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Abstract 
An entropy scaling based technique using the Perturbed-Chain Statistical Associating Fluid Theory 

is described for predicting the viscosity of hydrocarbon mixtures and diesel fuels up to high 

temperatures and high pressures. The compounds found in diesel fuels or hydrocarbon mixtures are 

represented as a single pseudo-component. The model is not fit to viscosity data but is predictive 

up to high temperatures and pressures with input of only two calculated or measured mixture 

properties: the number averaged molecular weight and hydrogen to carbon ratio. Viscosity is 

predicted less accurately when the mixture contains high concentrations of iso-alkanes and 

cyclohexanes. However, it is shown that predictions for these mixtures are improved by fitting a 
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third parameter to a single viscosity data point at a chosen reference state. For hydrocarbon 

mixtures, viscosity is predicted with average mean absolute percent deviations (MAPDs) of 12.2% 

using the two-parameter model and 7.3% using the three-parameter model from 293 to 353 K and 

up to 1,000 bar. For two different diesel fuels, viscosity is predicted with an average MAPD of 

21.4% using the two-parameter model and 9.4% using the three-parameter model from 323 to 423 

K and up to 3,500 bar. 

Introduction 
Fuel injectors are key systems that determine the performance, emissions, and fuel economy of 

diesel engines [1, 2]. Operation and performance of fuel injectors are sensitive to fluid properties, 

including density, viscosity, and volatility. Emission regulations and the need for improved fuel 

economy have motivated diesel engine manufacturers to increase fuel injector operating pressures 

up to 4,500 bar [3]. Furthermore, fuel injectors need to perform across a range of commercially 

available diesel fuels, whose composition and fluid properties vary in different markets. 

Experimental development, testing, and validation of these technologies is a significant time and 

resource-intensive process.  

Computational fluid dynamics (CFD) simulations are used to model the performance of fuel 

injectors and to investigate phenomena such as cavitation and fuel atomization [4-10]. The accuracy 

of CFD simulation up to extreme pressures depends on accurate representation of fuel 

thermophysical properties (e.g., viscosity, density, heat capacity, and thermal conductivity) as a 

function of temperature and pressure. For example, Theodorakakos et al. [11] calculated that mass 

flow was overestimated by 7% if the temperature and pressure dependence of thermophysical 

properties was not included in CFD models of diesel fuel injectors. 
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Temperature and pressure dependence of thermophysical properties can be incorporated in CFD 

through empirical correlations, look-up tables, or equations of state (EoS). These approaches most 

often require fitting or measurement of experimental data, which is rarely available for diesel fuels 

up to high temperatures and high pressures (HTHP). At high pressures, compositional variance 

between fuels can lead to significant differences in viscosity. For example, the viscosity of two 

different diesel fuels reported by Aquing et al. [13] and Schaschke et al. [12] at 323 K differ by 

more than 120% at 1,800 bar and 200% at 2,400 bar. Models fit to viscosity data for one diesel 

sample cannot be expected to accurately represent the viscosity of another diesel of different 

composition. Therefore, predictive viscosity models are needed that account for temperature, 

pressure, and composition. Ideally, the models should require minimal input of HTHP experimental 

data to reduce characterization expense.  

Several correlations and theories have been proposed to model the viscosity of pure components 

and mixtures as a function of temperature and pressure [14]. These include empirical models and 

correlations and pseudo-component approaches. Empirical models and correlations [15-21] have 

been used to predict the viscosity of complex mixtures (e.g., crude oils, bitumens, heavy oils, and 

diesel and biodiesel fuels) and their blends.  

Recently, several researchers demonstrated advantages when incorporating advanced equations 

of state (EoS), such as the Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) within 

CFD [22-24]. Given that complex mixtures (e.g., diesel and biodiesel fuels, crude oils, bitumens, 

heavy oils) are often composed of hundreds of different compounds [13, 25-29], CFD simulation 

of every fuel compound would be computationally intensive. Often, a smaller number of 

components are chosen as a surrogate to closely match the thermophysical properties of the mixture 

[13, 30-36]. Selection of the individual components and their concentrations is challenging, and a 
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surrogate of one fuel may not accurately represent the properties of another fuel with a different 

composition.   

Computational cost and complexity can be reduced further through pseudo-component viscosity 

mixture models.  Examples of these models include expanded fluid theory (EFT) [37-40], friction 

theory (FT) [41-45], free volume theory (FVT) [46, 47], the Dymond-Assael (DA) hard sphere 

model [48-50], and Eyring’s absolute rate theory [51, 52]. Motahhari et al. [38, 39] applied EFT to 

model the viscosity of several crude oils characterized as mixtures of pseudo-components at 

temperatures to 473 K and pressures to 552 bar. They fit EFT parameters to atmospheric viscosity 

data for some crude oils and predicted the parameters for others. Ma et al. [40] used EFT to predict 

the viscosity of two bitumens characterized with a single pseudo-component at temperatures to 463 

K and pressures to 100 bar.   

