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Abstract: This paper reports a novel analytic model of this multichannel spark 

discharge, considering the delay time in the breakdown process, the electric 

transforming of the discharge channel from a capacitor to a resistor induced by the air 

breakdown, and the varying plasma resistance in the discharge process. The good 

agreement between the experimental and the simulated results validated the accuracy 

of this model. Based on this model, the influence of the circuit parameters on the 

maximum discharge channel number (MDCN) is investigated. Both the input voltage 

amplitude and the breakdown voltage threshold of each discharge channel play a 

critical role. With the increase of the input voltage and the decrease of the breakdown 

voltage, the MCDN increases almost linearly. With the increase of the discharge 

capacitance, the MDCN first rises and then remains almost constant. With the increase 

of the circuit inductance, the MDCN increases slowly but decreases quickly when the 

inductance increases over a certain value. There is an optimal value of the capacitor 

connected to the discharge channel corresponding to the MDCN. At last, based on 

these results, to shorten the discharge time, a modified multichannel discharge circuit 

is developed and validated by the experiment. With only 6 kV input voltage, 31 

channels discharge is achieved. The breakdown voltage of each electrode gap is larger 

than 3 kV. The modified discharge circuit is certain to be widely used in the PSJA 

flow control field. 

 

Keywords: multichannel discharge circuit; circuit model; PSJA array; plasma flow 

control 

 

PACS: 52.50.Dg, 52.30.-q, 50.80.Mg, 47.85.L 

 

1 Introduction 

As a promising active flow control method, the plasma flow control is an 

emerging research hotspot. The wide and promising prospect of this technology has 

been validated in many flow control fields, such as the separation control, jet 

boundary-layer transition control, high speed jet control, noise mitigation [1-6]. Same 
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as the traditional surface dielectric barrier discharge actuators (SDBD), the plasma 

synthetic jet actuator (PSJA) has the advantage of lack of moving part. Moreover, the 

PSJA can produce high-speed pulsed jet. The characteristic drives the PSJA to be 

applied in the high-speed flow control field successfully, such as 

shock-wave/boundary-layer interaction control[7,8], shock-wave manipulation, and so 

on [9,10]. 

The low efficiency of the PSJA has been validated by many experiment and 

simulation results [11-14]. Increasing the distance of the discharge region can improve 

the efficiency. But the distance is restricted by the input voltage. What’s more, PSJA 

actuator is different from the SDBD actuator[15], which can be used to meter scale. 

The orifice of the PSJA is only onin the order of millimeter[16,17], which is far less than 

the region of the flow field needed to be affected. To solve these two problems, the 

PSJA array is necessary in the practical application. Based on a pulsed DC discharge 

circuit, the team of Clemens used a PSJA array to control of the shock/boundary-layer 

interaction[7,10]. The PSJA array consisted of only 3 PSJAs, which was far from the 

number needed in the practical application. And owing to the large current-limiting 

resistor in the discharge circuit, most of the energy is wasted by the circuit resistor. 

Therefore, this circuit is not efficient to drive the PSJA array. However, different from 

the barrier discharge[18,19], the resistance characteristic of the arc discharge channel is 

negative. As a result, it is difficult to drive the PSJA in serials by a power supply. As a 

result, several power supplies are needed to drive the actuator array, which is 

apparently not feasible in practice. Tie et al. proposed a six channel spark discharge 

method [20]. However, the necessary condition of very high trigger voltage (40 kV) 

and short rise time (25 ns) increases the technical requirements for the power supply. 

To solve this problem, a special multichannel discharge circuit is presented 

developed by us, which can drive the multichannel discharge using only one supply 

circuit[21]. And no extra resistor is necessary in this circuit. However, the electric 

characteristics of this circuit are not clear currently. The relationship between the 

circuit parameters and the maximum discharge channel number (MDCN) has not been 

uncovered. That how to choose the circuit parameters lacks of guiding theory. 

In this paper, an electric model on this multichannel discharge circuit is put 

forward, which is validated by experimental data. Using this model, the influence of 

the circuit parameters on the MDCN is investigated. Based on the influence rules, an 

optimization of the multichannel discharge circuit is obtained and validated by the 

experiment. 

