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Distributed LQR Methods for Networks of non-Identical Plants

Eleftherios E. Vlahakis1 and George D. Halikias2

Abstract— Two well-established complementary distributed
linear quadratic regulator (LQR) methods applied to networks
of identical plants are extended to the non-identical plant case.
The first uses a top-down approach where the centralized op-
timal LQR controller is approximated by a distributed control
scheme whose stability is guaranteed by the stability margins
of LQR control. The second consists of a bottom-up approach
in which optimal interactions between self-stabilizing agents
are defined so as to minimize an upper bound of the global
LQR criterion. In this paper, local state-feedback controllers
are designed by solving model-matching type problems and
mapping all the plants in the network to a target system
specified a priori. Existence conditions for such schemes are
established for various families of systems. The single-input
case and the multi-input case relying on the controllability
indices of the plants are first considered followed by an LMI
approach combined with LMI regions for pole clustering. Then,
the two original top-down and bottom-up methods are adapted
and the stability problem for networks of non-identical plants
is solved. The applicability of our approach for distributed
network control is illustrated via a simple example.

I. INTRODUCTION

Networks of systems have attracted a lot of attention of the
control community in recent years. Such schemes are often
referred to as multi-agent systems with each agent being
represented by a dynamical system and having the ability
to communicate with other counterparts within the network.
The interactions established among the agents determine the
network topology and define a communication pattern. The
need for forming networks of systems in many cases arises
from the fact that some problems might not be resolved by
individual systems. Military applications, transport networks
and supply chains are such paradigms which indicate that
difficult tasks may be accomplished cooperatively [1]–[3].
In other cases, the topology of the network may be imposed
by physical links such as in power systems where the agents
take the role of power generators and the interconnections
are represented by power transmission lines [4], [5].

Stability issues play key role in multi-agent systems [6],
[7] where cooperative controllers should be designed to
ensure stable operation for the network. In cases where
networks are composed of sufficiently small number of
agents, the interconnections among the systems might not be
limited and fully-centralized cooperative controllers can be
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established applying well-known control schemes. Neverthe-
less, bandwidth limits as well as cost factors are main reasons
to impose restrictions to network’s communication capacity
resulting in sparsity of interactions among the plants. Thus,
distributed cooperative controllers are to be designed to
solve the network stability problem. Two complementary
distributed LQR methods are proposed in [8] and [9]. In the
first (top-down) approach [8], the centralized optimal LQR
controller is approximated by a distributed control scheme
whose stability is guaranteed by the stability margins of LQR
control. The second [9] consists of a bottom-up approach
in which optimal interactions between self-stabilizing agents
are defined so as to minimize an upper bound of the
global LQR criterion. A limitation of both methods is the
assumption that networks are formed by identical plants,
a fact which is often unrealistic in real applications. The
approach proposed in this work relaxes this assumption and
therefore generalizes the approaches in [8] and [9] with
only minor modifications. Rather than assuming identical
models for all agents, we consider a general class of possible
models which share the same structure in terms of input
and state dimensions and other structural properties (e.g.
controllability, controllability indices) which are identified
in each case considered.

In this paper, static state-feedback controllers are proposed
to solve model-matching type problems with the aim at
relaxing the assumption of the repetitive pattern of the
network considered in [8] and [9] in terms of the plants’
model. In this respect, the systems constituting the network
are assumed to be linear and non-identical with their state
vector being accessible for measurement. The method is
applied locally, where the model of each agent matches a
target system via state-feedback control. The model of a
certain target system might be specified a priori possibly pos-
ing desired local performance specifications for the agents.
The conditions of such schemes to exist are examined by
considering certain families of systems. Single-input plants
are first investigated and then the multi-input case is analyzed
taking into account the controllability indices of the plants.
Plants with arbitrary number of inputs are also assumed and
are converted to be controllable by one input and match
a single-input target system. A Linear Matrix Inequality
approach is also proposed to solve the model-matching type
problem for a certain family of systems. Next, the state-
feedback distributed control scheme presented in [8] and [9]
are modified and then the stability problem for a network of
non-identical plants that are all mapped locally to the same
target system is solved. The effectiveness of the method is
finally illustrated via a simple example.



The rest of the paper is organized in four sections. In
the second section the problem considered in this paper is
defined along with some useful definitions. The main work
is analyzed in the fourth section where model-matching type
problems are solved for various classes of systems. Note
that in our case the definition of ”model-matching” gives us
considerable flexibility as the output matrices of the mapped
systems are required to be square and invertible but are
otherwise arbitrary. The extension of the results presented
in [8] and [9] followed by a numerical example are included
in the fifth section. The sixth section presents the main
conclusions of the work where a discussion of the main
results and suggestions for future work are given.

