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Abstract. Existing earthquake ground motion (GM) selection methods for the 
seismic assessment of structural systems focus on spectral compatibility in 
terms of either only central values or both central values and variability. 
In this way, important selection criteria related to the seismology of the 
region, local soil conditions, strong GM intensity and duration as well as 
the magnitude of scale factors are considered only indirectly by setting 
them as constraints in the pre-processing phase in the form of permissible 
ranges. In this study, a novel framework for the optimum selection of 
earthquake GMs is presented, where the aforementioned criteria are treated 
explicitly as selection objectives. The framework is based on the principles 
of multi-objective optimization that is addressed with the aid of the 
Weighted Sum Method, which supports decision making both in the pre-
processing and post-processing phase of the GM selection procedure. The 
solution of the derived equivalent single-objective optimization problem is 
performed by the application of a mixed-integer Genetic Algorithm and the 
effects of its parameters on the efficiency of the selection procedure are 
investigated. Application of the proposed framework shows that it is able 
to track GM sets that not only provide excellent spectral matching but they 
are also able to simultaneously consider more explicitly a set of additional 
criteria.  

 

Keywords: seismic assessment; ground motion selection and scaling; response-
history analysis; multi-objective optimization; genetic algorithms 

 

1 Introduction 
 

The demand for controlling the earthquake-induced damage to structures necessitates the use of 
accurate structural analysis procedures. Clearly, if the GM was known, the most accurate procedure 
for determining seismic demands would be the rigorous nonlinear response-history analysis with step-
by-step integration of the equation of motion in the time domain. Nonlinear response-history analysis 
is used as the reference method for determining seismic demands in modern design guidelines such as 
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the fib Model Code 2010 [1, 2], however, key is the selection of GM records to serve as input 
excitations. This is because previous studies (e.g. [3, 4]) have shown that the selection of earthquake-
induced GMs represents the most significant source of uncertainty in the calculation of seismic 
demands undermining the reliability of the, otherwise rigorous, response history analysis. Therefore, 
efficient methodologies for the reliable selection of GMs in seismic assessment and design of structures 
are essential.  

Depending on the information available and the nature of the problem under investigation, synthetic, 
artificial, modulated or real records can be used with or without scaling [5]. Synthetic motions are 
generated by simulating the entire propagation from the earthquake rupture (source) to the site of 
interest for a scenario of given magnitude, distance and source seismological characteristics. Artificial 
records aim to match almost perfectly a target response spectrum through random vibration procedures 
[6]. The facts that there are several tools available for generating artificial GMs (e.g. [7]) and that low 
record-to-record variability is easily achieved explain why this procedure is acceptable, if not implicitly 
promoted, by most modern seismic codes. On the other hand, artificial records tend to lack 
characteristics of real earthquake GMs, such as the time-varying intensity and frequency content that 
can significantly affect the structural response. Moreover, aiming for spectral matching within a wide 
range of periods, particularly when the target is the code-based design spectrum, they may include 
unrealistic pulses, while the duration of motions is inevitably constant, effectively integral in the 
generation procedure. For all the above reasons, real records are often appropriately modulated via 
wavelet adjustment [8, 9] or other techniques to achieve the desirable spectrum compatibility without 
losing important features of earthquake GMs. Again some limitations also exist in this case, as the 
modulating procedures may drive to unrealistic strong motion duration and number of cycles leading 
to overestimation of cumulative damage effects on structures [5, 10]. With the rapid increase of the 
real GM records that are currently available online via several open databases, selection and scaling of 
an appropriate subset of real motions is deemed an attractive alternative as long as their variability, 
frequency content and cumulative damage potential is controlled. Use of real record suites is long 
permitted by modern seismic codes (e.g. ASCE7/SEI-2016 [11] and Eurocode 8 [12]) and is 
increasingly employed in practice.  

The key difference in real GM selection procedures, however, is whether they: 
(a) are based on preliminary seismological and site parameters for a given earthquake scenario that 

are roughly similar to those likely to cause the GM intensity of interest [13] to be followed by matching 
(in fact, exceed) a threshold percentage of the average spectrum of the seed motions versus a target, 
typically code-based, spectrum. This procedure is the standard method in modern seismic codes. In 
some variations that will be discussed below, GM variability is also kept under control. 

(b) aim to relax the preliminary criteria and directly select GMs based on their spectral shape, the 
rational being that the latter is a more important parameter compared to the preliminary criteria, which 
are only imperfect proxies of the frequency content and duration of GMs and naturally, hence not well 
correlated to seismic demand [14-16]. In this line of thinking, as long as the spectral shape of the GMs 
is compatible, at least the elastic seismic demand imposed on the structure is expected to be equivalent, 
irrespectively of how well the preliminary criteria were satisfied.  

In the first context, typically, the selection and scaling of sets of recorded accelerograms follows 
two basic phases. In the pre-processing (or, pre-selecting according to the ASCE/SEI-2016 [11]  
terminology) phase, a pool of eligible GMs is determined that satisfies a number of preliminary criteria 
such as adequate compliance with the regional seismicity (in terms of earthquake magnitude and 
source-to-site distance as defined by a deaggregation of the results of the Probabilistic Seismic Hazard 
Analysis, PSHA), local soil conditions (shear wave velocity of the upper 30m) at the site of interest, 
the tectonic environment and earthquake rupture mechanism. Other criteria may include usable 
frequencies and sampling of GMs, some restrictions as per the number of GMs that can be used from 
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the same event, strong ground motion intensity and duration as well as a minimum and maximum limit 
for the permissible scale factors to prevent bias to structural responses by excessive scaling [17]. 

For all these criteria, predetermined permissible ranges are determined by the engineer. It has been 
reported [10, 18] and is also quite anticipated, that the application of a large number or stringent pre-
selection criteria may reduce the number of eligible records and hence, hinder the spectrum 
compatibility process that follows.  

Depending on the number m of the eligible GMs that satisfy the preliminary criteria set and the 
desirable size n of the GM subsets (n ≤ m) different combinations of recorded motions are formed to 
be examined and prioritized. The total number of these possible combinations is given by Eq. (1). The 
usual design option for n is 7, since this is typically the minimum number required by most of the code 
provisions to permit the use of average response quantities as design values. 

 

 
!

n!( )!
m m
n m n
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 (1) 

 
The second (processing) phase of the GM selection procedure typically involves a heuristic 

procedure searching for sets of uniformly scaled, non-uniformly scaled or unscaled GMs that provide 
optimum compatibility with the pre-defined target response spectrum. The aim is to ensure that the 
average spectral values, of the scaled motions included in the set, will match spectral ordinates of the 
target spectrum, within a pre-scribed period range around the fundamental period of vibration. While 
assessing spectral matching of the eligible GM sets that can be formed by the n candidate records, 
additional criteria have been imposed to control GM variability in terms of spectral acceleration [18-
19] and spectral displacement [20], or structural response dispersion [21], as well as perform selection 
using both spectral and waveform matching in addition to conducting signal processing, response 
spectra analysis and soil response analysis [22]. 

