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Abstract

This article proposes an approach to estimate and make inference on the parameters of

copula link-based survival models. The methodology allows for the margins to be specified

using flexible parametric formulations for time-to-event data, the baseline survival functions

to be modeled using monotonic splines, and each parameter of the assumed joint survival dis-

tribution to depend on an additive predictor incorporating several types of covariate effects.

All the model’s coefficients as well as the smoothing parameters associated with the relevant

components in the additive predictors are estimated using a carefully structured efficient and

stable penalized likelihood algorithm. Some theoretical properties are also discussed. The pro-

posed modeling framework is evaluated in a simulation study and illustrated using a real data

set. The relevant numerical computations can be easily carried out using the freely available

GJRM R package.
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1 Introduction

Bivariate survival data consist of pairs of event times which may be right-censored and exhibit

strong association, and are often encountered in biomedical studies. Applications utilizing such

type of data include the study of Danish twin pairs (Wienke et al., 2003), the association of age

at a marker event and age at menopause (Nan et al., 2006), and the dependence between time to

myocardial infarction and time to stroke (Li et al., 2017). Copulae are well-suited to build bivariate

models for survival outcomes since they can flexibly link marginal survival functions to form a

joint survival distribution. Their use in survival analysis dates back to Clayton (1978), Oakes

(1982) and Oakes (1986), and there have been a number of recent methodological developments

in the area (e.g., Prenen et al., 2017; Romeo et al., 2018). While other frameworks can be adopted

to analyze jointly event times (e.g., frailty and scale change models), the copula approach offers a

good deal of flexibility in specifying the model and is usually computationally more tractable.

Clayton (1978) suggested that, when adjusting for covariates, the marginal survival functions

as well as the copula dependence parameter can help uncover the presence of underlying factors

influencing the probability of event times simultaneously. However, the majority of the articles

published since then have mainly focused on controlling for covariates at the marginal level, hence

neglecting the inclusion of covariate information in the association structure of the event times.

The works by Bogaerts & Lesaffre (2008), Geerdens et al. (2018), Meyer & Romeo (2015) and

Romeo et al. (2018) (see also the relevant references therein) have addressed this issue in copula

models with several types of survival margins.

In this work, we contribute in this direction by developing an efficient and theoretically founded

estimation and inferential likelihood-based framework for fitting flexible copula survival models

for right-censored bivariate survival data. The proposed methodology allows for the simultane-

ous estimation of all the parameters of the assumed joint survival distribution. Moreover, each

parameter can depend on an additive predictor incorporating a vast variety of covariate effects

that are represented using the penalized regression spline approach (Wood, 2017). The margins

are modeled via transformations of the survival functions, which, when combined with the use

of additive predictors, give rise to marginal generalized additive survival or link-based models
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(e.g., Liu et al., 2018; Royston & Parmar, 2002). These can essentially be regarded as flexible

parametric model formulations for time-to-event data where transformations of the baseline sur-

vival functions can be flexibly modeled using for example B-splines, and the covariate effects

are determined via additive predictors. It is important to note that working with transformations

of the survival functions avoids the need for numerical integration (to evaluate, for instance, the

cumulative hazard function), and that time-varying covariate effects can be easily accounted for

(Royston & Parmar, 2002). Cox has encouraged the broader use of parametric survival models for

empirical modeling (Reid, 1994). In fact, they facilitate model estimation and comparison, easily

allow for the visualization of the estimated baseline hazard and survival functions, and allow us to

calculate several quantities of interest and their variances, such as time-dependent hazard or odds

ratios, which would otherwise be more difficult to obtain with a non-parametric approach (Hjort,

1992). The smoothing parameters associated with the spline components in the model’s additive

predictors are efficiently estimated from the data using a general and automatic approach.

The challenge with flexibly estimating transformations of the baseline survival functions is

that they must be monotone in the time variables. In our view, this problem is best theoretically

and computationally addressed using the monotonic P-spline approach introduced by Pya & Wood

(2015). Alternative techniques make it difficult to efficiently and/or reliably estimate a vector of

smoothing parameters in a shape constrained context. For instance, methods based on subjecting

the spline coefficients to linear inequality constraints (e.g., Meyer, 2012; Zhang, 2004) make the

derivatives of classic smoothness criteria with respect to multiple smoothing parameters change

discontinuously. This is because constraints enter or leave the set of active constraints during the

optimization. Preliminary experimentation with one such approach revealed that derivative based

fitting methods often fails, hence hindering the possibility of developing an efficient scheme for

automatic multiple smoothing parameter estimation for joint survival models.

It may be argued that using a two-stage estimation approach instead of a simultaneous one

would, for example, make the fitting problem easier to deal with in exchange for some loss in

efficiency. However, as argued and illustrated via simulation in the paper, the simultaneous method

exhibits a superior performance in the context of the models developed in this paper.

To summarize, the proposed framework allows one to estimate joint survival models where
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two flexible parametric survival models are linked by a copula function, all the model’s parame-

ters can be specified as functions of various types of covariate effects, and monotonic P-splines

of transformations of the baseline survival functions are utilized to provide coherent marginal sur-

vival fits. The estimation approach is based on penalized maximum likelihood and consists of a

carefully constructed optimization scheme that allows for the simultaneous penalized estimation

of the model’s parameters as well as for stable and efficient automatic multiple smoothing param-

eter selection. The construction of confidence intervals for linear and non-linear functions of the

model’s coefficients is discussed, whereas p-values for the model’s smooth components (which

may, for example, be useful to test for the null hypothesis of dependence parameter constancy

but not only) are obtained by adapting to the current context some of the results available in the

spline literature. The new modeling framework has been implemented in the R package GJRM

(Marra & Radice, 2019), which has been created to facilitate the use of such models in industry

and academia and to enhance reproducible research.

The proposed model, estimation and inferential methods, and some theoretical properties are

discussed in Section 2. Section 3 revisits a case study on appendectomy, whereas Section 4 pro-

vides a discussion. Details on smooth function specifications, large sample properties, software

implementation, model building, and a simulation study are collected in the on-line supplementary

material for the sake of space.

2 Methodology

We consider the case of bivariate right censored data; the true event times are not always recorded,

in which case lower times (the censoring times) are observed. For individual i, let (C1i, C2i) denote

a vector of bivariate censoring times which is assumed to be independent of the pair of survival

times (T1i, T2i) conditional on a generic xi (the vector of baseline covariates), and non-informative.

We observe (Y1i, Y2i) = (min {T1i, C1i} ∈ R+,min {T2i, C2i} ∈ R+) and the corresponding vec-

tor of censoring indicators (u1i, u2i) = (I {T1i ≤ C1i} , I {T2i ≤ C2i}). Let also δ ∈ RW be a

generic vector of parameters of dimension W , and i = 1, 2, . . . , n where n represents the sample

size.
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2.1 Model formulation

In this section, we introduce copula link-based additive survival models by describing the compo-

nents that make them up and the assumptions they are based on. Let T1i and T2i have conditional

marginal survival functions generically defined as Sv(tvi|xvi;βv) = P (Tvi > tvi|xvi;βv) ∈ (0, 1)

for v = 1, 2, and conditional joint survival function expressed as S(t1i, t2i|xi; δ) = P (T1i >

t1i, T2i > t2i|xi; δ). In order to link T1i and T2i we assume the copula model

S(t1i, t2i|xi; δ) = C (S1(t1i|x1i;β1), S2(t2i|x2i;β2);m {η3i(x3i;β3)}) ,

where δT = (βT
1 ,β

T
2 ,β

T
3 ), x1i, x2i and x3i are vectors of covariates (which can all be equal to

xi but have not to) with associated coefficient vectors β1, β2 and β3 of dimensions W1, W2 and

W3 such that W = W1 + W2 + W3, C : (0, 1)2 → (0, 1) is a uniquely defined 2-dimensional

copula function with coefficient θi = m {η3i(x3i;β3)} capturing the (possibly varying) condi-

tional dependence of (T1i, T2i) across observations (e.g., Marra & Radice, 2017; Patton, 2002;

Sklar, 1973), η3i(x3i;β3) ∈ R is a predictor which includes generic additive covariate effects,

and m is an inverse monotonic and differentiable link function which ensures that the dependence

parameter lies in its range (see Table 1). The margins are modeled using generalized survival

or link-based models (Liu et al., 2018; Royston & Parmar, 2002). That is, Sv(tvi|xvi;βv) is de-

fined as Gv {ηvi(tvi, xvi;βv)}, where Gv is an inverse link function and the additive predictors

ηvi(tvi, xvi;βv) ∈ R, for v = 1, 2, must include baseline functions of time (or a stratified set of

functions of time) as conveyed by the notation. For the sake of clarity, the set up of the addi-

tive predictors will be discussed in detail in the next section. Except for some cases, it may not

be straightforward to understand the magnitude of the association between T1i and T2i from the

knowledge of θ. In such situation, the well known Kendall’s τ , which takes values in the cus-

tomary range [−1, 1], can be employed. The above construction shows that the copula framework

allows one to create a joint survival function from the knowledge of (arbitrary) marginal survival

functions and a function C that binds them together.

