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Abstract In the standard approach to evolutionary games and replicator dynamics,
differences in fitness can be interpreted as an excess from the mean Malthusian growth
rate in the population. In the underlying reasoning, related to an analysis of “costs”
and “benefits”, there is a silent assumption that fitness can be described in some type
of units. However, in most cases these units of measure are not explicitly specified.
Then the question arises: are these theories testable? How can we measure “benefit”
or “cost”? A natural language, useful for describing and justifying comparisons of
strategic “cost” versus “benefits”, is the terminology of demography, because the
basic events that shape the outcome of natural selection are births and deaths. In this
paper, we present the consequences of an explicit analysis of births and deaths in an
evolutionary game theoretic framework. We will investigate different types of mortality
pressures, their combinations and the possibility of trade-offs between mortality and
fertility. We will show that within this new approach it is possible to model how strictly
ecological factors such as density dependence and additive background fitness, which
seem neutral in classical theory, can affect the outcomes of the game. We consider the
example of the Hawk–Dove game, and show that when reformulated in terms of our
new approach new details and new biological predictions are produced.

The project is realized under grant Marie Curie Grant PIEFGA-2009-253845.

K. Argasinski (B)
Department of Mathematics, University of Sussex, Brighton, BN1 9QH, UK
e-mail: argas1@wp.pl; K.Argasinski@sussex.ac.uk

M. Broom
Centre for Mathematical Science, City University London,
Northampton Square, London, EC1V 0HB, UK
e-mail: Mark.Broom.1@city.ac.uk

123



K. Argasinski, M. Broom

Keywords Replicator dynamics · Mortality · Fertility · Eco-evolutionary feedback ·
Trade-off · Density dependence

Mathematics Subject Classification 92D40

1 Introduction

The relationship between ecology and evolution is one of the major topics under cur-
rent development in biology. This research perspective was formulated by Evelyn
Huthinson in his essay “Ecological Theatre and the Evolutionary Play” (Hutchinson
1965) describing the necessity of the investigation of ecological factors that shape nat-
ural selection. This idea was very influential, and the topic of feedback between ecology
and evolution originated by this work is still discussed (Post and Palkovacs 2009). The
basic methodology applied to the modeling of ecological and evolutionary problems is
that of population dynamics. As postulated by Geritz and Kisdi (2011), realistic math-
ematical models should be mechanistic and derived from basic principles describing
individual behaviour. A natural methodology which satisfies this assumption is evo-
lutionary game theory. Methods of evolutionary game theory (Maynard Smith 1982;
Hofbauer and Sigmund 1988, 1998; Cressman 1992; Weibull 1995) are very pop-
ular in many fields not related to biology, such as social sciences, economics and
even telecommunication engineering. However, in the field of evolutionary ecology
modern developments in evolutionary games are somewhat marginalized. Criticism
of mathematical methods arise from the individual based approach (Uchmański and
Grimm 1986) presented by Adam Lomnicki in the first book in the field, “Population
ecology of individuals” (Lomnicki 1988). This approach inspired the development of
computer simulation techniques based on multiagent systems (Grimm and Railsback
2005. One of the most serious complaints about evolutionary games is that they lack
ecological details and that game theoretic models are too abstract and idealized (as was
convincingly highlighted by Mylius 1999 by example of the Battle of the Sexes game).
This problem can be shown by the example of the extensively used Hawk–Dove game,
described by the payoff matrix:

T =
⎛
⎝

H D
H 0.5(G − C) G
D 0 0.5G

⎞
⎠

where G means the “benefit” in fitness of obtaining the reward and C the additive
“cost” of conflict. The problem is as follows. In the standard approach to evolutionary
games and replicator dynamics, differences in fitness can be interpreted as an excess
from the mean Malthusian growth rate in the population (Roff 2008). In the under-
lying reasoning, related to an analysis of “costs” and “benefits”, there is the implicit
assumption that fitness can be described in some kind of units. However, in most cases
these units of measure are not explicitly specified. Then the question arises: are these
theories testable? How can we measure “benefit” or “cost”? In the case of the above
matrix it is possible that the pure benefit G can be estimated from observations of
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outcomes of interactions between Doves. However, imagine some generalization of
this basic model, where Doves’ reproductive success is influenced by a different cost
caused by for example females mating preferences for Hawks. In this case there are
no strategies that obtain the pure benefit G. When “benefit” is an expected increase in
reproductive success and “cost” is a decrease in the same value, how can we empiri-
cally measure the number of offspring that were never raised? Models should ideally
be formulated in parameters that can be easily measured in nature. A good alternative
to this abstract additive cost/benefit analysis is the language of classical demography
that is strongly bonded with reality. Also the application of demographic notions in
game theoretic models can build a bridge between evolutionary game theory and life
history theory where demographic tools are widely applied (Roff 1993; Stearns 1992).
In the terminology of demography payoffs in evolutionary games can be described
in two types of currency: mortality and fertility. Therefore instead of the above pay-
off matrix, we shall consider these two components separately, summarized by two
matrices of payoffs. The survival or mortality matrix,

S =
⎛
⎝

H D
H s 1
D 1 1

⎞
⎠

where s < 1 is the survival probability of a fight between Hawks, and the fertil-
ity matrix containing the expected number of newborns produced in effect from the
interaction,

F =
⎛
⎝

H D
H 0.5W W
D 0 0.5W

⎞
⎠ .

How can these matrices be combined into the individual’s payoff function? This is
the goal of this paper. To find an answer we should investigate how population dynam-
ics induced by these demographic parameters determine the selection of strategies.

2 The basic assumptions of classical theory

When a population with a finite number of individual strategies is considered, then a
system of differential equations called replicator dynamics can be defined. It describes
changes of population state in time and can be derived in the following way. Assume
that we have a finite number I arbitrary chosen strategies. For each strategy some
payoff function ri is assigned (for example matrix form, as in the classical Hawk–
Dove game, however the form of payoff function depends on the modelled problem
and can be more complicated). Then the growth of the population of i-strategists can
be described by the Malthusian equation

ṅi = niri . (1)

Then by following a change of coordinates,

qi = ni

n
(2)
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where n = ∑I
i=1 ni is the population size, we can derive a system of ordinary differ-

ential equations (see, e.g. Cressman 1992),

q̇i = qi (ri − r̄) (3)

where r̄ = ∑I
i=1 qiri is the average payoff in the population. It has been shown that

the replicator dynamics for every complicated multipopulation and density dependent
evolutionary game can be reduced to the consideration of the replicator dynamics of
the relative frequencies within a single population together with a single equation for
the population size dynamics (Argasinski 2006). Therefore the equation

ṅ = nr̄ (4)

together with (3) describes the evolution of the population. Thus the values of the func-
tions ri should be interpreted as Malthusian parameters and their arguments should
be strategy frequencies q and population size n (although we can imagine more com-
plicated models, therefore arguments of payoffs will be not explicitly specified in the
formulas). The importance of the turnover of individuals for selection dynamics in
density dependent models has also been shown (Argasinski and Kozłowski 2008). To
induce turnover, some neutral mortality (the same for all strategies while payoffs are
interpreted as per capita number of newborns) on adult individuals should be explicitly
considered in the model. However, selection is driven by differences in fertility. It is
obvious that in some cases survival of parental individuals may be a reward in the
game. In this paper we will generalize this result to the cases where adult mortality
may differ for different strategies. Therefore instead of the Malthusian function ri , we
shall consider the fertility payoff Wi , the per capita number of offspring of the i-th
type, and the mortality payoff di (or survival si = 1 − di ), the probability of death of
a single adult individual of the i-th type for each strategy.