II. PROBLEM STATEMENT

The networks considered in this paper are composed of
linear agents represented by a controllable pair (A,B) and
assumed to have access to their state-vector. In the remaining
text, we refer to such plants as state-feedback systems high-
lighting the availability of their states to be used to design the
control input. The outline of the setting for the cooperative
control is now given. Consider network of N non-identical
linear systems called agents with dynamical behaviour being
described by the following differential equation:

ẋi = Aixi +Biui (1)

where xi ∈ Rn and ui ∈ Rm represent the state and the input
vector respectively of the ith agent. The matrices Ai ∈ Rn×n

and Bi ∈ Rn×m describe its dynamics and input distribution,
respectively, and are generically different for each ith agent.
The pairs (Ai,Bi) are assumed to be completely controllable
for all i = 1, · · · ,N.

The network’s communication scheme is described by a
graph G = (V ,E ), where V is the set of the agents (V =
{1, · · · ,N}) and E ⊆ V ×V the set (i, j) representing the
interconnection between agent i∈ V and agent j ∈ V . These
interactions among the agents involve information exchange
about their states. We assume that the graph is bidirectional,
which means that if the agent i is aware of the state of the
agent j, then the agent j is aware of the state of the agent i.

Let the network’s state be represented by augmentation of
the individual states of the agents. The augmented state-space
form is given by

˙̃x = diag{A1, · · · ,AN}x̃+diag{B1, · · · ,BN}ũ
x̃0 = [xT

1 (0), · · · ,xT
N(0)]

T (2)

where x̃ =Col{x1, · · · ,xN} and ũ =Col{u1, · · · ,uN} are the
augmented state and input vector of the network, respec-
tively. In this paper, we seek cooperative controllers

ui = Fixi +Givi (3)

which map all the agents in the network to fictitious tar-
get plants (A,B,Ci) while the augmented input vector ũ =
Col{u1, · · · ,uN} stabilizes the network’s differential equation
(2). The matrices (A,B) of the target plant are common for all
agents and have the same dimensions with (Ai,Bi). Matrices
Ci are square and nonsingular for all i = 1, · · · ,N. The

target plant is defined in the next section. The state-feedback
controllers Fixi combined with input transformations Gi
solve model-matching type problems locally and the transfer
function of the ith closed-loop system takes the following
form

(sI−Ai−BiFi)
−1BiGi =Ci(sI−A)−1B (4)

The state-feedback control laws Fi and the input transforma-
tions Gi if exist, transform the original state-space form of
the network (2) into the augmented state-space form given
as

˙̃x = (I⊗A)x̃+(I⊗B)ṽ (5)

ỹ = C̃x̃ (6)

where ṽ =Col{v1, · · · ,vN} and C̃ = diag{C1, · · · ,CN} square
and nonsingular. The symbol ⊗ stands for the Kronecker
product. Certain families of state-feedback systems will be
considered in the next section that can be mapped to the
class of systems T (Ā, B̄) defined by the following transfer
function

T (Ā, B̄) = {Φ(sI− Ā)−1B̄), Φ ∈ Rn×n, |Φ| 6= 0} (7)

via local state-feedback control laws. Due to repetitive pat-
tern of the fictitious network (5) top-down [8] and bottom-up
[9] distributed LQR methods for network of identical plants
can be used to design distributed controllers ṽi to solve the
stability problem of networks formed of non-identical agents.
The two original methods are now outlined.

A. Top-down Method

The distributed LQR method proposed in [8] for networks
formed by identical plants is briefly presented here. Let
NL identical agents constitute a full-centralized network
described by a bidirectional graph and have the ability to
exchange information about their states. The state-space
forms of each agent and the network are given by

ẋi = Axi +Bui, xi0 = xi(0) (8)
˙̃x = (I⊗A)x̃+(I⊗B)ũ, x̃0 = [xT

1 (0), · · · ,xT
NL
(0)]T (9)

Consider now performance index that couples the dynam-
ical behavior of the individual agents chosen as

J(ũ, x̃0) =
∫

∞

0

NL

∑
i=1

(
xT

i Q1xi +uT
i Rui

+
NL

∑
j 6=i

(xi− x j)
T Q2(xi− x j)

)
dτ (10)

with Q1 ≥ 0, Q2 ≥ 0 and R > 0. Under the assumption that
(A,B) is controllable and both pairs (A,Q1) and (A,Q2) are
observable the solution to the following LQR problem

min
ũ

J(ũ, x̃0) s.t. ˙̃x = (I⊗A)x̃+(I⊗B)ũ, x̃0 (11)



leads to the networked state-feedback gain K̃ with the
following structure

K̃ =


K1 K2 · · · K2
K2 K1 · · · K2
...