The copulae considered in this work are reported in Table 1. Counter-clockwise rotated ver-

sions of copulae such as Clayton and Gumbel can be obtained using the following expressions:
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C90 = p2−C(1−p1, p2), C180 = p1 +p2−1+C(1−p1, 1−p2), C270 = p1−C(p1, 1−p2), where

the subscript indicates the degree of rotation, p1 and p2 are margins and θ has been suppressed for

simplicity (e.g., Brechmann & Schepsmeier, 2013). More details on copulae and their theoreti-

cal properties can be found in Nelsen (2006). Function Gv {ηvi(tvi, xvi;βv)} can be specified as

shown in Table 2.

The marginal cumulative hazard and hazard functions, Hv and hv (v = 1, 2), are given by

Hv(tvi|xvi;βv) = − log [Gv {ηvi(tvi, xvi;βv)}]

and

hv(tvi|xvi;βv) = −G
′
v {ηvi(tvi, xvi;βv)}

Gv {ηvi(tvi, xvi;βv)}
∂ηvi(tvi, xvi;βv)

∂tvi
, (1)

where G′v {ηvi(tvi, xvi;βv)} = ∂Gv {ηvi(tvi, xvi;βv)} /∂ηvi(tvi, xvi;βv). The joint functions can

be defined in a similar way.

Remark 1. Let us consider a copula with asymmetric dependence (e.g., Clayton and Gumbel), and

express the joint survival function of (T1, T2) as S(t1, t2) = C (S1(t1), S2(t2)). While S(t1, t2)

assumes strong upper (lower) tail association, the same copula function but with margins defined

using cumulative distribution functions 1 − S1(t1) and 1 − S2(t2) assumes strong lower (upper)

tail dependence. Note also that C180 (S1(t1), S2(t2)) models the same dependence structure as

C (1− S1(t1), 1− S2(t2)).

2.1.1 Predictor specification

This section provides some details on the set up of the three model’s predictors. The main dif-

ference between ηvi(tvi, xvi;βv) for v = 1, 2 and η3i(x3i;β3) is that the former two must include

smooth functions of time. Apart from that, the design matrix set up is the same across the three

additive predictors since tvi can be treated as a regressor. Therefore, let us consider a generic ηνi

(ν = 1, 2, 3), where the dependence on the covariates and parameters is momentarily dropped, and

an overall covariate vector zνi made up of xνi as well as tνi when ν = 1, 2. For simplicity, the di-

mensions of z1i and z2i are assumed to be W1 and W2 since t1i and t2i can be treated as covariates.
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Copula C(p1, p2; θ) Range of θ Link Kendall’s τ

AMH ("AMH") p1p2
1−θ(1−p1)(1−p2) θ ∈ [−1, 1] tanh−1(θ)

− 2
3θ2

{
θ + (1− θ)2

log(1− θ)}+ 1

Clayton ("C0")
(
p−θ1 + p−θ2 − 1

)−1/θ
θ ∈ (0,∞) log(θ) θ

θ+2

FGM ("FGM") p1p2 {1 + θ(1− p1)(1− p2)} θ ∈ [−1, 1] tanh−1(θ) 2
9θ

Frank ("F") −θ−1 log {1 + (exp {−θp1} − 1)
(exp {−θp2} − 1)/(exp {−θ} − 1)} θ ∈ R\ {0} − 1− 4

θ [1−D1(θ)]

Gaussian ("N") Φ2

(
Φ−1(p1),Φ−1(p2); θ

)
θ ∈ [−1, 1] tanh−1(θ) 2

π arcsin(θ)

Gumbel ("G0")
exp

[
−
{

(− log p1)θ

+(− log p2)θ
}1/θ] θ ∈ [1,∞) log(θ − 1) 1− 1

θ

Joe ("J0")
1−

{
(1− p1)θ + (1− p2)θ

−(1− p1)θ(1− p2)θ
}1/θ θ ∈ (1,∞) log(θ − 1) 1 + 4

θ2D2(θ)

Plackett ("PL")
(
Q−

√
R
)
/ {2(θ − 1)} θ ∈ (0,∞) log(θ) −

Student-t ("T") t2,ζ

(
t−1ζ (p1), t−1ζ (p2); ζ, θ

)
θ ∈ [−1, 1] tanh−1(θ) 2

π arcsin(θ)

Table 1: Definition of the copulae implemented in GJRM, with corresponding parameter range of association param-
eter θ, link function of θ, and relation between Kendall’s τ and θ. Φ2(·, ·; θ) denotes the cumulative distribution
function (cdf) of a standard bivariate normal distribution with correlation coefficient θ, and Φ(·) the cdf of a uni-
variate standard normal distribution. t2,ζ(·, ·; ζ, θ) indicates the cdf of a standard bivariate Student-t distribution with
correlation θ and fixed ζ ∈ (2,∞) degrees of freedom, and tζ(·) denotes the cdf of a univariate Student-t distribution
with ζ degrees of freedom. D1(θ) = 1

θ

∫ θ
0

t
exp(t)−1dt is the Debye function and D2(θ) =

∫ 1

0
t log(t)(1− t)

2(1−θ)
θ dt.

Quantities Q and R are given by 1 + (θ − 1)(p1 + p2) and Q2 − 4θ(θ − 1)p1p2, respectively. The Kendall’s τ for
"PL" is computed numerically as no analytical expression is available. Argument BivD of gjrm() in GJRM allows
the user to employ the desired copula function and can be set to any of the values within brackets next to the copula
names in the first column; for example, BivD = "J0". For Clayton, Gumbel and Joe, the number after the capital
letter indicates the degree of rotation required: the possible values are 0, 90, 180 and 270.

Model Link g(S) Inverse link g−1(η) = G(η) G′(η)
Prop. hazards ("PH") log {− log(S)} exp {− exp(η)} −G(η) exp(η)

Prop. odds ("PO") − log
(

S
1−S

)
exp(−η)

1+exp(−η) −G2(η) exp(−η)

probit ("probit") −Φ−1(S) Φ(−η) −φ(−η)

Table 2: Link functions implemented in GJRM. Argument margins of gjrm() in GJRM allows the user to employ
the desired marginal models and can be set to any of the values within brackets next to the models’ names in the
first column; for example, margins = c("PH", "PO"). Φ and φ are the cumulative distribution and density
functions of a univariate standard normal distribution. The first two functions are typically known as log-log and
-logit links, respectively.
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The main advantages of using additive predictors are that various types of covariate effects can

be dealt with and that such effects can be flexibly determined without making strong parametric a

priori assumptions regarding their forms (Hastie & Tibshirani, 1990; Ruppert et al., 2003; Wood,

2017). However, note that the additive assumption here means that not all the interaction terms

among the covariates may be included in the predictor (e.g., Wood, 2017).

An additive predictor can be defined as

ηνi = βν0 +
Kν∑
kν=1

sνkν (zνkν i), i = 1, . . . , n, (2)

where βν0 ∈ R is an overall intercept, zνkν i denotes the kthν sub-vector of the complete vector zνi

and the Kν functions sνkν (zνkν i) represent generic effects which are chosen according to the type

of covariate(s) considered. Each sνkν (zνkν i) can be represented as a linear combination of Jνkν

basis functions bνkνjνkν (zνkν i) and regression coefficients βνkνjνkν ∈ R, that is (e.g., Wood, 2017)

Jνkν∑
jνkν=1

βνkνjνkν bνkνjνkν (zνkν i). (3)

The above formulation implies that the vector of evaluations {sνkν (zνkν1), . . . , sνkν (zνkνn)}T can

be written as Zνkνβνkν with βνkν = (βνkν1, . . . , βνkνJνkν )T and design matrix Zνkν [i, jνkν ] =

bνkνjνkν (zνkν i). This allows the predictor in equation (2) to be written as

ην = βν01n + Zν1βν1 + . . .+ ZνKνβνKν , (4)

where 1n is an n-dimensional vector made up of ones. Equation (4) can also be written in a more

compact way as ην = Zνβν , where Zν = (1n,Zν1, . . . ,ZνKν ) and βν = (βν0,β
T
ν1, . . . ,β

T
νKν

)T.