3 Models of fertility and mortality

As described above, our model will consist of the parameters ni and functions Wi and
di . This is a natural language for discrete systems while the continuous approach uses
for example the mortality rate instead of the probability of death. However this meaning
is important for our mechanistic interpretation and empirical tests of predictions of
developed models. A rate parameter describes change with respect to time while
the probability of death is a parameter characterizing a single interaction, therefore
the mortality rate should be a function of the probability of death during a single
event and the number of these events in a unit of time. This interpretation is natural
for discrete systems, whereas continuous models are described by phenomenological
rates of change during an infinitesimal time-step. This derivation method, natural
from the point of view of classical mechanics can be problematic to the mechanistic
interpretation in population dynamics models. The problem is that below some critical
threshold there are no significant changes of the population state and the model falls
into Markovian processes described by intensities of events which are parameters
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which are difficult to measure. This makes empirical testing and falsification of the
theory difficult. Fortunately, changes in the population size can be approximated using
Taylor series operating on a non-infinitesimal time interval when the trajectory is nearly
linear. In effect model parameters are described by the average outcome of an ensemble
of events realised during that interval described by the number of newborns and the
fraction of dead individuals. In that case there is no need to use the word probability,
while the model can be described by empirically measurable fractions. In effect the
mechanistic interpretation from discrete models can be transferred to the continuous
case too (the equivalence of discrete and continuous models for values of fitness near
1 was mentioned by Hartl and Clark 2006). This is justified in Appendix 1 where the
similarities and differences between the discrete and continuous cases are analyzed,
and we see that we can write our basic population growth equation as

ṅi = ni Wi − ni di = ni (Wi − di ). (5)

Where Wi is the number of newborns and di is the fraction of dead individuals. In
the following we introduce a modelling framework based upon four factors, fertility
and three distinct types of mortality. We shall build up to our model with a number of
applied frameworks, introducing new factors at each stage.

3.1 Framework I: fertility and post-reproduction mortality

Here we will extend the replicator dynamics to the case where mortality and fertility
can be explicitly considered, not only the Malthusian parameter.

The basic population growth equation in this case will be given by Eq. (5). We
can then derive the dynamics on the related frequencies in the same way as in clas-
sical replicator dynamics. In effect we obtain the following variant of the replicator
equations that can be called the sex and violence equations,

q̇i = qi (Wi − W̄ − di + d̄) = qi ((Wi − W̄ ) − (di − d̄)) (6)

where W̄ = ∑
qi Wi and d̄ = ∑

qi di are averages over the population (as in the
standard replicator dynamics). Similar equations are known and applied in population
genetics (see Hofbauer and Sigmund 1988, 1998; Cressman 1992). However, in the
field of evolutionary games this type of equation has not been sufficiently appreciated
and rigorously analyzed.

Alternatively to using the probability of death, we can use the survival probability
given by si = 1 − di . We may wish to talk in terms of either of these factors, but for
convenience from now on we will use survival probabilities in our formulae (except
for the latter part of the section on the Hawk–Dove example game). Equation (6) thus
becomes

q̇i = qi (Wi − W̄ ) − (1 − si − 1 + s̄) = qi (Wi − W̄ ) + (si − s̄), (7)

where s̄ = ∑
i qi si .
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Therefore, in this case selection is driven by the interplay between the fertility and
mortality stages (both described by terms in brackets). In the case where mortality or
fertility are selectively neutral (i.e. the same for all strategies, for example when the
game affects mortality and there are no increments in fertility) one factor vanishes and
we obtain the standard replicator dynamics. Since payoffs Wi and si may be density
dependent, the above system should be completed by an equation on the population
size n = n1 + · · · + nI (Argasinski 2006):

ṅ = n
∑

i

qi (Wi + si − 1) (8)

ṅ = n

(∑
i

qi Wi +
∑

i

qi si − 1

)
= n(W̄ + s̄ − 1). (9)

3.2 Framework II: fertility and pre-reproduction mortality with mortality-fertility
frequency dependent trade-offs

It is clear that in continuous models the probability of two independent events occurring
within a given time interval tends to zero as the length of the time interval tends to
zero. However, we should remember that biological reality can be very complicated
and the outcomes of a single event can be very complex. For example, consider a
male involved in a mating conflict where victory will lead to an immediate mating
opportunity, i.e. there is a chain of conditional stages caused by a single interaction
event. He may be killed instantly during a fight, or survive then mate successfully and
die afterwards due to infection of his wounds. Death has occurred in both cases, but
in the second case mating has also occurred, and it is important to distinguish the two
different types of mortality. A similar idea has been known in population genetics for
a long time (Prout 1965).

Framework I is a good model when mortality pressure acts after reproduction, i.e.
individuals reproduce first and are then eliminated, so mortality does not affect fertility.
However, the idea of the trade-off that is the cornerstone of life history models states
that individuals should die or reproduce, but cannot do both of these things at the same
time. There are situations when conflicts occur between individuals before mating
and mortality acts before reproduction. Note that in Eq. (5) ni describes the initial
number of individuals prior to deaths caused by mortality pressure. When mortality is
acting before reproduction then only (1 − di )ni = si ni will reproduce. This leads to a
modification of the above formalism that can be called the sex or violence equations,
and here we approach unknown ground. Let us start from equations on the sizes of the
subpopulations of the different types, where (5) is replaced by

ṅi = si ni Wi − ni (1 − si ) = ni (si Wi + si − 1). (10)

However, this form is relevant only when si and Wi are constants or frequency
independent functions. If si (q) and Wi (q) (where q is the vector of relative frequencies
of strategies) are frequency dependent functions, then they are the mean payoffs of

123



Ecological theatre and the evolutionary game

i-strategists averaged over interactions with other strategists. Therefore the term si Wi

should be an average over the product of mortality and fertility payoffs against a
random opponent strategy, rather than just a multiplication of average values. To fix
this problem we introduce a frequency dependent mortality-fertility trade-off function

Vi (q, si , Wi ) =
∑

j

q j si (e j )Wi (e j ) (11)

(where e j is the unit vector with 1 in the j-th position), later for simplicity denoted
Vi [note that in the specific case where si and Wi are not frequency dependent, then
(11) collapses to Vi = si Wi ]. Therefore in the general case (10) is replaced by

ṅi = ni Vi − ni (1 − si ) = ni (Vi + si − 1). (12)

Dividing by n as in Eq. (2), and using (7), we obtain the frequency equations

q̇i = qi

⎛
⎝

⎛
⎝Vi −

∑
j

q j Vj

⎞
⎠ + (si − s̄)

⎞
⎠ . (13)

The difference between (7) and (13) is that Wi is replaced by Vi . Then the equation
on the population size will be;

ṅ = n
∑

i

qi (Vi + si − 1) = n(V̄ + s̄ − 1) (14)

which is Eq. (9) with V̄ replacing W̄ , where V̄ = ∑
i qi Vi .