. . .
...

...
K2 · · · K2 K1

 (12)

where K1 and K2 are functions of A, B, Q1, Q2, R and NL.
Due to lack of space readers are referred to [8] for detailed
construction of K1 and K2. Exploiting the stability margins
of the LQR solution a stabilizing distributed state-feedback
controller is constructed according to the following theorem.

Theorem 1. Consider a network of N identical plants with
state-space given by (8) and topology specified by graph G
with Laplacian matrix L and maximum vertex degree dmax.
Consider reduced-order networked LQR problem (11) with
NL = dmax +1. Let M = RNxN reflect the structure of L and
be symmetric with the following property:

λi(M)>
NL

2
, ∀λi(M) ∈ S(M)\{0} (13)

and construct the state-feedback controller:

K̂ = IN⊗K1 +M⊗K2 (14)

Then the closed-loop system

IN⊗A+(IN⊗B)K̂ (15)

is asymptotically stable.

B. Bottom-up Method

The distributed controller presented in [9] is shown here
highlighting the technical details of the method. Networks
of N identical agents are considered with state-space forms
given by (8) where the input distribution matrix is assumed

to have a particular structure of
[

0
B2

]
with B2 being non-

singular. This technical requirement can always be achieved
by rotating the original coordinates of the state-space using
appropriate state-space transformation obtained from singu-
lar value decomposition of the matrix B provided the latter
has full-column rank. The global performance index to be
minimized is given by

J(ũ, x̃0) =
∫

∞

0

(
x̃T (IN⊗Q1 +L⊗Q2)x̃+ ũT Rũ

)
dτ (16)

with x̃, x̃0 and ũ given in (2) and L representing the Laplacian
matrix of the network. Note that the global performance
indices for both methods are identical.

The agents are first stabilized locally via state-feedback
gain K obtained by solving a typical LQR problem at node
level with weighting matrices being chosen as Q1 and R.
The next step of the method is state-space transformation
which diagolizes the solution P to the local algebraic Riccati
equation (ARE)

AT P+PA−PBR−1BT P+Q1 = 0 (17)

The local state-feedback gain in the new coordinates takes
the form K̂ =

[
0 K2

]
and the distributed controller for the

networked systems is constructed as

ûi = K̂x̂i +ΦK̂ẑi, for i = 1, · · · ,N (18)

where ẑi = ∑
j∈Ni

(x̂i− x̂ j) (19)

with Ni representing the neighboring systems that agent i
can interact with. The signal ẑi reflects a state disagreement
measure of the ith agent with its neighbors. The distributed
controller in the original coordinates at network level is given
by

K̂ = IN⊗K +L⊗ΦK (20)

The construction of the scaling matrix Φ involves a con-
vex optimization problem associated with an upper bound
of the global LQR criterion (16). The description of the
minimization problem is omitted and readers are referred
to the original paper [9] for more details.

III. MODEL-MATCHING PROBLEMS

In this section, model-matching type problems are solved
for specific categories of systems via state-feedback tech-
niques as the first stage of the solution to the stability
problem of a network of non-identical plants. The systems
are assumed to belong to a family of systems with common
structural properties such as system size, input dimensions,
controllability indices etc. The main purpose of this section
is to define these properties of certain families of systems
and the conditions under which there exist control laws
that match all the plants of these families with a certain
class of systems. This class of systems represent the target
systems that the agents in the network should be mapped to
via state-feedback controller of the form u = Fx+Gv. The
target plants are represented by the following set of transfer
functions

T (Ā, B̄) = {Φ(sI− Ā)−1B̄), Φ ∈ Rn×n, |Φ| 6= 0} (21)

In the remaining text, for simplicity reasons all the families
of systems are referred to as classes including the target class
represented by T (Ā, B̄).

