
              

City, University of London Institutional Repository

Citation: Erice, B., Thomson, D., Ponnusami, S. A., Pathan, M. V. & Petrinic, N. (2018). On

the Rate-dependent Plasticity Modelling of Unidirectional Fibre-reinforced Polymeric Matrix 
Composites. EPJ Web of Conferences, 183, 1055. doi: 10.1051/epjconf/201818301055 

This is the published version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/21667/

Link to published version: https://doi.org/10.1051/epjconf/201818301055

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


EPJ Web of Conferences 183, 01055 (2018) https://doi.org/10.1051/epjconf/201818301055
DYMAT 2018

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution  
License 4.0 (http://creativecommons.org/licenses/by/4.0/).

* Corresponding author: borja.erice@eng.ox.ac.uk

On the Rate-dependent Plasticity Modelling of Unidirectional 
Fibre-reinforced Polymeric Matrix Composites 

Borja Erice*, Daniel Thomson, Sathiskumar A. Ponnusami, Mehtab V. Pathan, and Nik Petrinic 

Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, United Kingdom Department 

Abstract. Three different approaches to plasticity are investigated to model the experimentally-observed 
non-linear behaviour of unidirectional fibre-reinforced polymeric matrix materials. The first and simplest 
approach consists on assuming independent one-dimensional rate-dependent plasticity on in-plane (12) and 
through-thickness longitudinal (13) shear components of the Cauchy stress tensor. The second, employs a
3D extension of the plane stress Hill’48 anisotropic plastic surface. The third and the last is formulated as a 
quadratic yield function inspired by Puck’s fracture initiation criterion. It searches for a plastic localisation 
plane in which a certain combination of normal and shear stresses is maximum. Numerical simulations are 
conducted to analyse the off-axis compression behaviour of carbon fibre reinforced epoxy composite under 
varying loading rates. The afore-mentioned three different approaches are explored with an aim to predict 
the experimentally-observed non-linear response of such composites. The model parameters are determined 
using a deterministic inverse modelling strategy employing an iterative domain reduction optimisation 
technique. As far as the experiments are concerned, the quasi-static and medium rate tests were carried out 
in universal testing machines, while the experiments at high rate were conducted in a Split Hopkinson 
Pressure Bar system. The effectiveness in terms of accuracy and robustness of the three approaches are 
discussed.

1 Introduction 
The experimentally observed non-linearity on the stress-
strain behaviour of Unidirectional (UD) Fibre 
Reinforced Polymers (FRP) is a topic were many have 
tried to tackle. However, due to the heterogeneous nature 
of the material and differences in which physically-based 
continuum theory to choose, it has not arisen any 
agreement on how to treat such non-linearity. Issues like 
this have been settled long time ago in other types of 
materials such as metals, where the plasticity theories are 
well established. Furthermore, models that deal with 
other physical aspects of the material such as strain 
dependency are most of the times not taken into account. 
Several models have been proposed during the last years 
to address the facts exposed in the previous paragraph. 
Some as Goldberg et al. in [1-2] have developed a 1D 
shear plasticity models that allow for the input of 
piecewise stress-strain curves. Such model is already 
available in LS-DYNA non-linear finite element code as 
MAT_213. Other as Vyas et al. [3] have tried more 
convincing 3D approaches that include the Raghava 
pressure-dependent plasticity function combined with a 
null flow rule component in the fibre direction. Such 
approach was previously proposed by Xie and Adams 
[4]. A more practical approach has been proposed by 
Puck in [5], where he basically scales the non-linear 
shear stress-strain curves according to his own 

physically-based two-dimensional inter fibre fracture 
criterion. 

Based on the research performed until now and some 
new approaches we will compare the predictive 
capabilities of three different models to simulate the non-
linear behaviour of UD FRPs. The following models will 
be compared against some off-axis compression stress-
strain data found in the literature: 

• 1D plasticity in 12 and 13 shear components, 
• Three-dimensional extension of the Hill’48 plane 

stress anisotropic plasticity, 
• Localisation plane-based plasticity as described in 

[6]. 

All three will be combined with Voce-type isotropic 
strain hardening and strain rate hardening. 

First we will describe the numerical models used. 
The next section will focus on the numerical simulations 
performed in order to compare them against 
experimental tests. After that we will discuss the results 
and make some concluding remarks. 

2 Elasticity 
The elastic orthotropic law relates these Cauchy stress σ
and strain ε  vectors as follows: 
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( )e p= = −σ Cε C ε ε (1) 

where eε  and pε  are the elastic and the plastic parts of 
the strain vector and C  is a 6x6 symmetric matrix that 
contains the orthotropic elastic constants: 
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The matrix symmetry imposes additional constraints 
that reduces the number of independent elastic constants 
from nine to five, 
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i
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= = (4) 

Please note that the fibre orientation is assumed to 
coincide with the 1e  direction of the local material 
coordinate system { }1 2 3, ,e e e  (see Fig. 1). 