Schmidt et al. [44] applied FT to model the viscosity of a North Sea crude oil represented as a 

mixture of pseudo-components to temperatures of 375 K  and pressures to approximately 500 bar. 

They obtained the values for the FT parameters by fitting individual isotherms for pressures to 

approximately 350 bar. In a different study, Quiñones-Cisneros et al. [42, 43] applied FT to model 

the viscosity of crude oils represented as mixtures of pseudo-components to pressures up to 400 

bar. These authors fit FT parameters to viscosity data above the saturation pressure and made 

predictions below the saturation pressure. Abutaqiya et al. [45] applied FT to model the viscosity 

of ten Middle Eastern crude oils represented as mixtures of pseudo-components. These authors 

proposed a new fitting approach for FT and reduced the required number of input parameters for 

each pseudo-component from two to one. The fitted parameter was adjusted to a single data point 

at saturation, and viscosities were predicted for temperatures to 400 K and pressures to 600 bar. 
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Using FVT, Khoshnamvand and Assareh [46] modeled the viscosity of live oils. Their model 

defined mixtures containing multiple components including a pseudo-component representing C7+ 

(i.e., compounds with carbon numbers (CNs) greater than 6). They fit FVT parameters to 

experimental data for 22 live oils as a training set, and they predicted viscosity of six other oils.  

Ijaz [50] predicted the viscosity of crude oils through single pseudo-components using the DA 

hard sphere model [48, 49]. Ijaz fit four parameters in the model to experimental data and predicted 

the viscosity of crude oils up to 448 K and 1,400 bar. In a different approach, Macias-Salinas et al. 

[51] represented several crude oils through mixtures of pseudo-components and modeled the 

mixture viscosity using Eyring’s absolute rate theory [52]. They used a tuning factor to scale density 

and viscosity predictions, which required fitting the model to experimental data.  

Entropy scaling is another approach reported for modeling viscosity. First proposed by Rosenfeld 

[53], entropy scaling effectively reduces the temperature and pressure dependence of viscosity to a 

mono-variable dependence on residual entropy. Recently, Lötgering-Lin and Gross utilized 

Rosenfeld’s entropy scaling approach to develop a group contribution (GC) method using PC-

SAFT to predict the viscosity of pure components [54] and mixtures [55]. Fouad and Vega [56, 57] 

also used entropy scaling to model the viscosity of hydroflurocarbon and hydrofluroolefin 

refrigerants, fitting parameters to experimental saturated viscosity data. 

The present study describes an entropy scaling based single pseudo-component technique using 

the PC-SAFT EoS [54] to predict the viscosity of hydrocarbon mixtures and diesel fuels. The 

pseudo-component technique [58] is applied to correlate reduced viscosity to residual entropy 

through a third order polynomial using the GC method of Lötgering-Lin and Gross [54]. The model 

is not fit to viscosity data but is predictive up to HTHP conditions using two calculated or measured 

mixture properties: the number averaged molecular weight (MW) and hydrogen to carbon (HN/CN) 
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ratio. Deviations in predictions are found when the mixture contains large concentrations of iso-

alkanes and cyclohexanes. However, this deviation is reduced when a third mixture property, 

viscosity at a chosen reference state, is used to fix the value of one of the model parameters. Pseudo-

component viscosity predictions are compared to experimental data for 54 different hydrocarbon 

mixture compositions and two diesel fuels over a wide range of temperatures and pressures. 

Technique Development 
PC-SAFT pseudo-component technique 

The pseudo-component technique is developed using the PC-SAFT EoS of Gross and Sadowski 

[59] combined with the GC residual entropy method of Lötgering-Lin and Gross [54] to predict the 

viscosity of hydrocarbon mixtures and diesel fuels. The compounds in these mixtures do not exhibit 

complex formation or association, such as hydrogen bonding. Hence, the PC-SAFT EoS only 

requires three parameters: 𝑚, the number of segments; 𝜎, the segment diameter; and 𝜀 𝑘⁄ , the depth 

of the potential well. The reduced, residual Helmholtz free energy, �̃�res, of a pure component is 

then expressed as: 

 

�̃�res = �̃�hc + �̃�disp (1) 

 

where �̃�hc and �̃�disp are the reduced, Helmholtz free energies for the hard-chain reference fluid 

and dispersion interactions, respectively.  