The spectral-shape approach on the other hand, is employing the Conditional Mean Spectrum 
(CMS) [23] as the target spectrum with parameter ε (epsilon). Kottke and Rathje [24] developed a semi-
automated procedure that was able to select and scale GMs to fit a target acceleration response 
spectrum, while controlling the variability within the GM set itself. Given that CMS does not account 
for the aleatory variability in the response spectrum and the fact that, by definition, spectral values, 
only represent the peak response of a single-degree-of- freedom (SDOF) oscillator of a specific period, 
Bradley [25] considered conditional values of other GM properties (e.g. significant duration SD, Arias 
Intensity Ia etc) by introducing the generalized conditional intensity measure (GCIM), thus permitting 
to capture total and temporal duration and energy features of ground shaking. Jayaram et al. [26] 
explicitly considered both the response spectrum mean and variance in a Conditional Spectrum (CS) 
context, while Lin et al. [27] extended to CMS further, introducing the Exact Conditional Spectrum 
(ECS) that accounts for multiple causal earthquakes (as opposed to one in the standard CMS approach) 
and multiple GMPMs that are often considered in a PSHA computation. To overcome the ambiguity 
of choosing a scalar conditioning intensity measure IM, the need for amplitude scaling the GMs to the 
above IM and the potential bias in seismic demand estimate and the need for several sets of GMs to 
derive the seismic demand hazard curve (SDHC) an alternative method has been proposed by Kwong 
et al. [28] leading to a single set of unscaled GMs. Furthermore, recent studies [29-31] consider 
matching more than one selection objectives, which are the target response spectrum mean and variance 
as well as the correlation structure. This is achieved by using an objective function that is the weighted 
sum of the individual objective functions. Detailed reviews of the available methods for GM selection 
can be found in [32-34], while a comparative assessment as per the ECS and the GCIM is presented in 
Kwong and Chopra [35] using synthetic GMs. 
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All previous efforts aim at selecting a single GM set. Recently, Moschen et al. [36] proposed a 
multi-objective optimization framework with the aim to obtain a family of GM sets that simultaneously 
match (a) their median pseudo-acceleration spectrum with a target spectrum and (b) a target dispersion 
of spectral values on a predefined period range given that the same scale factor is used for each GM. 
As a result, a Pareto-front of selections is established that provides the best trade-offs between the two 
selection objectives. Next, a post-processing phase is required, where the user selects the most suitable 
solution of the Pareto-front based on engineering judgement and/or decision-making theory.  

Notwithstanding the significant advances made with respect to GM selection procedures, there is 
still a level of ambiguity as per whether the spectral shape is adequate to represent fully important GM 
characteristics such as duration and cumulative seismic demands that can affect significantly the 
response of structural systems [37-38] and are solely considered in seismic assessment by nonlinear 
response history analysis. This is particularly true in the framework of major existing seismic codes, 
such as Eurocode 8 [12], where a single type (Type 1 and Type 2) target spectrum is only to be matched 
for all sites in high and low seismicity regions respectively. 

Independently of the selection objectives and constraints, the use of optimization algorithms to 
facilitate the GM selection process becomes increasingly popular. In this context, the use of 
metaheuristic algorithms is particularly beneficial as it is more computationally efficient than 
exhaustive search and it drives to near global optimal solutions without the need for calculating 
gradients of cost or constraints functions [39]. Additionally, it can be combined with variable and 
different, within the same set, scale factors increasing substantially the potential for minimizing the 
corresponding objective functions. Naeim et al. [40] were the first to implement Genetic Algorithms 
(GA) in the selection of ground motion sets. Macedo and Castro [41] applied the Adaptive Harmony 
Search algorithm to select recorded GMs for code-based and CMS-based spectral matching. Stefanidou 
et al. [42] used a greedy heuristic optimisation algorithm to facilitate GM selection specifically at the 
bedrock level combined with one-dimensional site response analysis of a bridge-soil system. Moschen 
et al. [36] used the NSGA-II GA [43] to support the multi-objective optimization framework discussed 
previously. Nevertheless, the existing literature seems to be lacking sufficient information and 
guidance regarding the efficient use of metaheuristic optimization algorithms as well as the 
corresponding implications in GM selection. 

 The purpose of this study is to contribute a  simple, yet more versatile and computationally efficient 
GM selection approach that is fully compatible with major design codes and, at the same time, permits 
optimum matching to multiple, appropriately weighted, objectives that involve spectral compatibility 
with a target spectrum and compliance with target values of additional selection parameters. The latter 
may reflect local seismicity for a given earthquake scenario, local soil conditions and expected strong 
GM intensity and duration at the site of interest and the preferred level of GM scaling (i.e. unscaled 
spectra) in the selection procedure. In this way peak earthquake demands are considered along with 
cumulative seismic effects for structural systems assessed with the aid of rigorous nonlinear response 
history analysis. It is recalled that within the existing selection methods the above objectives are 
typically considered in terms of permissible ranges of their parameters in the pre-processing phase. 
Treating them explicitly as selection objectives in the proposed study, provides GM sets with the best 
trade-offs between spectral matching and compliance with their target parameter values in the most 
computationally efficient way. 

The Weighted Sum Method (WSM) is used to address the multi-objective optimization problem of 
this study that supports decision making both in the pre-processing and post-processing phase of the 
selection of GM sets. It is noted that this is the first time that this method is employed to derive not a 
single but a family of Pareto-optimal GM sets. Therefore, the necessary steps of the applied method 
are described in detail. 
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The optimum selections of GMs of this study are performed by the use of an efficient GA that is 
able to track near global optimum solutions of constrained problems with both discrete and continuous 
design variables. A parametric application of this algorithm is also conducted herein to demonstrate 
the effects of its parameters on the selection of GMs to fill a part of this gap in the existing literature. 
The structure of the method and demonstration of its efficiency are presented in the following sections. 

 

2 Multi-objective optimum GM selection methodology 

 
Similarly to [36], the methodology used herein to select GM sets is divided into three distinct 

phases: pre-processing; processing and post-processing. Each of the phases are described in detail 
below. 

 
2.1 Preliminary criteria for GM selection and scaling (Pre-processing) 
 
In this phase, a number of pre-selection criteria are applied in order to select a pool of eligible GM 

records from a strong motion database such as the European Strong-motion Database (ESD) [44], the 
PEER GM Database [45] and others. As discussed previously, these criteria can be of seismological 
nature such as the fault rupture mechanism and directivity of the seismic waves, as well as the 
earthquake magnitude M and source-to-site distance R. Furthermore, they can be related to the local 
soil conditions at the site of the structure as quantified, typically, by the shear-wave velocity Vs,30 at the 
uppermost 30m. Additionally, strong GM intensity criteria can be used expressed in terms of 
parameters that are easily available in the online databases, such as the peak ground acceleration 
(PGA), peak ground velocity (PGV) and displacement (PGD) and the spectral acceleration Sa(T1) at 
the fundamental period T1 of the structure under examination. Another criterion of interest, particularly 
in light of nonlinear analysis and cumulative seismic effects, is the significant duration of GM ts also 
available in the most databases. Furthermore, upper and lower limits of the scaling factors Sf values 
can be introduced in this phase to limit the bias of the results of structural responses due to GM scaling. 

The main difference in this phase of the proposed methodology with respect to the others is that the 
pre-selection criteria can be significantly relaxed depending on the adopted selection objectives that 
will be discussed in the following. In this manner, sufficient pools of eligible GMs can be used to 
ensure satisfactory spectrum compatibility. Furthermore, the tedious procedure, performed manually 
by the user, of re-adjusting the pre-selection criteria until sufficient spectrum matching is achieved can 
be avoided.  

In addition, a target response spectrum must be specified in the pre-processing phase. Depending 
on the nature of the envisaged seismic assessment, the Uniform Hazard Spectrum UHS [46], the 
Conditional Mean Spectrum CMS [23] or a spectrum predicted for scenario events determined by 
appropriate empirical response spectra attenuation relationships (e.g. [47, 48]) can be used as target 
spectra. Furthermore, when seismic assessment is performed in the framework of a seismic code, the 
smooth elastic code spectrum should be set as target spectrum.  

The next step in this phase, deals with defining the selection objectives. These objectives can be 
related directly to the parameters described previously for determining the permissible ranges of the 
pre-selection criteria. Setting these objectives will be discussed in greater detail in the processing phase 
of the GMs selection procedure. 