Each βνk has an associated quadratic penalty λνkνβT
νkν

Dνkνβνkν , used in fitting, whose role is

to enforce specific properties on the kthν function, such as smoothness. The smoothing parameter

λνkν ∈ [0,∞) controls the trade-off between fit and smoothness, and plays a crucial role in deter-

mining the shape of the estimate smooth function ŝνkν (zνkν i). The overall penalty can be defined

as βT
ν Dνβν , where Dν = diag(0, λν1Dν1, . . . , λνKνDνKν). Finally, smooth functions are typically
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subject to centering (identifiability) constraints (see Wood (2017) for more details).

The above formulation allows one to employ a rich variety of covariate effects; the reader is

referred to Supplementary Material A for some examples of penalty and basis function specifica-

tions.

Remark 2. In some cases, like smooth functions of continuous covariates, quantity Jνkν has to

be fixed to some value to make the computation feasible. Hence, the unknown sνkν (zνkν i) may

not have an exact representation as given in (3). In practical situations, Jνkν is usually set to an

arbitrary value that allows for enough flexibility in estimating the smooth term. The coefficients

of the spline basis are then penalized in the estimation process to suppress that part of the smooth

term’s complexity which is not supported by the data and that would lead to over-fitting.

Remark 3. Let us write ηvi(tvi, xvi;βv) as Zvi(tvi, xvi)Tβv. Then

∂ηvi(tvi, xvi;βv)
∂tvi

= lim
ε→0

{
Zvi(tvi + ε, xvi)− Zvi(tvi − ε, xvi)

2ε

}T

βv = Z′Tviβv,

which is needed in equation (1). Depending on the type of spline basis employed Z′vi can be

calculated either by a finite-difference method or analytically.

Remark 4. To make the link between the marginal model defined by additive predictor (2) with

link function g(S) (as defined in Table 2) and the known proportional hazards and odds models,

let us write each of the link-based marginal models as (Royston & Parmar, 2002)

gv {Sv(tvi|xvi)} = gv {Sv0(tvi)}+
Kv∑
kv=2

svkv(xvkvi), (5)

where gv : (0, 1) → (−∞,∞) is a differentiable and invertible link function (see Table 2) and

Sv0(tvi) is a background survival function. If we replace gv {Sv0(tvi)} with sv0(tvi) then the RHS

of (5) becomes notationally consistent with (2). This passage allows us to see that sv0(tvi) is

effectively modeling a transformation of the respective baseline survival function, exactly as in

Royston & Parmar (2002). Continuing the reasoning, model (5) yields the proportional hazards
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model when choosing the log-log link. That is,

log {Hv(tvi|xvi)} = log {Hv0(tvi)}+
Kv∑
kv=2

svkv(xvkvi), (6)

whereHv(tvi|xvi) = − log {Sv(tvi|xvi)} andHv0(tvi) = − log {Sv0(tvi)} is the background cumu-

lative hazard function. Important advantages of modeling on the log-cumulative hazard scale are

that the corresponding function is more stable than the log-hazard function (which is advantageous

when estimating the model), that quantities such as hv(tvi|xvi) and Sv(tvi|xvi) can be directly ob-

tained without the need for numerical integration, and that time-dependent effects can be easily

incorporated in the model via terms like svkv(tvi)xvkvi. Moreover, given the parametric but flexible

nature of the link-based marginal models employed here, the presence of ties in the outcomes will

not be problematic. Note that when the RHS of (6) contains time-dependent effects, the model

loses the proportional hazards interpretation. Model (5) yields the proportional odds model when

the -logit link is chosen.

2.2 Penalised log-likelihood

Let us assume that a random i.i.d. sample {(y1i, y2i, u1i, u2i, xi)}ni=1 is available, that there are

no competing risks and that censoring is independent and non-informative conditional on xi. The

log-likelihood function can be written as

`(δ) =
n∑
i=1

u1iu2i log

[
∂C {G1(η1i), G2(η2i); θi}

∂G1(η1i)∂G2(η2i)
G′1(η1i)G

′
2(η2i)

∂η1i

∂y1i

∂η2i

∂y2i

]
+ u1i(1− u2i) log

[
−∂C {G1(η1i), G2(η2i); θi}

∂G1(η1i)
G′1(η1i)

∂η1i

∂y1i

]
+ (1− u1i)u2i log

[
−∂C {G1(η1i), G2(η2i); θi}

∂G2(η2i)
G′2(η2i)

∂η2i

∂y2i

]
+ (1− u1i)(1− u2i) log [C {G1(η1i), G2(η2i); θi}] ,

(7)

where ηvi is the shorthand notation for ηvi(yvi, xvi;βv).

The first three lines of (7) involve ∂ηvi/∂yvi (v = 1, 2) which can be calculated using z′Tviβv

(as per Remark 3) and must be positive to ensure that the hazard functions are positive. To this
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end we propose modeling the time effects using B-splines with coefficients constrained such that

the resulting smooth functions of time are monotonically increasing. Specifically, let sv(yvi) =∑Jv
jv=1 γvjvbvjv(yvi), where the bvjv are B-spline basis functions of at least second order built over

the interval [a, b], based on equally spaced knots, and γvjv are spline coefficients. A sufficient

condition for s′v(yvi) ≥ 0 over [a, b] is that γvjv ≥ γvjv−1,∀j (e.g., Leitenstorfer & Tutz, 2007).

Such condition can be imposed by re-parametrizing the spline coefficient vector so that γv =

Σvβ̃v, where βT
v = (βv1, βv2, . . . , βvJv), β̃T

v = {βv1, exp(βv2), . . . , exp(βvJv)} and Σv[ιv1, ιv2] =

0 if ιv1 < ιv2 and Σv[ιv1, ιv2] = 1 if ιv1 ≥ ιv2, with ιv1 and ιv2 denoting the row and column entries

of the respective matrix. When setting up the penalty term we penalize the squared differences

between adjacent βvjv , starting from βv2, using Dv = D∗Tv D∗v where D∗v is a (Jv − 2) × Jv matrix

made up of zeros except that D∗v[ιv, ιv + 1] = −D∗v[ιv, ιv + 2] = 1 for ιv = 1, ..., Jv − 2 (Pya &

Wood, 2015). Matrix Σv can be absorbed into Zv.

Our model specification allows for a high degree of flexibility in modeling data (see also Re-

mark 2). If an unpenalized approach is employed to estimate δ then the resulting smooth function

estimates are likely to be unduly wiggly (e.g., Ruppert et al., 2003). To prevent over-fitting, we

maximize

`p(δ) = `(δ)− 1

2
δTSδ, (8)

where `p is the penalized log-likelihood, S = diag(D1,D2,D3), D1, D2 and D3 are overall penalties

which contain λ1, λ2, λ3 and λν = (λν1, . . . , λνKν )
T. The smoothing parameter vectors can be

collected in the overall vector λ = (λT
1 ,λ

T
2 ,λ

T
3 )T.

2.3 Estimation of δ

As it can be seen from (7), because of right-censoring, the log-likelihood function is made up of

four main components. This makes the structure of the score vector and Hessian matrix more in-

volved as compared to the case of no censoring. Such structure is considerably further complicated

by the non-linear dependence of γv on the coefficients contained in βv that correspond to the B-

spline bases of yvi, which creates the need to account for terms like ∂2ηvi(yvi, xvi;βv)/∂yvi∂βv =

z′TviEv and ∂ηvi(yvi, xvi;βv)/∂βv = zTviEv, where Ev is a vector such that Ev[vkvjvkv ] = 1 if
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β̃vkvjvkv = βvkvjvkv and exp(βvkvjvkv ) otherwise. Furthermore, the non-linear dependence of γv

on βv makes the optimization problem more difficult than in the case of unconstrained B-spline

coefficients.

Preliminary experimentation revealed that the use of various optimization schemes, including

those based on derivative free and quasi-Newton methods, is generally problematic, even when

using not very complex model specifications. For instance, we found that several gradient and

Hessian components are poorly approximated by numerical differentiation techniques. To make

the fitting problem easier to deal with, we also experimented with a two-stage estimation approach

as often seen in several copula contexts. In this case, the estimation of the marginal models

and of the copula function is carried out in two separate steps; the use of a two-stage algorithm

resulted in inefficient and (on occasion) unstable computations as compared to the joint approach.

Eventually, we opted for a simultaneous estimation approach based on fully analytical first and

second order derivatives. In practice, this was implemented using a trust region algorithm which

was found to be efficient and well suited for the problem at hand. Supplementary Material C

provides some simulation-based evidence. Specifically, compare Figures 3 and 6 (simultaneous

estimation approach) with Figures 5 and 8 (two-stage approach).