Here we briefly describe how to calculate the pseudo-component parameters needed with the PC-

SAFT EoS; details can be found elsewhere [58]. The GC method of Sauer et al. [60] is used to 

generate the correlations shown in Table 1 for n-alkanes and PNAs that provide the numerical 

bounds for the pseudo-component 𝑚, 𝜎, and 𝜀 𝑘⁄  values. These numerical bounds encompass the 
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PC-SAFT parameters for all of the other chemical compounds found in a typical fuel. Equations 2 

to 4 show how the pseudo-component parameters are weighted with the parameter 𝑍, which varies 

from zero for n-alkanes to 1.0 for PNAs [58]. Equation 5 is used to calculate 𝑍 knowing the mixture 

degree of unsaturation (DoU) and the mixture number averaged MW and HN/CN ratio (Eqs. 6 and 

7). If all of the mixture components are known, the HN/CN ratio can be directly calculated; 

otherwise this ratio can be measured with elemental analysis, which is the typical approach used 

with complex fuel mixtures, such as diesel. The Supplemental Information (SI) provides the DoU 

correlation for PNAs as a function of MW. However, here we note that phenanthrene (MW = 178 

g/mol, DoU = 10) is the largest PNA in the hydrocarbon mixtures and diesel fuels considered in 

this study. Hence, DoUPNA is fixed with an upper bound of 10 in Eq. 5 when the mixture number 

averaged MW is greater than 178 g/mol so as not to over predict the n-alkane contribution to the 

pseudo-component parameters. Equation 8 can now be used with the PC-SAFT EoS to calculate 

the reduced residual entropy, �̃�res (i.e., the molar residual entropy, �̅�res, divided by the gas 

constant, R), using commercial software (VLXE/Blend [61]). The next section describes the steps 

needed for the calculation of the viscosity knowing �̃�res. 

 

 Table 1. PC-SAFT parameter correlations as a function of MW (g/mol) for n-alkanes and PNAs 

using the GC parameters of Sauer et al. [60]. 

 n-alkane PNA 

𝑚 0.0325MW+ 0.2463 0.0231MW+  0.7392 

𝑚𝜎 (Å) 0.1265MW +  0.7564 0.0874MW +  2.6366 

𝜀
𝑘⁄ (K) exp(5.4762 − 1.3302/MW) exp(5.8137 − 15.5549/MW) 
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𝑚pseudo − component = (1 − 𝑍)𝑚n − alkane + 𝑍𝑚PNA (2) 

(𝑚𝜎)pseudo − component = (1 − 𝑍)(𝑚𝜎)n − alkane + 𝑍(𝑚𝜎)PNA (3) 

(𝜀 𝑘⁄ )
pseudo − component

= (1 − 𝑍)(𝜀 𝑘⁄ )
n − alkane

+ 𝑍(𝜀 𝑘⁄ )
PNA

 (4) 

𝑍 =

{
 

 
DoUmixture
DoUPNA

,                  MWmixture < 178 g/mol

DoUmixture
10

,          MWmixture ≥ 178 g/mol

 (5) 

CN =
MWmixture

12.01 + 1.01(HN CN⁄ )
  (6) 

DoU = 
1

2
(2 × CN + 2 − HN) (7) 

�̃�res(𝑉, 𝑇) = −(
𝜕�̃�res

𝜕𝑇
)
𝑉

  (8) 

 

Entropy scaling based pseudo-component technique 

     Rosenfeld [53] showed that the reduced viscosity, 𝜂∗ = 𝜂/𝜂reference, scales with �̃�res. Here 

𝜂reference is set equal to the Chapman-Enskog viscosity (Eq. 9), as recommended by Novak [62, 

63] who showed that a straightforward scaling of �̃�res, over the entire fluid phase space, can be 

obtained. 

 

𝜂reference =
5 

16
 
√𝑀𝑊𝑘 𝑇 (𝑚𝑁A𝜋)⁄

𝜎2Ω(2,2) ∗
 

(9) 

 



9 

 

where 𝑚 and  𝜎 are the PC-SAFT parameters for a pure compound when calculating viscosity for 

a pure compound or are those of a pseudo-component when calculating viscosity of a pseudo-

component.  In Eq. 9, 𝑇, 𝑘, 𝑁A, and 𝛺(2,2) ∗are temperature, Boltzmann's constant, Avogadro’s 

number, and the reduced collision integral, respectively. The correlation of Neufeld et al. [64] is 

used to calculate 𝛺(2,2) ∗. Lötgering-Lin and Gross [54] modified Novak's approach to calculate 

𝜂∗ by using a third-order polynomial (Eq. 10) in reduced dimensionless residual entropy, 𝑠∗ (Eq. 

