IT City Research Online
UNIVEREIST;]OggLfNDON

City, University of London Institutional Repository

Citation: Ter-Sarkisov, A. & Marsland, S. (2017). K-Bit-Swap: a new operator for real-

coded evolutionary algorithms. Soft Computing, 21(20), pp. 6133-6142. doi:
10.1007/s00500-016-2170-6

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/21829/

Link to published version: https://doi.org/10.1007/s00500-016-2170-6

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

arXiv:1604.06607v1 [cs.NE] 22 Apr 2016

K-Bit-Swap: A New Operator For Real-Coded
Evolutionary Algorithms

Aram Ter-Sarkisov*and Stephen Marsland'
April 25, 2016

Abstract

There has been a variety of crossover operators proposed for Real-Coded
Genetic Algorithms (RCGAs), which recombine values from the same location
in pairs of strings. In this article we present a recombination operator for RC-
GAs that selects the locations randomly in both parents, and compare it to
mainstream crossover operators in a set of experiments on a range of standard
multidimensional optimization problems and a clustering problem. We present
two variants of the operator, either selecting both bits uniformly at random in
the strings, or sampling the second bit from a normal distribution centered at
the selected location in the first string. While the operator is biased towards
exploitation of fitness space, the random selection of the second bit for swap-
ping makes it slightly less exploitation-biased. Extensive statistical analysis
using a non-parametric test shows the advantage of the new recombination
operators on a range of test functions.

1 Introduction

Genetic Algorithms (GAs) are population-based metaheuristic algorithms. They
were first introduced in [16], and have demonstrated effectiveness on a wide range
of problems, from constrained optimization to design and optimization of neural
networks and other classifiers, see e.g. [24,25]. They are known for their flexibility
in terms of the choice of parameters (population and pool sizes, selection function,

*School of Computing, Dublin Institute of Technology, Ireland, aram.tersarkisov@dit.ie
fSchool of Engineering and Advanced Technology, Massey University, New Zealand,
s.r.marsland@massey.ac.nz

http://arxiv.org/abs/1604.06607v1

elitism selection, etc) and encodings: binary, integer and real (float).

In the GA framework solutions to a problem are encoded as strings, the fitness
of the strings evaluated according to a problem-specific function, and then strings
are chosen to enter a ‘mating pool’ as some function of their fitness. Strings in the
mating pool are recombined using genetic operators, and these new offspring strings
specify a new population. Over many iterations of the algorithm strings with better
fitness (that is, better solutions to the problem) evolve. In general, there are two
types of genetic operators that are used: crossover and mutation. Mutation varies the
values of entries of a single string, and is effectively a version of local search, exploit-
ing the knowledge encoded in the current string and seeking local improvements in
it. In contrast, crossover operators recombine genetic information between parents,
which enables a form of global search, exploring the search space more effectively.
It has been shown both experimentally and (for some problems) theoretically that
GAs with versions of crossover and mutation outperform mutation-only algorithms
such as hill-climbers and Randomized Local Search (see e.g. [6,26]).

While the original GA was based on a binary string, variations based on integer values
and floating point numbers are common. Real-Coded Genetic Algorithms (RCGAs)
use chromosomes (strings) of floating point numbers and are particularly useful for
solving problems where ‘real-valued’ encoding arises naturally, e.g. training of clas-
sifiers, such as neural networks, see [2], signal processing, constrained optimization
problems, etc. They are also particularly useful for higher-dimensional optimization
problems, where binary encoding is simply infeasible. Readers are referred to [8] for
a concise explanation of advantages of RCGAs, and [32] for an extended one.

The development and study of new genetic operators for RCGAs is both a historically
rich and active topic of research. Some of the seminal papers include [1,4,821127.[32].
Recently, in [14,[15] hybrid crossover operators were thoroughly analyzed, in [34]
distance-based crossover operators were studied, in [30] a double Pareto crossover
was introduced and successfully tested on a range of multimodal test functions. Also
in [30L33] a substantial overview of the history of RCGA crossover operators is given.
In many cases parents can generate more (or less) than the standard set of two off-
spring or an offspring can have more than two parents (see e.g. [7L13,19]).

In this paper we follow in these footsteps, and introduce two real-coded versions
of the K-Bit Swap (KBS) genetic operator, which is a crossover operator that en-
ables the location of elements of the string to change (transpose) when crossover

occurs. We evaluate its use with a RCGA solving multidimensional multimodal real-
coded optimization problems, both alone and together with other genetic operators.
A version of KBS was introduced in [29] (see also [2§] for the extended version of
this work) and showed some promise mostly for binary-coded functions.