The rate-dependent stiffness is modelled using a 
phenomenological law based on results found in the 
literature [7]. The fibre direction is assumed to be rate-
independent, while the rest of the elastic moduli are 
given by: 
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being the rate-dependent coefficient for the stiffness 
matrix. 

3 Modelling of the non-linear behaviour 

3.1 1D plasticity 

In this case, a simple one-dimensional rate-dependent 
plasticity is adopted to model the non-linear behaviour of 
the in-plane and transverse shear ( { }12,13i = ). The rate-
dependent yield function is defined as, 

( ) ( ) ( ) ( ) ( ) ( ), , , 0p p p p
i i i i i if kτ γ γ τ γ γ   = − =   

ɺ ɺ (6) 

being k  the strain hardening defined as a function of the 
equivalent plastic shear strain ( )

p
iγ  and equivalent shear 

strain rate ( )
p
iγɺ . The flow rule is given by, 
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where λɺ  is the plastic multiplier defined as follows, 
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p p
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The Wang or consistency model [8] is used here to  

( )
( )

( )
( )

( )
( )

( ) ( ) ( ) ( )sign 0

p p
i i ip p

i i i

i i s i d i

f k kf

H H

τ γ γ
τ γ γ

τ τ λ λ λ

∂ ∂ ∂= − −
∂ ∂ ∂

 = − − = 

ɺ ɺ ɺɺɺ ɺ

ɺ ɺ ɺɺɺ
(9) 

where ( ) ( )
p

s i iH k γ= ∂ ∂  and ( ) ( )
p

d i iH k γ= ∂ ∂ ɺ . 
For the sake of completeness the loading/unloading 

conditions are also given: 
0   ,     0   ,     0f fλ λ≤ ≥ =ɺ ɺ (10) 

Please note that such conditions are applicable to the 
rest of the plasticity models. The yield function 
expressed as a function of the stress vector σ , the 
equivalent plastic strain pε  and equivalent plastic strain 

rate pεɺ  reads: 

[ ], , , 0p p h p pf kε ε σ ε ε   = − =   σ σɺ ɺ (11) 

3.2 Hill’48 anisotropic plasticity 

A modified 3D extension of the rate-dependent Hill’48 
plane stress yield function is proposed this time to model 
the plastic response of the UD-reinforced fibre-

reinforced where T
hσ = σ Pσ  is equivalent Hill stress, 

k  is the isotropic hardening and P  is a symmetric 
matrix that can be expressed as, 
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It contains Hill’s planar anisotropic weighting 
constants [ ]11P θ , 22P , 12P  and 33P . Please note that the 
yield function will collapse into a von Mises material if 

11 22 1P P= = , 12 0.5P = −  and 33 3P =  being VM=P P .θ
is the angle between the fibre orientation and the load 
carrying axis. Mathematically speaking, it is defined as 

[ ]1
1cosθ −= ⋅e i , being i  the global x axis unit vector as 

shown in Fig. 1. Such angle is extracted from the fibre 
rotation matrix T

f t r=R R R  as in [9]. The total rotation 
is obtained from the polar decomposition of the 
deformation gradient expressed in global coordinates as: 

1
t

−=R FU (13) 
and the rigid body rotation is calculated from the spin 
tensor [ ]skew=W L  as: 

r r=R WRɺ (14) 
being the L  velocity gradient. For more details on the 
fibre rotation approach and how it affects to the strain 
and stress tensors the reader is referred to [9]. 
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Fig. 1. Decomposition of the total rotation in the rigid body rotation and the fibre rotation. 

Since the 0 degree orientation is assumed to the purely 
elastic, if [ ]2

11 1 sin pP p θ= , 11P  is zero when o0θ =  and 

1p  when o0θ = . 2p  allows for finer tuning of the 
intermediate stages between both angles. 
The flow rule is chosen to be associative and is given by, 

p

h

fλ λ
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∂

Pσ
ε

σ
ɺ ɺɺ (15) 

From the work conjugacy, T p
h pσ ε=σ ε ɺɺ , one gets the 

evolution equation of the equivalent plastic strain that 
relating it with the plastic multiplier λɺ  as, 

pε λ= ɺɺ   being  p pdtε ε= ∫ ɺ (16) 
Following the Wang or consistency model [8] the yield 
function is differentiated to get the consistency condition 
( 0f =ɺ ) in terms of the internal hardening variables pε

and pεɺ . This gives the following second order 
differential equation on λ , 
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where s pH k ε= ∂ ∂  and d pH k ε= ∂ ∂ ɺ . 