A. Single-Input Case

The first class is defined for single-input controllable
plants with fixed system size. Consider a network of N
single-input state-feedback plants with system size equal to
n and state-space representation as

ẋi = Aixi +biui, yi = xi (22)

where i = 1, . . . ,N, Ai ∈ Rn×n, bi ∈ Rn with (Ai,bi) being
controllable. Consider now a target system of the same class
as the plants in the network with transfer function (sI −
Ad)
−1bd and its poles placed at a desired location specified

by p = (p1, p2, · · · , pn)
′. The state-space representation of

this plant is given as

ẋd = Adxd +bdud , yd = xd (23)



According to the following theorem there are always local
state-feedback laws fi with i = {1, · · · ,N} that map all the
plants in the network to the target plant provided that the
latter is chosen from the same class.

Theorem 2. Consider a set of N linear state-feedback plants
with state-space

ẋi = Aixi +biui

with i = 1, · · · ,N arbitrarily chosen from the class of con-
trollable systems with single input and system size n and let
a target linear plant with state-space

ẋd = Adxd +bdud

belong in the same class of systems. Then, there are always
state-feedback laws fi such that

(sI−Ai−bi f
′
i )
−1bi = Φi(sI−Ad)

−1bd (24)

with |Φi| 6= 0 for i = 1, · · · ,N.

To prove Theorem 2 we consider similarity transforma-
tions Ti and Td that bring the state-space form of the ith plant
and the target, respectively, into controller canonical form.
Additionally, under the controllability assumption, there are
always unique state-feedback gains fi that assign the poles
of the ith system at the target’s poles’ location. Since, the
controller canonical form of single-input plants of the same
dimension is unique, the transfer function which maps the
ith plant to the target’s transfer function up to a nonsingular
output matrix Φi is given by the following relationship

(sI−Ai−bi f
′
i )
−1bi = Φi(sI−Ad)

−1bd (25)

with Φi = T−1
i Td and |Φi| 6= 0 since the similarity transfor-

mations Ti and Td are square and non-singular.

B. Multi-Input Case with common Controllability Indices µ j

The class of systems to be considered next consists of
multi-input state-feedback plants with fixed controllability
indices µ j. Recall that ∑

m
j=1 µ j = n where m stands for

the number of inputs and n the system size. Note that the
controllability indices define completely the class without
need for specifying input size and system size.

The following lemma describes the completeness property
[10] which together with the invariance property highlights
that the controllability indices {µi} constitute a set of com-
plete invariants for the pair (A, B) under operations P, G and
F .

Lemma 1. Given (A,B) controllable, then
(P(A + BF)P−1, PBG) will have the same controllability
indices, up to reordering, for any P, F and G (det(P) 6= 0,
det(G) 6= 0) of appropriate dimensions.

The controller canonical form of a multi-input plant is
now analyzed. Let the pair (A, B) be controllable with
controllability indices µ j where A ∈ Rn×n and B ∈ Rn×m.
There is always similarity transformation P (see [10] how

to construct matrix P) such that the pair can be reduced to
controller canonical form, namely, (Ac, Bc) where

Ac = Āc + B̄cAm, Bc = B̄cBm (26)

with Am ∈Rm×n and Bm ∈Rm×m being free. Notice that the
pair (Āc, B̄c) is called the Brunovsky canonical form [10]
and is unique (up to reordering) for the class of pairs (Ai,
Bi) with common controllability indices. The structure of the
matrices (Āc, B̄c) is given as follows

Āc = diag(Ā11, Ā22, · · · , Āmm), B̄c = diag

(
0
...
0
1

 ∈ Rµ j ,

)

(27)

with Ā j j =


0
... Iµ j−1
0
0 0 · · ·0

 ∈ Rµ j×µ j and j = 1, · · · ,m.

Notice that the pair (Āc, B̄c) is completely determined by
the set of the m controllability indices µ j with ∑

m
1 µ j = n.

Theorem 3. Consider a set of N linear state-feedback plants
with state-space

ẋi = Aixi +Biui

with i= 1, · · · ,N arbitrarily chosen from the class of control-
lable systems with multiple inputs and controllability indices
µ j with ∑

m
j=1 µ j = n and let a target linear plant with state-

space
ẋN+1 = AN+1xN+1 +BN+1uN+1

belong in the same class of systems. Then, there are always
state-feedback Fi and input Gi transformations such that

(sI−Ai−BiFi)
−1BiGi = Φi(sI−AN+1)

−1BN+1 (28)

with Φi 6= 0 for i = 1, · · · ,N.