A final, provisional, step in the pre-processing phase is the selection of appropriate fixed values of 
the weights of the selection objectives to be used in the WSM. This step supports decision making in 
this early phase of the selection procedure. Clearly, the values of these weights should be problem 
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dependent for three reasons: i) the importance of the various objectives depends on the subject and the 
goals of the seismic assessment. For example, an increased weight for the significant duration of strong 
GM for the seismic assessment by means of nonlinear response history analysis of a structure 
susceptible to cumulative damage effects and a lower weight for a structure insensitive to cumulative 
damage can be used; ii) the values of the weights should reflect not only the importance of the 
objectives but also the level of confidence for their target values. It is not reasonable to provide high 
weight values to objectives with highly uncertain target values; iii) the trade-offs between the various 
objectives depend on the available pool of records. 
Hence, in the general case, to select the weight values of the various objectives in the pre-processing 
phase, a limited number of weight combinations should be first selected based on engineering 
judgement and reflecting the subject and the goals of the seismic assessment as well as the level of 
confidence of the corresponding target values. Next the values of the objective functions should be 
evaluated and the combination of weights that “works best” for the problem under investigation should 
be adopted. In the cases, however, where one objective can be characterised as main and the rest as 
secondary, as it is often the case with the spectrum compatibility and the rest selection objectives, trial 
selections can be made by increasing gradually from zero the weights of the secondary objectives and 
monitor the results of the main objective function. The increase of the weights of the secondary 
objectives should be terminated when the main objective function worsens rapidly and/or when it 
exceeds a pre-specified goal value that is acceptable for this objective. 

In any case, if fixing of these weights is not possible in the pre-processing phase then the full range 
of different weight values has to be assumed in the WSM to derive the Pareto-fronts of the selection 
objectives, as discussed in the following. Based on these fronts, decision-making will then take place 
in the post-processing phase.  

 
2.2 Processing 
 
In this phase, a single set of GMs is selected in the case of single-objective optimum selection or 

multi-objective optimum selection with fixed weight values determined in the pre-processing phase. 
Alternatively, a number of different sets of GMs on the Pareto-front of the selection objectives can be 
derived in the case of multi-objective optimum selection with no pre-fixed weight values. These Pareto-
optimal solutions represent the best feasible trade-offs between the different selection objectives. There 
are no other selection solutions that can reduce one objective of the Pareto-optimal solutions without 
increasing another one at the same time, as shown in Fig. 1 for the case of two selection objectives. In 
the following, the steps followed to derive optimal GM sets are described in detail.  

 

 
Fig. 1: Pareto-optimal solutions 
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Optimization problem formulation 
 
In a general multi-objective optimization problem, the aim is to minimize a set of p objective 

functions 𝐹𝐹𝑖𝑖(𝒙𝒙) (i =1 to p) subject to q number of constraints 𝑔𝑔𝑗𝑗(𝒙𝒙) ≤ 0 (j =1 to q). A selection is 
represented by the solution vector x, which contains l number of independent selection variables xk (t 
= 1 to l). The previous can be summarized as: 
 
Minimize:    [𝐹𝐹1(𝒙𝒙),𝐹𝐹2(𝒙𝒙), … ,𝐹𝐹𝑝𝑝(𝒙𝒙)]   
Subject to:   𝑔𝑔𝑗𝑗(𝒙𝒙) ≤ 0 (𝑗𝑗 = 1 to 𝑞𝑞) (2) 
Where:  𝒙𝒙 = (𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑙𝑙) 

 
The WSM is the simplest and most intuitively meaningful means of solving a multi-objective 

optimization problem [39, 49]. In this method, the multi-objective optimization problem is solved as a 
single-objective optimization problem, where an equivalent single objective 𝐹𝐹(𝒙𝒙) has to be minimized. 
𝐹𝐹(𝒙𝒙) is simply a weighted linear combination of all the individual objective functions 𝐹𝐹𝑖𝑖(𝒙𝒙). Therefore, 
the optimization problem is written as: 

 
Minimize:    𝐹𝐹(𝒙𝒙) = ∑ 𝑤𝑤𝑖𝑖 ∙ 𝐹𝐹𝑖𝑖(𝒙𝒙)𝑝𝑝

𝑖𝑖=1    
Subject to:   𝑔𝑔𝑗𝑗(𝒙𝒙) ≤ 0 (𝑗𝑗 = 1 to 𝑞𝑞) (3) 
 ∑ 𝑤𝑤𝑖𝑖

𝑝𝑝
𝑖𝑖=1 = 1 

Where:  𝒙𝒙 = (𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑙𝑙)  
              

In Eq. (3), wi are the values of the weights corresponding to the individual function objectives 𝐹𝐹𝑖𝑖(𝒙𝒙). 
In the simple case of a bi-objective optimization problem, shown in Fig. 1, Eq. (3) becomes: 

 
 𝐹𝐹(𝒙𝒙) = 𝑤𝑤1 ∙ 𝐹𝐹1(𝒙𝒙) + 𝑤𝑤2 ∙ 𝐹𝐹2(𝒙𝒙)  (4) 
 
As discussed, the values of the weights may be fixed at this stage based on decision making in the 

pre-processing phase. In this case, the optimal solution derived will be a single point on the Pareto-
front in the objective solution space. Alternatively, by changing the weight values gradually from 0 to 
1, a series of Pareto-optimal points is evaluated and thereby the Pareto-front is obtained. 

Equation (4) is easy to implement when the individual objectives 𝐹𝐹𝑖𝑖(𝒙𝒙) refer to similar quantities. 
However, in the general case where the 𝐹𝐹𝑖𝑖(𝒙𝒙) (i = 1, 2) are of different nature then the selection of their 
corresponding weight values wi is not straightforward. In this cases, it is recommended (e.g. [49]) to 
use a normalized version of the equivalent single-objective function 𝐹𝐹�(𝒙𝒙) given by: 

 
 𝐹𝐹�(𝒙𝒙) = 𝑤𝑤1 ∙ 𝐹𝐹�1(𝒙𝒙) + 𝑤𝑤2 ∙ 𝐹𝐹�2(𝒙𝒙)      (5)  
 
In Eq. (5), 𝐹𝐹�𝑖𝑖(𝒙𝒙) (i = 1, 2) are the normalized individual objective functions given by Eq. (6), where 
𝐹𝐹𝑖𝑖,𝑚𝑚𝑖𝑖𝑚𝑚 is the minimum value of 𝐹𝐹𝑖𝑖(𝒙𝒙) calculated by setting in the optimization problem of Eq. (3) that 
𝐹𝐹(𝒙𝒙) = 𝐹𝐹𝑖𝑖(𝒙𝒙) and 𝐹𝐹𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum value of 𝐹𝐹𝑖𝑖(𝒙𝒙) calculated by setting in the optimization 
problem of Eq. (3) that 𝐹𝐹(𝒙𝒙) = 𝐹𝐹𝑗𝑗(𝒙𝒙) with j ≠ i (j = 1, 2). The afore-described values are presented in 
Fig. 1.  
 

 𝐹𝐹�𝑖𝑖(𝒙𝒙) = 𝐹𝐹𝑖𝑖(𝒙𝒙)−𝐹𝐹𝑖𝑖,𝑚𝑚𝑖𝑖𝑚𝑚(𝒙𝒙)
𝐹𝐹𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚(𝒙𝒙)−𝐹𝐹𝑖𝑖,𝑚𝑚𝑖𝑖𝑚𝑚(𝒙𝒙)   (6) 
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Having established 𝐹𝐹�𝑖𝑖(𝒙𝒙) optimal values, the corresponding 𝐹𝐹𝑖𝑖(𝒙𝒙) values are easily retrieved by solving 
Eq. (6). Similar considerations hold in the general case of more than two selection objectives. 
 