2 Connection with GA Theory, Exploration vs Ex-
ploitation at Population and Gene Levels

Just as with binary GAs, empirical results show a statistically significant advantage
of RCGAs with crossover/recombination operators, when compared with mutation-
only algorithms. A few probable reasons for this are that crossovers:

1. reduce the probability of premature convergence to local optima,

2. extend the list of possible offspring that can be generated (especially when
probability distributions over offspring are used),

3. extend the exploration of fitness space to subsets that are far from the current
solution,

4. combine exploration and exploitation to some degree, while mutation is pri-
marily an exploitation operator,

The last point is of particular interest when it comes to development of new crossover
operators. In the GA community there is little clarity about the definition of the
terms ‘exploration’ and ‘exploitation’. Intuitively, exploration deals with sampling
from entirely new segments of genotype, while exploitation focuses on sampling in
the vicinity of existing solutions. In [3] authors give an overview of approaches to
this issue since the early years of GA theory. In short, they can be described as
follows:

1. Genotype-based, e.g. a distance between individuals of some sort (Manhattan,
Hamming, etc),

2. Phenotype-based, e.g. a number of different phenotypes (fitness values) in a
population that is used to determine diversity.

Hence, the definitions of exploration and exploitation depend on the definition of
diversity in the population: finding new individuals outside of the ‘basin of similar-
ity” between existing members of the population would be considered exploration.

Balancing these two processes, referred to as diversity maintenance (which can be
achieved by e.g. niching, crowding, mating restrictions, selection pressure) is cru-
cial to the success of the algorithm. Too much diversity (exploration) can harm by
reducing the attention to promising basins around local optima and lack of it (ex-
ploitation) reduces the chances of finding good new local optima.

Approaches mentioned above are population-level tools. In this paper we try a gene-
level approach (as in, e.g. [7L[13]): given that we have two parents producing two
new offspring, there is some distance between the parents and the offspring. Once
we have selected the genes/bits for recombination, we use the crossover operator to
exchange the information between these genes. Distance from the parents depends
on this operator: if it does search strictly in the landscape between the gene values,
it is an exploitation operator; if, instead, the operator extends the search space (but
doesn’t fully exclude the interval between the gene values), it is biased towards ex-
ploration.

Arithmetical crossover (AX) is the example of the first type of operator (see [20]):
hi=Xc; + (1= N)c?

(2

h: =\ 4 (1 — N)c}

where cz’ are parental gene values, 0 < A <1, h{ are offspring’ gene values. Clearly
both h} and h? lie strictly between ¢!, so this operator exploits the interval between
the sampled values in each parent. A good example of an exploration-biased operator
is BLX-« (see [§]):
P C
Crnin = min{c;, ¢

I= Cmax - Cmin
h! € [Crnin — Tov, Crnax + 10

The last expression means that new values for the i** gene are sampled from this
interval, which stretches beyond the interval by a factor of a. For example, very high
values of this parameter ~ 1 almost triple the interval between gene values. In [§]
this operator was introduced as an example of interval schemata.

Chuax = max{c

In Section [Blwe introduce two new KBS operators that fit the definition of exploitation-
biased operators. Nevertheless, we argue that due to their main property they allow
a certain degree of landscape exploration.

for i=1: number of pairs in the pool do
take the next two strings from the pool
for j=1:K do
select a bit in the first string uniformly at random
select a bit in the second string uniformly at random
swap the values of these bits between the two strings
end for
end for

Figure 1: The K-Bit-Swap Operator for binary coding

3 K-Bit-Swap Genetic Operator for Real-Coded
Problems

The original K-Bit-Swap operator was developed for predominantly binary-valued
GAs. It was presented in [29], and a pseudo-code description is given in Figure [II
The operator is a form of crossover where, instead of bits being swapped between
the strings with their location in the string held fixed, which is standard with most
crossovers, the location of the bit in the new string was chosen uniformly at random.
The results in [29] demonstrated that the operator improved the results of a GA
on numerical optimization problems, but not on an integer-coded variant of the
Travelling Salesman Problem.

It is perfectly possible to transfer this version of the KBS to real-valued GAs without
substantial changes, just like a standard crossover can be transferred. However,
given the success of Arithmetical Crossover (AX) and Blend Crossover (BLX-a) in
RCGASs, we use this convention and consider instead variants of KBS that follow the
idea behind these two operators, as well as the original KBS, as described next.

3.1 aKBS

The main idea behind KBS is to enable swapping of genetic information between
different schemata without binding the choice of the location in the second parent
to the location selected in the first parent. Discussion of schemata theory in the
context of GAs is beyond the scope of this article, relevant information can be found
in [112223]. It is only worth mentioning here that unlike the bulk of crossovers, KBS
operators recombine information from unrelated schemata. Simple tweaking of the
original KBS idea with an additional feature (parameter «) similar to the one used

Set 0 < a < 1 value
for i=1:number of pairs in the pool do
take the next two strings from the pool
for j=1:K do
select a value in the first string uniformly at random, v,
select a value in the second string uniformly at random, v,
set v} = av; + (1 — a)vy
set v = (1 — a)vy + awve
replace the values at these locations: v; = v}, vy = v}
end for
end for