The proof of Theorem 3 follows the same rationale with
the single-input case under the assumption that the plants in
the set share common controllability indices and as a result
have identical Brunovsky forms. The N plants can match
the target system up to the output map by applying state-
feedback and input transformations ui = Fi,N+1xi +Gi,N+1vi
with the corresponding matrices (F , G) being given as

Fi,N+1 = Bm
−1
i (AmN+1−Am1)Pi, Gi,N+1 = Bm

−1
i BmN+1

(29)

The transfer function which maps the ith plant to the target’s
transfer function up to a nonsingular output matrix Φi is
given by the following relationship

(sI−Ai−BiFi,N+1)
−1BiGi,N+1 = Φi(sI−AN+1)

−1BN+1
(30)

with Φi = P−1
i PN+1 and Φi 6= 0 since the similarity transfor-

mations Pi and PN+1 are square and non-singular. Detailed
proof is omitted due to lack of space.



C. Multi-Input Case with arbitrary Controllability Indices
µ j

In this point, a model-matching type problem for multi-
input plants with not necessarily identical controllability
indices is considered using Lemma 2 below.

Lemma 2. Let A ∈ Rn×n, B ∈ Rn×m have full-column rank
and the pair (A,B) be controllable. Then there always exists
ξ ∈ Rm such that the pair (A,Bξ ) is also controllable.

Consider a set of N multi-input state-feedback plants (Ai,
Bi) with fixed system size n and arbitrary number of inputs.
Assume all pairs (Ai, Bi) are controllable and let ξi ∈Rmi be
appropriate vector according to Lemma 2 such that (Ai, Biξi)
is also controllable with mi being the input dimension of the
ith plant. All plants in the network should be mapped to a
target system chosen from the same class with realization
(Ad , bd). The target pair (Ad , bd) is assumed to be single-
input and controllable with system size n. The target plant
can always be transformed to single-input, by using Lemma
2 and finding appropriate ξd such that the pair (Ad , bdξd) is
also controllable. The vector p = (p1, p2, · · · , pn)

′ represents
the poles of the target plant and also determines the pole
placement of the N plants in the set.

According to Theorem 2 and (25) there always exist state-
feedback gains fi and output transformations Ti that map
the transformed single-input plants to the single-input target
system. The corresponding transfer function that solves the
exact model-matching is given by

T−1
d Ti(sI−Ai−Biξi f

′
i )
−1Biξi = (sI−Ad)

−1bd (31)

where Td and Ti are appropriate similarity transformations
that bring the target system and the ith plant in the network
in controller canonical form, respectively, and fi the state-
feedback gains that assign the poles of each plant at the
location of the target’s poles.

D. Multi-Input - LMI approach

The model-matching type problem has been solved for
multi-input plants with identical controllability indices and
also for multi-input plants with arbitrary controllability in-
dices. An LMI approach to the model-matching problem is
also examined without taking into consideration the control-
lability indices. The systems considered here are controllable
state-feedback plants (Ai, Bi) with system size n and number
of inputs m. Additionally, matrices Bi should have the
same image Im(Bi) ∀i and matrices Ai are assumed to be
constructed by a fixed matrix and an almost free part. The
exact structure of both Ai and Bi matrices are given as

Ai =C+BiΦi, Bi = BGi (32)

where C ∈ Rn×n is fixed, Φi ∈ Rm×n is arbitrary and Gi ∈
Rm×m is arbitrary and nonsingular. The class is defined
by controllable state-feedback plants (Ai, Bi) with structure
given by (32).

Let N plants belong in such a class of systems and form
a network with known topology. Local state-feedback gains

and input transformations are sought to map all the plants
in the network to a target system (Ad , Bd) of the same
class. The following lemma guarantees the existence of input
transformations that map the set of Bi to the target matrix
Bd .

Lemma 3. Consider a set of N matrices Bi ∈ Rn×m which
have full-column rank. Then there is a matrix B ∈ Rn×m

and square and nonsingular matrices Gi ∈ Rm×m such that
BiGi = B if and only if Im{B1}= Im{B2}= · · ·= Im{BN}=
Im{B}.

The matching problem is first solved for the case of two
plants and then it is generalized to the case of N plants.
Consider two state-feedback plants (A1, B1) and (A2, B2)
and let the pairs (Ai, Bi) for i = {1,2} be controllable with
Ai ∈ Rn×n and Bi ∈ Rn×m. We seek K1 and K2 such that

A1 +B1K1 = A2 +B2K2 (33)

B1 and B2 are assumed to satisfy the conditions of Lemma
3, i.e., there exists G ∈ Rm×m square and nonsingular such
that B2 = B1G.

