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DAMPER-INERTER (TMDI) FOR STOCHASTICALLY SUPPORT 

EXCITED BUILDING STRUCTURES 
 
 

Alexandros TAFLANIDIS1, Agathoklis GIARALIS2 
 
 

ABSTRACT 
 
The multi-objective optimal design is considered of tuned-mass-damper-inerter (TMDI) equipped linear building 
frames subject to seismic excitations modeled as stationary colored random processes. The TMDI couples the 
traditional tuned mass-damper (TMD) with an inerter. The latter is a two-terminal mechanical device developing 
a resisting force proportional to the relative acceleration of its terminals by the “inertance” constant. Previous 
work has shown that TMDI with large inertance can outperform the classical TMD for the same attached mass, if 
properly tuned/designed. This performance enhancement comes, though, at the expense of increased inerter 
forces that need to be accommodated by the host structure. A multi-objective design framework is considered to 
investigate the compromise between these two competing objectives. The first objective, representing the 
vibration suppression efficiency, is defined using first-passage reliability criteria, considering outcrossing of 
failure modes related to floor accelerations, inter-storey drifts, and attached mass displacement. A linear 
combination of the probabilities related to these modes is taken as objective function, following current 
performance-based seismic design practices. The second objective, representing the strengthening of the host 
structure required to accommodate the TMDI forces, corresponds to the stationary inerter force. A variant of the 
optimization problem is also considered by adopting as secondary objective the maximum force of either the 
inerter or the damper utilized in the TMDI configuration. In the illustrative example different topological 
configurations are examined for the TMDI. Results demonstrate that the proposed framework supports a 
comprehensive understanding of how the TMDI design establishes a compromise between the aforementioned 
objectives. Connection of the inerter at a lower floor than the one immediately below the TMDI mass can lead to 
significant reduction of both objectives. 
 
Keywords: tuned mass-damper-inerter; multi-objective design; first-passage reliability; stationary response; 
peak inerter force 
 
 
1. INTRODUCTION  
 
Over the past several decades, the concept of the tuned mass-damper (TMD) has been extensively 
used for passive vibration suppression of dynamically excited structural systems (Chang 1999; Hoang 
et al. 2008). In its classical form, the TMD comprises a mass attached to the structure whose vibration 
motion is to be controlled (primary structure) via optimally designed/”tuned” linear spring and viscous 
damper (dashpot) elements. The effectiveness of the TMD depends heavily on its inertia property. In 
this context, recently a generalization of the classical TMD has been proposed by the second author 
(Marian and Giaralis 2013; Marian and Giaralis 2014) incorporating an “inerter” device: the tuned 
mass-damper-inerter (TMDI) [shown in Figure 1]. The inerter is a two-terminal device developing a 
resisting force proportional to the relative acceleration of its terminals (Smith 2002). The underlying 
constant of proportionality (“inertance”) can be orders of magnitude larger than the physical mass of 
the inerter. In a number of studies (Marian and Giaralis 2013; Marian and Giaralis 2014; Giaralis and 
Petrini 2017) the TMDI has been shown to outperform the TMD, especially when smaller attached 
masses are examined. Beyond this mass amplification effect, an important aspect for TMDI 
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applications (Giaralis and Taflanidis 2017) is the ability to influence the dynamics of the primary 
structure in a wide frequency range and not only at frequencies close to the own TMDI oscillation 
frequency, as is the case of the classical TMD. Another such aspect is the significant impact the TMDI 
topological configuration may have on the overall performance; it was shown in (Giaralis and 
Taflanidis 2017) that configurations with the inerter connecting to a lower floor than the floor 
immediately below the attached mass are more advantageous [see also (Giaralis and Petrini 2017)]. 
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Figure 1.  Tuned mass-damper-inerter (TMDI) equipped multi-storey frame structure. 
 