3.3 Framework III: combining different mortality pressures

Imagine now that there are two separate mortality pressures on our population. One
mortality pressure described by di = 1− si affects fertility by excluding dead individ-
uals from reproduction as described in Framework II, the second mortality pressure,
described by mi = 1 − bi , only removes some fraction of adult individuals from the
population after reproduction, as described earlier in Framework I, where mi is the
probability of death after reproduction and so bi is the equivalent probability of sur-
vival. As before we will only include bi in our formulae for the sake of convenience.
Let us start from the equation on the number of individuals, where (5) and (12) are
now special cases of

ṅi = ni Vi − ni (1 − si ) − ni (1 − bi )si = ni (Vi − 1 + bi si ). (15)

Again, by dividing by n we obtain frequency equations
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q̇i = qi

⎛
⎝

⎛
⎝Vi −

∑
j

q j Vj

⎞
⎠ +

(
si bi −

∑
i

qi si bi

)⎞
⎠ . (16)

The equation on the population size has the form

ṅ =
∑

i

ni (si (Wi + bi ) − 1) = n
∑

i

qi (si (Wi + bi ) − 1) = n(V̄ + B̄ − 1) (17)

where V̄ is as in Eq. (14) but s̄ is replaced by B̄ = ∑
i qi si bi . Note that we can imagine

more complex cases combining many mortality sources of both types.

3.4 Framework IV: adding neutral density dependence

Populations cannot grow to infinity, therefore there should always be some density
dependence. We can extend the model to include density dependence by adding off-
spring mortality described by the logistic suppression coefficient (1 − n/K ), where
we multiply all fertility parameters Wi by this coefficient. Such logistic suppression is
used in population genetics (Hofbauer and Sigmund 1988, 1998), and in game theo-
retic models of the ideal free distribution (Cressman et al. 2004; Cressman and Krivan
2006; Cressman and Krivan 2010). However, in the classical phenomenological form
it may produce paradoxical and unrealistic predictions (Geritz and Kisdi 2011). Our
approach to logistic growth was originated in Kozłowski (1982). Logistic suppression
can be interpreted as the per capita mortality of juvenile individuals, which is selec-
tively neutral, i.e. the same for each strategy. It was shown that without an additional
mortality pressure on adult individuals that induces turnover of individuals, selec-
tion stops when the population reaches carrying capacity. However by the addition of
some background neutral mortality of adult individuals this suppression of selection
is avoided (Argasinski and Kozłowski 2008). We note that carrying capacity can be
interpreted as a number of habitats rather that a population equilibrium. Therefore,
under the assumption that individuals cannot live without a habitat, it makes no sense
to consider an initial population size greater than the carrying capacity, and we shall
assume that population size cannot exceed the carrying capacity.

The approach developed in this paragraph is a generalization of results from
(Argasinski and Kozłowski 2008) to the case when additive adult mortality pressure
can differ for different strategies. Thus the system (16) and (17) will become

q̇i = qi

(
1 − n

K

) ⎛
⎝

⎛
⎝Vi −

∑
j

q j Vj

⎞
⎠ +

⎛
⎝si bi −

∑
j

q j s j b j

⎞
⎠

⎞
⎠ , (18)

ṅ = n
(

V̄
(

1 − n

K

)
+ B̄ − 1

)
. (19)

This is the most complex case of our framework; mortality pressure can be eas-
ily introduced to the simpler cases analyzed before by setting si or bi equal to 1.

123



Ecological theatre and the evolutionary game

Table 1 Important symbols for our modelling framework

Symbols Meaning

B The benefit in the classical Hawk–Dove game

C The cost in the classical Hawk–Dove game

T The classical Hawk–Dove game payoff matrix

S The survival (mortality) matrix

F The fertility matrix

ni The number of individuals of the i-th type

ri Function describing the Malthusian parameter of the i-th type

n The total population size

K The population carrying capacity

qi = ni /n The relative frequency of the i-th type

Wi Reproductive success function of the i-th type

si = 1 − di The pre-reproduction survival probability function of the i-th type

bi = 1 − mi The post-reproduction survival probability function of the i-th type

Vi (q, si , Wi ) The frequency dependent mortality-fertility tradeoff of the i-th type

Wb The background fertility

We have introduced a number of terms in the paper so far. A summary of the impor-
tant components of our framework is given in Table 1.

The stationary population sizes of Eq. (19) are ñ = 0 and

V̄
(

1 − n

K

)
+ B̄ − 1 = 0. (20)

Equation (20) satisfies

1 − ň

K
= 1 − B̄

V̄
⇒ (21)

ň(q) = K

(
1 − 1 − B̄

V̄

)
= K

(
1 − 1 − ∑

i qi si bi∑
i qi Vi

)
. (22)

The stability of (22) comes directly from the negative linearity in n of the expres-
sion from Eq. (19). Note that (22) describes an attractor manifold of the population
size dynamics, conditional on the current population state described by the vector
of strategy frequencies. For a population not to be become extinct we need ň > 0
and so 1 − B̄ < V̄ , which means that the per capita death rate of adult individuals
should be smaller than the per capita reproductive success. For a zero death rate we
obtain ň = K . We note Eq. (19) behaves properly in the sense that the trajectory of
the dynamics will not leave the interval [0, K ].
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3.5 The system in ecological equilibrium