Figure 2: The aKBS Operator

in AX and BLX-« is presented in Figure 2] (note that the version of KBS described
previously is recovered with o« = 0). This operator resembles both AX and BLX-«
in the sense that a value in a parent’s gene is multiplied by a coefficient (« or 1 —).
However, a KBS samples the value to swap with the first parent’s value uniformly in
the second parent, rather than taking it from the matching location in the string, so
that genes from unrelated features (schemata) are swapped. In the current setting,
this operator has a greater exploitation, but lesser exploration capacity because the
region available for sampling a new value lies strictly between two parental values.
This drawback is partly overcome by the main property of randomized bit selection,
a feature that AX does not have. Also, unlike BLX-a we do not use an interval
around parents’ values.

3.2 BKBS

Next, we consider a variant of KBS that samples from a normal (Gaussian) distri-
bution centered on the chosen bit in the first string to select the bit in the second
parent. This ‘de-randomizes’ KBS, making it more of a uniform-type crossover than
a mutation operator as, due to lower variance, the selected bit in the second parent
is likely to be closer to the original bit. Note that if this normal distribution has 0
variance then this becomes a standard crossover. Empirically, we found the variance
of 4 to be a good choice, which is used in the experimental part of the article. One
drawback of this algorithm is that the gene location chosen in the second parent
can be outside the allowable range (less than 0 or greater than n). In this case we
have chosen to replace any outlier values with either 0 or n. This is computationally

for i=1:number of pairs in the pool do
take the next two strings from the pool
for j=1:K do
select a value in the first string uniformly at random, vy, set yu = its position
in the string
sample u from N (u, o?)
if u <0 then
set u =0
else
if u > n then
set u=mn
end if
end if
select the u™ value in the second parent: v,
set v} = av; + (1 — a)vy
set v = (1 — a)vy + awvs
replace the values of these bits: vy = v}, vy = v}
end for
end for

Figure 3: The KBS Operator

simpler than redrawing another random number, but can bias the selection of genes
towards these two values. We will address this problem in our future work.

4 Experimental Investigation

4.1 Test Suite

In this paper we only concern ourself with unconstrained multidimensional multi-
modal (except the Paraboloid function) nonlinear problems. The problem is formu-
lated as:
min f(x), f:R" =R

We use a range of test functions from the BBOB-2013 (see [9]) list of noiseless func-
tions. Most are well-known examples of minimization problems. Unless otherwise
mentioned, the global minimum of the function is at f(0) = 0. All bold values
are vectors, i.e. 0 = (0,0,...,0), ||x| is a square of a vector norm, > ,_, z7. In the
experiments reported in the next section we use values of n in the set {2, 5, 10, 20, 50}.

Paraboloid This is the only unimodal function we use
fr(x) =Y a = [x|*, =10 <@, <10
k=1
Rastrigin This function has ~ 10" local optima.
fr(x) = |x[* + 10n — 10> " cos(2mk), —5.12 < x), < 5.12
k=1

Rosenbrock

fro(X) =) (100(z} 4 — x)* — (z1, — 1)?), —5.12 < x4 < 5.12
1

3
—

B
Il

with the global minimum at f(1) = 0 (where 1 denotes a vector consisting
entirely of 1s).

Schwefel .
fs(x) = 418.982n — Y g sin /|ag], —500 < 2 < 500

k=1
with the global solution f(X) =0 at X = (420.9687,420.9687, .. .,420.9687)

8

Ackley

2 1 <&
fa(x) = 204+e—20 exp (—0.2 I)—exp (— g cos(27rxk)> , —32 < xy, < 32
n n
k=1
Griewangk

1 “ Tk
=14+ —|x||> = 2], =600 < 2, < 600
Ja() =1+ 7551l ,ECOS (VE) = T =

4.2 k-Means Clustering problem

The k-means clustering problem is a very well-known NP-hard problem that arises in
many machine learning and signal processing applications. Given a set of n vectors
x; € R4(i = 1,...n), the problem is to find a partition of the data into k clusters
(k < n), each represented by the centroid of the data in that partition (u; € R?, j =
1,...k), the £*® mean, such that the sum of some metric distances, typically the Lo
norm, between all data points x;V: and the nearest centroid is minimized. In this
paper we use Euclidean distance metric:

S

dxy = Z Z(il?z — 15)? (1)

j=1 \ i=1

Here we use Y to denote the set of all centroids (means), z; and x; as defined above
and s; is the number of vectors/observations in the j™ subset. There are many
local minima in the space, and the standard iterative algorithm (Lloyd’s algorithm)
typically finds a good one. There has been a lot of interest in heuristic algorithms
solving this problem; some well-known implementations include [12,[17,[31]. One of
the best-known examples of k-means optimized by a GA is [18].