Selection variables 
 
The selection variables are the properties of the optimization problem that can change values during 

the solution procedure. In the selection of sets of GM records of size n examined herein, the first n 
design variables xk (k = 1 to n) are the records serial numbers inside the pool of eligible m records (1 ≤ 
n ≤ m) and the second n design variables xk+n (k = 1 to n)  are the corresponding scale factors 𝑆𝑆𝑆𝑆𝑘𝑘  (k = 
1 to n).  Therefore, the design vector x can be written as: 

 
 𝒙𝒙 = (𝑥𝑥1, … , 𝑥𝑥𝑚𝑚,𝑥𝑥𝑚𝑚+1, … , 𝑥𝑥2𝑚𝑚)   (7) 

 
In this formulation, the first n design variables (serial numbers) are represented by integer values. 

The second n variables (scale factors) are represented by positive real numbers. It is noted that this 
formulation is the most general and allows for the maximum search space in the selection procedure. 
Clearly, different formulations of the scale factors design variables can be used depending on the 
selection constraints and the nature of the problem under investigation. For example, fixed scale factors 
can be used based on a pre-scaling procedure that matches all individual spectra to the target spectrum 
at a specific period. In this case, the design variables are reduced from 2n to n. Alternatively, a common 
variable scale factor can be used to preserve the relative intensity of the un-scaled records [36]. In the 
latter case, n+1 independent selection variables are required.  

 
Selection constraints 
 
The selection constraints 𝑔𝑔𝑗𝑗(𝒙𝒙) (j =1 to q) represent additional limitations in the selection and 

scaling of GMs procedure that are complementary of the selection criteria in the pre-processing phase. 
Typically, they represent criteria aiming at improving the reliability of spectral matching that are not 
addressed in the pre-processing phase. For example, Eurocode-8 (Part 1) [12] sets the following 
spectral matching limitations in the selection of sets of GMs: 

i) The mean of the zero period acceleration values of the scaled individual response spectra 
should be larger than the zero period acceleration of the target code spectrum. 

ii)  In the range of periods between 0.2T1 and 2T1, no value of the mean 5% damping elastic 
spectrum, calculated from all time histories, should be less than 90% of the corresponding 
value of the 5% damping of the code elastic response spectrum.  

 
Selection objectives 
 
As discussed, typically, objectives in the selection of GMs procedure are related to metrics 

quantifying the quality of spectrum compatibility of the scaled GMs with the target spectrum. A very 
common metric that is focussing on mean estimates of structural response is the normalized root-mean-
square-error δ between the scaled average spectrum of the set of GMs and the target spectrum: 

 

 𝛿𝛿 = �1
𝑁𝑁
∑ �𝑆𝑆𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎,𝑠𝑠𝑠𝑠(𝑇𝑇𝑖𝑖)−𝑆𝑆𝑚𝑚𝑡𝑡𝑡𝑡𝑎𝑎(𝑇𝑇𝑖𝑖)

𝑆𝑆𝑚𝑚𝑡𝑡𝑡𝑡𝑎𝑎(𝑇𝑇𝑖𝑖)
�
2

𝑁𝑁
𝑖𝑖=1   (8) 
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In the above equation, 𝑆𝑆𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎,𝑠𝑠𝑠𝑠(𝑇𝑇𝑖𝑖) is the spectral ordinate of the scaled average spectrum at period 
Ti given by Eq. (9), 𝑆𝑆𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎(𝑇𝑇𝑖𝑖) is the ordinate of the target spectrum at the same period and N is the 
number of period sample values used within the pre-defined range of periods, where matching is 
envisaged (e.g. between 0.2T1 and 2T1 according to [12]). In Eq. (9), 𝑆𝑆𝑎𝑎𝑗𝑗(𝑇𝑇𝑖𝑖) is the un-scaled ordinate 
of the individual spectrum j (j = 1 to n) at period 𝑇𝑇𝑖𝑖 and 𝑆𝑆𝑆𝑆𝑗𝑗is the corresponding scale factor.  

 

 𝑆𝑆𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎,𝑠𝑠𝑠𝑠(𝑇𝑇𝑖𝑖) =
∑ 𝑆𝑆𝑓𝑓𝑗𝑗∙𝑆𝑆𝑚𝑚𝑗𝑗𝑚𝑚
𝑗𝑗=1 (𝑇𝑇𝑖𝑖)

𝑚𝑚
  (9) 

 
The main contribution of the present study is the explicit consideration of additional objectives in 

the selection of GMs that are not directly related to spectrum compatibility. These objectives refer to 
target properties values related to regional seismicity, local site conditions, strong GM intensity and 
duration as well as the magnitude of scale factors. These properties are linked not only to peak 
responses, addressed by spectral matching, but also to the energy content and the cumulative demands 
of earthquake GMs. Hence, they should be taken into consideration in the seismic assessment of 
structural systems by means of rigorous nonlinear response history analysis. Nevertheless, they are 
considered only as constraints, in the form of permissible ranges, in the pre-processing phase of the 
existing GM selection procedures.  

Following the proposed approach, the selections with the optimal trade-offs between matching these 
additional properties target values and spectral matching are obtained. It is noted that targeting these 
additional properties values in the conventional approach of GM selection can be pursued only 
manually by gradually modifying their permissible ranges. However, the latter procedure can be 
tedious and not drive to optimal solutions since specific parameter values are not targeted. Furthermore, 
limiting significantly the permissible ranges may drive to unfeasible selections or selections with 
inadequate spectral compatibility.  

In all cases, the additional selection objectives can be set to minimize the normalized root-mean-
square-error eQ (Eq. 10) between the individual GM properties values 𝑄𝑄𝑗𝑗 (j = 1 to n) and the 
corresponding target property value of the selection procedure 𝑄𝑄𝑡𝑡𝑡𝑡𝑎𝑎, where 𝑄𝑄can be set as M, R, Vs,30, 
PGA, Sa(T1), ts and any other desirable scalar property. 

  

 𝑒𝑒𝑄𝑄 = �1
𝑚𝑚
∑ �𝑄𝑄𝑖𝑖−𝑄𝑄𝑡𝑡𝑡𝑡𝑎𝑎

𝑄𝑄𝑡𝑡𝑡𝑡𝑎𝑎
�
2

𝑚𝑚
𝑖𝑖=1   (10) 

 
In addition to the above, another objective is examined herein in order to reduce the bias in the 

seismic assessment of structures introduced by extensive spectral scaling [17]. According to this 
objective, the scale factors of the individual spectra should remain as close as possible to unity (i.e. un-
scaled spectra). This objective can be easily expressed in the same context as the one used in Eq. (10) 
by taking 𝑄𝑄𝑖𝑖 (i = 1 to n) from Eq. (11) and setting 𝑄𝑄𝑡𝑡𝑡𝑡𝑎𝑎 = 1. 

 

 𝑄𝑄𝑖𝑖 = max �𝑆𝑆𝑆𝑆𝑖𝑖,
1
𝑆𝑆𝑓𝑓𝑖𝑖
�    (𝑖𝑖 = 1 𝑡𝑡𝑡𝑡 𝑛𝑛)   (11) 

 
As discussed, previous studies (e.g. [36]) consider as an additional objective to matching central 

spectral values the control of variability within the GMs suites by matching a constant target dispersion 
of pseudo spectral acceleration regardless of period. Other selection objectives may also be used to 
limit the variability of spectral matching. For example, the average or the maximum values of the 
normalized root-mean-square-errors 𝛿𝛿𝑖𝑖 between the scaled individual spectra and the target spectrum 
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can be used as selection objectives. The role of the latter additional objectives will also be examined 
in the following of this study. 

 
Solution algorithm 
 

The optimization problem of Eq. (3) is solved in this study by the use of the mixed-integer GA 
implemented in MATLAB 2017a [50]. It is important to clarify, however, that any other mixed-integer 
optimization algorithm can be used in the framework of this study. Genetic Algorithms [51] belong to 
the class of stochastic, nature-inspired heuristic algorithms. They are based on Darwin’s theory of 
natural selection and evolution. GAs iteratively modify populations (generations) of individuals in 
order to evolve toward an optimum solution. An individual x (genome) represents a candidate solution 
to the optimization problem. The values of the design variables xk (k = 1 to l) forming each individual 
are called genes. In order to create the next population, GAs select certain individuals in the current 
population (parents) and use them to create individuals in the next generation (children). The GA 
algorithm implemented in MATLAB-R2017a treats both continuous and discrete design variables. To 
serve this goal, special crossover and mutation functions are used to ensure that discrete variables take 
values only from pre-determined discrete sets of values [52]. Furthermore, the algorithm is able to 
account for nonlinear constraints by using the penalty function approach [53]. 