We can imagine situations when we are interested in modelling only frequency depen-
dence. In some papers only frequency dynamics is considered under the assumption
that the population is in balance between mortality and fecundity, so that we can
“forget” about population size. In addition, in many papers this is realized by the
assumption of “weak selection”, which means that most birth and death events are
independent of strategy. This is problematic in, for example, mating conflicts where
the majority of births and deaths are affected by strategies, and the chance to mate
without competition with other candidates can be quite low. Therefore, the ecological
dynamics can be seriously affected by outcomes of the evolutionary game. However,
instead of forgetting about density or separating it from the game dynamics, it is
biologically more realistic to assume that the population size is determined by the
balance between mortality and fecundity (Argasinski and Kozłowski 2008). There-
fore the phase space of the system is reduced to a stable manifold described by the
stationary points of the size equation, where the population size traces changes of pop-
ulation composition (an assumption used in adaptive dynamics Vincent and Brown
2005; Dercole and Rinaldi 2008). This approach is similar to the concept of the sta-
tionary density surface (Cressman and Garay 2003). The difference is that here we do
not assume separation of timescales between size and frequency dynamics. Substitut-
ing ň into the logistic suppression coefficient and using (22) we obtain the frequency
dependent multiplicative modifier

1 − n

K
= 1 − ∑

i qi si bi∑
i qi Vi

. (23)

Then (18) becomes

q̇i = qi

⎛
⎝

(
1 − ∑

j q j s j b j∑
j q j Vj

)⎛
⎝Vi −

∑
j

q j Vj

⎞
⎠ +

⎛
⎝si bi −

∑
j

q j s j bi

⎞
⎠

⎞
⎠ (24)

which together with (22) represents the whole system.
Then from the mathematical point of view the system is simplified because, instead

of a system of two differential equations, we obtain a single differential equation (24)
and the function of the population state ň (22), describing the population size. On the
other hand the equation on frequency dynamics is more complicated and behaviour
may be more complex. There is a unique restpoint for the density independent case
which now become a function of n, because then the fertility bracket is multiplied by
formula (23). Thus, stationary states should be described by stable frequencies and
densities.

3.6 Is background fitness really background?

In the classical approach to evolutionary games and replicator dynamics some addi-
tive constant that vanishes in the replicator equation is called the background fitness.
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Following the distinction between mortality and fertility this concept splits into back-
ground mortalities of both types that can be modelled by selectively neutral d = 1− s
and m = 1 − b and background fertility Wb that can be added for each Wi . In the
new approach only pre-reproduction mortality is really neutral, because it appears
as a multiplicative factor of the whole right side of equations, affecting the rate of
convergence. The background mortality 1 − b reduces the influence of the mortality
stage, because it appears as a multiplicative factor of the bracket describing this stage
b(si − ∑

i qi si ) (see Eq. 18). The introduction of background fertility causes rein-
forcement of the mortality stage by increasing the multiplicative weight of the bracket
containing the dynamics of this stage. By adding Wb to all of the fertility values Wi ,
we obtain

V̆i =
∑

j

q j si (e j )Wb +
∑

j

q j si (e j )Wi (e j ) = Wbsi + Vi . (25)

In effect (18) and (19) become

q̇i = qi

⎛
⎝(

1 − n

K

) ⎛
⎝Vi −

∑
j

q j Vj

⎞
⎠ +

(
1 − n

K

)
Wb

⎛
⎝si −

∑
j

q j s j

⎞
⎠

+
⎛
⎝si bi −

∑
j

q j s j b j

⎞
⎠

⎞
⎠ , (26)

ṅ = n

((
1 − n

K

) (
Wb

∑
i

qi si +
∑

i

qi Vi

)
+

∑
i

qi si bi − 1

)
, (27)

where the equilibrium population size from (22) is

ň = K

(
1 − 1 − ∑

i qi si bi

Wb
∑

i qi si + ∑
i qi Vi

)
. (28)

A second effect is an increase in the value of the equilibrium population size and in
effect greater suppression of the fertility stage (a lower value of the logistic coefficient);
exclusion creates an additional penalty for dead individuals because they lose their
whole reproductive success Wb + Wi .

4 An application: a Hawk–Dove example game

We can apply our model to an example game, a version of the Hawk–Dove game
of Maynard Smith. The game is summarised by the following four parameters:
W ∈ (0,∞) is the expected number of offspring produced after winning an interaction,
Wb ∈ [0,∞) is the background fertility (the number of offspring that can be obtained
without fighting), s ∈ (0, 1) is the survival probability of fighting (affecting fertil-
ity), and b is the basic survival probability due to senescence, seasonal mortality etc.
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(not affecting fertility). Then the survival matrix is now bS, and the fertility matrix is
F , where S and F are as defined in the Sect. 1. We shall write F = W P , so that the
matrix P is

P =
⎛
⎝

H D
H 0.5 1
D 0 0.5

⎞
⎠ .

Then to apply the methods described in the previous sections we use the following
expressions: si = (SqT )i = ei SqT ,

∑
qi si = q SqT , Vi = (S · PqT )i = ei (S · P)qT ,

and
∑

qi Vi = q(S · P)qT .

Given that there are only two strategies, qd = 1 − qh so that we only need to
evaluate the population size and the fraction of Hawks at any time. Using e1 as the
vector (1, 0) we obtain the following equations from (26) and (27)

q̇h = qh

((
1 − n

K

) (
Wb

(
e1SqT − q SqT

)
+ W

(
e1S · PqT − q S · PqT

))

+ b(e1SqT − q SqT )
)

(29)

and

ṅ = n
((

q SqT Wb + q S · PqT W
) (

1 − n

K

)
+ q SqT b − 1

)
. (30)

After calculations and auxiliary substitution d = 1 − s (see Appendix 2 for details)
we obtain:

q̇h = qh(1 − qh)
((

1 − n

K

)
(0.5W (1 − qhd) − Wbqhd) − bqhd

)
, (31)

ṅ = n
(
(1 − q2

h d)
(
(Wb + 0.5W )

(
1 − n

K

)
+ b

)
− 1

)
. (32)

Two rest points of this system are qh = 0 and 1. A nontrivial rest point, which
becomes the attractor manifold for the density dependent case, (for detailed calculation
see Appendix 3) is given by

q̃h(n) =
0.5W

(
1 − n

K

)

d
(
(Wb + 0.5W )

(
1 − n

K

)
+ b

) . (33)

We find a stable population size if either ñ = 0 or the following positive restpoint
which is conditional on the actual Hawk strategy frequency (describing the attractor
manifold parametrized by qh)

ñ(qh) = K

(
1 − 1 − b(1 − q2

h d)

(Wb + 0.5W )(1 − q2
h d)

)
. (34)
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We must consider whether such a rest points exists. The rest point q̃h exists if and only
if it is smaller than 1 which gives:

0.5W
(

1 − n

K

)
< d

(
(Wb + 0.5W )

(
1 − n

K

)
+ b

)
. (35)

meaning that the expected number of newborns surviving to maturity raised by sur-
vivors of a Hawk–Hawk fight should be lower than the expected reproductive success
lost due to death from injuries.

The nontrivial stable size is positive, when

qh <

√
1

d

(
1 − 1

(Wb + 0.5W + b)

)
(36)

which requires that (Wb + 0.5W + b) > 1. Let us examine the above formula for
qh = 1. We would have a positive population size if

(1 − d)(Wb + 0.5W + b) > 1 (37)

which is equivalent to the expected reproductive success exceeding 1. Thus if (37)
holds, persistence of the population is certain.