Holding λ fixed at a vector of values and for a given δ[a], where a is an iteration index, we

maximize equation (8) using

δ[a+1] = δ[a] + arg min
e:‖e‖≤∆[a]

˘̀
p(δ

[a]), (9)

where ˘̀
p(δ

[a]) = −
{
`p(δ

[a]) + eTgp(δ[a]) + 1
2
eTHp(δ

[a])e
}

, gp(δ[a]) = g(δ[a])−Sδ[a] andHp(δ
[a]) =

H(δ[a])−S. Vector g(δ[a]) consists of g1(δ[a]) = ∂`(δ)/∂β1|β1=β
[a]
1
, . . . , g3(δ[a]) = ∂`(δ)/∂β3|β3=β

[a]
3

,

the Hessian matrix has elementsH(δ[a])o,h = ∂2`(δ)/∂βo∂β
T
h |βo=β

[a]
o ,βh=β

[a]
h

where o, h = 1, 2, 3,

‖·‖ denotes the Euclidean norm, and ∆[a] is the radius of the trust region which is adjusted through

the iterations. The first line of (9) uses a quadratic approximation of −`p about δ[a] (the so-called

model function) in order to choose the best e[a+1] within the ball centered in δ[a] of radius ∆[a],

the trust-region. Note that, near the solution, the trust region method typically behaves as a classic

Newton-Raphson unconstrained algorithm (e.g., Nocedal & Wright, 2006, Chapter 4).
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The expressions for g(δ) and H(δ) are very tedious (due to right-censoring and the non-

linear dependence of γv on βv) and have been analytically and modularity derived for all choices

reported in Tables 1 and 2. Modularity here means that it will be easy to extend our algorithm to

other parametric copulae and marginal link functions.

2.4 Estimation of λ

As argued in Marra et al. (2017), automatic multiple smoothing parameter estimation in the context

of complex joint models is more successfully achieved if the smoothing criterion is based on g(δ)

andH(δ). Here, we re-iterate the main ideas and remark some useful results.

For notational convenience, let us denote with g[a]
p , g[a],H [a]

p andH [a] the shorthand notations

for gp(δ[a]), g(δ[a]),Hp(δ
[a]) andH(δ[a]) defined in the previous section. We first need to express

the parameter estimator in terms of gradient and Hessian, which is achieved as follows. A first

order Taylor expansion of g[a+1]
p about δ[a] yields 0 = g[a+1]

p ≈ g[a]
p +

(
δ[a+1] − δ[a]

)
H

[a]
p . We then

have 0 = g[a]
p +

(
δ[a+1] − δ[a]

) (
H [a] − S

)
which leads to δ[a+1] =

(
−H [a] + S

)−1√−H [a]M[a],

where M[a] = µ
[a]
M + ε[a], µ[a]

M =
√
−H [a]δ[a] and ε[a] =

√
−H [a]

−1
g[a]. The square root

of −H [a] and its inverse are obtained by eigen-value decomposition. From likelihood theory,

ε ∼ N (0, I) and M ∼ N (µM, I), where I is an identity matrix, µM =
√
−Hδ0 and δ0 is

the true parameter vector. The predicted value vector for M is µ̂M =
√
−Hδ̂ = AM, where

A =
√
−H (−H + S)−1√−H . Our aim is to estimate λ so that the smooth terms’ complexity

which is not supported by the data is suppressed. Therefore, we use the following criterion

E
(
‖µM − µ̂M‖2

)
= E

(
‖M− AM‖2

)
− ň+ 2tr(A), (10)

where ň = 3n and tr(A) is the number of effective degrees of freedom (edf ) of the penalized

model. In practice, λ is estimated by minimizing an estimate of (10), i.e.

̂‖µM − µ̂M‖2 = ‖M− AM‖2 − ň+ 2tr(A). (11)

The RHS of (11) depends on λ through A while M is associated with the un-penalized part of
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the model. Note that (11) is approximately equivalent to the Akaike information criterion (AIC,

Akaike, 1973), as shown at the end of this section. This means that λ is estimated by minimizing

what is effectively the AIC with number of parameters given by tr(A). Holding the model’s

parameter vector value fixed at δ[a+1], we solve problem

λ[a+1] = arg min
λ

‖M[a+1] − A[a+1]M[a+1]‖2 − ň+ 2tr(A[a+1]), (12)

using the automatic stable and efficient computational routine by Wood (2004). This approach is

based on Newton’s method and can evaluate in an efficient and stable way the components in (12)

and their first and second derivatives with respect to log(λ) (since the smoothing parameters can

only take positive values).

The methods for estimating δ and λ are iterated until the algorithm satisfies the criterion
|`(δ[a+1])−`(δ[a])|

0.1+|`(δ[a+1])| < 1e − 07. The selection of starting values plays an important role as it would in

the majority of optimization problems. In this case, values for the marginal models are obtained

by employing the gamlss() function within GJRM, which has been extended to fit univariate

generalized survival models using the estimation approach proposed in this paper. This can be

regarded as a contribution in itself as, to the best of our knowledge, the treatment of survival

link-based models with flexible additive predictors and integrated automatic and stable multiple

smoothing parameter selection has not been dealt with in the literature. An initial value for the

copula parameter is obtained by using a transformation of the empirical Kendall’s association

between the responses.

Remark 5. The edf for a model containing only unpenalized terms is equal to ψ, the dimension

of δ, since in this case tr(A) = tr(I). The edf for a penalized model is tr(A) which can also be

written as ψ − tr
{

(−H + S)−1 S
}

. The latter expression clearly shows the role of the smoothing

parameter vector (contained in S); if λ→ 0 then tr(A)→ ψ and if λ→∞ then tr(A)→ ψ − ζ ,

where ζ is the total number of model’s parameters subject to penalization. When 0 < λ <∞, the

model’s edf is equal to a value in the range [ψ − ζ, ψ]. The edf of a single smooth or penalized

component is given by the sum of the corresponding trace elements and has a value smaller than

or equal to Jνkν .
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Remark 6. Equation (11) is approximately equivalent to AIC = 2edf − 2`(δ̂), which can be

shown as follows. A second order Taylor expansion of−2`(δ̂) about δ yields−2`(δ̂) ≈ −2`(δ)−

2(δ̂ − δ)Tg − (δ̂ − δ)TH(δ̂ − δ). Recalling the definition of M and after some manipulation,

−(δ̂−δ)TH(δ̂−δ) equals ‖M−
√
−Hδ̂‖2−2

〈
M−

√
−Hδ̂,

√
−H−1g

〉
+‖
√
−H−1g‖2, where

〈·, ·〉 is the inner product. Similarly, (δ̂−δ)Tg can be re-written as−
〈

M−
√
−Hδ̂,

√
−H−1g

〉
+

‖
√
−H−1g‖2. These results lead to 2edf − 2`(δ)− ‖

√
−H−1g‖2 + ‖M−

√
−Hδ̂‖2. Dropping

the terms that are not affected by λ, we have that 2edf+‖M−
√
−Hδ̂‖2, where the latter quantity

is a quadratic approximation of −2`(δ̂).

2.5 Some theoretical results

In this section, we present the main asymptotic result related to the proposed estimator and then

discuss the construction of confidence intervals. The large sample behavior of the penalized max-

imum likelihood estimator, δ̂ = arg maxδ `p(δ), can be established under the relatively mild

conditions of the consistency of the maximum likelihood estimator. Specifically,

Theorem 1. Under the assumptions in Supplementary Material B and as n→∞, it follows that

δ̂ − δ0 = OP (1/
√
n).

For the sake of space, we refer the reader to Supplementary Material B for more details and

remarks.

As for the construction of intervals, it is more convenient to take a Bayesian view of the model

and employ at convergence the result δ ·∼ N (δ̂,Vδ), where Vδ = −Hp(δ̂)−1. As shown theo-

retically and via simulation by Marra & Wood (2012) for generalized additive models, intervals

constructed using this approach exhibit close-to-nominal frequentist coverage probabilities since

they account for both sampling variability and smoothing bias, an aspect that is particularly rele-

vant at finite sample sizes. The above posterior can be justified using the distribution of M given in

Section 2.4, making the large sample assumption thatH(δ) can be treated as fixed, and making the

prior Bayesian assumption for smooth models δ ∼ N (0,S−1), where S−1 is the Moore-Penrose

pseudo-inverse of S (e.g., Silverman, 1985; Wood, 2017).
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Remark 7. The covariance matrix of δ̂ can be shown to be equal to Cov(δ̂) ≈ −F−1E [H(δ0)] F−1,

where F = −E [H(δ0)]+S. However, assumption S = o (
√
n) (in Supplementary Material B used

in Theorem 1) implies that
√
nCov(δ̂) ≈

{
1√
n
E [−H(δ0)]

}−1

and
√
nVδ ≈

{
− 1√

n
H(δ0)

}−1

.