 
2.3 Post-processing 

   
This last phase of the selection procedure is required only when multi-objective optimum selection is 
applied without fixing the values of the selection weights in the pre-processing phase. In this case, a 
number of Pareto-optimal selections is returned by the algorithm and it is up to the engineer to design 
the most suitable to the goals of the seismic assessment. Elements of engineering judgement and 
decision theory can be used in the stage. It is generally considered (e.g. [54]) that spectral matching is 
more important than parameters related to the seismology of the region, local site conditions, strong 
GM intensity and duration. Therefore, it could be reasonable, depending always on the nature of the 
problem under investigation, that the Pareto-optimal solutions that provide good spectral matching 
without yielding high 𝑒𝑒𝑄𝑄values to be preferred. Furthermore, goal programming concepts can be 
directly applied in this phase, where solutions are chosen to satisfy a pre-determined goal for one 
objective and yield the optimum feasible outcomes for the rest of the objectives under consideration. 
For example, the Pareto-optimal solution with the minimum 𝑒𝑒𝑄𝑄value could be selected among all 
solutions with 𝛿𝛿 ≤ 𝛿𝛿𝑙𝑙𝑖𝑖𝑚𝑚, where 𝛿𝛿𝑙𝑙𝑖𝑖𝑚𝑚 is a satisfactory limit value for 𝛿𝛿 (e.g. 𝛿𝛿𝑙𝑙𝑖𝑖𝑚𝑚 = 0.05). 
At this point, it is important to highlight the advantages of the proposed Pareto-front of the error metrics 
approach with respect to a more manual solution, where the user visually inspects the optimal GM sets 
obtained by the different weight combinations and selects the one that finds more satisfactory. The 
proposed approach offers quantified information related to the achievement of the specified selection 
targets. This quantified information facilitates automation and objectivity of the selection procedure. 
In this manner, the amount of effort required by the user is drastically reduced. Furthermore, it is not 
required by the user to make subjective judgements regarding the level of achievement of the various 
selection objectives. 
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3 Ground motion selection applications 
 
3.1 Introduction 
 
To illustrate the applicability and efficiency of the proposed methodology, GM sets will be selected 

according to Eurocode 8 – Part 1 [12] for the seismic assessment of a structure of ordinary importance 
with fundamental period T1 = 0.75s resting on stiff soil profile with Vs,30 = 600 m/s that is classified as 
ground type B according to the specifications of EC8- Part 1. The structure is assumed to be located in 
a region of high seismicity that is dominated by an earthquake scenario of moment magnitude Mw = 6.2 
at an epicentral distance of R = 20 km. The motions will be selected for the 10% probability of 
exceedance in 50 years seismic hazard level with anticipated PGA = 0.24g. 

In the pre-processing phase, a pool of eligible GMs has to be derived from a GM database. In this 
study, all GMs are taken from the European Strong-motion Database (ESD) [44]. Next, appropriate 
pre-selection criteria need to be applied to derive GMs compatible with the conditions of the seismic 
assessment under investigation. Herein, a number a broad range criteria are used to filter the eligible 
GMs. These are: i) Mw > 5.5; ii) R ≥ 10km; iii) Ground type B; iv) Both horizontal GM components 
have PGA ≥ 0.02g. The first criterion is compatible with the definition of the zones of high seismicity 
in EC8- Part 1and the last criterion is used to avoid excessive scale factors. The second and third criteria 
are supposed to be reflecting the soil and seismology conditions of the problem. Applying these filters 
in the ESD returns 184 GMs with two horizontal components, therefore 368 different GM records. 
From these motions, only the 104 (208 horizontal records) are recorded on soil profiles with known 
Vs,30. The latter records are used herein as the basic pool of eligible GM records because Vs,30 will be 
used as selection objective in the following and the corresponding values are required. Fig. 2 presents 
histograms with the basic properties of the eligible records of the GM database. 

As a target spectrum, the Type-1 (high seismicity) spectrum of EC8 – Part 1 is used in this study as 
prescribed for soil class B, PGA = 0.24g, importance factor γI = 1 (structures of ordinary significance) 
and 5% viscous damping. It is important to note herein that, in the selection of GMs according to the 
earthquake scenario examined in this study, it is generally more appropriate to use a target spectrum 
determined specifically for this scenario by appropriate empirical response spectra attenuation 
relationships or by PHSA. However, because different GM selections will be examined later in this 
study for various scenarios and objectives, it was decided to use always the same target spectrum for 
common reference. 
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Fig. 2: Histograms of eligible GM basic properties 

 
In the following, the results of the GM selections will be presented for different objectives. First, 

single-objective selections will be presented to act as a reference and verify the efficiency of the applied 
numerical procedure. To this end, applications of the GA algorithm with different parameters are 
examined and compared to provide a further insight, with respect to the existing literature, into the 
applicability and efficiency of the use of metaheuristic algorithms to the selection of GMs and its 
implications. Next, a number of different multi-objective optimum selections are examined and critical 
comments are made with regards to the derived optimal solutions. 

 
3.2 Single-objective selections 
 
In this section, selection of sets of 7 GMs are examined for a single objective, which is to minimize 

the error δ between the scaled average spectrum of the set of GMs and the target spectrum as given by 
Eq. (8). EC8-Part 1 [12] selection constraints are applied as discussed in §2.2. In addition, it is set that, 
after scaling, the zero period acceleration values of the individual response spectra, should be between 
0.5 and 2.0 times the corresponding value of the target spectrum to limit excessive variability of the 
scaled individual spectra. Furthermore, it is specified that both horizontal components of the same GM 
cannot be part of the same GMs set for uniaxial ground motion excitation. Lastly, it is decided that the 
individual scale factors cannot be higher than 10 and lower than 0.1. 

The optimum selections are performed with the use of the mixed-integer GA solution algorithm 
discussed in §2.2. In total, 14 selection variables are used. This counts for 7 integer variables for the 
serial numbers of the GMs and 7 continuous for the scale factors, assumed variable and independent 
herein. A population size of 100 individuals with 5 elite individuals is used. Each GA run is terminated 
after 3000 generations. In total, 100 independent runs of the GA are performed. Due to the stochastic 
nature of the GA algorithm, each run may provide a different selection set and corresponding δ value.  

  
Fig. 3: Single-objective GM selections using the GA algorithms. a) δ values obtained from different GA 

runs; b) Spectra of the GM set with the minimum δ value 
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Figure 3a presents the δ values obtained from the 100 independent GA runs. A considerable 

variation of these values is observed with a coefficient of variation of 0.35. The median value is 0.053 
and the minimum 0.028. The latter value was obtained at the 25th run of the algorithm. Therefore, in 
general, a sufficient number of independent GA runs is required to get the best solution. However, in 
this example, it may be observed that even from the 1st run a δ value very close to the minimum is 
obtained that could be used to select an alternative set of GMs. Furthermore, Fig. 3b shows the spectra 
of the set of GMs with the minimum δ value and how they compare with the target spectrum. It is 
evident that excellent matching, inside the specified period limits, of the average and the target 
spectrum is achieved. High variability of the individual spectra is observed. This is the case because 
EC8 does not control the level of variability inside the GM sets. The issue of the variability of GM 
spectra is addressed separately in a following section of this study. 

The selection of the parameters of the GA algorithm is typically based on experience from previous 
applications to similar optimization problems. However, as discussed, this experience seems to be 
lacking in the case of the selection of GMs. To fill part of this gap, a parametric study is conducted in 
the following to illustrate the influence of these parameters on the computational performance of the 
algorithm. 