Now we will analyze the relationship between the classical approach and our new
approach.

Theorem 1 The classical Hawk–Dove game is equivalent to the new model without
density dependence if Wb = 0 and b = 1. Then the benefit G = W and cost C =
d(W + 2).

(for a proof see Appendix 4).

Thus the benefit is the expected fertility W . It is interesting that cost is a function
of benefit, which is an effect of the application of pre reproduction mortality. Now
we can express abstract costs and benefits from the classical Hawk–Dove game in
empirically measurable demographic parameters. For example consider the simplified
case without density dependence and with Wb = 0, W = 2 and b = 1. Then inequality
(35) collapses to d > 0.5, which means that a Hawk’s probability of death from a
Hawk versus Hawk contest should be >0.5. However a lack of details such as density
dependence or background mortality supported by our new model suggests that this
classical approach cannot be realistic. From the point of view of the new approach, in
classical model Doves are immortal, Hawks can die during fight only and population
growth is unlimited. The absence of density dependence is especially problematic. In
the next section the model in ecological equilibrium will be analyzed and differences
between unlimited exponential growth and the more realistic new approach will be
shown.
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4.1 The system in ecological equilibrium

According to the theory developed in Sect. 3.5 we now consider the situation when the
system is in ecological equilibrium, i.e. with population size tracing the stable equilib-
rium determined by the actual Hawk frequency. This can be done by the substitution
of a stable point into the suppression coefficient. Considering (31), (33) and (34) the
system reduces to (34) (for the population size) and

q̇h = qh(1 − qh)

(
1 − b(1 − q2

h d)

(Wb + 0.5W )(1 − q2
h d)

(0.5W (1 − qhd) − Wbqhd) − bqhd

)

(38)

Now let us analyze the rest points of this system. These are the intersections of the
manifolds described by (33) and (34) However, we will limit analysis to frequencies,
leaving eco-evolutionary interactions for the next paper.

Theorem 2 For this Hawk–Dove game: there is a unique mixed strategy stable equi-
librium if

√
b

1 − b

d
− 0.5 <

Wb

W
and

Wb

W
> 0.5(1 − b)

(
1

d
− 1

)
, (39)

a mixed stable equilibrium and a pure Hawk stable equilibrium if

√
b

1 − b

d
− 0.5 <

Wb

W
< 0.5(1 − b)

(
1

d
− 1

)
and

2Wb

W
+ 1 < 2b (40)

and a pure Hawk stable equilibrium otherwise.

If it exists, the stable mixed equilibrium has the form

q̌h =

(
2

Wb

W
+ 1

)
d −

√(
2

Wb

W
+ 1

)
d2 − 4bd (1 − b)

2bd

and an invasion barrier for a stable pure Hawk equilibrium [where under (38) qh

converges to Hawk if and only if qh > q̂h]:

q̂h =

(
2

Wb

W
+ 1

)
d +

√(
2

Wb

W
+ 1

)
d2 − 4bd (1 − b)

2bd

(for a proof see Appendix 5).
In the case without background fertility Wb the general system has the form

q̇h = qh (1 − qh)
(

0.5W
(

1 − n

K

)
(1 − dqh) − bdqh

)
(41)

123



Ecological theatre and the evolutionary game

Fig. 1 The Hawk frequency increases in low population size but decreases in high population size. This
is caused by newborn mortality increasing with population growth, thus making the Hawk strategy not
profitable when the population size is large. Parameter values are W = 5, Wb = 0, d = 0.8, b = 0.99
[initial conditions n(0) = 20, qh(0) = 0.2]. The system converges to the mixed equilibrium q̌h = 0.0126,
population size ñ = 9,959, where the Hawk invasion barrier is q̂h = 0.9974

with the scaling parameter

ṅ = n
(
(1 − q2

h d)
(

0.5W
(

1 − n

K

)
+ b

)
− 1

)
. (42)

Under assumption of ecological equilibrium parameter W vanishes from equations.

In this case the rest points from Theorem 2 become q̌h = d − √
d2 − 4bd(1 − b)

2bd
and

q̂h = d + √
d2 − 4bd(1 − b)

2bd
. For either of these solutions to be biologcially mean-

ingful, they must lie within (0, 1). Both solutions lie within this range if conditions
0 < 4b(1 − b) < d and b > 0.5 hold. Note that it is not possible that there is exactly
one zero point within (0,1). Following the replicator equation (38), if q̌h and q̂h lie in
the interval (0, 1), then q̂h is stable and pure Hawk is also a stable point with inva-
sion barrier q̌h . It is also perhaps surprising that density dependence has made the
pure Hawk population stable. Therefore in the new model the situation known from
the classical approach that there is only one rest point in the interior does not occur
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(a)

(b)

(c)

Fig. 2 The stable population size is a dynamic equilibrium between mortality and fecundity. An increase
of mortality caused by the spreading of Hawks can reduce the population size, even to extinction.
a A plot of strategy frequencies. The attractor manifold q̃h(n) exceeds 1, causing the extinction of Doves.
b The corresponding trajectory of the population size. c The stable population size as a function of Hawk
frequency. Parameter values are W = 10, Wb = 0, d = 0.8, b = 0.7. In this case there are no mixed
equilibria, Hawks outcompete Doves and the population size converges to ñ = 1,400
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Fig. 3 For the same frequency initial conditions (qh(0) = 0.05), at low densities (case a, initial population
size n0 = 20) Hawks outcompete Doves, when at ecological equilibrium [case b where initial size is
determined by (34) and equals n0 = 9,763] the system converges to a mixed equilibrium q̌h = 0.2616.
Parameters are W = 10, Wb = 0.1, d = 0.5, b = 0.9. The population size converges to ñ = 7,843. in case
a and ñ = 9,734; in case b, the Hawk invasion barrier is q̂h = 0.8709

without background fertility Wb. We note that without background mortality (b = 1)

Doves are immortal. This leads to extinction of Hawks and density reaches K (as in
Argasinski and Kozłowski 2008).

4.2 Numerical examples

This section contains numerical simulations. Numerical solutions were prepared in
two variants: a growing population with initial size n = 20 and carrying capacity
K = 10,000 and a population in ecological equilibrium. The initial Hawk frequency
is qh(0) = 0.2 for Figs. 1 and 2, qh(0) = 0.05 for Fig. 3. Our new approach is less
abstract, and can be used to develop more detailed models. For example, the new
model can be interpreted as a mating conflict where individuals compete for females
and strategy genes are sex linked and inherited by males. In this case all reproductive
success is an outcome of a game, therefore there is no background fertility Wb as in
the system (41, 42). In this case at low density it is profitable to be a Hawk because
of the high payoff from the number of surviving juveniles, however an increase of the
population size increases juvenile mortality described by logistic suppression, and in
effect the payoff decreases. Thus at high density the Hawk frequency stops growing
and begins to decline (Fig. 1).
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The model can be extended to the case when individuals are foraging for some
resource and when two individuals find a resource then conflict begins. Then the
probability of conflict will depend on the density and the availability of the resource.
In this case the number of free resources can be described by the background fertility
Wb and should decrease as the population grows, while the number of resources that
can be obtained by conflict (W ) should increase. In this case Hawks will decrease in
low densities and increase in high ones. This case is worthy of rigorous analysis in
subsequent research.