Although the frequentist asymptotic approximation and the Bayesian result become equivalent as

n→∞, as explained in the previous paragraph the latter will deliver better calibrated intervals in

practical situations (see the last paragraph of Supplementary Material C for some simulation-based

evidence).

Remark 8. Point-wise intervals for linear functions of the model’s coefficients (such as smooth

components) can be straightforwardly obtained using the Bayesian posterior distribution. As for

intervals for non-linear functions of the model’s coefficients (e.g., τ , hazard functions), these can

be conveniently obtained by simulation, hence avoiding computationally expensive parametric

bootstrap. That is,

1. Draw nsim random vectors from N (δ̂,Vδ).

2. Calculate nsim simulated realizations of the quantity of interest. As an example, consider

the Gaussian copula model where τi = 2
π

arcsin [tanh {η3i(x3i;β3)}]. In this case, we would

obtain τ simi = (τ sim1
i , τ sim2

i , . . . , τ
simnsim
i )T ∀i = 1, . . . , n using βsimj3 ∀j = 1, . . . , nsim.

3. For each τ simi , calculate the lower, ς/2, and upper, 1− ς/2, quantiles.

A small value for nsim, say 100, typically gives accurate results, whereas ς is usually set to 0.05.

Note that the distribution of non-linear functions of δ need not be symmetric. To derive inter-

vals for non-linear functions of the model’s coefficients, we also considered using a frequentist

approach based on the asymptotic covariance matrix shown in Remark 7 and the delta method.

At finite sample sizes, the results were not satisfactory since the intervals were symmetric (which

is typically not the case for non-linear functions of model’s parameters) and did not take into ac-

count smoothing bias (see Figure 9 and the last paragraph of Supplementary Material C for more

comments on this).

Remark 9. As pointed out by Pya & Wood (2015), interval estimates for the monotonic smooth

terms in the model can be easily obtained using the distribution for δ̃T = (β̃T
1 , β̃

T
2 ,β

T
3 ), since

such smooth components depend linearly on β̃1 and β̃2. The distribution of δ̃ is δ̃ ·∼ N (ˆ̃δ,Vδ̃),
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where Vδ̃ = diag (E) Vδ diag (E), ET = (ET
1 ,E

T
2 , 1

T) and 1 has the same dimension of β3.

This is obtained by considering a Taylor series expansion of δ̃ as a vector of functions of δ, i.e.

δ̃− ˆ̃δ ≈ diag (E)
(
δ − δ̂

)
. This shows that δ̃− ˆ̃δ is approximately a linear function of δ. Recalling

that linear functions of normally distributed random variables follow normal distributions, the

result in this Remark follows.

Remark 10. P-values for the smooth components in the model are obtained by adapting the re-

sults discussed in Wood (2013) to the current context. Note that Vδ̃ is employed for p-value

calculations, which is especially relevant for the monotonic terms in the model since it allows us

to directly test these smooth functions for equality to zero.

Tools to aid the model building process are described in Supplementary Material E. The modeling

and estimation framework discussed in this paper has been implemented in the R package GJRM

(Marra & Radice, 2019) and we refer the reader to Supplementary Material D for a brief descrip-

tion of the software. Supplementary Material C provides the details and results of a simulation

study.

3 Data analysis

In this section, we apply the proposed approach to data collected through a questionnaire survey

of adult members of the Australian NH&MRC Twin Registry (Duffy et al., 1990) which have

been recently analyzed by Romeo et al. (2018). One of the aims of this study was to investigate

whether the magnitude of the dependence within adult twin pairs as to the risk of the onset of acute

appendicitis is different for monozygotic (MZ) and dizygotic (DZ) twins. This would provide

information on the role of heredity in the onset of appendicitis since the strength of the dependence

within MZ and DZ twins is expected to be very similar and a difference in such strength would

be indicative of a genetic effect on the risk of acute appendicitis. As in Romeo et al. (2018), we

considered female twin pairs who had an appendectomy; the sample sizes were 1231 and 748 for

MZ and DZ twins, respectively. The outcome variable was age at appendectomy (or censoring

age), and the censoring rate was about 73% for each twin member in both zygotes. For more

details and descriptive statistics see Romeo et al. (2018) and references therein. To facilitate the
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MZ twins DZ twins
Copula AIC BIC τ (95% CIs) AIC BIC τ (95% CIs)
N 7119.5 7182.0 0.31 ( 0.26, 0.36) 4303.1 4347.4 0.19 ( 0.11, 0.26)
C0 7133.3 7194.7 0.45 ( 0.39, 0.51) 4308.6 4353.1 0.27 ( 0.17, 0.38)
C180 7124.2 7187.3 0.20 ( 0.17, 0.25) 4302.9 4346.8 0.12 ( 0.08, 0.18)
J0 7122.3 7184.9 0.18 ( 0.15, 0.23) 4302.8 4346.3 0.10 ( 0.06, 0.16)
J180 7134.9 7196.2 0.46 ( 0.40, 0.53) 4308.9 4353.3 0.28 ( 0.19, 0.39)
G0 7115.5 7178.0 0.24 ( 0.19, 0.29) 4301.6 4345.2 0.13 ( 0.08, 0.20)
G180 7117.3 7179.1 0.38 ( 0.33, 0.44) 4303.7 4348.1 0.23 ( 0.16, 0.33)
F 7122.8 7184.7 0.33 ( 0.27, 0.38) 4306.4 4350.7 0.19 ( 0.11, 0.26)
AMH 7143.7 7205.3 0.33 (-0.18, 0.33) 4308.1 4352.4 0.22 ( 0.06, 0.30)
FGM 7144.6 7206.9 0.22 (-0.22, 0.22) 4307.8 4352.1 0.19 (-0.01, 0.22)
PL 7117.3 7179.4 0.33 ( 0.28, 0.38) 4305.4 4349.7 0.19 ( 0.12, 0.26)
T(3) 7108.2 7169.6 0.28 ( 0.22, 0.34) 4302.3 4345.7 0.14 ( 0.06, 0.22)
T(4) 7109.2 7170.7 0.29 ( 0.23, 0.34) 4301.5 4345.1 0.15 ( 0.06, 0.23)
T(5) 7110.3 7172.0 0.30 ( 0.24, 0.35) 4301.2 4345.1 0.16 ( 0.07, 0.23)
T(6) 7111.3 7173.1 0.30 ( 0.25, 0.36) 4301.2 4345.2 0.16 ( 0.09, 0.24)
T(7) 7112.1 7174.0 0.30 ( 0.24, 0.35) 4301.3 4345.3 0.16 ( 0.08, 0.24)
T(8) 7112.8 7174.8 0.30 ( 0.25, 0.35) 4301.3 4345.4 0.17 ( 0.09, 0.24)

Table 3: Values of model selection criteria for several copula models and estimates of Kendall’s τ for MZ and DZ
twins. The values in brackets next to the estimates for τ represent 95% intervals obtained using the approach described
in Section 2.5. The values within brackets next to the Student-t copulae refer to ζ, the assumed degrees of freedom of
the distribution.

comparison of results, we first followed the modeling strategy of Romeo et al. (2018) and then

tried out a few more model specifications.

For the marginal equations, the smooth functions of the time variables were specified using

monotonic penalized B-splines with penalty defined in Section 2.2 and 10 bases. Following the

suggestion of Royston & Parmar (2002), smoothing was implemented on the log-time scale which

usually yields very smooth fitted functions and hence it helps for example to reduce the chance of

potential artifacts in the estimated hazard functions. All available link functions were considered

in the modeling whereas, for the selection of the copula function, we started off with the Gaussian

and then, based on the (negative or positive) sign of the dependence, we tried out the alternative

specifications that were consistent with this initial finding. Using a 2.20-GHz Intel(R) Core(TM)

computer running Windows 7, the average computing time was about 4 seconds and the total

number of estimated parameters was 21.

Table 3 shows the values of the AIC and Bayesian information criterion (BIC), and the esti-

mates of Kendall’s τ (as well as 95% intervals) obtained when employing various copula models.
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Figure 1: Survival function estimates obtained when applying to MZ twins data the proposed approach (black lines,
with 95% intervals represented by the shaded areas), Kaplan-Meier estimator (red lines) and piecewise exponential
model (blue lines) based on 10 intervals. The 95% intervals have been obtained using the approach described in
Section 2.5.