Fig. 4a presents the variation of δ values, in the form of box plots, as obtained from 100 independent 
runs of the same GA algorithm with population sizes of 50, 100 and 150 individuals. The box plots 
show the minimum, maximum and median (red line) values obtained. Inside the boxes, the 25th to 75th 
percentile solutions are contained. It can be seen that the 100 individuals population size provides the 
best solutions in terms of both minimum and median values. This effectively shows also that increasing 
the population size does not necessarily drive to better solutions. This observation is also consistent 
with the recommendation for the population size of this algorithm provided in [50] according to which 
the population size should be taken from Eq. (12), where nvars is the number of selection variables 
(i.e. nvars = 14). It is worth noting, however, that the differences obtained from the different population 
sizes are generally not very high.  

 
 𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑡𝑡𝑖𝑖𝑡𝑡𝑛𝑛 𝑠𝑠𝑖𝑖𝑠𝑠𝑒𝑒 = min(max(10 · 𝑛𝑛𝑛𝑛𝑎𝑎𝑛𝑛𝑠𝑠, 40) , 100)   (12) 

 
Furthermore, Fig. 4b presents the variations of the δ values from 100 independent GA runs as a 

function of the number of elite individuals selected in a population of 100 individuals. It can be seen 
that the 5 and 10 elite candidate solutions provide similar solutions. However, the use of only 2 elite 
individuals drives to significant increase of both the minimum and median δ values. Again, these 
observations are consistent with [50], where the number of elite individuals is recommended to be 5% 
of the population size. 

Moreover, Fig. 4c illustrates the δ values obtained from 100 GA runs with population size of 100 
individuals and 5 elite individuals as a function of the number of maximum generations. As expected, 
the median and the scatter of the results decrease as the number of iterations increases. It is interesting 
to note, however, that after the 3000 maximum generations limit the improvement of the results is only 
marginal and therefore the further increase of iterations may be deemed as unnecessary as it increases 
considerably the computational cost. It is interesting to note here that the default maximum generations 
in [50] are 100∙nvars (i.e. 1400), which seems that could introduce a considerable scatter in the 
optimum solutions. 
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Fig. 4: Variation of δ values obtained from single-objective GM selections as a function of the: a) 
population size; b) number of elite individuals; c) maximum generations; d) suite size; e) pool of records. 
 
In addition, Fig. 4d presents the δ values obtained from 100 GA runs when sets of 7, 10 and 14 GMs 

are pursued. This means that 14, 20 and 28 selection variables (GMs serial numbers and scale factors) 
are used respectively in the solution algorithm. In all cases, a population size of 100 individuals with 5 
elite individuals is used. The analysis is terminated after 3000 generations. It can be observed that in 
all cases a similar minimum δ value is obtained. This is positive because it means that the GA algorithm 
manages to find high quality solutions for larger sets of GMs despite the corresponding sharp increase 
of the search space. However, the scatter of the optimum solutions generally increases as the set size 
increases. 

Finally, Fig. 4e compares the obtained δ values as derived for selected sets of 7 GMs and using the 
same GA parameters as in Fig. 4d from two different pools of eligible GM records. The first pool of 
208 records is the same as the one used in the previous examples herein and the second is the pool of 
368 records that includes also records that have been recorded on soil profiles with unspecified Vs,30 as 
explained in §3.1. It can be seen that the same minimum value is obtained in both cases. However, the 
median δ value slightly increases as the pool of eligible records increases due to the corresponding 
increase of the available search space. It is noted that the increase of the search space can lead to an 
increase of the number of generations required for the GA to converge to the optimum solution and 
this may increase considerably the computational cost for very large pools of records. On the other 
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hand, more candidate solutions are available and the GA may reach a solution of similar quality to a 
smaller database prior to reaching convergence. Hence, the direct comparison of the computational 
costs required for reaching the same value of the objective function from a small and a large database 
is not straightforward. In any case, it is reminded herein that the proposed approach can duly work in 
parallel with the application of stricter selection criteria in the pre-processing phase that can reduce the 
size of the pools of records when GA is found to be less efficient. 

It is important to highlight at this point that the choice of the GA search scheme depends strongly 
on the goals and the computational budget of the GM selection procedure. For example, if it is 
important that the global optimum selections are obtained then a high number of maximum generations 
and independent GA runs should be used. However, for more practical applications where the users 
simply need to get solutions of good quality and the computational budget is limited, the number of 
generations and independent GA runs can be drastically reduced with rather minor effects on the quality 
of the results as shown in Figs 3 and 4.  

 
 
3.3 Multiple-objective selections 
 
In this section, selections of sets of 7 GMs for more than one objectives are examined. Again, the 

optimum selections are performed with the use of the mixed-integer GA solution algorithm with 14 
independent selection variables. A population size of 100 individuals with 5 elite individuals is used. 
Each analysis is terminated after 3000 generations. For each combination of weights of the different 
objective functions, 100 independent GA runs are conducted and the solution yielding the minimum 
𝐹𝐹(𝒙𝒙) function is selected to represent the corresponding Pareto-optimal point. This approach is mainly 
followed herein in order to increase the likelihood of obtaining the global optimal solutions for each 
combination of weights and thereby better demonstrate the effect of the weight values on the different 
optimal solutions. Alternatively, a more versatile approach for the derivation of the Pareto-fronts can 
be used, where the optimal solutions of all the GA runs for all the combinations of weights are examined 
and the Pareto-optimal points are then identified based on their definition (i.e. the points that are not 
dominated by other points in the objective functions space). Due to the stochastic nature of the GA 
algorithm, the latter approach can discover Pareto-optimal points that may be missed by the former 
procedure. This also means that the latter approach could potentially be applied with a lesser number 
of GA runs, with respect to the former, leading to a reduction of the computational cost. In the 
following, selections of GM sets for multiple objectives are presented. First, solutions for two and then 
for more than two selection objectives are examined. 

 
3.3.1 Selections for two objectives 
 
Herein, bi-objective optimum selections are examined by applying the WSM, where 𝐹𝐹�(𝒙𝒙) of Eq. 

(5) has to be minimized. In all cases, δ is used as the first selection objective function 𝐹𝐹1(𝒙𝒙) to represent 
the quality of spectral matching. In addition, a great variety of second objectives 𝐹𝐹2(𝒙𝒙)  is applied to 
derive the corresponding Pareto-fronts. Eq. (5) is applied for 5 different values of w1 = 0, 0.25, 0.50, 
0.75 and 1.00, whereas w2 is determined as w2 = 1-w1. In this manner, 5 Pareto-front optimal points are 
derived that can be also used to approximate the entire Pareto-front, if necessary. In the following, 
these optimal points are numbered according to their w1 values in ascending order. In this way, the 1st 
point (w1 = 0) corresponds to the single-objective optimization for minimum 𝐹𝐹2(𝒙𝒙) and the 5th point to 
the solution for minimum 𝐹𝐹1(𝒙𝒙). Clearly, as w1 increases more emphasis is placed on δ with respect to 
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the alternative selection objectives. In the following, the results obtained for the different 𝐹𝐹2(𝒙𝒙) are 
presented.  

 
Seismological parameters Mw and R 
 
It has been established that the magnitude Mw exerts a considerable influence on structural response 

quantities both in terms of amplitude and duration [32]. Therefore, it is generally treated as an important 
parameter in the selection process. The aim here is to present the Pareto-front optimal solutions in terms 
of δ versus eM, where eM is the error of the magnitudes of the selected individual GMs Mw,i with respect 
to the target value Mw,trg = 6.2 specified by the earthquake scenario under examination.  