2 The model of the multichannel discharge circuit 

2.1 The multichannel discharge circuit 

To achieve the multichannel discharge, a principle circuit is designed, which is 
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shown in 
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Fig. 1. A high voltage DC power system is adopted as the power supply. The 

discharge frequency can be adjusted by changing the current limiting resistor Rlim. The 

inductance L represents the wire inductance. The inductance R represents the wire 

resistance and the equivalent series resistance of the capacitor C. The discharge 

energy is controlled by the capacitor C and the breakdown voltage of the first 

electrode couple (EC) EC1. The relay capacitor, C1,2, C2,2,…,Cn-1,2, and the resistor, 

R1,2, R2,2,…, Rn-1,2 are used to relay the high voltage and ensure the multichannel 

discharge. 
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Fig. 1. The multichannel discharge circuit diagram 

2.2 Model establishment 

2.2.1 Basic assumptions 

To establish this simulation model, some assumptions must be made. 

A) The electrode couple is seen as a capacitor before breakdown and a variable 

resistor after breakdown. The variable resistance is calculated based on an 

improved mayr-type arc model developed by Pieter H. Schavemaker[22]. 

B) The breakdown voltage amplitude of the electrode couple is not fixed. The 

distribution satisfies the normal assumption. 

C) The breakdown delay time is not fixed. The distribution satisfies the normal 

assumption. The mean breakdown delay time is calculated using an empirical 

formula[23]. 

D) When the breakdown of electrode couple ECi does not happen, the current in the 

next electrode couple is ignored. 

2.2.2 The main submodels 

To simulate the multichannel discharge process, there are three main submodels. 

The first submodel is used to decide whether or not the breakdown of one electrode 

couple happens. When the breakdown happens, the electrode couple transforms from 

a capacitor to a variable resistor. The second submodel is used to calculate the 
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voltage-current characteristic of the variable resistor. The last submodel is used to 

decide whether or not the spark channel between the electrode couple terminates. 

Breakdown process is a complex process. The breakdown of one electrode couple 

is a random process. Even in a same condition, it is not definite that whether or not 

the breakdown of one electrode couple happens. In this submodel, the decision 

criterions are defined as following: 

A) The voltage amplitude across the electrode couple must increase to a 

threshold value. The distribution of the threshold values in different times meets the 

normal assumption. The mean value is calculated by equation (1). p represents the 

pressure, which is in bars; d is the distance between the electrode couple, which is in 

centimeters. The standard deviation of the normal distribution stands for the 

disturbance level. 

breakdown 24.36 6.72 (kV)U pd pd                      (1) 

B) The above condition must remain a certain time, which is called the 

breakdown delay time. The distribution of the breakdown delay time values in 

different times meets the normal assumption. The mean value is calculated by an 

empirical formula, as equation (2). ρ is the air density in g/cm3. E is the average 

electric field in kV/cm. 

2.44

delay 3.44
97800 (s)T

E


                        (2) 

The voltage-current characteristic of the variable resistor is calculated based on 

an improved mayr-type arc model developed by Pieter H. Schavemaker. The arc 

model is described by the following equation. g is the arc conductance; U is the arc 

voltage; I is the arc current; τ is time constant; P0 is the cooling power; P1 is the 

cooling power affected by the heating power; e0 is the constant arc voltage in the high 

current area. 

0 1 0

1
1

max( , )

dg UI
g

dt P PUI e I

 
    

                 (3) 

After breakdown, the arc conductance changes with the arc current and arc 

voltage. In this simulation model, when the arc conductance decreases to a threshold 

value, the discharge channel between the electrode couple is supposed to disappear. 