For MZ twins, the Student-t with 3 degrees of freedom provides the best fit. For DZ twins, the

situation is less clear cut in that several copulae look plausible, namely the Student-t and Gum-

bel. Looking at Kendall’s τ , we see that the dependence between MZ pairs is stronger than that

between DZ pairs, and that the confidence intervals either do not overlap or overlap slightly. This

points to the presence of a genetic component to the disease as mentioned at the beginning of this

section. These results are in line with those of Romeo et al. (2018) with the difference that we

found marginally stronger dependencies albeit with slightly wider intervals. Our AIC and BIC

values (when compared to those in Tables 5 and 6 of the above authors) suggest that the proposed

approach yields slightly improved model fits. As for the marginals, we chose PH link functions

although using PO and probit links led to very similar information criteria values as well as

virtually identical results.

Figure 1 shows the survival function estimates produced when applying to MZ twins data the

proposed approach, Kaplan-Meier estimator and piecewise exponential model (based on 10 inter-

vals). The latter estimates were derived using the R packages survival (Therneau & Lumley,

2018) and pssm (Schoenfeld, 2017), and they fall overall within the 95% intervals obtained from

the proposed method. Moreover, using a smaller number of intervals for the exponential model
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Figure 2: Cumulative hazards function estimates obtained when applying to MZ twins data the proposed approach
(black lines, with 95% intervals represented by the shaded areas) and Kaplan-Meier estimator (red lines). The 95%
intervals have been obtained using the approach described in Section 2.5.

(i.e., 7, 8 and 9) gave similar results. Towards the end of follow-up, when there are fewer events,

there is some discrepancy in the fits produced by the three methods; this is related to a proportion

of subjects that are not susceptible to the event of interest, in which case techniques developed in

the area of cure rate models could be exploited to address this problem. It is worth pointing out

that under the proposed copula link-based additive survival models it would be straightforward to

predict, for instance, the survival probability of a new individual; this would be especially relevant

when covariates are included in the model. Also, in a spline context estimating simultaneously all

the smoothing parameters in a data-driven and automatic manner is crucial for practical purposes,

and using a different approach to specify the marginals would not have allowed us to benefit from

the efficient and stable multiple smoothing parameter selection technique presented in Section 2.4.

The results for DZ twins were very similar. Figure 2 shows the plots of the cumulative hazards

functions from the marginal proportional hazards equations of the proposed copula model and

the Kaplan-Meier estimator; they are close and the Kaplan-Meier estimates fall overall within the

intervals of the proposed method.

As in Romeo et al. (2018), we then merged the MZ and DZ data sets and specified the copula

parameter of the Student-t with 3 degrees of freedom as function of type of zygosity (here used as a

dichotomous covariate). This has the advantage of estimating the Kendall’s τ for MZ and DZ twins
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without splitting the data set. The results for τ were 0.29 (0.23, 0.34) and 0.13 (0.05, 0.21) for MZ

and DZ twins, respectively, which are in line with those obtained from the separate analyzes.

4 Discussion

In this article, we have introduced copula link-based additive models for survival data and demon-

strated their potential using simulated and real data. Important features of the proposed estimation

and inferential framework are that: the marginal models can be specified using parametric but flex-

ible formulations for time-to-event data which have several advantages including the easy post-

estimation interpretation and calculation, hence visualization, of the flexibly estimated baseline

hazard functions; monotonic splines are utilized to provide coherent marginal survival fits; each

parameter of the assumed joint survival distribution is allowed to depend on an additive predictor

incorporating several types of covariate effects; theoretically founded inferential results are em-

ployed for interval construction and hypothesis testing; all the model’s parameters are estimated

simultaneously using a carefully constructed efficient and stable algorithm that makes full use of

the information contained in the data; the models can be easily employed using a freely available

R package which allows for a number of modeling choices; the modularity of the implementation

allows for easy inclusion of potentially any parametric link marginal function and copula.

It is worth noting that the methodology developed in this paper, although flexible, is funda-

mentally parametric and as such it may suffer from the usual potential drawbacks resulting from

departures from the model assumptions. Developments where the margins and/or copula function

are estimated using techniques that are more robust to model mis-specification were explored and

based on Kauermann et al. (2013) and Segers et al. (2014). However, these were found to be

limited with respect to the inclusion of flexible covariate effects and to require large sample sizes

to produce reliable results in a regression context. We eventually elected to develop a flexible

parametric modeling framework that would allow us to conveniently combine arbitrary marginal

survival functions with various types of dependence structures linking them, and to allow for the

possibility to specify all the model’s parameters as functions of additive predictors which can be

advantageous in the empirical applications.
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Future research will focus on extending the models to the cases on left and interval censored

responses, and will look into the extension to modeling more than two event times using, for

instance, multivariate Archimedean copulae, mixtures of powers, pair-copulae constructions, the

multivariate Gaussian and Student-t distributions, and the composite likelihood approach. We will

also investigate the use of alternative model selection criteria such as cross-validation with score

based on log-likelihood joint function evaluations.
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Supplementary Material: "Copula Link-Based

Additive Models for Right-Censored Event Time

Data"

Supplementary Material A

This section complements Section 2.1.1 by providing some examples of penalty and basis function

specifications.

Linear and random effects For parametric, linear effects, equation (3) becomes zTνkν iβνkν , and

the design matrix is obtained by stacking all covariate vectors zνkν i into Zνkν . No penalty is

typically assigned to linear effects (Dνkν = 0). This would be the case for binary and categorical

variables. However, sometimes it is desirable to penalize parametric linear effects. For instance,

the coefficients of some factor variables in the model may be weakly or not identified by the data.

In this case, a ridge penalty could be employed to make the model’s parameters estimable (here

Dνkν = I where I is an identity matrix). This is equivalent to the assumption that the coefficients

are i.i.d. normal random effects with unknown variance (e.g., Ruppert et al., 2003; Wood, 2017).

Non-linear effects For continuous variables the smooth functions are represented using the

regression spline approach popularized by Eilers & Marx (1996). Specifically, for each con-

tinuous variable zνkν i, sνkν (zνkν i) is approximated by
∑Jνkν

jνkν=1 βνkνjνkν bνkνjνkν (zνkν i), where the

bνkνjνkν (zνkν i) are known spline basis functions. The design matrix Zνkν comprises the basis func-

tion evaluations for each i, and hence describe Jνkν curves which have potentially varying degrees

of complexity. We typically employ low rank thin plate regression splines which are numerically

stable and have convenient mathematical properties, although other spline definitions and corre-

sponding penalties are supported in our implementation. Note that for one-dimensional smooth

functions, the choice of spline definition does not play an important role in determining the shape

of ŝνkν (zνkν ) (e.g., Ruppert et al., 2003). To enforce smoothness, a conventional integrated square
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second derivative spline penalty is often employed (this is also the default option in the software).

That is, Dνkν =
∫

dνkν (zνkν )dνkν (zνkν )Tdzνkν , where the jthνkν element of dνkν (zνkν ) is given by

∂2bνkνjνkν (zνkν )/∂z
2
νkν

and integration is over the range of zνkν . The formulas used to compute

the basis functions and penalties for many spline definitions are provided in Ruppert et al. (2003)

and Wood (2017). For their theoretical properties see, for instance, Kauermann et al. (2009) and

Yoshida & Naito (2014). This specification allows us to avoid arbitrary modeling decisions, such

as choosing the appropriate degree of a polynomial or specifying cut-points, which could induce

mis-specification bias. Many other types of spline bases and respective penalties can be employed,

such as penalized cubic regression spline and P-splines.

Spatial effects When the geographic area (or country) of interest is split up into discrete con-

tiguous geographic units (or regions) and such information is available, a Markov random field ap-

proach can be employed to exploit the information contained in neighboring observations which

are located in the same country. In this case, equation (3) becomes zTνkν iβνkν where βνkν =

(βνkν1, . . . , βνkνJνkν )T represents the vector of spatial effects, Jνkν denotes the total number of re-

gions and zνkν i is made up of a set of area labels. The design matrix linking an observation i to the

corresponding spatial effect is therefore defined as

Zνkν [i, jνkν ] =


1 if the observation belongs to region jνkν

0 otherwise
,

where jνkν = 1, . . . , Jνkν . The smoothing penalty is based on the neighborhood structure of the

geographic units, so that spatially adjacent regions share similar effects. That is,

Dνkν [r, q] =


−1 if r 6= q ∧ r and q are adjacent neighbors

0 if r 6= q ∧ r and q are not adjacent neighbors

Nr if r = q

,

where Nr is the total number of neighbors for region r. In a stochastic interpretation, this penalty

is equivalent to the assumption that βνkν follows a Gaussian Markov random field (e.g., Rue &

2



Held, 2005).

Several other specifications can be adopted. These include varying coefficient smooths obtained

by multiplying one or more smooth components by some covariate(s), and smooth functions of

two or more continuous covariates (Wood, 2017). The smoothers utilized here are obtained from

the R mgcv package (Wood, 2018).