Fig. 5a illustrates the derived Pareto-optimal points. In this figure, as well as in all similar figures 
presented later, points are numbered (1 to 5) according to their w1 values as discussed. As expected, 
point 5 exhibits the best solution in terms of spectral matching but with a high error in magnitudes and 
point 1 is the most representative in terms of earthquake magnitudes but with rather poor spectral 
matching (δ ≈ 0.19). In between, points 2, 3 and 4 all constitute rather attractive solutions. For example, 
point 4 imperceptibly increases the minimum δ value of point 5 while reduces eM by 70%. Furthermore, 
points 2 and 3 also represent acceptable solutions in terms of spectral matching (δ ≈ 0.05) with small 
errors in magnitudes. At this point, it becomes more evident the main advantage of the formation of 
Pareto-front solutions in the selection of GM sets. It allows for informed selection-making based on 
the trade-offs between the various objectives. 

 

  
Fig. 5: Pareto-front optimal solutions: a) δ versus eM; b) δ versus eR  

 
Fig. 6 presents the spectral matching attained by the GM sets of points 1 and 2. It is shown that 

point 2 exhibits much better matching of the target and mean spectrum, with almost the same eM, when 
compared to point 1. Therefore, it would generally be preferable to point 1. In addition, the quality of 
spectral matching of point 2 is not significantly worse than the single-objective selection for minimum 
δ of Fig. 3b. Therefore, it represents an attractive solution since it combines good spectral matching 
with earthquake magnitudes representative of regional seismicity. 
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Fig. 6: Spectral matching of different δ versus eM Pareto-optimal solutions: a) point 1; b) point 2 

 
It is generally accepted [32] that structural responses are not significantly correlated with the source-

to-site distance R. Nevertheless, R is still considered as a secondary criterion in the selection procedure. 
Fig. 5b presents the δ versus eR, Pareto-front optimal solutions, where eR is the error in distances for the 
target distance Rtrg = 20 km. This Pareto-front could be used, for example, in the case of a known fault 
in the seismic region with variable potential earthquake magnitude. It can be seen in Fig. 5b, that points 
3 and 4 greatly reduce the error in distances whereas they only marginally influence spectral matching. 
Therefore, even though R is not strongly related to structural response, points 3 and 4 could be used 
instead of point 1 since they are more representative of the regional seismicity and they provide 
equivalent spectral matching.  

 
Soil profile parameter Vs,30 
 
It is known that the geotechnical profile affects both the amplitude and duration of strong GMs as 

well as their computed response spectra [32]. Typically, the soil profile is considered in the selection 
procedure by site classification. In the problem investigated herein, the soil is classified according to 
EC8 – Part 1 as Type B with a rather broad range of Vs,30 values between 360 m/s to 800 m/s. However, 
if the actual Vs,30 value at the site of the structure is known (assumed 600 m/s herein), then it is 
worthwhile to investigate δ versus eVs,30 Pareto-optimal solutions by setting the known shear wave 
velocity as the target value. Fig. 7a presents the obtained optimal solutions. It is evident that, apart from 
point 5, points 3 and 4 are good quality solutions since they contain motions recorded in more similar 
profiles to the site of interest and they only slightly reduce spectral matching with respect to point 5. 
Fig. 7b presents the satisfactory spectral matching attained by the GM set of point 4 Pareto-optimal 
solution.  

 

  
Fig. 7: a) δ versus eVs,30 Pareto-optimal solutions; b) spectral matching of point 4 Pareto-optimal solution 
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Strong motion intensity and duration parameters 
 
Strong motion intensity parameters (widely known as intensity measures IM) are strongly related 

to structural response quantities. Therefore, selection of GMs based on IM is an efficient way to 
increase reliability of the seismic assessment procedure. The most typical examples of IM are the PGA 
and Sa(T1). In this section, for reasons of brevity, only PGA is addressed although it is recognised that 
Sa(T1) is more closely related to structural response. To include PGA in the selection procedure, one of 
the two objectives can be to minimize the error ePGA of the individual GMs with respect to the target 
PGA = 0.24g. Fig. 8a shows the obtained δ versus ePGA Pareto-optimal solutions. It is clear in this figure 
that the solution for minimum ePGA yields very poor spectral matching. On the other hand, points 4 and 
5 have similar and satisfactory δ values and could both be considered in the final selection. 

Strong motion duration may influence significantly structural response especially of structural 
systems that exhibit rather poor hysteretic response such as timber and masonry structures [37] as well 
as non-ductile reinforced concrete structures [38]. A variety of metrics exist in literature to quantify 
strong motion duration [55]. Perhaps, the simplest metric is the so called bracketed duration defined as 
the total time elapsed between the first and last excursion of a specified level of acceleration αo. In this 
section, the duration ts,0.02 is used, which is based on αo = 0.02 g. The anticipated ts,0.02 is directly 
estimated for the earthquake scenario under investigation (Mw = 6.2 and R = 20 km) by using 
attenuation relationships such as the one proposed by Koutrakis et al. [56] for the case of Greece. Using 
this relationship, it is found that the expected ts,0.02 is approximately 9.5 s. To consider the anticipated 
duration in the selection of GMs, it is set as one of the two selection objectives to minimize the error 
ets of the 0.02 g bracketed duration of the individual GMs with respect to the target duration ts,trg = 9.5 
s. Fig. 8b presents the δ versus ets Pareto-optimal solutions. It can be seen that the point 1 leads to high 
δ values (δ ≈ 0.29) whereas point 5 drives to relatively high error in duration. Therefore, points 2 - 4 
could be also considered to be used for the purposes of seismic assessment. 
 

  
Fig. 8: Pareto-front optimal solutions: a) δ versus ePGA; b) δ versus ets  
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to poor spectral matching and in some cases not feasible selection of GMs sets [18]. To avoid these 
unfortunate cases, a bi-objective selection approach is proposed herein, where one of the objectives is 
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that the algorithm found an un-scaled set of GMs. However, this point is characterized by rather poor 
spectral matching (δ ≈ 0.15). Therefore, it will be more appropriate to use one of the other Pareto-
points that have significantly smaller and generally satisfactory δ values (δ < 0.05). It is also noteworthy 
that eSf can be significantly reduced from 5.8 (point 5) to 1.9 (point 2), leading to a mean scale factor 
from 6.2 to 2.9, for very small increase of δ. Fig. 9b presents spectral matching of the set of GMs of 
point 2. It is evident that matching of the mean and target spectrum is satisfactory. It is worth noting, 
however, the high variability of the GM spectra of the selected set of GMs. The issue of the variability 
of GM spectra is addressed in the following section. 

 

  
Fig. 9: a) δ versus eSf Pareto-optimal solutions; b) spectral matching of point 2 Pareto-optimal solution 
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Fig. 10: Pareto-front optimal solutions: a) δ versus mean(δi); b) δ versus max(δi) 

 

  
Fig. 11: Spectral matching of optimal GM sets for a) mean(δi); b) max(δi) 

 
3.3.2 Selections for more than two objectives 

 
In this section, selection of GMs for more than two objectives is investigated. Initially, selection for 

two specific earthquake scenarios is examined. Next, a full 3-D Pareto front is developed. To the best 
of the authors’ knowledge, this is the first study developing a 3-D Pareto front for the purposes of GM 
selection. In the first earthquake scenario (δ, Mw, R), selection takes place for adequate spectral 
matching and to be consistent with an earthquake magnitude Mw = 6.2 and epicentral distance R = 20 
km. This selection can be facilitated by using a normalized version of Eq. (3), similar to Eq. (4), and 
setting: 𝐹𝐹1(𝒙𝒙) = 𝛿𝛿, 𝐹𝐹2(𝒙𝒙) = 𝑒𝑒𝑀𝑀 and 𝐹𝐹3(𝒙𝒙) = 𝑒𝑒𝑅𝑅. For simplicity, it is assumed herein that the weights 
of the selection objectives are specified in the pre-processing phase of the selection procedure and that 
they are equal to w1 = 0.50, w2 = 0.25 and w3 = 0.25. These weight values are used herein in order to 
achieve, for illustration purposes, equal and maximum reduction of eM and eR while keeping spectral 
compatibility as the main selection objective. The following objective function values are established 
for these weights: δ = 0.045, eM  = 0.032 and eR  = 0.627. If these are compared with the respective 
values of the best single-objective solution shown in Fig. 3b (δ = 0.028, eM  = 0.062 and eR  = 1.178), 
it is concluded that the multi-objective selection reduces significantly the errors in magnitude and 
distance while the quality of spectral matching remains still satisfactory. This is clear also in Fig. 12a 
that presents the (Mw, R) properties of the two selected GM sets. It is evident that the multi-objective 
selection approaches closer the target point with (Mw, R) = (6.2, 20 km).  
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Fig. 12: Properties of GMs of the selected GM sets for: a) (δ, Mw, R); b) (δ, Mw, R, Vs,30) multi-objective 
scenarios 