Let Ki = YiX−1
i with Yi ∈ Rm×n and Xi ∈ Rn×n symmetric

positive definite (s.p.f.), for i = 1,2. Rewriting (33) results
in

A1 +B1Y1X−1
1 = A2 +B2Y2X−1

2 (34)

Assume that there exists (s.p.d) X ∈Rn×n such that (33) gives

A1 +B1Y1X−1 = A2 +B2Y2X−1 (35)

which then is post-multiplied by X on both sides and results
in

A1X +B1Y1 = A2X +B2Y2 (36)

The following theorem which is stated without proof
due to lack of space, defines the conditions under which
state-feedback gains Ki = YiX−1 exist for which the model-
matching problem defined earlier can be solved.

Theorem 4. Let N state-feedback plants be completely
determined by controllable pairs (Ai, Bi) with i = 1, · · · ,N,
Ai ∈ Rn×n, Bi ∈ Rn×m and

Im(B1) = Im(B2) = · · ·= Im(BN)

Then ∃ X ∈Rn×n, X > 0, Yi ∈Rm×n and Yj ∈Rm×n for i, j =
1, · · · ,N such that:

AiX +BiYi−A jX−B jYj = 0 ∀i, j ∈ {1, · · · ,N} (37)

if and only if

Ai ∈ {C+BΦ : C ∈ Rn×n,Φ ∈ Rm×n}, and Im(B) = Im(Bi)
(38)

for i = 1, · · · ,N.



1) State-feedback gain synthesis: The solution of the
model matching problem with state-feedback gains Ki =
YiX−1 (common X) is equivalent to the equalities AiX +
BiYi = A jX +B jYj for i, j = 1, · · · ,N. For numerical reasons
we relax these equalities to the approximate conditions

‖AiX +BiYi− (A jX +B jYj)‖< γ (39)

for all i, j ∈ {1, · · · ,N} where γ is a small tolerance. We will
use the following well-known fact.

Lemma 4. Let Φ ∈ Rn×n be arbitrary square matrix. The
following are equivalent.

‖Φ‖< γ ⇔Φ
T

Φ < γ
2I⇔

[
I Φ

ΦT γ2

]
> 0 (40)

In this point, it should be noticed that the solution to the
model-matching problem stated in this paragraph results in
arbitrary target plant not specified a priori. In this respect, the
poles of the target system may be forced to lie in a confined
region of the complex plane setting bounds on certain
performance criteria. Such regions which ensure a minimum
decay rate, a maximum undamped natural frequency and a
minimum damping ratio specified by parameters (a,ρ,θ),
respectively, can be defined via Linear Matrix Inequalities
[11] also known as LMI regions. The approximate model-
matching problem with additional constraints the placement
of the poles of the n closed-loop matrices in the convex
region (a,ρ,θ) can be solved as follows:

Proposition 1. Consider a set of N controllable state-
feedback plants (Ai,Bi) with structure as in (32) and Ai ∈
Rn×n, Bi ∈ Rn×m. If there exist X ∈ Rn×n, Yi ∈ Rm×n and
Yj ∈ Rm×n, then the approximate model-matching problem
(39) with additional pole placement constraints [11] can be
solved if and only if the following LMI constraints

X = XT > 0 (41)[
I AiX +BiYi−A jX−B jYj
∗ γ2I

]
≥ 0 (42)

for i, j ∈ {1, · · · ,N} and i > j

2aX +Λi +Λ
T
i < 0, i ∈ {1, · · · ,N}

(43)[
−rX ΛT

i
∗ rX

]
< 0, i ∈ {1, · · · ,N}

(44)[
sinθ [Λi +ΛT

i ] cosθ [−Λi +ΛT ]
∗ sinθ [Λi +ΛT

i ]

]
< 0, i ∈ {1, · · · ,N}

(45)

are feasible, where Λi = AiX +BiYi

IV. DISTRIBUTED CONTROL DESIGN FOR NETWORKS
OF NON-IDENTICAL PLANTS

In this section stabilizing distributed controllers

ui = Fixi +Givi (46)

for networks of non-identical plants are constructed. The
plants are assumed to be chosen from the class of lin-
ear systems with identical controllability indices µ j with
∑

m
j=1 µ j = n where n and m represent the systems’ dimension

and the number of inputs, respectively. The state-space form
of each agent is given by

ẋi = Aixi +Biui, xi0 = xi(0) (47)

According to Theorem 3 there exist Fi, Gi and Φi of
appropriate dimensions for all i = 1, · · · ,N such that

(sI−Ai−BiFi)
−1BiGi = Φi(sI−AN+1)

−1BN+1 (48)

where Φi 6= 0 for i = 1, · · · ,N and the pair (AN+1,BN+1)
represents target plant common for all agents in the network.
We write (48) in state-space form excluding the output map.

