i=1 ni when the highest root is expressed in terms of simple

roots as
∑ℓ

i=1 niαi. The dual Coxeter number is defined in the same way as

the Coxeter number for the situation in which the arrows on the affine Dia-

gram have been reversed. The exponents sn are related to the eigenvalues of

the Coxeter element as defined in (1.38) and tℓ is the ℓ-th symmetrizer of the

incidence matrix I defined by means of the relation Iijtj = tiIij. Additionally

we give the number of roots N for each Coxeter group

W N h ĥ sn tℓ

Aℓ N(N + 1) ℓ+ 1 ℓ+ 1 1, 2, 3, ..., ℓ 1

Bℓ 2N2 2ℓ 2ℓ− 1 1, 3, 5, ..., 2ℓ− 1 1

Cℓ 2N2 2ℓ ℓ+ 1 1, 3, 5, ..., 2ℓ− 1 2

Dℓ N(N − 1) 2ℓ− 2 2ℓ− 2 1, 3, ..., ℓ− 1, . . . , 2ℓ− 3 1

E6 72 12 12 1, 4, 5, 7, 8, 11 1

E7 126 18 18 1, 5, 7, 9, 11, 13, 17 1

E8 240 30 30 1, 7, 11, 13, 17, 19, 23, 29 1

F4 48 12 9 1, 5, 7, 11 1

G2 12 6 4 1, 5 3

H3 30 10 10 1, 5, 9 1
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Appendix B

Identities

We assemble here the crucial identities for the derivation of (3.5). Underlying

are the generic relations which only involve roots and the dynamical variables

q = {q1, . . . , qn} ∑
α,β∈∆+

α · β
(α · q)(β · q)

=
∑
α∈∆+

α2

(α · q)2
, (B.1)

∑
α,β∈∆+

(α · β)(α · q)
(β · q)

=
ĥhℓ

2
tℓ, (B.2)

∑
α,β∈∆+

(α · β) (α · q)(β · q) = ĥtℓ
∑
α∈∆+

(α · q)2, (B.3)

∑
α∈∆+

α2 = ℓĥtℓ. (B.4)

At present we do not have a generic proof for these relations. Evidence

on a case-by-case basis for the first identity was already provided in [95].

Here we have verified (B.2) and (B.3) for a large number of Coxeter groups.

Denoting by ns, α
2
s and nl, α

2
l the number and length of the short and long
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roots, respectively, (B.4) follows from∑
α∈∆+

α2 =
ns

2
α2
s +

nl

2
α2
l =

α2
l

2

(
ns
α2
s

α2
l

+ nl

)
= ℓĥtℓ, (B.5)

where we used nsα
2
s/α

2
l + nl = ℓĥ, which can be found for instance in [96]

and α2
l = 2tℓ.

Accepting these relations the identities involving derivatives of r and z

are easily derived. From (3.2) follows

∂z

∂qi
= z

∑
α∈∆+

αi

(α · q)
and

∂r

∂qi
=

1

rĥtℓ

∑
α∈∆+

(α · q)αi. (B.6)

Multiplying them and summing over the dynamical variables gives

n∑
i=1

(
∂z

∂qi

)2

= z2
∑

α,β∈∆+

α · β
(α · q)(β · q)

= z2
∑
α∈∆+

α2

(α · q)2
, (B.7)

n∑
i=1

∂z

∂qi

∂r

∂qi
=

z

ĥtℓr

∑
α,β∈∆+

(α · β)(α · q)
(β · q)

=
hℓ

2

z

r
, (B.8)

n∑
i=1

(
∂r

∂qi

)2

=
1

r2ĥ2t2ℓ

∑
α,β∈∆+

(α · β) (α · q)(β · q) = 1, (B.9)

where we have used (B.1) in (B.7), (B.2) in (B.8) and (B.3) in (B.9). Fur-

thermore we need the sums over the second order derivatives. From (B.6) we

obtain with the help of (B.1) and (B.2)

n∑
i=1

∂2z

∂q2i
= z

 ∑
α,β∈∆+

α · β
(α · q)(β · q)

−
∑
α∈∆+

α2

(α · q)2

 = 0, (B.10)

n∑
i=1

∂2r

∂q2i
=

1

rĥtℓ

∑
α∈∆+

α2 − 1

r3ĥtℓ

∑
α,β∈∆+

(α · β) (α · q)(β · q) (B.11)

=
ℓ− 1

r
.
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Appendix C

Similarity Classes

In this appendix we provide more examples of reduced root spaces generated

from different types of classes. We exhibit also the action of σ̃± on the simple

roots from which one can easily infer the invariance of the entire root space.