This performance enhancement offered by the TMDI comes, though, at the expense of increased 
inerter forces that are transferred to the host structure (Giaralis and Petrini 2017). In this respect, this 
paper pursues optimal TMDI design for stochastically excited structures within a multi-objective 
setting that explicitly considers the compromise between the competing objectives of suppressing 
vibrations and avoiding large inerter forces. Linear damped primary structures are considered base-
excited by filtered stationary white noise representing the seismic input action. The design variables 
include the inertance and the attached mass as well as the TMDI linear spring and viscous damper 
constants, whereas different topologies are examined with respect to the TMDI configuration. The first 
objective, representing the vibration suppression, is defined using first-passage reliability criteria, 
considering outcrossing of failure modes related to floor accelerations, inter-storey drifts, and attached 
mass displacement. A linear combination of the probabilities related to these modes is taken as 
objective function, following current performance-based seismic design practices. The second 
objective, representing the strengthening of the host structure required to accommodate the TMDI 
forces, corresponds to the stationary inerter force. A variant of the optimization problem is also 
considered by adopting as secondary objective the maximum force of either the inerter or the damper 
utilized in the TMDI configuration.  
 
The governing equations of motion for a structure equipped with a TMDI are reviewed in the next 
section, followed (Section 3) by the stationary response statistics calculation and (Section 4) the multi-
objective design problem formulation. Section 5 presents a case study for a TMDI equipped building 
frame exposed to stochastic seismic excitation. Concluding remarks are discussed in Section 6. 
 
 
2. FORMULATION OF EQUATIONS OF MOTION 
 
Consider the planar n-storey frame building, shown in Figure 1, whose oscillatory motion due to a 
ground acceleration gx  is to be suppressed (primary structure). The TMDI consists of a classical linear 
passive tuned mass-damper (TMD) located at the id-th floor of the primary structure comprising a 
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mass md attached to the structure via a linear spring of stiffness kd and a linear dashpot of damping 
coefficient cd. The TMD mass is linked to the ib-th floor by an inerter with inertance b. Let n

s x  be 
the vector of floor displacements of the primary structure relative to the ground and gx   be the 
ground acceleration. Denote by n

d R the TMD location vector specifying the floor the TMD is 
attached to (i.e., vector of zeros with a single one in its id entry), and by n

b R be the inerter 
location vector specifying the floor the inerter is connected to (i.e., vector of zeros with a single one in 
its ib entry). Let, also, y  be the displacement of the TMD mass relative to the id floor and define 
the connectivity vector by  Rc=Rd-Rb. Then, the resisting inerter force, denoted by bF  in Figure 1, is 
equal to  ( ) ( ) ( )b c sF t b y t t  R x  and the coupled equations of motion become 
 

     s( ) ( ) ( ) ( ) ( )T T T
s d d d c c s d d c s s s d d d s gm b t m b y t t t m x t        sM R R R R x R R C x K x M R R R     (1) 

 ( ) ( ) ( ) ( ) ( ) ( )T T T
d d d c s d d d d s gm b y t m b t c y t k y t m x t      R R x R R     ,   (2) 

 
where xn n

s M , xn n
s C , and xn n

s K are the mass, damping, and stiffness matrices of the 
primary structure, respectively, and n

s R   is the earthquake influence coefficient vector (vector of 
ones). Equation (2) suggests that the total inertia of the TMDI is equal to (md+b). Hence, the TMDI 
frequency ratio fd, damping ratio ζd, inertance ratio β, and mass ratio μ are defined as 
 

1/ ; ; ;
( ) 2( )

d d d
d d

d d d

k c mb
f ω ζ β μ

m b m b ω M M
   

 
, (3) 

 
where ω1 and M are the fundamental natural frequency and the total mass of the primary structure, 
respectively and 1d dω f ω  represents the TMDI natural frequency.  
 