ẋi = (Ai +BiFi)xi +BiGivi, ξ̇ = AN+1ξ +BN+1vi (49)

Eq. (48) and (49) imply that the closed-loop states xi of
all agents scaled by Φ

−1
i map to the same state-vector

ξ , i.e. Φ
−1
i xi = ξ . Thus, applying top-down or bottom-

up distributed LQR methods to a network formed by
N identical plants (AN+1,BN+1) results in stabilizing dis-
tributed state-feedback gain K̂ which also stabilizes the
closed-loop agents if post-multiplied by non-singular matrix
diag{Φ−1

1 , · · · ,Φ−1
N }

Theorem 5. Consider a network of N non-identical agents
with state-space given by (47) and topology specified by
Laplacian matrix L with maximum vertex degree dmax. The
agents share the same controllability indices and therefore
according to Theorem 3 there exist Fi, Gi and Φi such
that (48) holds for all i = 1, · · · ,N. Consider reduced-order
networked LQR problem (11) with NL = dmax + 1 identical
plants defined by

(ANL+1,BNL+1), (Φ−1
i (Ai +BiFi)Φi,Φ

−1
i BiGi)

Let M = RNxN be a symmetric matrix with the following
property:

λi(M)>
NL

2
, ∀λi(M) ∈ S(M)\{0} (50)

and construct the state-feedback gain as in Theorem 1:

K̂ = IN⊗K1 +M⊗K2 (51)

Let Ni represent the interconnections of the ith agent. Then
the state-space equation

ẋi = [Ai +Bi(Fi +GiK1Φ
−1
i )]xi +BiGi ∑

j∈Ni

K2Φ
−1
j x j (52)

is asymptotically stable for all i = 1, · · · ,N.

Theorem 6. Consider a network of N non-identical agents
with state-space given by (47) and topology specified by
Laplacian matrix L. The agents share the same controllability
indices and therefore according to Theorem 3 there exist
Fi, Gi and Φi such that (48) holds for all i = 1, · · · ,N.



Consider state-feedback gain K = −R−1BT
N+1P where P is

the stabilizing solution to

AT
N+1P+PAN+1−PBN+1R−1BT

N+1P+Q1 = 0 (53)

Consider fictitious network composed of N plants with re-
alization (AN+1,BN+1) and same topology as the original
one. Apply bottom-up method to the fictitious network and
find scaling matrix Ξ such that the distributed state-feedback
gain

K̄ = IN⊗K +L⊗ΞK (54)

minimizes an upper bound of the corresponding performance
index (16) and the closed-loop matrix

IN⊗ (AN+1 +BN+1K)+L⊗ (BN+1ΞK) (55)

is Hurwitz. Let Ni represent the interconnections of the ith

agent in the original network. Then the state-space equation

ẋi = [Ai +Bi(Fi +GiKΦ
−1
i )]xi +BiGi ∑

j∈Ni

ΞKΦ
−1
j x j (56)

is asymptotically stable for all i = 1, · · · ,N.

The proofs are omitted due to lack of space. It should
be noted that Theorems 5 and 6 can be applied to all
classes of systems constituting networks of non-identical
plants examined in the previous section. It should also be
stated that the choice of target plants plays a key role in
the synthesis of the distributed scheme, since matrices Φi
possibly selected nearly singular might result in problematic
performance in cases where perturbations and inaccuracies
of the models occur.

A. Example

To demonstrate the applicability of our approach, top-
down method is used to solve a cooperative stabilization
problem of six linear non-identical agents constituting a
network and having the ability to exchange information about
their states. The interactions among the agents are limited
to the neighborhood of its agent where the sparsity of the
communication topology is shown in Fig. 1. and the network
is described by an undericted graph G .

Fig. 1. Communication topology of the six agents.

Each node is modelled as a two-mass-spring system with
a single input force. Two masses mi,1 and mi,2 are connected
through a spring with spring constant ki,2 while the mass
mi,1 is attached to a rigid wall through a spring with spring
constant ki,1. A force input ui is applied on mi,1 and xi,1 and
xi,2 are the displacements of the two masses. The state-space

form of each two-mass-spring system is given by
ẋi,1
ẍi,1
ẋi,2
ẍi,2

=


0 1 0 0

−ki,1−ki,2
mi,1

0 ki,2
mi,1

0
0 0 0 1

ki,2
mi,2

0 −ki,2
mi,2

0


︸ ︷︷ ︸

Ai


xi,1
ẋi,1
xi,2
ẋi,2

+


0
1

mi,1

0
0


︸ ︷︷ ︸

Bi

ui (57)

where the state vector is assumed to be accessible for
measurement. The augmented state-space of the network is
given here for simplicity