2.2.3 The differential equations of the multichannel discharge circuit 

Based on the above assumptions, after the breakdown of the electrode couple 

ECi(i<n-1), the discharge circuit diagram can been simplified, as shown in Fig. 2. 
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Fig. 2. The simplified circuit diagram after the breakdown of ECi 

The differential equations of the above circuit are shown in equations (4). In this 

equation, Ux,2 means the voltage across the capacitor Cx,2. For example, U1,2 is the 

voltage across the capacitor C1,2. The Ix means the current flowing through the 

electrode couple ECx. The gx represents the arc conductance of the electrode couple 

ECx. The C1 stands for the equivalent capacitance of the electrode couple, which is 

supposed as 1 pF. The C2 means the capacitance of the capacitor Cx,2. The R2 is the 

resistance of the resistor Rx,2. Owing to the same value, for convenient calculation, 

these capacitors and resistors are not distinguished in these equations. 
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        (4) 

When the breakdown of the electrode couple ECn-1 happens, the circuit diagram 

can’t be described as Fig. 2. The corresponding diagram is shown in Fig. 3. The 

corresponding differential equations change as well, which are expressed in equation 

(5). 
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Fig. 3. The simplified circuit diagram after the breakdown of ECn-1 
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When the breakdown of the electrode couple ECn happens, a complete discharge 

circuit is built, which is shown in 
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Fig. 4. The corresponding differential equations are expressed in equation (6). 
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Fig. 4. The simplified circuit diagram after the breakdown of ECn 
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2.2.4 The simulation procedure 

Based on the above submodels and differential equations, the multichannel 

discharge process can be simulated. The simulation flow chart is shown in Fig. 5. In 

this figure, A represents the state parameters of the circuit, which are calculated by 

solving the above differential equations. The simulation begins with the breakdown of 

the first electrode couple. If any of the arc channel terminates, the simulation stops 

and outputs the calculation results. If breakdown happens in all electrode couples, it 

means the multichannel discharge circuit works properly. Otherwise, it means the 

multichannel discharge circuit fails to achieve multichannel discharge. 
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Fig. 5. The simulation flow chart 

2.3 Model validation 

To validate the simulation model, an experiment system is built, as shown in Fig. 

6. To improve the accuracy of the experimental data, the discharge electrodes are 

made of two stainless steel spheres. The diameter of the sphere is up to 25 mm, larger 

than the electrode couple distance. The two steel spheres are fixed on two micro 

positioning systems (sensitivity 1 μm), respectively. The voltage and the current are 

measured by a high-voltage probe (Tektronix, P6015) and a current probe (Pearson, 

6600), respectively. An oscilloscope (Tektronix, DPO4014) is used to display and 

record the data. In this experiment, the capacitor C is 1 nF, the inductance is 1.63 μH, 

the total value of wire resistance and equivalent series capacitor resistance is 1.89 Ω. 

The values of capacitance and resistance are obtained by an impedance analyzer 

(Agilent 4285A). 

CDC
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EC1 EC2 EC3

L
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Current Probe

Oscilloscope

High Voltage Probe

 

Fig. 6. Experiment system 

When the distance of EC2 and EC3 are set 0 mm, this discharge circuit is the 

traditional one channel discharge circuit. Based on the measured current of the one 

channel discharge circuit, these parameters of Schavemaker arc model are determined 

from the least squares fit: τ=2.28e-08 s, P0=219 W, P1=0.39 and e0=56.41 V. As 

shown in Fig. 7, the simulation result shows a good agreement with the experiment 
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result. 
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 Fig. 7. The measured and simulated current waveforms 

Based on these parameters, three channel discharge circuit is simulated. The 

measured and simulated results are shown in Fig. 8. The simulated current waveform 

shows a good agreement with the experimental current waveform. After the 

breakdown of the first electrode couple, EC1, the gap transforms from a capacitor to a 

resistor, and the capacitor C1,2 begins to be charged. Then the current in the circuit 

increases. At about 132 ns, the breakdown of the last electrode couple happens, all arc 

channels connected with each other by wire directly. At this time, the current 

increases greatly. The simulated voltage waveform is similar with the experimental 

voltage waveform, except the great oscillation after breakdown. At about 61 ns, the 

breakdown of the second electrode couple happens, the electric characteristic of the 

electrode couple EC2 began to change from a capacitor to a resistor. Then the voltage 

across the capacitor C2,2 increases. In totally, the simulation model can catch the 

characteristics of the multichannel discharge circuit. 
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Fig. 8. (color online) The measured and simulated results: (a) Current waveform (b) Voltage 

waveform 

3 Results and discussion 

This novel multichannel discharge circuit can multiply the discharge channel. 