In our implementation, we consider only the 4-means problem (k = 4), and gen-
erate a set of random points x; for each dimension and use the same data for all of
the algorithms to allow fair comparison. We also report results of using Lloyd’s al-
gorithm using the implementation in the Scikit machine learning library for Python.

4.3 Experimental Setup

Each experiment consists of running every algorithm 20 times (from different random-
ized starting conditions) on a particular function with a pre-chosen dimensionality

9

set n
sample u ~ U(0, 1)
if v < 0.5 then X
set B = (2u)7+1
else
set 8= (2(1 — w)) 71
end if
zj, = 0.5(xk(1 = B) + yr(1 +)
Y = 0.5(zk(1 + B8) + yu(1 — B))

Figure 4: SBX operator

for 5000 generations. For simplicity, all algorithms save a single elite individual at
each generation (i.e., the fittest individual is saved at every generation and added to
the next generation of individuals, at the same time a randomly chosen offspring is
deleted from the pool; thus population size is constant), and we do not vary the size
of the population or the recombination pool, which were both fixed at 400 (making
this a (400 + 400)EA). Tournament selection was used to select individuals for the
recombination pool (see [28] for its description). As well as KBS, we also used two
variants of crossover that are well-known in the RCGA literature, BLX-a and SBX.
For all recombination operators we use a 100% rate (recombine all pairs in the pool).
We also applied two different mutation operators, uniform and Gaussian. In both
cases bit mutation probability of % was used, so that on the average there was one
mutation per string. For the KBS both o and 8 were set to 0.4, and K = ng . These
values were chosen to make the changes introduced by the KBS operator comparable
to those of other crossovers. All values are initiated uniformly at random in the
interval specified in SectiondIl In addition to BLX-a crossover explained in 2], we
use Simulated Binary Crossover (SBX, see [1l[5]): For our experiments we set n = 2.
We also use the following mutation operators in combination (to reduce bias) with
CTOSSOVers:

1. Gaussian mutation (GM, see [33]): in our implementation we select a bit xy
with probability % and sample from the normal distribution to generate the

new value: o
u
l’;g: ! 9 2+\/U2—U1-Z
where Z ~ N(0,1), us is the maximal value of the bit and w; is the minimal
value.

10

2. Simple mutation (SM, each bit is sampled with probability <):
x = (ug —uy) - U+ uy
where U ~ U[0, 1] is a uniform random variable.

We defined success as finding the global minimum to within a tolerance of ¢. We set
for 2-dimensional problems ¢ = 0.01, and € = 0.1 for all of the other problems. If the
algorithm was successful, then the generation at which it first happened was recorded.
The three measures that we record to establish the efficiency of the algorithm A
solving problem 7 (where j is ' run out of the total of R runs, z* is the best solution,
and t; is the number of generations it took the algorithm to find the solution) are:

I, = { 1 if f(z*) <e, @

0 otherwise

R—l Ij
P(Aa 71—) = Z%? (3)

R
> i1 il

M(A,m) = =5 @)

4.4 Experimental Results

The main results of this article are summarized in Tables [Il @l and Bl In Table [l in
every cell (crossover and mutation types vs function and dimension) the first value
is the proportion of successful runs (Equation [B]). The second value is mean runtime
averaged (applies to successful runs only), computed using Equation @l A run is
considered successful if the e-tolerance is reached. Tables 2 and [simply display the
mean fitness value at the end of the run, averaged over 20 runs.

By looking at Tables [l and [2] we get a good general overview of the performance
of algorithms on black-box optimization problems: we know which one does better
on which function and can compare rate of convergence, since the faster the algo-
rithm detects the basin of attraction around the global optimum, the better. Further
analysis enables us to identify places where the operators tend to lead to convergence
to local minima; for example both KBS operators appear to suffer from this (in 10
or more dimensions) for the Rosenbrock and Schwefel function. In contrast, both
BLX-a and SBX suffer from slow convergence on these problems: it takes them much
longer to explore the landscape segments with promising solutions.

11

It is clear from Tables [1 - Bl that most 2-dimensional problems were very simple,
but in most standard optimization problems, KBS algorithms outperform the main-
stream crossovers, possibly because they exploit current knowledge more effectively.
They do especially well on 20- and 50-dimensional Ackley and Griewangk functions,
which we see as a useful contribution to RCGA development if we compare the re-
sults, for example, to those in [10].

By looking at the 4-means clustering problem (all dimensions), the results are re-
versed: KBS does worse compared to both BLX-a and SBX, quickly converging to
a local solution and not being able to jump out of it. Although other operators
also converge prematurely, this takes rather longer than for KBS, resulting in better
solutions. As with the Schwefel function, we attribute this to the lack of exploration
capacity of both KBS operators, something that needs to be fixed in the future work.