˙̃x = diag{A1, · · · ,A6}x̃+diag{B1, · · · ,B6}ũ
x̃0 = [xT

1 (0), · · · ,xT
6 (0)]

T (58)

The control ũ objective is to stabilize each two-mass-
spring subsystem cooperatively moving all the masses to
zero displacement position. The first step is to specify a
target system that all the agents in the network will map to
via local state-feedback. The state-space form of the target
system share the same structure with the agents and is given
as in (57). The masses and the spring constants selected for
simulations of each agent and the target are shown in Table
I where the target’s constants are chosen as an average of
the corresponding values of the six nodes.

TABLE I
MASSES AND SPRING CONSTANTS

System ki,1 ki,2 kmi,1 mi,2
agent 1 1.50 N/m 1.00 N/m 1.10 kg 0.90 kg
agent 2 3.10 N/m 2.00 N/m 2.10 kg 1.50 kg
agent 3 0.50 N/m 1.10 N/m 1.50 kg 3.20 kg
agent 4 2.00 N/m 1.30 N/m 3.10 kg 2.10 kg
agent 5 1.70 N/m 3.10 N/m 4.10 kg 2.50 kg
agent 6 2.20 N/m 4.20 N/m 5.10 kg 4.20 kg

target N +1 1.83 N/m 2.12 N/m 2.83 kg 2.40 kg

Since the target system has been defined, according to
Theorem 2 and the controllability of the pairs (Ai,Bi) there
exist local state-feedback gains Fi and similarity transfor-
mations Ti and TN+1 such that (24) holds. Matrices Ti and
TN+1 are similarity transformations that bring the state-space
form of the ith node and the target system, respectively, into
controller canonical form while the state-feedback gains Fi
place the poles of all agents at the target’s location. Since
the plants in the network are single-input systems Fi and Ti
are unique and may be obtained from Matlab functions place
and canon, respectively.

Let Φi = T−1
i TN+1 for i = 1, · · · ,6 then it can be proved

that

Φ
−1
i (sI−Ai−BiFi)

−1bi = (sI−AN+1)
−1BN+1 (59)

where the controllable pair (AN+1,BN+1) represents the tar-
get system. A stabilizing distributed controller is designed
by using Theorem 5 and selecting the design matrix M to
be equal to the Laplacian matrix L of the graph G . Full-
centralized networked LQR problem (11) is solved for NL =
2+ 1 identical plants (AN+1,BN+1) and yields a controller



matrix with structure as in (12). The stabilizing distributed
controller for the network of six different two-mass-spring
systems has the same structure as the corresponding graph
and is constructed as follows

K̂ = diag{F1, · · · ,F6}+(I6⊗K1+L⊗K2)diag{Φ−1
1 , · · · ,Φ−1

6 }
(60)

Two cases with same initial conditions are presented for
different choices on the penalty imposed on the agents’
states. Fig. 2 and 4 show the displacements of the two masses
of each two-mass-spring system where low penalty has been
put on the interaction of neighbouring states of the agents
while in Fig. 3 and 5 the emphasis has been shifted on the
state-information exchange.
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Fig. 2. Displacement of mi,1 of six agents - low emphasis on the
information exchange.
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Fig. 3. Displacement of mi,1 of six agents - high penalty on the information
exchange.
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Fig. 4. Displacement of mi,2 of six agents - low emphasis on the
information exchange.

V. CONCLUSION

We have introduced a technique to solve stability problems
for networks formed by non-identical linear plants. The
first stage of the method solves model-matching problems
and defines the synthesis of local state-feedback controllers
which match all the plants in the network with a target
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Fig. 5. Displacement of mi,2 of six agents - high penalty on the information
exchange.

plant. It was shown that the structure of the systems play
a key role and thus various types of linear systems were
investigated with the aim at finding the conditions under
which the existence of such schemes is guaranteed. The
model-matching methods proposed in this paper transform
the original network to a fictitious one composed of identical
closed-loop systems up to an arbitrary nonsingular output
matrix. Depending on this fact, it was shown that existed
distributed schemes proposed for networks of identical plants
can be converted to solve stability problems of networks
formed of non-identical plants. Further work is needed,
however, to extend the method to be applied to a more
generic class of systems and can therefore be implemented
successfully in practical applications.
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