Based on this method, the region affected by the plasma actuators can be enlarged. To 

further understand this circuit, the characteristics of this circuit must be investigated. 

3.1 The working mechanism of the multichannel discharge circuit 

Owing to negative current-voltage (I-V) character of the spark discharge, as 
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previously reported[24], the array of discharge can be only generated by using a 

distributed resistive ballast previously, where each spark discharge is individual 

ballast. However, in this special circuit, array of discharge is generated without 

resistance ballast. Based on this model, the working mechanism of this circuit can be 

revealed in detial. 

In a 5 channels discharge circuit, the voltage across C, C1,2, C2,2, C3,2 and C4,2 is 

plotted in Fig. 9. To show the impedance change induced by breakdown, the voltage 

across EC2 (UEC2) and discharge current are plotted in Fig. 10. After the breakdown of 

the first electrode couple, the voltage across the capacitor C1,2 increases quickly. 

However, with the increase of Uc1,2, the voltage across the capacitor C2,2 keeps almost 

0 V until the breakdown of EC2. In other words, the UEC2 is the same as Uc1,2 until the 

breakdown of EC2 happens. And the impedance of relay capacitor C2,2 can be ignored 

before the breakdown of EC2. At about 66 ns, the breakdown of EC2 induces that the 

electrode couple EC2 changes from an equivalent capacitor to an equivalent resistor. 

Meanwhile, the voltage across the capacitor C2,2 increases quickly, while the voltage 

across the EC2 decreases. At about 144 ns, the UEC2 has decreases to only 58.5 V. As 

a reuslt, Uc2,2 has increased to a high value, which can be used to ignite the third 

electrode couple (EC3). As a reuslt, the remained electrode couples are broken down 

in sequence, which can be revealed by the variation of the voltage across the capacitor 

C3,2 and C4,2. So the total discharge process can be separated into two processes: 

trigger discharge and spark discharge. The trigger discharge process starts from the 

breakdown of the first electrode gap and ends with the breakdown of the last electrode 

gap. The remaining rest of the process is the spark discharge. 

It is known that, to ingite the air between the electrode couple, the high voltage is 

necessary. Before the breakdown of each electrode couple, the electrode couple, 

which can be seen as a small capacity capacitor, is connected with a large relay 

capacitor in serials. Therefore, when the power supply outputs the pulsed voltage, the 

impedance of relay capacitor can be ignored. The voltage across the electrode couple 

would increase until the breakdown. As the negative current-voltage (I-V) character of 

the spark discharge, the voltage drop of an ignited electrode couple is so small that the 

discharge channel can be seen as wire. As a result, the voltage across the next 

electrode couple would increase until the breakdown. Taking advantage of the 

negative current-voltage (I-V) character of the spark discharge and the impedance 

change induced by the breakdown, this circuit can generate multichannel discharge 

without distributed resistive ballast. 
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Fig. 9. (color online) The voltage across different capacitor 
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Fig. 10. (color online) The discharge current and the voltage across the second electrode couple 

To ensure this circuit work properly, two aspects must be paid attention to. One is 

that the breakdown voltage of the electrode couple EC2, EC3,…, ECn should be less 

than that of the electrode couple EC1. Another is that the discharge channel must 

remain alive until breakdown happens in all electrode gaps. These two aspects are 

affected by the circuit parameters, which is investigated in the following. 

3.2 The influence of circuit parameters 

The main parameters of this circuit which affects the maximum discharge channel 

number are shown in Table 1. As described above, the breakdown voltage and the 

breakdown delay time are not fixed. When the parameters of the circuit keep 

unchanged, the maximum number of the discharge channels varies. Therefore, in this 

paper, in a given condition, the simulation is done for 100 times. If the multichannel 

discharge circuit works properly in above 90 times, the number of the electrode 

couple increases one. Otherwise, the number of the electrode couple is the maximum 

number of discharge channel in this given condition. 