 
3. STATIONARY RESPONSE STATISTICS CALCULATION 
 
Let gx  be modeled as a stationary filtered Gaussian white noise stochastic process. A state-space 
formulation is utilized to determine the response characteristics required in the solution of the 
optimum TMDI design problem. In this setting, the excitation model is given by 
 

( ) ( ) (t);    ( ) ( )q q q q g q qt t w x t t  x A x E C x  ,  (4) 

 
where ( )w t   is a zero-mean Gaussian white-noise process with spectral intensity equal to 
Sw=1/(2π); ( ) qn

q t x  is the state vector for the excitation; xq qn n
q A , x1qn

q E  and 1x qn
q C  are 

the state-space excitation matrices. Combining excitation model of Equation (4) with the equations of 
motion of the structural system in Equations (1) and (2) provides the augmented state-space system  
 

( ) ( ) ( ) ( ) ( );  ( ) ( ) ( )t t w t t t  x A φ x E φ z C φ x ,                (5) 

 
where ( ) xnt x  is the state vector with nx=2n+2+nq; ( ) znt z  is the vector of performance variables 
(response output of the system) with zi denoting the ith output; and A(φ), E(φ), C(φ) are the state-space 
matrices that are a function of vector φ, which represents the controllable parameters of the TMDI 
system (μ, β, fd and ζd). Note that the proposed formulation takes into account the spectral 
characteristics of the stochastic excitation, by appropriate augmentation of the state equation 
(Taflanidis and Scruggs 2010). This allows for an efficient calculation of the response statistics for the 
augmented system.  The derivation of the state space matrices is discussed in the Appendix.  
 
3.1 Basic stationary response statistics 
 
Under the modelling assumptions discussed above, the output of the system, z(t), has a Gaussian 
distribution with zero mean and covariance matrix in stationary response given as 
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Τ( ) ( ) ( ) ;  ( ) ( ) ( ) ( ) ( ) ( ) 0T T   zzK C φ P φ C φ A φ P φ P φ A φ E φ E φ , (6) 
 
where P(φ) corresponds to the state covariance matrix, obtained, as shown above, by the solution of an 
algebraic Lyapunov equation (Lutes and Sarkani 1997). The variance of each of the nz system output 
variables T

i iz  n z  (i=1,2,…,nz) and of their first time derivatives, needed later in evaluating the out-
crosssing rate for zi, are given, respectively, by 
 

2 ( ) ( ) ( )
i

T T
z i iσ  n C φ P φ C φ n ,  (7) 

2 ( ) ( ) ( ) ( ) ( )
i i i

T T T
z z zσ  n C φ A φ P φ A φ C φ n ,  (8) 

 
where ni is a nz dimensional vector with zeros with the ith component being one. In deriving the 
expression for the derivatives in Equation (8) the relationship ( ) ( ) 0C φ E φ is assumed to hold. The 
latter condition is necessary to ensure that the out-crossing rate of the zi stochastic process is finite 
(Taflanidis and Scruggs 2010). Lastly, the frequency response function of zi, also required in the 
calculation of the out-crossing rate of zi, is given by   
 

1( ; ) ( )[ ( )] ( )
i

T
z iω iω  H φ n C φ I A φ Ε φ .  (9) 

 
3.2 First-passage failure probability 
 
The design framework discussed in the next section utilizes the probability that an output 
(performance) variable zi exceeds a given threshold βi (defining acceptable performance) within some 
time-window T of the excitation (strong ground motion duration). This probability is expressed as 
 

 ( | , )  for some [0, ]i i i iP β T P z τ β τ T    φ ,  (10) 

 
and may be calculated as the first-passage probability for output zi out-crossing threshold βi. Under the 
stationarity assumption, the considered probability is approximated by (Taflanidis and Beck 2006)  
 

( )( | , )  1 e ;   ( ) ( ) ( )iν T +
i i i i iP β T ν λ r

   φφ φ φ φ ,  (11) 
 
where ( )iν

 φ  is the conditional out-crossing rate for zi, which, as shown above, is a product of two 
factors, Rice’s unconditional out-crossing rate ( )+

ir φ  (Rice 1944, 1945), and the temporal-correlation 
correction factor ( )iλ φ , introduced as a heuristic “correction factor” to address correlation between 
out-crossing events (Lutes and Sarkani 1997). The former is given by  
 