Nevertheless, all presented algorithms greatly outperform the k-means algorithm in
SciKit module for Python, as is shown in Table Bl One surprising result we encoun-
tered with Griewangk function (dimensions 2 and 5): Gaussian mutation improved
all results by up to a factor of 20, something we did not observe with any other
function in our experimentation. Although we attribute it to the structure of the
fitness landscape, other factors may be at play that require additional investigation.

12

Function | Dims aKBS+ LKBS+ BLX-a+ SBX+
SM GM SM GM SM GM SM GM
2 1 7.2 1 4.75 1 6.95 1 45 | 1| 13.7 1 6.35 1 13.65 1 5.75
5 1 44.8 1 17.2 1 45.3 1 185 [1]1643.8| 1 | 233.15 1 120.15 1 60.2
Paraboloid 10 1 134.65 1 53.7 1 10015 1 [46.75|0 - 0 - 0.8 | 2563 1 1250
20 1 | 272.45 1 19455 1 382551 1 199350 - 0 - 0 - 0 -
50 1 746 1 240 1 866 1 233 |0 - 0 - 0 - 0 -
2 1 20.5 1 25 1 32.4 1 | 27451 46.1 1 38.6 1 35.45 1 |31.15
5 0.05 | 2825 0 - 0.05 | 4546 | 0.05| 1424 | 0 - 0 - 0.05 | 4816 0 -
Rosenbrock 10 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -
20 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -
50 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -
2 0.95 | 2450 1 1050 1 1930 1 1335 | 1| 3995 | 0.3 2155 | 0.15 | 1658 | 0.85 | 2180
5 1 1431 1 571 1 1307 1 583 | 0 - 0 - 0 - 0.25 | 3422
Acklgy 10 0.6 | 3324 1 2381 1 3211 | 0.05 | 1565 | 0 - 0 - 0 - 0 -
20 | 0.25| 3849 | 0.9 | 2536 | 0.25| 3981 | 0.75 | 2320 | 0 - 0 - 0 - 0 -
50 | 0.25 | 3652 | 0.95 | 2174 1 3991 | 0.7 | 2846 | 0 - 0 - 0 - 0 -
2 1 183 1 143 1 176 1 138 |1 546 1 424 1 301 1 350
5 1 685 1 726 1 594 1 655 | 0 - 0 - 0 - 0 -
Rastrigin 10 | 045| 3303 | 0.7 | 3111 | 0.6 | 2872 | 0.75 | 2538 | O - 0 - 0 - 0 -
20 0.1 | 4064 | 0.05 | 4196 0 - 0.1 | 4255 |0 - 0 - 0 - 0 -
50 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -
2 1 41 1 17 1 23 1 20 |1 34 1 30 1 36 1 23
5 0.05 | 1879 | 0.05 | 1541 | 0.1 2144 0 - 0 - 0 - 0 - 0.05 | 3864
Schwefel 10 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -
20 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -
50 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -
2 1 1388 1 44.4 1 1496 1 38 | 1] 2362 1 102 .8 1610 1 65
5 0.9 | 2312 1 127 |1 0.95 | 1970 1 105 |0 - 0.9 1445 0 - 1 1224
Griewangk 10 0 - 0.85 | 1385 0 - 1 1009 | O - 0 - 0 - 0 -
20 | 0.05| 4361 | 0.8 | 1187 0 - 0.7 | 961 |0 - 0 - 0 - 0 -
50 | 0.05 | 4830 1 862 0 - 1 757 | 0 - 0 - 0 - 0 -

Table 1: Success rate (proportion of 20 trials in which the global minimum was reached within tolerance ¢)
and the mean number of generations required to reach it (mean runtime)

Having established the absolute performance of algorithms, we now rank them
based on these results. As our data is not Gaussian-distributed or heteroscedastic, we
have chosen to use non-parametric statistical tests, specifically the Mann-Whitney
U statistic (also known as the one-sided nonparametric Wilcoxon rank-sum test),
which is defined as:

U= min{Ul, UQ}

s1(s1+1
U128182+%—R1

So(s9+1
U2:$182+%_R2

where s1, $o are sample sizes (equal in our case) and Rj, Ry are the sums of ranks
in each sample. A sample size of 20 (which is our case) is enough to give a reliable
estimate of the statistical significance of the difference of the means. The test re-
turns a z-statistic from a normal distribution and p-value that is compared to the
significance level of & = 0.05. The sign of the z-statistic shows which sample’s mean
is smaller: (-) for the first and (+) for the second.

For reasons of space the particular values are not reported, but the main results
we obtain from this analysis can be summarized as follows:

1. On the overwhelming majority of the Functional Optimization tasks, KBS-
based algorithms outperform both BLX-a and SBX, and this difference is sta-
tistically significant (i.e., systematic). Among the exceptions are 2-dimensional
Rosenbrock and Schwefel and 5-dimensional Griewangk function, where SBX+GM
is equally efficient, because the U-statistic values are not significantly different
from 0.