11). propose 

 

𝑙𝑛(𝜂∗) = 𝐴 + 𝐵𝑠∗ + 𝐶𝑠∗
2
+ 𝐷𝑠∗

3
 (10) 

𝑠∗ = (
�̃�res(𝑉, 𝑇)

𝑚
) (11) 

 

In Eq. 10, 𝐴, 𝐵, 𝐶, and 𝐷 are the viscosity coefficients of either a pure compound or pseudo-

component needed to calculate the viscosity. For a pure compound, these viscosity coefficients are 

found to best correlate to MW when each coefficient is multiplied by 𝑚2. As a typical result, Figure 

1 shows the variation of 𝐴𝑚2 with MW for selected compounds found in diesel fuels, where 𝐴 is 

calculated using the GC method of Lötgering-Lin and Gross [54] and 𝑚 = 𝑚pure compound. The 

𝐴𝑚2 values that fall outside the alkane and PNA curves are ignored since these compounds have 

MWs less than those of the diesels considered in this study [58]. Figure 2 shows the variation of 

𝐴𝑚2, 𝐵𝑚2, 𝐶𝑚2, and 𝐷𝑚2 with MW for n-alkanes and PNAs and Table 2 lists the coefficients 

for the polynomial fits needed to calculate each viscosity coefficient. The previously determined 𝑍 

parameter is now used in Eqs. 12-15 to calculate the pseudo-component viscosity coefficients 

needed in Eq. 10.  
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Figure 1. Effect of molecular weight on 𝐴𝑚2 for selected compounds with 𝐴 calculated using the 

GC method of Lötgering-Lin and Gross [54] and with 𝑚 = 𝑚pure compound. The shaded region 

shows the number averaged MW range (i.e., 172 to 228 g/mol) for the diesel fuels studied by 

Aquing et al. [13]. 
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Figure 2. Effect of molecular weight on the viscosity coefficients for n-alkanes and PNAs 

calculated using the GC method of Lötgering-Lin and Gross [54] and with 𝑚 = 𝑚pure compound. 

Structures of representative compounds are shown in the figures.  
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Table 2. Parameters for the 3
rd

 order polynomial correlation as a function of MW (g/mol) for the 

viscosity coefficients of n-alkanes and PNAs: 𝑌𝑚2 = ∑ (𝑒𝑖𝑀𝑊
𝑖)3

𝑖 = 0 . 𝑌 is a viscosity 

coefficient (𝐴, 𝐵, 𝐶 or 𝐷) and 𝑒 is the coefficient in the polynomial equation for n-alkanes and 

PNAs. 

 n-alkane  PNA  

 𝑒0 𝑒1 𝑒2 𝑒3 𝑒0 𝑒1 𝑒2 𝑒3 

𝐴𝑚2 -3.000×10-2 -8.028×10-3 -5.510×10-4 -1.860×10-6 -3.996×10-1 -2.420×10-2 -3.431×10-4 7.111×10-7 

𝐵𝑚2 -1.602×101 3.079×10-1 -4.279×10-3 -5.524×10-6 -2.194×100 -4.339×10-2 -1.522×10-3 -2.172×10-6 

𝐶𝑚2 -9.298×10-3 -2.639×10-3 -2.107×10-4 -3.215×10-6 -1.020×10-1 -7.812×10-3 -1.895×10-4 -1.408×10-6 

𝐷𝑚2 1.085×10-4 -2.519×10-5 -1.232×10-5 -9.383×10-7 1.644×10-3 -4.411×10-4 -3.231×10-5 -5.288×10-7 

 

(𝐴𝑚2)
pseudo − component

= (1 − 𝑍) (𝐴𝑚2)
n − alkane

+ 𝑍 (𝐴𝑚2)
PNA

 (12) 

(𝐵𝑚2)
pseudo − component

= (1 − 𝑍) (𝐵𝑚2)
n − alkane

+ 𝑍 (𝐵𝑚2)
PNA

 (13) 

(𝐶𝑚2)
pseudo − component

= (1 − 𝑍) (𝐶𝑚2)
n − alkane

+ 𝑍 (𝐶𝑚2)
PNA

 (14) 

(𝐷𝑚2)
pseudo − component

= (1 − 𝑍) (𝐷𝑚2)
n − alkane

+ 𝑍 (𝐷𝑚2)
PNA

 (15) 

 

It should be noted that improved predictions can be obtained in some cases if D is fit to a single 

viscosity data point rather than calculating D with Eq. 15. Both approaches shown in the following 

section require information on the mixture number averaged MW and HN/CN ratio. For 

convenience, D is fit to a viscosity experimental data point at the lowest reported temperature and 
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pressure (e.g., 323 K and ~10 bar for the two diesel fuels in this study). An equally appropriate 

approach is to fit D to the kinematic viscosity at 40 °C (KV40 [65]) or to the viscosity at atmospheric 

pressure and room temperature since both types of data are commonly measured in industry.  

Viscosity predictions are compared with 1822 literature data points for the hydrocarbon mixtures 

and diesel fuels. For mixtures where experimental data for more than three isotherms are available, 

only the lowest, a central, and the highest temperature isotherms are shown for clarity. However, 

all available experimental data are included in the calculation of the maximum (Max) deviation, 

standard deviation (SD), MAPD, and bias in Eqs. 16-20. 