Supplementary Material B

This section provides some details on the assumptions required for Theorem 1 in Section 2.5 as

well as some further results. Let us fix the Jνkν at a high value, and let Lt and L denote the likeli-

hood functions for the true and employed models, with corresponding log-likelihoods `t and `(δ).

Let also δ0 be the minimizer of the Kullback-Leibler distance, that is δ0 = arg minδ KL [Lt|L],

where KL [Lt|L] = E [`t − `(δ)] with expectation taken with respect to the true model’s distri-

bution and δ. Theorem 1 holds under some usual customary assumptions which are listed in full

in Vatter & Chavez-Demoulin (2015, Appendix A) and include: δ is in a compact closed and

bounded parametric space Θ, δ0 for the model is in the interior point of Θ, `p(δ) is continuous and

differentiable, the employed link functions are monotonic and differentiable, g(δ0) = OP (
√
n),

E [H(δ0)] = O(n), H(δ0) − E [H(δ0)] = OP (
√
n), and S = o (

√
n); see also Gray (1992) and

Kauermann (2005). The last assumption can be equivalently formulated as λνkν = o (
√
n) for

kν = 1, . . . , Kν , ν = 1, 2, 3, assuming that the Dνkν are asymptotically bounded. This assumption

is rather weak as it allows the smoothing parameters to grow as the sample size increases, at a rate

smaller than
√
n. In fact, the sequence λ̂ based on the mean squared error criterion described in

Section 2.4 is bounded in probability.

Remark 11. The result in Theorem 1 assumes that the Jνkν values are fixed at a high value. This

is a convenient assumption since the unknown sνkν may not have an exact representation as linear

combinations of the given bases and coefficients. However, in applied research the Jνkν values

have to be fixed and assuming that these are high enough to assume that a good representation

of the unknown functions can be obtained, it is possible to assume heuristically that the approx-
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imation bias is negligible compared to estimation variability (e.g., Kauermann, 2005; Vatter &

Chavez-Demoulin, 2015).

Remark 12. The asymptotic bias and covariance matrix of δ̂ can be shown to be equal to bias(δ̂) =

E
(
δ̂ − δ0

)
≈ −F−1Sδ0 and Cov(δ̂) ≈ −F−1E [H(δ0)] F−1, where F = −E [H(δ0)] + S. Fur-

thermore, bias(δ̂) = o(1/
√
n) and Cov(δ̂) = O(1/n).

Remark 13. Since g(δ0) is a sum of i.i.d. components, it follows that {−EH(δ0)}−1/2 g(δ0)
d→

N (0, I). This implies asymptotic normality of the normalized estimator δ̂.

These theoretical results are based on the assumptions described above and can essentially be

proved from a Taylor expansion of the penalized log-likelihood along the same lines of, for in-

stance, Kauermann (2005).

Supplementary Material C

This section provides evidence on the empirical effectiveness of the proposed methodology in

recovering true covariate effects and baseline functions.

Survival time T1i was generated from a proportional hazards model defined, on the survival

function scale, as log [− log {S10(t1i)}] + β11z1i + s11(z2i) where S10i(t1i) = 0.9 exp(−0.4t2.51i ) +

0.1 exp(−0.1t1i) (using the approach by Crowther & Lambert (2013) which is based on a mixture

of Weibull baseline hazards). Time T2i was generated from a proportional odds model defined as

log [{1− S20(t2i)} /S20(t2i)]+β21z1i+s21(z3i) where S20(t2i) = S10(t2i). The random censoring

times C1i and C2i were obtained using uniform distributions with limits chosen so that censoring

rates were about 42% and 33% for the first group of simulations and 75% and 50% for the second

one. Observations were generated using the Brent’s univariate root-finding method (e.g., Crowther

& Lambert, 2013). The two survival times were joined using a Clayton copula where the predictor

for the respective dependence parameter was specified as η3i = β31z1i + s31(z2i). In practice, this

was achieved using the conditional sampling approach (Trivedi & Zimmer, 2007). The set up of η3

allowed dependence to vary across observations, with Kendall’s τ values ranging approximately

from 0.10 to 0.90. The smooth functions were s11(zi) = sin(2πzi), s21(zi) = −0.2 exp(3.2zi),
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s31(zi) = 3 sin(πzi), whereas β11 = −1.5, β21 = 1.2 and β31 = −1.5. Finally, correlated

covariates were generated using a multivariate standard Gaussian with correlation parameters set

at 0.5, and then transformed using the distribution function of a standard Gaussian (Gentle, 2003).

Covariate z1i was dichotomized by simply rounding it.

Sample sizes were set to 200, 500 and 1000, the number of replicates to 1000. The models were

fitted using gjrm() in GJRM by employing all the marginal links and copulae listed in Tables 1

and 2. We also experimented with a two-stage approach where the gamlss() function from the

same package was employed to obtain marginal fits and then the copula function estimated using a

simplification of the code employed to fit the simultaneous model. The smooth components of the

covariates were represented using penalized low rank thin plate splines with second order penalty

(see Supplementary Material A) and 10 bases, and the smooths of times using monotonic penalized

B-splines with penalty defined in Section 2.2 and 10 bases. For each replicate, curve estimates

were constructed using 200 equally spaced fixed values in the (0, 8) range for the monotonic

functions and (0, 1) otherwise.

We did not consider sample sizes smaller than 200 since the models involve three smooth

functions (two for the margins and one for the copula parameter) and three parametric effects,

hence imposing the estimation of 33 model’s coefficients and 3 smoothing parameters; considering

sample sizes smaller than 200 would produce meaningless results as it is known that the use of

splines requires the availability of more information in the data. Preliminary experiments based

on smaller samples confirmed this.

The main findings of the simulation study are organized in the bullet points below.

• Parametric effects: Figure 3 and Table 4 show that overall the mean estimates are very close

to the respective true values and improve as the sample size increases, and that the variabil-

ity of the estimates decreases as the sample size grows large. At n = 200 the estimates for

β31 (the effect of z1 contained in the additive predictor of the copula parameter) are more

variable and exhibit some bias as compared to those of the other parameters. However,

the situation quickly improves as more observations are available for model fitting. We in-

vestigated this issue further and found that the profile log-likelihood of the relevant copula

5



coefficient tends to be less sharp around the optimum than those related to the marginal

equations, especially at low sample sizes. This suggests that the parameters related to the

copula function may be more difficult to estimate when using a small data set. Therefore,

in such a situation, more care is likely to be needed when deciding on the complexity of the

copula’s additive predictor. These results are in line with those of Romeo et al. (2018) and

references therein who found the same difficulty, particularly under a low level of depen-

dence and small sample sizes.

• Smooth effects: Figure 6 and Table 4 show that overall the true functions are recovered

well by the proposed estimation method and that the results improve in terms of bias and

efficiency as the sample size increases. As for β31, we see that at n = 200 estimation

of s31(z2) is more challenging. However, the performance improves dramatically as the

sample grows large.

• Impact of censoring rates: Comparing Figures 3 and 6 (mild censoring rates) with Figures 4

and 7 (high censoring rates), and Table 4 (mild censoring) with Table 5 (high censoring), we

see that the presence of high censoring deteriorates the estimation performance. Moreover,

the most affected parameters are those belonging to the copula’s additive predictor (for the

same reason given in the first bullet point). These results do not come as a surprise given the

loss of information caused by right-censoring. As the sample size increases the estimates

improve considerably. Finally, high censoring caused the algorithm to fail to converge for a

few simulation replicates which were discarded from the results.

• Results from two-stage approach: Comparing Figures 3 and 6 (simultaneous estimation ap-

proach) with Figures 5 and 8 (two-stage approach), we observe that, despite the two-stage

method generally produces slightly more variable and biased estimates, the results are over-

all close. At n = 200, the differences are more tangible and the worse performance of the

two-stage technique can be attributed to convergence failures (in around 20% of the repli-

cates) at the copula step (the one involving the estimation of the copula’s additive predictor).

As elaborated in the first bullet point, the copula parameter is the most difficult to estimate

and having a carefully constructed algorithm, that can exploit all the information available
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in the data, is advantageous in the context of the models developed in this paper; see also

Marra & Radice (2017) who found similar results in a related model setting.

• Model selection: For each scenario considered in the simulation study, we fitted the correct

model (based on proportional hazards and proportional odds margins for the first and second

equations respectively, and the Clayton copula) as well as several mis-specified models. The

latter were first based on the correct margins (PH and PO for the two equations) and incor-

rect copulae (all those listed in Table 1 but the Clayton), and then based on the incorrect

margins (here we swapped the marginal links by employing PO and PH for the two equa-

tions, respectively) and all copulae listed in Table 1. At n = 500, 1000, for each scenario

and replicate, the correct model was always chosen by the AIC and BIC. At n = 200, the

mis-specified model based on the correct margins and Joe copula rotated by 180 degrees

was favored around 30% of times over the correct model. This result was not unexpected

because the Clayton and rotated Joe copulae capture similar dependence structures, hence

the differences between them may be hard to detect at small sample sizes.