Table 1. The main parameters of the multichannel discharge circuit 

Parameter Meaning 

U1 
The mean voltage across the capacitor C before breakdown, which is 

determined by the distance of the first electrode couple 

U2 The mean breakdown voltage of the electrode couple, EC2, EC3,…,ECn 

C0 The capacitance of the main discharge capacitor C  

L The inductance of the circuit 

C2 The capacitance of the capacitor C1,2, C2,2, …,Cn-1,2 

3.2.1 The influence of U1 

Except the U1, the value of other parameters is set as following: U2=4000 V, 

C0=10 nF, C2=0.2 nF, R2=1 MΩ, L=1.65 μH. The MDCN versus U1 is shown in Fig. 

11. When the voltage across capacitor C (U1) increases, the MDCN almost increases 

linearly. 
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Fig. 11. The maximum of discharge channels versus U1 

This phenomenon is easy to explain. Equation (2) has indicated that high electric 

field strength leads to a short breakdown delay time. So the time to form a complete 

discharge channel from the first electrode couple EC1 to the last electrode couple ECn 

decreases with the increase of the voltage U1. The short time benefits that the formed 

discharge channel keeps live. What’s more, with the increase of voltage U1, the 

current in the trigger discharge process increases. As a result, more energy is 

deposited in the discharge channel, which can prevent the discharge channel to 

terminate. The time to form 5 discharge channels for different voltage U1 is plotted in 

Fig. 12. The current waveforms in the trigger discharge process for different voltage 

U1 is plotted in Fig. 13. These two figures can validate the claim. 
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Fig. 12. The time to form 5 discharge channels versus U1 
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Fig. 13. (color online) The current waveforms versus U1 

3.2.2 The influence of U2 

Except the U2, the value of other parameters is set as following: U1=10000 V, 

C0=10 nF, C2=0.2 nF, R2=1 MΩ, L=1.65 μH. The MDCN versus U2 is shown in Fig. 
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14. Obviously, with the increase of voltage U2, the MDCN almost decreases linearly. 
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Fig. 14. The maximum discharge channel number versus U2 

In generally, the increase of U2 presents the increase of the distance of electrode 

couple. As the voltage U0 is fixed, with the increase of U2, the overvoltage decrease. 

As a result, the electric field intensity within the air between the electrode couple 

decreases, leading the increase of breakdown delay time. Meanwhile, the current in 

the trigger discharge process decreases. This change does harm to the increase of 

discharge channel number. 

3.2.3 The influence of C0 

Except the C0, the value of other parameters is set as following: U1=6000 V, 

U2=4000 V, C2=0.2 nF, R2=1 MΩ, L=1.65 μH. The maximum of discharge channel 

number versus C0 is shown in Fig. 15. Obviously, with the increase of voltage C0, the 

maximum of discharge channel number increases. However, over a certain value of 

the capacitance C0, its effect becomes more and more weak. Therefore, to increase the 

MDCN, it is better to increase the voltage U0 rather than the capacitance C0. 
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Fig. 15. The maximum of discharge channels versus C0 

3.2.4 The influence of C2 

Except the C2, the value of other parameters is set as following: U1=6000 V, 

U2=4000 V, C0=10 nF, R2=1 MΩ, L=1.65 μH. The MDCN versus C2 is shown in Fig. 

16. This figure indicates that there is an optimized value of the capacitance C2, about 

100 pF. When the capacitance C2 is larger or smaller than this value, the MDCN 

decreases. 
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Fig. 16. The maximum of discharge channels versus C2 

The reason for this phenomenon is as following. With the decrease of the 

capacitance C2, the current in the trigger discharge process decreases. Less energy is 

deposited in the discharge channel. As a result, the formed discharge channel is easy 

to terminate. The current waveforms in the trigger discharge process for different 

capacitance C2 is plotted in Fig. 17, which can show the variation of current with the 

capacitance C2. However, with the increase of the relay capacitanceC2, more energy is 

needed to charge these relay capacitors to the same voltage. As the energy stored in 

the capacitor C is fixed, the discharge channel number decreases. 
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Fig. 17.  (color online) The current waveforms versus C2 

3.2.5 The influence of L 

Except the L, the value of other parameters is set as following: U1=6000 V, 

U2=4000V, C0=10 nF, C2=100 pF, R2=1 MΩ. The maximum of discharge channel 

number versus L is shown in Fig. 18. There are three stages in this curve. In the first 

stage, the inductance is less than 16.5 μH, and the maximum discharge channel 

number ranges from 16 to 18. With the inductance increases to a large value, the 

maximum discharge channel number increase to a higher stage, ranging from 22 to 25. 