2

22 ( | )( | )
( | ) e

( | )

i

zi i

i

β

σz+
i

z

σ
r

πσ



 φ θφ θ
φ θ

φ θ


,  (12) 

 
whereas for the latter the correction factor proposed by Taflanidis and Beck (2006) is utilized here,  
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0.6

6

2 2
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22
1 exp ( )

( ) ( )
( ) ;  ( )

4π ( | ) ( | )
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2 ( )

i i

i i i i

i

i

z z
i

i z z z z

z

β
q

σπ σ
λ q

β ω S ω dω S ω dω
σ

 

 

      
    

    
  

 

φ
φ φ

φ φ
φ φ

φ

,  (13) 

 
where ( | )

i iz zS ω φ is the spectral density function for zi. The stationary variances needed in Equaitons 
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(12) and (13) are provided through Equations (7) and (8), whereas for calculation of the one-
dimensional integrals in the denominator of q(φ)  the spectral density ( | )

i iz zS ω φ is substituted by  
 

2
( | ) ( | )

i i iz z zwSS ω H ωφ φ   (14) 

 

with ( | , )
izH ω φ θ  given by Equation (9).  The frequency range over which the system dynamics are 

important is partitioned at desired points and the frequency response is calculated. Each one-
dimensional integral is then evaluated via standard numerical integration.  
 
 
4. MULTI-OBJECTIVE DESIGN FRAMEWORK 
 
4.1 Performance objectives selection and multi-objective design problem formulation 
 
The first objective, representing the vibration suppression efficiency of the TMDI applications, is 
defined, similarly to (Giaralis and Taflanidis 2017), as the consequences related to the different failure 
modes. Each of these modes is defined through some specific response output zi, representing the 
engineering demand parameter for that failure mode, and ultimately though probability ( | , )i iP β Tφ , 
whose estimation was discussed in Section 3.2. Let if represent the index sets associated with the 
failure modes under consideration and nf the total number of failure modes examined. Note that 
response vector z may contain additional response outputs, beyond the ones required for estimation of 
the occurrence probabilities of the different failure modes, in other words nf is not necessarily equal to 
nz. The first design objective corresponds to the combination of probabilities ( | , )i iP β Tφ  over set if 
 

1( ) ( | , )f

f

n

i i ii
J w P β T


 i

φ φ , (15) 

 
where wi are weights representing the relative consequences for each failure mode. Notably, this 
definition of J1(φ), which adds the contribution of each individual failure mode (upon weighting), is 
well aligned with the current performance based earthquake engineering practice of summing the 
contributions from all damage states (Goulet et al. 2007) in defining structural performance. 
 
The second objective, representing the strengthening of the host structure required to accommodate the 
TMDI forces, corresponds to the inerter force. Since under the stated stationary assumptions the peak  
response for zi can be related to its stationary variance 2

izσ  through the peak factor (Der Kiureghian 
1980) which can be approximated as a constant, the standard deviation of the inerter force is taken, 
equivalently, as the second design objective. A variant of the optimization problem is also considered 
by adopting as second objective the maximum force of either the inerter or the damper utilized in the 
TMDI configuration. This variant is motivated by the fact that the damper forces connecting the TMDI 
to the host structure may become excessive, especially for large TMDI mass, so they should be 
considered in evaluating the strengthening needed for safe TMDI force transfer to the host structure. 
The second design objective is therefore defined as  
 

2 2( )    or   ( ) max( , )
b b dF F FJ J φ φ   , (16) 

 

where 
bF and 

dF  are the standard deviations of the inerter force ( )bF t  and damper force  
( ) ( )d dF t c y t  , respectively.  Both the objective functions in Equation (16) correspond to specific 

elements of 
izσ , for an appropriate definition of the response vector as detailed in the Appendix. 

Therefore, they are readily available from Equation (7). 
 