 

Deviation (%) = 100 ×
(𝜂predict − 𝜂exp)

𝜂exp
 (16) 

Max Deviation (%) = 𝑀𝑎𝑥 (100 ×
|𝜂predict − 𝜂exp|

𝜂exp
) (17) 

SD (%) = √
∑(𝜂 − �̅�)2

𝑁 − 1
 (18) 

MAPD (%) =
1

𝑁
∑100 ×

|𝜂predict − 𝜂exp|

𝜂exp
 (19) 

Bias (%) =
1

𝑁
∑100 ×

(𝜂predict − 𝜂exp)

𝜂exp
 (20) 

where 𝜂exp, 𝜂predict, 𝑁, and �̅� are the experimental viscosity data point, the predicted viscosity, 

the number of data points, and the viscosity mean, respectively. 
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Hydrocarbon Mixtures 
Table 3 lists the molar compositions of hydrocarbon mixtures used to evaluate the viscosity 

pseudo-component technique. Zeberg-Mikkelsen et al. [66] measured the viscosity of ternary 

mixtures (referred to as M1) containing methyl-cyclohexane (MCH), decalin, and 2,2,4,4,6,8,8-

heptamethyl-nonane (i.e., iso-cetane) for three different compositions at seven temperatures (293, 

303, 313, 323, 343, and 353 K) and pressures up to 1,000 bar. Baylaucq et al. [67] reported the 

viscosity for ternary mixtures (referred to as M2) containing n-heptane (C7), MCH, and methyl-

naphthalene for twenty-one compositions at three temperatures (303, 323, and 343 K) and pressures 

up to 1,000 bar. Boned et al. [68] reported viscosity measurements for a ternary (referred to as M3) 

and a quinary (referred to as M4) mixture at seven temperatures (293, 303, 313, 323, 333, 343, and 

353 K) and pressures up to 1,000 bar. Dauge et al. [69] measured the viscosity of binary mixtures 

(referred to as M5) containing iso-cetane and normal-tridecane (C13) for seven compositions at 

seven temperatures (293, 303, 313, 323, 333, 343, and 353 K) and pressures up to 1,000 bar. Zeberg-

Mikkelsen et al. [70] reported the viscosity for ternary mixtures (referred to as M6) containing iso-

cetane, C13, and methyl-naphthalene for twenty-one compositions at seven temperatures (293, 303, 

313, 323, 333, 343, and 353 K) and pressures up to 1,000 bar. 
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Table 3. Molar composition of the mixtures studied in this work [66-70] and viscosity of compounds 

present in these mixtures at 298 K and 1 atmosphere [71-79]. 

Compound Chemical Family Viscosity (cP) M1 M2 M3 M4 M5 M6 

n-heptane n-alkanes 0.388 - 0.125-0.750 - - - - 

n-tridecane n-alkanes 2.130 - - 0.394 0.200 0.125-0.875 0.125-0.750 

2,2,4,4,6,8,8-

heptamethyl-nonane 
Iso-alkanes 3.354 balance - - 0.162 balance 0.125-0.750 

methyl-cyclohexane Cyclohexanes 0.681 0.125-0.333 0.125-0.750 - - - - 

heptyl-cyclohexane Cyclohexanes 2.473 - - 0.348 0.353 - - 

decalin Decalins 2.469 0.125-0.333 - - - - - 

heptyl-benzene Benzenes 2.100 - - 0.258 0.156 - - 

methyl-naphthalene Naphthalenes 2.913 - balance - 0.129 - balance 

 

Figures 3 and 4 show the viscosity predictions and deviations from experiment, respectively, for 

the hydrocarbon mixtures reported by Zeberg-Mikkelsen et al. [66], Baylaucq et al. [67], Boned et 

al. [68], Dauge et al. [69], and Zeberg-Mikkelsen et al. [70]. For brevity, only central compositions 

are included in the figures. For mixture viscosities measured by Zeberg-Mikkelsen et al. [66], only 

the data for mixture composition containing 0.250 mole fraction MCH, 0.250 mole fraction decalin, 

and 0.500 mole fraction iso-octane (referred to as M1-2) are shown in the figures. For mixture 

viscosities measured by Baylaucq et al. [67], only the data for mixture composition containing 0.250 

mole fraction C7, 0.625 mole fraction MCH, and 0.125 mole fraction of methyl-naphthalene 

(referred to as M2-11) are shown in the figures. For mixture viscosities measured by Dauge et al. 