In the preceding paragraph only the frequency dynamics was analyzed in detail.
However, the model produces another interesting prediction on density dependence.
At ecological equilibrium the frequency dynamics can affect the population size, for
example the spread of Hawks can reduce the population size (even to extinction); this
is shown in Fig. 2b.

The relationship described by (34) is plotted in Fig. 2c. It shows why the Hawk
population becomes fixed in ecological equilibrium. Simply, with the increase of the
Hawk frequency, the population size decreases which causes an increase in newborn
survivability. Therefore a reduction of the population size makes the Hawk strategy
profitable again. This mechanism is shown in Fig. 3. For the same frequency and initial
conditions, at low densities Hawks outcompete Doves, whilst at ecological equilibrium
the system converges to a mixed equilibrium. This example shows how sensitive the
game theoretic structure is to ecological mechanisms such as density dependence.

5 Summary of results

5.1 Game theoretic results

In our new approach the game theoretic structure splits into two stages: the mortality
and fertility stages. The equilibrium is an effect of the interplay between both stages.

Background fitness can be expressed as background mortality and fertility and it
does not vanish from the replicator equations but appears as a multiplicative factor of
the mortality stage which has the form (1 − n

K )Wb + b.
When the population reaches a stable size manifold consisting of equilibria of the

size equation (a type of stationary density surface; Cressman and Garay 2003), con-
ditional on actual strategy frequencies, then the game theoretic structure may change.
“Benefit” is affected by density dependent juvenile mortality described by the modifier
(23), and in effect the respoint becomes an attractor manifold. Thus, global stationary
points are intersections of size and frequency manifolds, and this allows a population
of Hawks to become stable. This mechanism is induced by the decrease of popula-
tion size caused by increased average mortality, which causes a decrease of newborn
mortality. The invasion barrier is the Hawk frequency that when surpassed makes the
number of offspring surviving to maturity high enough to make the Hawk strategy
profitable. Therefore the value of the “benefit” can be modified by neutral density
dependence which can in effect seriously change the rules of the game.

This new approach allows us to explicitly describe the cause and effect structure of
the modelled phenomenon. The classical theory is phenomenological at the level of
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determining payoff values expressed in terms of excess over the average growth rate.
There are no rules describing how the value of deviation from the average growth rate
is determined by strategy. We can always pose the question: why is it not greater (or
lower)? In our new approach it can be determined by mortality risk (the probability
of death during an interaction with an opponent) and the number of successful repro-
duction events (for example successful matings). Therefore our new approach can be
called “event based modelling”.

5.2 Ecological results

Modern ecological modelling uses very sophisticated mathematical tools such as Lya-
punov exponents (Metz et al. 1992). This may cause problems with the understanding
of the results obtained by readers with lesser mathematical skills. The framework
presented in this paper is an attempt at a solution of this problem, by providing a
simple interpretation of parameters. Empirical testing of models formulated under the
new framework will be much easier because mortalities (fractions of dead individ-
uals) and fertilities (per capita number of newborns) can be easily measured unlike
abstract “costs” and “benefits”. Also costs and benefits are not separated quantities.
The Hawk–Dove example shows that “cost” is a function of expected “benefit” defined
as a number of offspring. In effect, the general but abstract condition that “cost” should
exceed “benefit” collapses to specific but clear and empirically testable statements such
as: “if the expected number of offspring is 2 than over half of Hawks should die during
a fight for there to be a mixed stable equilibrium”.

Density dependence may affect the structure of the game by increasing newborn
mortality; in effect some strategies can be profitable in low densities but not prof-
itable in high densities. The opposite situation can be obtained by density dependent
background fertility. Therefore, costs and benefits are not constants. The assumption
of constant payoff coefficients was criticized by Dieckmann and Metz (2006) as not
realistic. Our model supports their arguments. It shows that even in the application of
classical methods, such as logistic suppression, we obtain a varying value of benefit.

The system in ecological equilibrium is not equivalent to the purely frequency
dependent case. The equation on frequencies is more complicated, additional rest
points may exist (for example in the Hawk–Dove game, a pure Hawk population may
become evolutionarily stable). Trajectories of selection determine trajectories of stable
population size.

Our new approach shows that the rules of the evolutionary game are not constant but
written by ecological conditions and are very sensitive to changes of those conditions.
We believe that abstract reasonings related to unspecified “costs” and “benefits” are
insufficient. A strong bond with reality via empirically measurable parameters with
a clear mechanistic meaning is necessary to produce realistic models. It was clearly
shown using the example of the Battle of the Sexes model (Mylius 1999) that more
realistic details included in the model (such as realistic pair-formation and the mech-
anistic interpretation of “costs” as time delays during courtship) can seriously affect
predictions, which thus can differ from the “abstract” game model. Therefore, when
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developing an abstract game theoretic model such a mechanistic analysis should be
considered. Our work supports those conclusions.
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Appendix 1: Discrete and continuous models

For a population changing under continuous growth, how do we estimate the para-
meters from real data? Here we show that we can estimate the real parameters of the
model if we record the number of births and deaths within an interval, provided that
this interval is sufficiently short, effectively using a straight line approximation to a
curve. Thus while we really have a continuously interacting population, we can still
get a handle on reality using the method of counting births and deaths as in classical
discrete models by comparing our continuous population to a discrete model with a
small number of interactions in each time step.

We start by considering the continuous population growth model

ṅi (t) = τni (t)Wi − τni (t)di = τni (t)(Wi − di ) (43)

where ni (t) is the number of individuals of the i-th type at time t . Wi and di are not
(necessarily) constants, but can be functions of parameters such as population state or
time. The value of τWi can be interpreted as the instantaneous deterministic average
per-capita birth rate of newborns, τdi as the instantaneous deterministic death rate of
individuals removed from the population and τ is the interaction rate (intensity) of
individuals.

Thus Wi and di are the value of victory (number of newborns) and the probability of
death from a given interaction, respectively. This interpretation, obvious for discrete
systems, can be problematic for continuous models, and we justify its use below. Using
the zero and first order terms of the Taylor expansion of ni (t) we get

ni (t0 + �t) = ni (t0) + τni (t0)(Wi − di )�t + o(�t). (44)

This should not be confused with a standard discrete population with non-
overlapping generations. Rather we imagine a continuously changing population
where we count births and deaths within an interval of length �t , for successive time
periods. In the continuous case interctions are not synchronized and only a fraction
τ�t interacts during �t .