We use the same conventions as for the tables 2 and 3.

C.1 A8-Root spaces based on the class Σ{1,2,3,4,ℓ−3}

and their invariance

σ̃(i) α1 α2 α3 α4 α5 α6 α7 α8

σ̃(1) −1,2 1,2,3 −2,3 2, 3, 4 5 6 7 8

σ̃(1)2 −3 −2 −1 1, 2, 3, 4 5 6 7 8

σ̃(1)3 2,3 −1,2,3 1,2 3, 4 5 6 7 8

σ̃
(1)
− −1 1, 2, 3 −3 3, 4 5 6 7 8

σ̃
(1)
+ 1, 2 −2 2, 3 4 5 6 7 8
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σ̃(2) 1, 2 3,4 −2,3,4 2,3 4, 5 6 7 8

σ̃(2)2 1, 2, 3, 4 −4 −3 −2 5 6 7 8

σ̃(2)3 1, 2, 3 −,2,3 2,3,4 −,3,4 3, 4, 5 6 7 8

σ̃
(2)
− 1 2, 3 −3 3, 4 5 6 7 8

σ̃
(2)
+ 1, 2 −2 2, 3, 4 −4 4, 5 6 7 8

σ̃(3) 1 2, 3, 4 −3,4 3,4,5 −4,5 4, 5, 6 7 8

σ̃(3)2 1 2, 3, 4, 5 −5 −4 −3 3, 4, 5, 6 7 8

σ̃(3)3 1 2, 3 4,5 −3,4,5 3,4 5, 6 7 8

σ̃
(3)
− 1 2, 3 −3 3, 4, 5 −5 5, 6 7 8

σ̃
(3)
+ 1 2 3, 4 −4 4, 5 6 7 8

σ̃(4) 1 2 3, 4 5,6 −4,5,6 4,5 6, 7 8

σ̃(4)2 1 2 3, 4, 5, 6 −6 −5 −4 4, 5, 6, 7 8

σ̃(4)3 1 2 3, 4, 5 −4,5 4,5,6 −5,6 5, 6, 7 8

σ̃
(4)
− 1 2 3 4, 5 −5 5, 6 7 8

σ̃
(4)
+ 1 2 3, 4 −4 4, 5, 6 −6 6, 7 8

σ̃(5) 1 2 3 4, 5, 6 −5,6 5,6,7 −6,7 6, 7, 8

σ̃(5)2 1 2 3 4, 5, 6, 7 −7 −6 −5 5, 6, 7, 8

σ̃(5)3 1 2 3 4, 5 6,7 −5,6,7 5,6 7, 8

σ̃
(5)
− 1 2 3 4, 5 −5 5, 6, 7 −7 7, 8

σ̃
(5)
+ 1 2 3 4 5, 6 −6 6, 7 8
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σ̃(6) 1 2 3 4 5, 6 7,8 −6,7,8 6,7