2. The 4-means clustering problem is best approximated (the global solution is,
of course, unknown) by SBX-based algorithms (up to n = 10) and BLX-«
algorithms (for dimensionality n > 10).

3. Gaussian mutation improves working on many instances (but never on the 4-
means problem). This is true for each of the 4 types of crossover. It boosts
performance especially well on the Griewangk test functions (all dimensions)

4. The two variants of the KBS recombination operator are almost equally good
(most differences are not statistically significant). Out of 35 instances (7 func-
tions X 5 dimensions) « KBS+SM outperforms § KBS+SM in 4 instances,

14

Function | Dims aKBS+ BLKBS+ BLX-a + SBX +
SM GM SM GM SM GM SM GM
2 3.63e-7 | 1.37e-7 | 2.98e-7 | 1.83e-7 | 2.00e-5 | 5.23e-6 | 7.21e-6 | 2.10e-6
3 1.13e-5 | 1.91e-6 | 3.26e-6 | 8.49e-7 | 0.045 0.018 0.003 | 0.0016
Paraboloid 10 | 0.0008 | 0.00025 | 0.0004 | 0.00016 | 0.875 0.373 0.07 0.03
20 | 0.0022 | 0.00109 | 0.0049 | 0.001 8.102 3.616 0.67 0.31
50 | 0.0078 | 0.003 0.012 0.006 80.76 48.16 7.78 3.87
2 2.84e-5 | 1.50e-5 | 4.40e-5 | 3.20e-5 | 7.47e-5 | 5.66e-5 | 2.80e-5 | 2.54e-5
3 0.49 1.043 0.83 0.80 2.48 2.018 1.53 1.20
Rosenbrock | 10 8.32 8.32 8.03 8.06 35.99 31.30 14.43 9.62
20 18.86 18.78 18.97 18.74 | 403.57 | 330.97 | 82.83 | 64.14
20 48.91 48.79 48.97 48.86 | 7606.79 | 6353.38 | 572.33 | 481.14
2 0.003 | 9.66e-4 | 0.003 0.002 0.05 0.01 0.02 0.006
3 0.008 0.003 0.007 0.003 2.59 0.90 0.72 0.17
Ackley 10 0.11 0.035 0.07 0.019 5.11 2.84 2.42 0.76
20 0.164 0.046 0.18 0.06 8.30 4.46 3.91 2.39
50 0.165 0.044 0.25 0.08 12.62 7.76 6.41 4.03
2 1.73e-5 | 2.42e-5 | 7.42¢-6 | 1.01e-5 le-3 5.19e-4 | 5.15e-4 | 3.71e-4
3 2.99e-4 | 1.65e-4 | 1.05e-4 | 1.02e-4 2.67 2.22 1.32 0.92
Rastrigin 10 0.62 0.44 0.33 0.16 22.83 20.08 14.70 10.63
20 2.72 2.32 3.38 2.56 89.97 83.62 60.24 | 59.30
20 9.93 3.28 10.095 4.46 376.58 | 366.07 | 315.46 | 301.69
2 2.85e-5 | 3.03e-5 | 2.2e-5 | 2.8e-5 | T.2e-b | 5.87e-5 | 4.2e-5 | 2.5e-5
3 0.67 0.73 0.75 0.81 2.39 2.103 1.27 1.21
Schwefel 10 8.33 8.18 8.13 8.02 37.59 30.4 10.15 9.71
20 18.84 18.84 18.85 18.80 | 424.11 | 310.51 | 83.05 | 67.81
50 49.13 48.82 49.22 48.80 7678 6104 | 553.90 | 501.33
2 0.003 | 1.35e-5 | 0.004 | 3.26e-6 0.01 2.16e-4 | 0.007 le-4
3 0.05 0.005 0.051 0.009 0.62 0.07 0.37 0.04
Griewangk 10 0.49 0.03 0.42 0.02 1.76 0.47 1.04 0.35
20 0.57 0.05 0.74 0.02 8.27 1.05 1.63 0.72
50 0.59 0.007 0.78 0.01 71.18 1.75 7.49 1.07

Table 2: Mean value of the objective function (after 5000 generations), averaged over
20 trials.

15

Function Dims aKBS | aKBS | BKBS | SKBS | BLX-a | BLX-a | SBX | SBX | SciKit
+SM | +GM | +SM | +GM | +SM | +GM | +SM | +GM
2 10.54 | 10.44 | 10.35 | 10.51 8.63 8.63 8.62 8.62 10.31
) 37.05 | 37.24 | 36.97 | 37.002 | 31.51 31.54 | 31.37 | 31.40 | 64.07
4-Means-Clustering | 10 61.44 | 61.61 | 61.33 | 61.23 | 50.20 | 50.17 | 49.78 | 49.94 | 167.52
20 97.29 | 97.14 | 96.96 | 97.15 | 80.58 | 80.55 | 83.62 | 83.28 | 369.13
o0 | 159.24 | 159.35 | 159.25 | 159.24 | 143.47 | 142.37 | 150.87 | 148.77 | 1063.29

Table 3: Mean value of the objective function (after 5000 generations) for the 4-
means clustering problem (compared to the 4-means classifier in the SciKit toolbox
for Python, averaged over 20 trials.