[69], only the data for mixture composition containing 0.500 mole fraction C13 and 0.500 mole 

fraction of iso-cetane (referred to as M5-4) are shown in the figures. For mixture viscosities 

measured by Zeberg-Mikkelsen et al. [70], only the data for mixture composition containing 0.125 
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mole fraction iso-cetane, 0.625 mole fraction C13, and 0.250 mole fraction of methyl-naphthalene 

(referred to as M6-11) are shown in the figures. Table 4 lists the calculated MW, HN/CN ratio, 𝑍 

parameter, viscosity experimental data point (𝜂𝑜) at the lowest reported temperature and pressure 

used to fit 𝐷 in the three parameter model, the PC-SAFT parameters, and the viscosity coefficients 

for the pseudo-components for the hydrocarbon mixtures shown in the figures. Table 5 summarizes 

viscosity predictions of the hydrocarbon mixtures. Parameters and MAPDs are reported in the SI 

for all hydrocarbon mixture compositions in this study. 
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Figure 3. Pseudo-component viscosity predictions compared to experimental data [66-70] 

(symbols) for hydrocarbon mixtures listed in Table 3: two-parameter (dashed lines) and three-

parameter (solid lines) models. Note that the y-axis scale is different in each figure. 
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Figure 4. Pseudo-component viscosity deviations compared to experimental data [66-70] for 

hydrocarbon mixtures listed in Table 3: two-parameter (open symbols) and three-parameter (filled 

symbols) models. Note that the y-axis scale is different in each figure. 
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Table 4. Pseudo-component properties and parameters for mixtures shown in Figure 3. 𝜂o is the 

viscosity data point at the lowest reported temperature and pressure (1 bar) used to fit 𝐷, now termed 

𝐷fit, in the three-parameter model. 

Mixture MW HN/CN Z 𝜂o / cP 𝑚 𝜎 (Å) 𝜀 𝑘⁄ (K) 𝐴 𝐵 𝐶 D 𝐷fit 

M1-2 172.3 2.01 0.097 2.54 at 293 K 5.736 3.849 244.5 -0.781 -3.439 -0.678 -0.153 -0.199 

M2-11 104.2 1.94 0.220 0.60 at 303 K 3.526 3.816 248.0 -0.665 -2.754 -0.470 -0.093 -0.111 

M3 181.6 1.94 0.139 2.12 at 293 K 5.980 3.847 247.6 -0.788 -3.519 -0.706 -0.162 -0.172 

M4 183.8 1.84 0.206 2.36 at 293 K 5.965 3.841 252.2 -0.776 -3.520 -0.712 -0.165 -0.169 

M5-4 205.4 2.14 0 2.49 at 293 K 6.922 3.863 237.4 -0.857 -3.511 -0.779 -0.181 -0.196 

M6-11 179.1 1.84 0.204 2.07 at 293 K 5.824 3.840 251.4 -0.770 -3.476 -0.698 -0.161 -0.158 

 

 

Table 5. The MAPD (%), bias (%), SD (%), and Max Deviation (%) for pseudo-component 

viscosity predictions of hydrocarbon mixtures compared to the literature data [66-70]. 

 Two-parameter  Three-parameter 

 M1 M2 M3 M4 M5 M6 M1 M2 M3 M4 M5 M6 

MAPD 35.0 8.0 7.2 3.1 14.0 10.2 11.0 4.8 3.4 2.8 4.6 5.2 

Bias -35.0 -4.8 -7.2 -2.1 -14.0 -7.9 -10.9 3.5 2.1 2.5 -0.3 -2.2 

SD 10.1 5.1 2.1 2.1 8.8 7.5 7.3 4.2 2.1 1.9 4.2 4.7 

Max Deviation 56.7 24.4 11.6 11.0 49.0 38.7 26.7 24.6 7.8 7.7 22.9 25.5 

 

Viscosities are predicted for mixtures M1 and M2 with average MAPDs of 35 and 8%, 

respectively when using the two-parameter model. Although the average MAPD for viscosity 
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predictions for compositions of mixture M2 is less than for compositions of mixture M1, the 

MAPDs for both mixtures are shown in the SI to increase with MCH concentration. When using 

the two-parameter model, viscosities are predicted for mixture M1-3 (33.3 mol% MCH) and 

mixture M2-6 (75.0 mol% MCH) with 45 and 20% MAPDs, respectively. More accurate viscosities 

are predicted using the two-parameter model for mixtures M3 and M4 (7.2 and 3.1% MAPD, 

respectively), which do not contain MCH. Viscosities of mixtures M5 and M6, which contain large 

concentrations of iso-cetane, are predicted with average MAPDs of 14 and 10%, respectively using 

the two-parameter model. Due to the definition of DoU (Eq. 7), the pseudo-component technique 

does not distinguish normal and iso-alkanes, which could be a reason for viscosity prediction 

deviations, when significant concentrations of iso-alkanes are present in the mixtures. Predictions 

for all hydrocarbon mixtures in this study are improved by fitting the D coefficient (three-parameter 

model).  