 
The second multi-objective scenario includes the first scenario described in the previous of this 

section but also sets a target value for the Vs,30 of the soil profile at the site of the structure (Vs,30 = 600 
m/s). Therefore, it is a (δ, Mw, R, Vs,30) multi-objective scenario. This scenario is pursued by simply 
adding a fourth objective in Eq. (4), which is the error eVs,30. It is decided in the pre-processing phase 
that the weights of the objectives considered in the selection process are: w1 = 0.5, w2 = 0.5/3, w3 = 
0.5/3 and w4 = 0.5/3. The following objective function values are established for these weights: δ = 
0.039, eM  = 0.038, eR  = 0.37 and eVs,30 = 0.23. Compared with the respective values of the best single-
objective solution shown in Fig. 3b (δ = 0.028, eM  = 0.062, eR  = 1.178 and eVs,30 = 0.28), it is concluded 
that the multi-objective selection reduces significantly the errors in magnitude and distance and 
considerably in the soil velocity while the quality of spectral matching remains still satisfactory. This 
is illustrated also in Fig. 12b that presents the (Mw, R, Vs,30) properties of the selected single- and multi-
objective GM sets. It is evident that the multi-objective selection approaches closer the target point 
with (Mw, R, Vs,30) = (6.2, 20 km, 600 m/s).  

 

  
Fig. 13: Spectral matching of optimal GM sets for a) (δ, Mw, R); b) (δ, Mw, R, Vs,30) multi-objective 

scenarios 
 
Furthermore, in the following, a 3-D Pareto front is developed. Spectral matching, earthquake 

magnitudes and spectral matching variability are considered as selection objectives by setting 𝐹𝐹1(𝒙𝒙) =
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0.25, 0.5, 0.75 and 1.0 (i = 1, 2, 3) while satisfying w1 + w2 + w3 = 1.0. To limit the computational cost, 
30 GA runs (instead of 100) are conducted for each combination of weights and the Pareto-fronts are 
derived using the second, more versatile, approach described in the introduction of §3.3 (i.e. examining 
as candidate Pareto-optimal points the optimal points of all GA runs of all weights combinations). Fig. 
14a shows the obtained Pareto-front in the form of a bubble chart, where the Pareto-optimal points are 
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presented in the 𝑚𝑚𝑒𝑒𝑎𝑎𝑛𝑛(𝛿𝛿𝑖𝑖) − 𝑒𝑒𝑀𝑀 plane with circles the width of which is proportional to their δ values. 
Using the more versatile approach, 25 Pareto optimal points were identified. In this figure, the point 
with the minimum δ value (δ ≈ 0.029) is shown, which is almost equal to the single-objective value. It 
is observed, however, that this optimal point is characterised by rather high 𝑒𝑒𝑀𝑀 and mean(δi) values. 
To minimize the variability of the GM records, points 1 and 2 can also be considered that both have 
minimum mean(δi) values and adequately small δ values (δ ≈ 0.04, mean(δi) ≈ 0.20). However, point 1 
has significantly smaller 𝑒𝑒𝑀𝑀 value than point 2. Therefore, it better represents regional seismicity and 
it is preferable than point 2. Fig. 14b shows spectral matching achieved by point 1. It is evident that 
both the matching of the mean spectrum as well as the variability of GM records are satisfactory. 

The afore-described selection procedure demonstrates the benefits of considering explicitly more 
objectives in the GM selection procedure. It is important to clarify, however, that the use of a significant 
number of selection objectives increases considerably the computational cost required for the 
development of the Pareto-fronts as well as the effort required by the user to post-process the results. 
In these cases, it may be preferable to consider the objectives of secondary importance in the form of 
pre-selection criteria close to the corresponding target values in the pre-processing phase of the 
selection procedure. 

 

 
 

Fig. 14: a) 3D Pareto-front in the form of bubble-chart; b) Spectral matching of point 1 Pareto-optimal 
solution 

 

4 Summary and Conclusions 
 
Selection of earthquake GMs represents the most significant source of uncertainty in seismic 

assessment of structural systems. Therefore, appropriate selection of GMs is of vital importance. 
Existing methodologies for the selection of earthquake GMs focus on spectral matching in terms of 
either only central values or both central values and variability. In this study, a new versatile multi-
objective framework for the optimum selection of earthquake GMs is presented that is fully compatible 
with major seismic design codes and sets, for first time, as selection objectives not only optimum 
matching with a target spectrum but also compliance with target values of parameters representing the 
seismology of the region, soil conditions, strong ground motion intensity and duration, the magnitude 
of scale factors and others. The additional objectives are reflecting not only peak demands but also 
cumulative seismic effects and the variability level of the GM selection.  

The framework is based on the principles of multi-objective optimization and it is applied with the 
aid of the WSM that supports decision making both in the pre-processing and post-processing phase of 
the selection of GM sets. This is the first study employing the WSM to derive not a single GM set but 
a family of Pareto-optimal GM sets matching more than one selection objectives. It is also the first 
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study deriving GM selection Pareto-fronts for more than two selection objectives. Following this 
approach, the proposed selection procedure provides a number of GM sets with the best trade-offs 
between spectral matching and compliance with the target parameters values in a computationally 
efficient manner. In a post-processing phase, the user is able to select the most suitable solution based 
on engineering judgement and/or decision-making theory. 

The solution of the optimization problem is performed by an efficient GA that is able to track near 
global optimum solutions of constrained problems with both discrete and continuous selection 
variables. A parametric application of this algorithm is also conducted for first time herein to 
demonstrate the effects of its parameters on the selection of GMs. Useful conclusions are made 
regarding its efficient use in GM selection procedures. 
The proposed framework is applied to the selection of GM sets for the seismic assessment of a structural 
system exposed to a specific earthquake scenario. It is shown that the developed framework is able to 
track sets of GMs that not only provide excellent spectral matching but they are also more 
representative of the earthquake scenario under investigation in terms of moment magnitude, epicentral 
distance, local soil conditions, intensity and duration of strong GMs. Similarly, it is found that, if set 
as selection objectives, the proposed framework is capable of limiting the variability and the magnitude 
of the scale factors of the selected GM sets while again maintaining excellent spectral matching in 
terms of central values. The previous are typically achieved by using higher weight values for spectral 
matching than the additional selection objectives. More particularly, by comparing the points of the 
developed Pareto-fronts of §3.3, it is usually found that weight values of up to 0.25 (points 4) and many 
times higher for the additional objectives improve significantly the compliance with their target values 
while they imperceptibly affect spectral matching with respect to the single objective solutions (points 
5). However, further research is required to recommend weight values for ground motion selection in 
the general case and therefore it is generally recommended that the full Pareto-front of the optimal 
solutions is derived and the most suitable GM set to the seismic assessment investigated is selected. 
The previous observations drive to the conclusion that the developed framework represents a valuable 
tool for the efficient selection of earthquake GMs for the purposes of seismic assessment of structural 
systems. 
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