KBS+SM outperforms a KBS+SM in 5 instances, « KBS+GM outperforms
KBS+GM in 6 instances and KBS+GM outperforms a K BS+GM in 3 (the
rest are not statistically significant). Overall, « KBS has a slight advantage
over the other variant.

Overall, we attribute the relative underperformance of BLX-a and SBX operators
to our choice of elitism and selection function that prevent successful exploitation of
promising fitness basins. We intend to address this problem in our future work.

5 Conclusions and Future Work

In this article we have presented and tested a new recombination operator for RC-
GAs, a variant of the K-Bit-Swap that shares certain features with AX and BLX-«
crossovers and Gaussian mutation. The principal difference is that in the KBS oper-
ator the locations of the bits selected in the two strings do not match, but are chosen
randomly. We have considered two versions: chosen the two sites both uniformly
at random, and using a normal distribution centered on the selected bit in the first
string.

Both KBS operators have been shown to be superior for functional optimization
problems to both BLX-a and SBX crossovers, but underperform on the 4-means
approximation problem.

We also looked into some theoretical properties of presented operators. KBS sam-

ples different genes in both strings, thus slightly compensating for the absence of an
exploration bias. If we consider uniform crossover and a simple 1-bit mutation (a

16

standard choice for many applications), it is clear that fairly quickly the bits in the
parents, v; and vy will be close, and even if we construct a certain interval around
these values (as in BLX-«r crossover), we can easily get stuck in some unpromising
fitness region. KBS offers a workaround: although new values are not sampled from
outside of the interval between the two parents, the second parent’s value may be
very different from the value in the same feature, thus it mimics exploration ability.
Since the location selection for KBS is not restricted to the current feature, even
if other features have already converged to the local optima, KBS has a relatively
high probability of selecting a good schema and sampling in the area close to the
optimal solution. Compared to the BLX-a operator new values lie strictly between
the values selected in the parents. Therefore, both variants of the KBS operator
are heavily biased towards exploitation rather than further exploration of the search
space (see [8,[11,22]).

The logical next step would be to enhance the operator with an interval or other
features that would enable generation of values outside of this interval. Also, to ex-
plore KBS properties further, we intend to study the selection pressure mechanisms
that pushes evolution towards areas with high-quality schemata (in this article a
simple tournament selection was used) and more sophisticated elitism functions (in-
stead of the single fittest string). We believe that working along these lines will help
improve performance of RCGAs on multidimensional and multimodal functions.

References

[1] R. B. Agrawal, K. Deb, and R. B. Agrawal. Simulated binary crossover for
continuous search space. 1994.

[2] A. Blanco, M. Delgado, and M. Pegalajar. A real-coded genetic algorithm for
training recurrent neural networks. Neural networks, 14(1):93-105, 2001.

[3] M. Crepindek, S.-H. Liu, and M. Mernik. Exploration and exploitation in evo-
lutionary algorithms: a survey. ACM Computing Surveys (CSUR), 45(3):35,
2013.

[4] K. Deb, A. Anand, and D. Joshi. A computationally efficient evolutionary al-
gorithm for real-parameter optimization. Evolutionary computation, 10(4):371—
395, 2002.

17

[5]

[6]

K. Deb and H.-g. Beyer. Self-adaptive genetic algorithms with simulated binary
crossover. In Complex Systems. Citeseer, 1995.

B. Doerr, E. Happ, and C. Klein. Crossover can provably be useful in evolu-
tionary computation. In Proceedings of the 10th annual conference on Genetic
and evolutionary computation, pages 539-546. ACM, 2008.

S. M. Elsayed, R. Sarker, D. L. Essam, et al. Ga with a new multi-parent
crossover for solving ieee-cec2011 competition problems. In Fvolutionary Com-
putation (CEC), 2011 IEEE Congress on, pages 1034-1040. IEEE, 2011.

L. J. Eshelman. Real-coded genetic algorithms and interval-schemata. Founda-
tions of genetic algorithms, 2:187-202, 1993.

S. Finck, N. Hansen, R. Ros, and A. Auger. Real-parameter black-box opti-
mization benchmarking 2010: Presentation of the noisless functions. Technical
report, Citeseer, 2010.

S. Garcia, D. Molina, M. Lozano, and F. Herrera. A study on the use of non-
parametric tests for analyzing the evolutionary algorithms behaviour: a case
study on the cec2005 special session on real parameter optimization. Journal of
Heuristics, 15(6):617-644, 2009.