It should be noted that MCH (MW = 98.18 g/mol) lies at the extreme lower bounds of the fitted 

PC-SAFT and viscosity coefficient correlations, where the n-alkane and PNA correlations converge 

to the approximately the same value. Thus, the two-parameter pseudo-component model does not 

adequately distinguish low MW cycloalkanes from low MW n-alkanes or PNAs. Decalin 

concentration may also play a role in higher deviations for viscosity predictions using the two-

parameter model. However, decalin’s effect is unclear as it was present in compositions of only 

mixture M1. 

Another reason for deficiencies in the model could be due to the constant value of the D 

coefficient for every functional group in Lötgering-Lin and Gross [54]’s GC viscosity model. 

Extending their model to fit functional group dependent D coefficients could possibly lead to more 

accurate viscosity predictions without fitting D in the three-parameter model. It is also noted that 
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in the work of Lötgering-Lin and Gross, the pure component GC viscosity coefficients were fit 

using the homosegmented GC parameters of Sauer et al. [60], where iso and normal alkane 

functional groups were not differentiated when fitting parameters.  

Nevertheless, the two-parameter model and the Z parameter from Eq. 5 do not appear to 

accurately represent mixtures containing significant concentrations of MCH and iso-alkanes. 

Inclusion of a single viscosity data point at a chosen reference state to fit the D coefficient offers 

the potential for improved viscosity predictions in the three-parameter model. Viscosity is predicted 

for hydrocarbon mixtures using the three-parameter model with an average MAPD of 7.3% for all 

compositions of all mixtures in this study. This result is comparable to the viscosity predictions of 

Gross and co-workers [55] (i.e., 6.2% average MAPD) for non-polar binary mixtures. 

 

Diesel Fuels 
Diesel fuels contain hundreds of hydrocarbon compounds and vary in composition due to many 

factors, including crude oil composition, distillation conditions, and additional processing and 

blending required to meet quality specifications [80]. Table 6 lists the limited number of 

experimental studies reporting the viscosity of diesel fuels up to HTHP conditions. Detailed 

composition of diesel fuels, required for our analysis, was found only in Aquing et al. [13]. 

Although, Politte [81] provides limited fuel compositional information, their reported average CN 

and average MW were not found to be self-consistent. Therefore, the diesel fuel investigated by 

Politte [81] is not considered in this study. Further explanation for its exclusion is included in the 

SI. Aquing et al. [13] reported gas chromatography results of two diesel fuels (referred to in this 

study as Middle East SR and Highly Naphthenic) and measured the viscosity of these diesel fuels 

from 323 to 423 K and up to 3,500 bar. Table 7 lists the molar composition and CN range for 

different classes of compounds in the diesel fuels. Table 8 lists the number averaged MW, HN/CN 
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ratio, viscosity experimental data point (𝜂𝑜) at the lowest reported temperature and pressure (i.e., 

323 K and ~10 bar) used to fit 𝐷 in the three-parameter model, PC-SAFT parameters (Eqs. 2-4), 

and viscosity coefficients (Eqs. 12-15) of the pseudo-components for the two diesel fuels. 

 

Table 6. Summary of viscosity data for diesel fuels measured up to high temperatures and pressures.   

Author Year Trange/K Pmax/bar Uncertainty (%) No. of Samples with 

Composition 

Schaschke et al. [12]  2013 298-373 5,000 2 0 

Aquing et al. [13] 2012 323-423 3,500 2 2 

Duncan et al. [82] 2012 283-373 1,311 - 0 

Bazile et al. [83] 2012 293-353 2,000 1 0 

Duncan et al. [84] 2010 283-373 1,311 - 0 

Robertson and Schaschkle [85] 2009 273-294 1,600 - 0 

Politte [81] 1985 298-422 1,000 - 1a 

a
Sample is not considered in this study. Explanation is provided in the SI. 
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Table 7.  Molar composition (%) and carbon number ranges of chemical classes in diesel fuels 

measured by gas chromatography. Data from ref. [13]. 

 Mole Percent (%) Carbon Number Range 

Chemical Class Middle East SR Highly Naphthenic Middle East SR Highly Naphthenic 

n-alkanes 23 6 7-27 7-29 

Iso-alkanes 26 13 7-27 7-29 

Cyclohexanes 16 26 8-26 8-28 

Decalins 4 20 10-25 10-26 

Benzenes 10 10 8-24 8-20 

Naphthalenes 7 3 10-21 10-15 

Phenanthrenes 3 1 14-20 14-35 

Tetralins and Indanes 7 16 9-23 9-22 

Other unsaturates 4 5 12-21 13-35 

 

 

Table 8. Pseudo-component properties and parameters for diesel fuels. 𝜂𝑜 is the viscosity data point 

at the lowest reported temperature and pressure (i.e., 323 K and ~10 bar) used to fit 𝐷, now termed 

𝐷fit, in the three-parameter model. 