For the continuous system to be well-approximated by the first order Taylor expan-
sion, we require the remainder term o(�t) to be small, which occurs for sufficiently
small �t , when the number of births (respectively deaths) in a time period of length
�t is approximated by τni (t)Wi�t (respectively τni (t)di�t).
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Thus whilst Wi and di are not small in our model, the number of births and deaths
within a sufficiently small interval of length �t will be small. By a change of timescale
τ�t can be set to 1 and removed. In effect we obtain equation (5). There is thus a
natural link between the number of births (deaths) observed in any time interval and
the birth (death) rate from a continuous model and we can use real data on births and
deaths to inform the model parameters of our continuous model.

Appendix 2: Derivation of equations for the Hawk–Dove example game

To evaluate (29) and (30) we need to calculate the following matrix products:

e1S · PqT = [1, 0]
[

0.5s 1
0 0.5

] [
qh

1 − qh

]
= 0.5sqh + 1 − qh, (45)

q S · PqT = [qh, 1 − qh]
[

0.5s 1
0 0.5

] [
qh

1 − qh

]

= qh(0.5sqh + 1 − qh) + 0.5(1 − qh)2. (46)

Thus

(e1S · PqT − q S · PqT )

= (0.5sqh + 1 − qh) − qh(0.5sqh + 1 − qh) − 0.5(1 − qh)2 (47)

= 0.5(1 − qh)(qh(s − 1) + 1). (48)

e1SqT = [1, 0]
[

s 1
1 1

] [
qh

1 − qh

]
= sqh + 1 − qh = qh(s − 1) + 1, (49)

q SqT = [qh, 1 − qh]
[

s 1
1 1

] [
qh

1 − qh

]
= qh(qh(s − 1) + 1) + (1 − qh). (50)

Thus

(e1SqT − q SqT ) = (qh(s − 1) + 1) − qh(qh(s − 1) + 1) − (1 − qh)

= (1 − qh)qh(s − 1). (51)

After substitution of the matrix equations (47) and (51) into (29) we get

q̇h = qh

((
1 − n

K

)
(Wb(1 − qh)qh(s − 1) + W 0.5(1 − qh)(qh(s − 1) + 1)

+ b(1 − qh)qh(s − 1)

)
⇒ (52)

q̇h = qh(1 − qh)
((

1 − n

K

)
(0.5W (1 − qh(1 − s)) − Wbqh(1 − s)) − bqh(1 − s)

)
.

(53)
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To complete the system, an equation on the scaling parameter (30) should be added.
Since (50) collapses to q2

h (s + 1) + 1 and (46) collapses to (50) multiplied by 0.5, we
obtain:

ṅ = n
(
(q2

h (s − 1) + 1)(Wb + 0.5W )
(

1− n

K

)
+ (q2

h (s − 1) + 1)b − 1
)

⇒ (54)

ṅ = n
(
(1 − q2

h (1 − s))
(
(Wb + 0.5W )

(
1 − n

K

)
+ b

)
− 1

)
. (55)

After the auxiliary substitution d = 1 − s we obtain equations (31)

q̇h = qh(1 − qh)
((

1 − n

K

)
(0.5W (1 − qhd) − Wbqhd) − bqhd

)
, (56)

ṅ = n
(
(1 − q2

h d)
(
(Wb + 0.5W )

(
1 − n

K

)
+ b

)
− 1

)
. (57)

Appendix 3: Calculation and stability of the rest points in the Hawk–Dove
example game

Let us find the nontrivial rest point. This occurs when

(
1 − n

K

)
(0.5W (1 − qhd) − Wbqhd) − bqhd = 0 ⇒ (58)

0.5W
(

1 − n

K

)
− qhd

(
(Wb + 0.5W )

(
1 − n

K

)
+ b

)
= 0 ⇒ (59)

q̃h =
0.5W

(
1 − n

K

)

d
(
(Wb + 0.5W )

(
1 − n

K

)
+ b

) . (60)

This rest point exists if and only if q̃h < 1, i.e.

0.5W
(

1 − n

K

)
< d

(
(Wb + 0.5W )

(
1 − n

K

)
+ b

)
. (61)

We find a stable population size if either ñ = 0 or

(Wb + 0.5W )
(

1 − n

K

)
= 1 − b(1 − q2

h d)

1 − q2
h d

(62)

which in turn gives

ñ = K

(
1 − 1 − b(1 − q2

h d)

(Wb + 0.5W )(1 − q2
h d)

)
. (63)

Stability of (63) comes from the form of the Eq. (32 ). In both of the cases (60)
and (63) coefficients describing these nontrivial rest points are negatively linear. This
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implies stability, because for lower values growth is positive and for greater values it
is negative. This nontrivial stable size should be non-negative, so that the population
can persist, when

1 − 1 − b(1 − q2
h d)

(Wb + 0.5W )(1 − q2
h d)

> 0 ⇒ (64)

Wb + 0.5W

Wb + 0.5W + b
< (Wb + 0.5W )(1 − q2

h d) ⇒ (65)

1 − q2
h d >

1

Wb + 0.5W + b
⇒ (66)

qh <

√
1

d

(
1 − 1

(Wb + 0.5W + b)

)
. (67)

Thus it is clear that (Wb +0.5W +b) > 1. To consider the possibility of extinction,
let us examine inequality (67) for qh = 1, when the mortality pressure is at its greatest.
If a non trivial stable population size exists even in this case, then extinction cannot
occur. Here we need

√
1

d

(
1 − 1

(Wb + 0.5W + b)

)
> 1 (68)

to be satisfied. Rearranging (68) gives

1 − 1

(Wb + 0.5W + b)
> d ⇒ (69)

1 − d >
1

(Wb + 0.5W + b)
. (70)

Appendix 4: Proof of Theorem 1

To compare both approaches we should remove from the new model factors not consid-
ered in the classical approach. In the Maynard Smith model there is no density depen-
dence and no explicit analysis of background fitness. Therefore we should assume that
background survivability b is equal to 1, background fertility Wb is 0 and there is no
suppression coefficient.

The classical matrix has the form

T =
⎛
⎝

H D
H 0.5(G − C) G
D 0 0.5G

⎞
⎠ .
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In the new model the equivalent matrix can be presented in the form e1(S · F +S)qT

which after the substitution d = 1 − s, is equal to

(
0.5W (1 − d) W

0 0.5W

)
+

(
1 − d 1

1 1

)

=
(

0.5W (1 − d) W
0 0.5W

)
−

(−d 0
0 0

)
+

(
1 1
1 1

)
, (71)

where the last matrix can be neglected as a background fitness, therefore we obtain
the matrix which entries can be compared with entries of T

⎛
⎝

H D
H 0.5W (1 − d) − d W
D 0 0.5W

⎞
⎠ .