σ̃(6)2 1 2 3 4 5, 6, 7, 8 −8 −7 −6

σ̃(6)3 1 2 3 4 5, 6, 7 −6,7 6,7,8 −7,8

σ̃
(6)
− 1 2 3 4 5 6, 7 −7 7, 8

σ̃
(6)
+ 1 2 3 4 5, 6 −6 6, 7, 8 −8

C.2 A8-Root spaces based on the class

Σ{1,22,3,4,ℓ−4} and their invariance

σ̃(i,j) α1 α2 α3 α4 α5 α6 α7 α8

σ̃(1,1) −1,2 1,2,3 −2,3 2, 3, 4, 5 −5 5, 6 7 8

σ̃(1,1)2 −3 −2 −1 1, 2, 3, 4 5 6 7 8

σ̃(1,1)3 2,3 −1,2,3 1,2 3, 4, 5 −5 5, 6 7 8

σ̃
(1,1)
− −1 1, 2, 3 −3 3, 4, 5 −5 5, 6 7 8

σ̃
(1,1)
+ 1, 2 −2 2, 3 4 5 6 7 8

σ̃(2,1) 1, 2 3,4 −2,3,4 2,3 4, 5, 6 −6 6, 7 8

σ̃(2,1)2 1, 2, 3, 4 −4 −3 −2 2, 3, 4, 5 6 7 8

σ̃(2,1)3 1, 2, 3 −2,3 2,3,4 −3,4 3, 4, 5, 6 −6 6, 7 8

σ̃
(2,1)
− 1 2, 3 −3 3, 4 5 6 7 8

σ̃
(2,1)
+ 1, 2 −2 2, 3, 4 −4 4, 5, 6 −6 6, 7 8
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σ̃(3,1) 1 2, 3, 4 −3,4 3,4,5 −4,5 4, 5, 6, 7 −7 7, 8

σ̃(3,1)2 1 2, 3, 4, 5 −5 −4 −3 3, 4, 5, 6 7 8

σ̃(3,1)3 1 2, 3 4,5 −3,4,5 3,4 5, 6, 7 −7 7, 8

σ̃
(3,1)
− 1 2, 3 −3 3, 4, 5 −5 5, 6, 7 −7 7, 8

σ̃
(3,1)
+ 1 2 3, 4 −4 4, 5 6 7 8

σ̃(4,1) 1 2 3, 4 5,6 −4,5,6 4,5 6, 7, 8 −8

σ̃(4,1)2 1 2 3, 4, 5, 6 −6 −5 −4 4, 5, 6, 7 8

σ̃(4,1)3 1 2 3, 4, 5 −4,5 4,5,6 −5,6 5, 6, 7, 8 −8

σ̃
(4,1)
− 1 2 3 4, 5 −5 5, 6 7 8

σ̃
(4,1)
+ 1 2 3, 4 −4 4, 5, 6 −6 6, 7, 8 −8

C.3 A8-Root spaces based on the class

Σ{1,22,3,4,ℓ−4} and their invariance

σ̃(i,j) α1 α2 α3 α4 α5 α6 α7 α8

σ̃(1,2) −1 1, 2, 3, 4 −3,4 3,4,5 −4,5 4, 5, 6 7 8

σ̃(1,2)2 1 2, 3, 4, 5 −5 −4 −3 3, 4, 5, 6 7 8

σ̃(1,2)3 −1 1, 2, 3 4,5 −3,4,5 3,4 5, 6 7 8

σ̃
(1,2)
− −1 1, 2, 3 −3 3, 4, 5 −5 5, 6 7 8

σ̃
(1,2)
+ 1 2 3, 4 −4 4, 5 6 7 8
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σ̃(2,2) 1, 2 −2 2, 3, 4 5,6 −4,5,6 4,5 6, 7 8

σ̃(2,2)2 1 2 3, 4, 5, 6 −6 −5 −4 4, 5, 6, 7 8

σ̃(2,2)3 1, 2 −2 2, 3, 4, 5 −4,5 4,5,6 −5,6 5, 6, 7 8

σ̃
(2,2)
− 1 2 3 4, 5 −5 5, 6 7 8

σ̃
(2,2)
+ 1, 2 −2 2, 3, 4 −4 4, 5, 6 −6 6, 7 8

σ̃(3,2) 1 2, 3 −3 3, 4, 5, 6 −5,6 5,6,7 −6,7 6, 7, 8

σ̃(3,2)2 1 2 3 4, 5, 6, 7 −7 −6 −5 5, 6, 7, 8

σ̃(3,2)3 1 2, 3 −3 3, 4, 5 6,7 −5,6,7 5,6 7, 8

σ̃
(3,2)
− 1 2, 3 −3 3, 4, 5 −5 5, 6, 7 −7 7, 8

σ̃
(3,2)
+ 1 2 3 4 5, 6 −6 6, 7 8

σ̃(4,2) 1 2 3, 4 −4 4, 5, 6 7,8 −6,7,8 6,7

σ̃(4,2)2 1 2 3 4 5, 6, 7, 8 −8 −7 −6

σ̃(4,2)3 1 2 3, 4 −4 4, 5, 6, 7 −6,7 6,7,8 −7,8

σ̃
(4,2)
− 1 2 3 4 5 6, 7 −7 7, 8

σ̃
(4,2)
+ 1 2 3, 4 −4 4, 5, 6 −6 6, 7, 8 −8
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