3.3 Localisation plane-based plasticity 

The yield function, originally reported in [6], that is 
proposed for the localisation plane (LP) plasticity model 
is expressed as: 

[ ]lp, , , 0p p p pf kε ε σ ε ε   = − =   r rɺ ɺ (18) 

where 2 2
lp 1f n n ntσ α σ τ βτ= + +  is the localisation plane 

equivalent stress, fα  is the friction coefficient and β  is 
the elliptical shear interaction parameter. Instead of 
using the Cauchy stress vector, we employ the 
localisation plane reduced stress vector r  that is 
comprised only by the stress components that affect to 
such plane: the normal stress nσ  and the two 
components of the shear stress; the longitudinal 1nτ  and 
transversal ntτ . The reduced stress vector 

{ } { }1 2 4 5ˆ ˆ ˆT T
n n ntσ τ τ σ σ σ= =r (19) 

is obtained by rotating the Cauchy stress vector into the 
localisation plane (see Fig. 2) as 1ˆ =σ R σ  where 
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In the same fashion, the rotated strain rate vector is: 

1ˆ =ε R εɺ ɺ (21) 
which leads to a reduced strain rate vector eɺ  that has the 
following components: 
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The flow rule is chosen to be non-associative as 
generally is in most of the pressure-dependent plasticity 
models. The plastic potential is: 

[ ] 2 2
1g n n ntg eα σ τ τ= + +r (23) 

The directions of the reduced plastic strains are given by: 
p gλ λ∂= =
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where the flow vector m  is: 
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As in the previous section the relationship between the 
plastic multiplier and the equivalent plastic strain is 
obtained from the work conjugacy, in this case, 

lp
T p

pσ ε=r e ɺɺ  that yields to the following relationship, 

lp

:
pε λ

σ
= r mɺɺ   being  p pdtε ε= ∫ ɺ (26) 

The consistency condition ( 0f =ɺ ) in terms of the 
internal variables gives: 
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Fig. 2. Schematic view of the rotation performed to transform 
the stresses into the localisation plane.

4 Isotropic hardening 
The hardening of the material is modelled as purely 
isotropic. For the sake of simplicity, no kinematic or 
distortional hardening is considered. In order to do so, a 
combined Voce strain hardening and strain rate 
hardening is defined as a function of the equivalent 
plastic strain and equivalent plastic strain rate as; 
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1 exp 1

p p s p d p

i i p p p
i

k k k

Q C k

ε ε ε ε

σ ε ε

    =     
  = + − − +   

∑

ɺ ɺ
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where pk  is the strain rate coefficient, 0σ  is the yield 

stress and { },i iQ C  are the strain hardening material 
constants. The strain hardening and the strain rate 
hardening effects have been considered independent for 
the sake of simplicity and ease of calibration. This 
approach has been widely used in rate-dependent metal 
plasticity [10-12]. 

5 Numerical simulations 
The objective of this investigation was to compare the 
three different approaches presented so far to model the 
non-linearity observed in the UD FRPs. In order to do 
so, the stress-strain curves of off-axis compression tests 
performed under quasi-static and dynamic loading 
conditions were compared with numerical simulations 
carried out with finite element analysis. The tests, 
reported in [13] were conducted obtaining off-axis 
prismatic specimens from UD IM7/8552 material system 
laminates.  

The three approaches described in the previous 
sections were implemented in the non-linear finite 
element code LS-DYNA. As an initial step towards a 
fully developed comparison, the simplest of the 

simulations was conceived: a single element simulation. 
In general, the level of strain field uniformity that the 
specimens obtained from UD laminates present under 
uniaxial loading conditions makes this type of approach 
more forgiving than in other types of materials such as 
ductile metals or polymers. The single element was 
loaded by the prescribed movement of frictionless rigid 
walls with particular displacement ( [ ]u t ) boundary 
conditions that could be obtained from the detailed 
information in form of axial strain-time plots in [13] as 

[ ] [ ]0 axu t L tε= , 0L  where is the length of the element. 
The elastic constants were obtained from one of the
widely available literature on the studied material system 
[14]. The yield function constants as well as the 
hardening parameters were calculated through an inverse 
modelling strategy employing an iterative domain 
reduction optimisation available in the software package 
LS-OPT. The material constants used to perform the 
numerical simulations at quasi-static and dynamic 
regimes from which stress-strain curves shown in Fig.3
and Fig.4 respectively are reported in Tables 1 to 4. 