Therefore the benefit G is the fertility, i.e. G = W and the cost can be expressed
by:

0.5G − 0.5C = 0.5W (1 − d) − d ⇒ (72)

C = W − W (1 − d) + 2d = d(W + 2). (73)

As we can see cost is a function of benefit. C > G, so that there is a mixed stable
equilibrium, when

d(W + 2) > W, (74)

given by qh = G

C
= W

d(W + 2)
. We obtain exactly the same formula for the new

model equilibrium q̃h without density dependence, background fertility (Wb = 0)

and mortality (b = 1). ��

Appendix 5: Proof of Theorem 2

From (34) we have

(
1 − ñ

K

)
= 1 − b(1 − q2

h d)

(Wb + 0.5W )(1 − q2
h d)

. (75)

This is the value of the logistic suppression coefficient after the substitution of the
stable population size ñ. After substitution of this formula into the equation for the
rest point q̃h (33) we obtain the following formula for the stable Hawk frequency in
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the ecological equilibrium:

qh =
0.5W

1 − b(1 − q2
h d)

(Wb + 0.5W )(1 − q2
h d)

d

(
(Wb + 0.5W )

1 − b(1 − q2
h d)

(Wb + 0.5W )(1 − q2
h d)

+ b

)

= 0.5W
1 − b(1 − q2

h d)

d(Wb + 0.5W )
= bdq2

h + 1 − b

d

(
2Wb

W
+ 1

) . (76)

After the substitution L = 2Wb

W
+ 1 we obtain the formula qh = bdq2

h + 1 − b

d L
that leads to the quadratic equation

f (q) = bdq2
h − d Lqh + 1 − b = 0. (77)

The coefficient of q2 in f (q) is positive, so that f (q) has a single maximum as a
turning point.

Case 1 Defining � = (d L)2 − 4b(1 − b)d = (d L)2 − 4b(1 − b)d, if

� < 0 ⇒ L < 2

√
b(1 − b)

d
(78)

then there are no roots to (77) and it is easy to see that this yields pure Hawk as the
unique stable equilibrium. Existence of a single rest point in the interior can be realized
by the condition � = 0. This is an example of an unrealistic (non-generic) solution
due to a precise coincidence of ecological parameters.

Otherwise for � > 0 there are two roots given by

q̌h = d L − √
�

2bd
= Ld − √

L2d2 − 4bd(1 − b)

2bd
(79)

and

q̂h = d L + √
�

2bd
= Ld + √

L2d2 − 4bd(1 − b)

2bd
. (80)

Since � < (d L)2, it is clear from (79) that if � > 0 then 0 < q̌h < q̂h , which
gives three possible cases when (78) does not hold.

Case 2 q̌h < q̂h < 1. In this case there is a stable root and so a mixed stable equilib-
rium at q̌h , and a pure Hawk stable equilibrium, with invasion barrier at the unstable
root q̂h . This occurs if (78) does not hold and the following condition (81) holds

d L + √
� < 2bd ⇒ (2b − L)d >

√
�, (81)
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where (81) follows from the condition q̂h < 1. (81) implies that

2b > L ,

as well as (2bd − Ld)2 > � which leads to 4b2d2 − 4bd2 L + (d L)2 > (d L)2 −
4b(1 − b)d ⇒

L < b + (1 − b)

d
.

Case 3 q̌h < 1 < q̂h . In this case there is a stable root, which is the unique mixed
stable equilibrium, at q̌h . This occurs if (78) does not hold, and the following condition
(82) holds we obtain

(L − 2b)d <
√

� < (2b − L)d. (82)

where (82) follows from the conditions q̌h < 1 and q̂h > 1. The conditions in (82)
are equivalent to � > (2bd − d L)2 which implies that

L > b + (1 − b)

d
.

Case 4 1 < q̌h < q̂h . In this case there are no roots in the allowed region and, as
when (78) holds, there is a pure Hawk stable equilibrium. This occurs if (78) does not
and q̌h > 1 which leads to

(L − 2b)d >
√

�. (83)

(83) implies that L < 2
√

b 1−b
d (i.e. � < 0) or

2b < L ,

(the opposite to that in Case 2) and

L < b + (1 − b)

d
.

Thus in summary we have a unique mixed stable equilibrium if

2

√
b

1 − b

d
< L and L > b + 1 − b

d
, (84)

or equivalently

√
b

1 − b

d
− 0.5 <

Wb

W
and

Wb

W
> 0.5(1 − b)

(
1

d
− 1

)
; (85)
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there is a mixed stable equilibrium and a pure Hawk if

2

√
b

1 − b

d
< L < b + 1 − b

d
and L < 2b (86)

or equivalently

√
b

1 − b

d
− 0.5 <

Wb

W
< 0.5(1 − b)

(
1

d
− 1

)
and L < 2b; (87)

and there is a pure Hawk stable equilibrium otherwise.
In the special case where Wb = 0, L = 1 < b + (1 − b)/d so there cannot be

a unique mixed stable equilibrium, and so that there is always a pure Hawk stable
equilibrium. Using (86) we obtain a mixed stable equilibrium as well if b > 0.5 and
d > 4b(1 − b). ��
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Uchmański J, Grimm V (1986) Individual-based modelling in ecology: what makes the difference? TREE

11(10):437–441
Vincent LT, Brown J (2005) Evolutionary game theory, natural selection, and Darwinian dynamics.

Cambridge University Press, Cambridge
Weibull J (1995) Evolutionary game theory. MIT Press, Cambridge

123


	Ecological theatre and the evolutionary game:  how environmental and demographic factors  determine payoffs in evolutionary games
	Abstract
	1 Introduction
	2 The basic assumptions of classical theory
	3 Models of fertility and mortality
	3.1 Framework I: fertility and post-reproduction mortality
	3.2 Framework II: fertility and pre-reproduction mortality with mortality-fertility frequency dependent trade-offs
	3.3 Framework III: combining different mortality pressures
	3.4 Framework IV: adding neutral density dependence
	3.5 The system in ecological equilibrium
	3.6 Is background fitness really background?

	4 An application: a Hawk--Dove example game
	4.1 The system in ecological equilibrium
	4.2 Numerical examples

	5 Summary of results
	5.1 Game theoretic results
	5.2 Ecological results

	Acknowledgments
	Appendix 1: Discrete and continuous models
	Appendix 2: Derivation of equations for the Hawk--Dove example game
	Appendix 3: Calculation and stability of the rest points in the Hawk--Dove   example game
	Appendix 4: Proof of Theorem1
	Appendix 5: Proof of Theorem2
	References