D. E. Goldberg. Genetic algorithms in search, optimization, and machine learn-
ing, 1989. ISBN: 0-201-15767-5, 1989.

J. A. Hartigan and M. A. Wong. Algorithm as 136: A k-means clustering
algorithm. Applied statistics, pages 100-108, 1979.

F. Herrera, M. Lozano, E. Pérez, A. M. Sanchez, and P. Villar. Multiple
crossover per couple with selection of the two best offspring: an experimen-
tal study with the blx-« crossover operator for real-coded genetic algorithms.
In Advances in Artificial Intelligence, pages 392-401. Springer, 2002.

F. Herrera, M. Lozano, and A. M. Sanchez. A taxonomy for the crossover op-
erator for real-coded genetic algorithms: An experimental study. International
Journal of Intelligent Systems, 18(3):309-338, 2003.

F. Herrera, M. Lozano, and A. M. Sanchez. Hybrid crossover operators for real-
coded genetic algorithms: an experimental study. Soft Computing, 9(4):280-298,
2005.

18

[16]

[17]

[25]

[26]

J. H. Holland. Adaptation in natural and artificial systems: an introductory
analysis with applications to biology, control, and artificial intelligence. U Michi-
gan Press, 1975.

T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and
A. Y. Wu. An efficient k-means clustering algorithm: Analysis and imple-

mentation. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
24(7):881-892, 2002.

K. Krishna and M. N. Murty. Genetic k-means algorithm. Systems, Man, and
Cybernetics, Part B: Cybernetics, IEEE Transactions on, 29(3):433-439, 1999.

S.-H. Ling and F. F. Leung. An improved genetic algorithm with average-bound
crossover and wavelet mutation operations. Soft Computing, 11(1):7-31, 2007.

Z. Michalewicz. Genetic algorithms+ data structures= evolution programs.
Springer Science & Business Media, 2013.

Z. Michalewicz and C. Z. Janikow. Handling constraints in genetic algorithms.
In ICGA, pages 151-157, 1991.

M. Mitchell. An introduction to genetic algorithms, 1996. PHI Put. Ltd., New
Delhi, 1996.

M. Mitchell, S. Forrest, and J. H. Holland. The royal road for genetic algorithms:
Fitness landscapes and ga performance. In Proceedings of the first european
conference on artificial life, pages 245-254. Cambridge: The MIT Press, 1992.

T. Pencheva, M. Angelova, K. Atanassov, and P. Vasant. Genetic algorithms
quality assessment implementing intuitionistic fuzzy logic. Handbook of Re-
search on Nowvel Soft Computing Intelligent Algorithms: Theory and Practical
Applications, page 327, 2013.

O. Roeva, T. Slavov, and S. Fidanova. Population-based vs. single point search
meta-heuristics for a pid controller tuning. Handbook of Research on Novel
Soft Computing Intelligent Algorithms: Theory and Practical Applications, P.
Vasant (Ed.), IGI Global, pages 200-233, 2013.

W. M. Spears et al. Crossover or mutation. Foundations of genetic algorithms,
2:221-237, 1992.

19

[27]

28]

[29]

32]

[33]

[34]

M. Srinivas and L. M. Patnaik. Adaptive probabilities of crossover and mutation
in genetic algorithms. Systems, Man and Cybernetics, IEEE Transactions on,
24(4):656-667, 1994.

A. Ter-Sarkisov. Computational Complezity of Elitist Population-Based Evolu-
tionary Algorithms. PhD thesis, Massey University, 2012.

A. Ter-Sarkisov, S. Marsland, and B. Holland. The k-Bit-Swap: A New Ge-
netic Algorithm Operator. In Genetic and Evolutionary Computing Conference
(GECCO) 2010, pages 815-816, 2010.

M. Thakur. A new genetic algorithm for global optimization of multimodal
continuous functions. Journal of Computational Science, 2013.

K. Wagstaff, C. Cardie, S. Rogers, S. Schrodl, et al. Constrained k-means
clustering with background knowledge. In ICML, volume 1, pages 577-584,
2001.

A. H. Wright et al. Genetic algorithms for real parameter gptimization. In
FOGA, pages 205-218. Citeseer, 1990.

Y. Yoon and Y.-H. Kim. The roles of crossover and mutation in real-coded
genetic algorithms. Bio-Inspired Computational Algorithms and Their Applica-
tions, InTech, 2012.

Y. Yoon and Y.-H. Kim. Geometricity of genetic operators for real-coded repre-
sentation. Applied Mathematics and Computation, 219(23):10915-10927, 2013.

20

	1 Introduction
	2 Connection with GA Theory, Exploration vs Exploitation at Population and Gene Levels
	3 K-Bit-Swap Genetic Operator for Real-Coded Problems
	3.1 KBS
	3.2 KBS

	4 Experimental Investigation
	4.1 Test Suite
	4.2 k-Means Clustering problem
	4.3 Experimental Setup
	4.4 Experimental Results

	5 Conclusions and Future Work