But when the inductance increases too large, the discharge channel number decreases 

to only one. 
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Fig. 18. The maximum of discharge channels versus L 

3.3 The optimization of the discharge circuit 

 Based on the self-made mathematical model, the influence of the multichannel 

discharge circuit parameters is investigated. These parameters can be decided into two 

categories. One can be not randomly changed to increase the discharge channel 

number. The voltage U1 is limited by the power supply system. The capacitor C0 is 

limited by the discharge frequency. The voltage U2 is limited by the plasma actuator. 

Another can be changed randomly, such as the capacitors Cx,2, the inductance L. 

However, with the increase of the inductance, the discharge current decreases and the 

discharge time increases. This goes against the improvement of the energy efficiency. 

In order to increase the discharge channel number without decreasing the energy 

efficiency, the discharge circuit must be modified. The modified circuit diagram is 

shown in Fig. 19. In this circuit, the inductance L1 only plays role in the trigger 

discharge process. When breakdown happens in all electrode couple, the impedance 

of the discharge channel decreases quickly. As a result, the inductance L1 doesn’t 

work. 
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Fig. 19. The modified multichannel discharge circuit 

 To validate this optimized circuit diagram, based on this optimized parameters, a 

31-channel discharge experiment is designed. The discharge image is shown in Fig. 

20, which is captured with a Nikon D7000 camera, f-stop f/5.3, shutter speed 1/320 

sec, ISO 200. The first electrode couple is made of two hemispheres, and the 

corresponding breakdown voltage is about 6 kV. The remained electrode couples are 

made of tungsten needles with 2 mm distance. Due to the tip effect, the corresponding 

breakdown voltage ranges from 3 to 4 kV. The discharge current and voltage 

waveforms are shown in Fig. 22. The voltage across the discharge capacitor C, 

determined by the first electrode couple, is only 6 kV. To form a completed discharge 

channel, the time of the trigger discharge process is as long as 6.5 μs. Owing to the 
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increase of the plasma resistance, the spark discharge process is shortened to 0.77 μs. 

Based on this waveform, the plasma resistance is estimated to be 35.87 Ω. 
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Fig. 20.  (color online) The discharge images of 31 channels 
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Fig. 21. (color online)The discharge voltage and current waveform with 31 discharge channels 

34 Conclusions 

To deepen the understanding of the electrical characteristics and optimize the 

multichannel discharge circuit, an electric model on a multichannel discharge circuit 

is developed in this paper. The good agreement between the experiment and the 

simulation based on this model has shown the accuracy. 

Results shown there are two stages in the working process of this multichannel 

discharge circuit. The first stage is the trigger discharge process. By voltage relay, the 

voltage across the electrode couples increases to its corresponding breakdown voltage 

in sequence. The second stage is the spark discharge process. When breakdown 

happens in all electrode gaps, the discharge current increases quickly. 

Based on this model, the influence of the circuit parameters on the MDCN is 

investigated in detail. Both the input voltage amplitude and the breakdown voltage 

threshold of each discharge channel play a critical role. With the increase of the input 

voltage and the decrease of the breakdown voltage, the MCDN increases almost 

linearly. With the increase of the discharge capacitance, the MDCN first rises and then 

remains almost constant. With the increase of the circuit inductance, the MDCN 

increases slowly but decreases quickly when the inductance increases over a certain 

value. There is an optimal value of the capacitor connected to the discharge channel 

corresponding to the MDCN. 

Based on these influence rules, to shorten the discharge time, a modified 

multichannel discharge circuit is developed and validated by the experiment. With 

only 6 kV input voltage, 31-channel discharge is achieved. The breakdown voltage of 

each electrode gap is larger than 3 kV. Owing to the increase of the plasma resistance, 

the capacitor deposits its energy in a short time, about 770 ns. 
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