Computing time for the proposed approach was on average 12 seconds for n = 1000 and

around 7 seconds for n = 200, 500. Following a reviewer comment, we also calculated 95% aver-

age coverage probabilities for s11, s21 and s31 using point-wise intervals based on the frequentist

and Bayesian covariance matrices given in Section 2.5. For all smooth terms and scenarios con-

sidered, the coverages obtained using the Bayesian result ranged from 0.94 to 0.96, whereas those

obtained with the frequentist approximation were lower by 0.02 on average. This confirmed that

neglecting smoothing bias has a negative impact on the empirical performance of the intervals.

We also considered a non-linear function of the model’s coefficients, namely the Kendall’s τ . The

related simulated Bayesian intervals yielded close-to-nominal coverage probabilities as opposed

to the frequentist approach (based on the asymptotic covariance matrix given in Remark 7 and

the delta method) which produced intervals with severe under-coverage at times. To illustrate this

point, Figure 9 shows the histogram and kernel density estimates of simulated Kendall’s τ values

obtained using the Bayesian posterior simulation approach. It is clear that the distribution of the

values is asymmetric, a feature that the frequentist approach can not account for. However, we also
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Figure 3: Linear coefficient estimates obtained by applying gjrm() to bivariate survival simulated data with mild
censoring rates (about 42% and 33% for the two responses). Circles indicate mean estimates while bars represent
the estimates’ ranges resulting from 5% and 95% quantiles. True values are indicated by black solid horizontal lines.
Black circles and vertical bars refer to the results obtained for n = 200, whereas those for n = 500 and n = 1000 are
given in dark gray and light gray, respectively.

found that the situation improves at bigger sample sizes. This was expected since the frequentist

approximation and the Bayesian result are asymptotically equivalent and the asymmetry of the

distribution becomes less marked.
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Figure 4: Linear coefficient estimates obtained by applying gjrm() to bivariate survival simulated data with high
censoring rates (about 75% and 50% for the two responses). Further details are given in the caption of Figure 3.

Bias RMSE
n = 200 n = 500 n = 1000 n = 200 n = 500 n = 1000

β11 -0.029 -0.001 -0.003 0.230 0.125 0.086
β21 0.023 -0.010 -0.011 0.306 0.174 0.121
β31 -0.670 -0.098 -0.040 1.451 0.305 0.176
h10 0.061 0.034 0.024 0.170 0.104 0.077
h20 0.046 0.041 0.035 0.198 0.141 0.064
s11 0.033 0.022 0.016 0.194 0.102 0.069
s21 0.038 0.026 0.025 0.255 0.133 0.091
s31 0.192 0.062 0.061 1.039 0.424 0.212

Table 4: Bias and root mean squared error (RMSE) obtained by applying the gjrm() to bivariate survival sim-
ulated data with mild censoring rates (about 42% and 33% for the two responses). Bias and RMSE for the

smooth terms are calculated, respectively, as n−1s
∑ns
i=1 |¯̂si− si| and n−1s

∑ns
i=1

√
n−1rep

∑nrep
rep=1 (ŝrep,i − si)2, where

¯̂si = n−1rep
∑nrep
rep=1 ŝrep,i, ns is the number of equally spaced fixed values in the (0, 8) or (0, 1) range, and nrep is the

number of simulation replicates. In this case, ns = 200 and nrep = 1000. The bias for the smooth terms is based on
absolute differences in order to avoid compensating effects when taking the sum.
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Figure 5: Linear coefficient estimates obtained by applying a two-stage estimation approach to bivariate survival
simulated data with mild censoring rates (about 42% and 33% for the two responses). Further details are given in the
caption of Figure 3.

Bias RMSE
n = 200 n = 500 n = 1000 n = 200 n = 500 n = 1000

β11 -0.063 0.004 0.005 0.276 0.146 0.106
β21 0.037 -0.005 -0.009 0.329 0.192 0.132
β31 -1.222 -0.179 -0.059 2.581 0.474 0.245
h10 0.246 0.138 0.083 0.378 0.247 0.158
h20 0.181 0.088 0.070 0.420 0.205 0.173
s11 0.047 0.036 0.023 0.251 0.129 0.084
s21 0.039 0.034 0.032 0.331 0.164 0.109
s31 0.336 0.265 0.080 1.089 0.764 0.275

Table 5: Bias and root mean squared error (RMSE) obtained by applying the gjrm() to bivariate survival simulated
data with high censoring rates (about 75% and 50% for the two responses). Further details are given in the caption of
Table 4.
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Histogram and Kernel Density of Simulated Kendall’s tau
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Figure 9: An example of histogram and kernel density estimates for 50000 simulated Kendall’s τ values obtained
using the Bayesian posterior simulation approach discussed in Section 2.5, after fitting the proposed model to bivariate
survival simulated data with mild censoring rates and 200 observations.
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Supplementary Material D

We have implemented the proposed models and estimation approach in R (R Development Core

Team, 2018), by extending the gjrm() function within the package GJRM (Marra & Radice,

2019). This package has been created to enhance reproducible research as well as with transparent

and straightforward dissemination of results in mind. The function is generally very easy to use,

especially if the user is already familiar with the syntax of (generalized) linear and additive models

in R. For instance, one of the calls used for the appendectomy analysis of this paper is

eq1 <- onset1 ~ s(log(onset1), bs = "mpi")

eq2 <- onset2 ~ s(log(onset2), bs = "mpi")

eq3 <- ~ zyg

f.list <- list(eq1, eq2, eq3)

out <- gjrm(f.list, data = dat.fem, surv = TRUE,

BivD = "T", margins = c("PH", "PH"),

cens1 = app1, cens2 = app2, Model = "B")

where onset1 is the age at appendectomy for twin 1 with censoring indicator app1 (1 if the

twin underwent appendectomy and 0 otherwise), and zyg is the type of zygosity (MZ or DZ).

onset2 and app2 refer to twin 2. dat.fem is a data frame containing the variables in the

model, surv must be set to TRUE in order to employ a joint bivariate survival model, cens1 and

cens2 are the two censoring indicators, the possible choices for BivD and margins are given in

Tables 1 and 2, f.list is a list of equations for the survival outcomes and the copula dependence

parameter, and argument bs specifies the type of spline basis (e.g., tp for thin plate regression

spline (the default) and mpi for monotonic P-spline). Monotonic P-splines must always be used

for smooth terms of the responses, otherwise the program will produce an error message. Model

summary() and plot() functions work in a similar fashion as those of generalized linear and

additive models, and AIC() and BIC() can be used in the usual manner. post.check()

produces plots of the Cox-Snell residuals for the two marginal models, and hazsurv.plot()

produces hazard and survival plots. More details and options can be found in the documentation
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of the GJRM R package.

Supplementary Material E

Model building in our modeling framework involves the choice of the copula function, of the pair

of link functions and the selection of relevant covariates in the model’s additive predictors. To

this end, we recommend using the AIC, BIC, Cox-Snell residuals and hypothesis testing. The

AIC and BIC are given by −2`(δ̂) + 2edf and −2`(δ̂) + log(n)edf , where the log-likelihood is

evaluated at the penalized parameter estimates and edf = tr(Â). The residuals are defined as

rvi = − log
{
Sv(yvi|xvi; β̂v)

}
∼ Exp(1), v = 1, 2, i = 1, . . . , n (Collett, 2015) and can be used

as follows. Let us denote the observed cumulative hazard as Ĥrv(rvi) (derived from the Kaplan-

Meier estimate). If the model is correct then the plot of the pairs
{
rvi, Ĥrv(rvi)

}
will have a 45◦

slope. This plot provides an overall assessment of the model’s goodness of fit and can not suggest

the type of mis-specification when the points do not follow the reference line. Note that the above

definition of residuals is the same as that employed for more standard survival models. In fact, no

special definition is required here since the proposed model is essentially parametric but flexible.

As a possible strategy, the researcher could use same set of covariates in all equations and

choose the copula and link functions using the AIC, BIC and Cox-Snell residuals. The same tools

can then be used to select the most relevant covariates in the model’s predictors (using stepwise

backward and/or forward selection). To favor more parsimonious models, small differences in the

AIC and BIC values of competing models can be assisted by looking at the significance of the

estimated effects; for example, a covariate could be excluded if the respective effect’s p-value is

larger than 5% or 10%. The model building process can be simplified if the researcher wishes

to include variables in the model based on prior belief and knowledge or wishes to employ a

particular set of link functions for the sake of interpretation.
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