6 Discussion 
From Fig.3 (a) we can obviously see that the transverse 
compression behaviour could not be matched by the 1D 
plasticity model since the model assumed that it was 
fully elastic. The quasi-static response of the specimens 
with fibre orientations of 45° and 60° was reasonably 
captured given the simplicity of the model. However, the 
compressive behaviour of the 30° specimen was 
underpredicted. The other two approaches used to model 
the non-linearity of the material, i.e. Hill’48 and LP 
plasticity, seemed to capture with excellent accuracy the 
off-axis compressive response of the UD IM7/8552 
material system as can be seen in Fig.3 (b) and (c). 

The comparisons between the experiments conducted 
at high strain rate with the numerical simulations carried 
out with the three different approaches are gathered in 
Fig.4. Despite the lack of accuracy of the 1D plasticity 
model in predicting the quasi-static response of the 
material, it seemed to be able to reasonably predict the 
stress-strain curves of it under dynamic loading 
conditions. The Hill’48 and LP plasticity were able to 
accurately model the stress-strain response for the 
specimens tested at 60° and 90° orientations. Even 
though, the large majority of the stress-strain curve of 
the 30° and 45° specimens was very well matched the 
last part of it was underpredicted with both plasticity 
approaches. Since in this type of materials the thermal 
softening effects are almost negligible, makes difficult to 
justify the sudden drop observed experimentally on the 
hardening of the material. In order to double check such 
a behaviour, some preliminary in-house tests on 
prismatic specimens with the same orientations and 
material were performed under similar loading 
conditions (see [15] for some more details). The stress-
strain curves obtained from such tests are depicted in 
Fig.5 with solid markers. These, do not present the 
previously mentioned drop in the stress-strain curves. 



5

EPJ Web of Conferences 183, 01055 (2018) https://doi.org/10.1051/epjconf/201818301055
DYMAT 2018

It should be noted that for the sake of consistency the 
material constants were fitted with the data obtained 
from the literature. However, the newly performed tests 
are in better agreement with the models than the ones 
reported in [13]. Coupon level calibration may shed 

some light regarding the difference on the hardening 
present on specimens at 30° and 45°. The single element 
calculations are way too simplistic to be able to extract 
definitive conclusion in this matter. 

Fig.3. Quasi-static numerical simulations of off-axis compression tests compared to the experimental data reported in [13]. 

Fig.4. High-rate numerical simulations of off-axis compression tests compared to the experimental data reported in [13].

Fig.5. Off-axis compression tests reported in [13] depicted in hollow markers and in-house made SHPB tests on the same material 
plotted in solid markers compared to the numerical simulations. 

7 Concluding remarks 
Three different approaches to simulate the non-linear 
compressive behaviour of UD FRPs are presented. As a 
first assessment of such models numerical simulations of 
single elements were compared to off-axis quasi-static 
and high rate compressive stress-strain behaviour of UD 
laminates of IM7/8552 material reported in the literature. 
The 1D plasticity model proved to be able to reasonably 
predict the mechanical response of the material under 
high rates but further improvement would be needed in 
order to predict the quasi-static behaviour. 

The other two approaches showed very good 
agreement between experimental and numerical 
behaviours, especially with the addition of new in-house 
high-rate tests at 30° and 45° orientations. 

The authors would like to acknowledge the support of the 
Department of Engineering Science at the University of 
Oxford. As well as the valuable discussions with Dr. Jens 
Wiegand.
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Table 1. Elastic properties. 

1E  [GPa] 2 3E E=  [GPa] 12 13G G=  [GPa] 23G  [GPa] 12 13ν ν= 23ν
154.486 9.003 5.068 2.150 0.32 0.30 

Table 2. Plasticity parameters for the 1D approach. 

Hardening constants and strain rate dependency 

0σ  [MPa] 1Q  [MPa] 1C 2Q  [GPa] 2C pk  [s] rc  [s] 

30 23.350 224.618 62.914 29.728 0.0325 10-5

Table 3. Plasticity parameters for the Hill’48 approach. 

Yield function Hill’48 

1p 2p 22P 33P 12P
10.000 3.000 1.000 3.9094 -1.478 

Hardening constants and strain rate dependency 

0σ  [MPa] 1Q  [MPa] 1C 2Q  [GPa] 2C pk  [s] rc  [s] 

113.855 70.000 337.288 124.904 39.337 0.002 1.5 10-4

Table 4. Plasticity parameters for the LP approach.

Yield function LP 

fα β gα e
0.284 0.985 0.228 0.480 

Hardening constants and strain rate dependency 

0σ  [MPa] 1Q  [MPa] 1C 2Q  [GPa] 2C pk  [s] rc  [s] 

38.355 30.567 154.300 22.333 22.183 0.0086 1.5 10-4
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