Diesel MW HN CN⁄  Z 𝜂o / cP 𝑚 𝜎 (Å) 𝜀 𝑘⁄ (K) 𝐴 𝐵 𝐶 D 𝐷fit 

Middle 

East SR 

225.1 1.85 0.222 2.97 7.202 3.846 254.6 -0.829 -3.885 -0.837 -0.203 -0.226 

Highly 

Naphthenic 

203.6 1.74 0.292 2.57 6.448 3.836 259.0 -0.780 -3.668 -0.771 -0.185 -0.211 
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Figures 5 and 6 show viscosity predictions and deviations from experiment, respectively, for the 

Middle East SR and Highly Naphthenic diesel fuels for three isotherms (323 K, 373 K, and 423 K) 

and pressures up to 3,500 bar. Viscosity is predicted across all conditions for both diesel fuels with 

an average MAPD of 22.0% using the two-parameter model and 9.3% using the three-parameter 

model. Table 9 presents the statistics for viscosity predictions of the diesel fuels. The composition 

of the diesel fuels in this study contain significant concentrations of iso-alkanes (i.e., 26 mol% for 

the Middle East SR diesel fuel and 13 mol% for the Highly Naphthenic diesel fuel) and 

cyclohexanes (16 mol% and 26 mol% for the Middle East SR and Highly Naphthenic diesel fuels, 

respectively). Large concentrations of iso-alkanes and cyclohexanes in the diesel fuels are possibly 

the cause of less accurate predictions using the two-parameter model, similar to the compositions 

of mixtures M1 and M2. The Highly Naphthenic diesel fuel also contains 20 mol% decalins, which 

possibly is another cause of viscosity prediction deviations based on our observations for 

compositions of mixture M1. Inclusion of a single viscosity data point as a third parameter in the 

model improves viscosity predictions for the diesel fuels in this study.   
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Figure 5. Pseudo-component viscosity predictions compared to experimental data [13] (symbols) for 

diesel fuels: two-parameter (dashed lines) and three-parameter (solid lines). Note that the y-axis scale 

is different in each figure. 

 

   

Figure 6. Pseudo-component viscosity deviations compared to experimental data [13] for diesel 

fuels: two-parameter (open symbols) and three-parameter (filled symbols) models. Note that the y-

axis scale is different in each figure. 

 

 

 



26 

 

Table 9. The MAPD (%), bias (%), SD (%), and Max Deviation (%) for pseudo-component viscosity 

predictions of diesel fuels compared to experimental data [13]. 

 Two-parameter  Three-parameter  

 Middle East SR Highly Naphthenic Middle East SR Highly Naphthenic 

MAPD 18.3 25.2 10.3 8.3 

Bias -17.8 -25.2 4.3 -3.9 

SD 15.2 15.7 5.0 8.3 

Max Deviation 51.3 60.6 17.9 33.2 

 

 

 

 

Conclusion  
A pseudo-component technique based upon residual entropy scaling using the Perturbed-Chain 

Statistical Associating Fluid Theory was developed to predict the viscosity of hydrocarbon mixtures 

and diesel fuels. The model predicts viscosity without need to fit to high temperature and pressure 

experimental data and requires input of only two calculated or experimentally measured mixture 

properties: the number averaged molecular weight and hydrogen-to-carbon ratio. Inclusion of a 

third parameter, the viscosity data point at a chosen reference state was shown to improve 

predictions for mixtures that contained significant concentrations of iso-alkanes and cyclohexanes. 

The ability to predict accurate viscosities for complex hydrocarbon mixtures such as diesel fuel up 

to extreme conditions, using relatively simple inputs will aid the future development of fuel 

injection equipment design and support the development and optimization of fuel and fluid 

formulations for improved performance at extreme conditions. 
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Nomenclature 
English symbols  

 ã reduced Helmholtz free energy 𝑁 number of data points 

Å Angstrom  𝑁𝐴 Avogadro’s number 

A, B, C, and D   viscosity coefficients �̅� molar entropy 

e coefficient in the polynomial shown in Table 2 

CN carbon number �̃� reduced entropy 

HN hydrogen number 𝑠∗ reduced dimensionless residual entropy 

k Boltzmann constant 𝑇 temperature 

K Kelvin 𝑉 volume 

𝑚 number of segments 𝑍 averaging parameter, Eq. 5 

Greek symbols    
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 σ segment diameter η viscosity 

𝛺(2,2) ∗  reduced collision integral 𝜂∗ reduced viscosity 

 𝜀 𝑘⁄  depth of the potential well �̅� viscosity mean 

𝜂o viscosity experimental data point at the lowest reported temperature and pressure 

Superscripts/Subscripts   

CE Chapman-Enskog hc hard-chain 

disp dispersion  predict prediction 

exp experimental data  res residual 
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