Lastly, a multi-objective design problem considering concurrently design objectives in Equations (15) 
and (16) is formulated as  
 

 1 2
Φ

 arg min ( ), ( )
T* J J




φ
φ φ φ , (17) 
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where Φ represents the admissible design space. Since the two design objectives are competing there is 
no design configuration that simultaneously minimizes them both. The design optimization problem is 
transformed to identification of the Pareto optimal solutions, also known as dominant designs. A 
design configuration is Pareto optimal, denoted φp, if there is no other configuration that improves one 
objective without detriment to the other. The set of all such configurations is denoted as the Pareto set 
Φp. The Pareto front is the representation of the Pareto set in the objective function space 

1 2{[ ( ) ( )] | }p pJ J J φ φ φ Φ . It is generally impractical to find all Pareto optimums so the 
optimization strategies usually aim at finding a subset of them that represents Jp well and can provide 
the decision maker with a comprehensive picture of trade-offs (Zitzler et al. 2000). The multi-
objective design problem facilitates ultimately the identification of a range of TMDI configurations 
(Pareto optimal solutions) striking a trade-off among (i) vibration suppression efficiency and (ii) 
strengthening required for accommodating TMDI force transfer to the host structure. The designer or 
decision maker (e.g. building owner) can ultimately make the final decision among the Pareto optimal 
solutions, incorporating any additional considerations including architectural constraints for the TMDI 
implementation.   
 
4.2 Solution to multi-objective problem 
 
The multi-objective optimization problem of Equation (17) is solved by the epsilon-constraint method 
(Haimes et al. 1971). This numerical optimization approach is preferred here due to its ability to 
discover nonconvex regions of the Pareto front (compared to, for example, the weighted sum 
approach) and the fact that it can provide a front with a pre-determined resolution (compared to, for 
example, evolutionary approaches). Objective J1(φ) is used as optimization function and objective 
J2(φ) as constraint function. The epsilon-constraint method converts the multi-objective optimization 
problem to a set of single-objective constraint optimization problems with different constraints rε   
 

1
Φ

2

arg min  

such that  

( )

( ) ,

r

r

p J

J ε





φ

φ φ

φ
 (18) 

 
where the superscript r is utilized to describe the rth such constraint. Systematic variation of 

rε facilitates identification of the Pareto front. The formulation of Equation (18) allows ultimately the 
identification of TMDI configurations that facilitate the optimum vibration suppression while 
maintaining the inerter forces below the target threshold of εr.  
 
For deciding the range for εr

 the anchor point of the Pareto front corresponding to the maximum of 
J2(φ) is first obtained by solving of the unconstrained single objective-optimization  
 

1 1
Φ

arg min  ( )an J



φ

φ φ .  (19) 

 
The maximum value for J2(φ) across the front is 1( )anJ φ . The minimum is obviously 0. The range for 
feasible epsilon constraints ε is therefore 1[0 ( )]anJ φ . If np equally spaced solutions are desired, then 
each εr is chosen as 
 

1( );  1,...,anr
p

p

J r n
r

ε
n

 φ .  (20) 

 
Evidently for r=np the optimal configuration is 1

anφ whereas for r=0 (i.e. corresponding to the other 
anchor point of the front) the solution for the main formulation for J2(φ) is the TMD (b=0 and so Fb(t) 
is minimized) that offers maximum vibration suppression, whereas for the variant formulation is the 
uncontrolled structure (no forces at all associated with the TMDI).   
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5. ILLUSTRATIVE NUMERICAL EXAMPLE 
 
The design approach is illustrated by considering a 10-storey building frame (Figure 1) equipped with 
a single TMDI previously used in (Giaralis and Taflanidis 2017).   
 

5.1 Structural and excitation models 
 
The lumped mass per story is 900ton whereas the stiffness has a gradual decrease along height; it is 
782.22MN/m for the bottom four stories, 626.10MN/m for the three intermediate ones and 
469.57MN/m for the top three stories. Modal damping equal to 3.5% is considered. The natural 
periods the structure along with the participation factors in parenthesis are 1.5s (81.7%), 0.55s 
(11.8%), 0.33s (3.7%). The stationary seismic excitation gx  is described by a high-pass filtered Kanai-
Tajimi power spectrum (Clough and Penzien 1993) 
 

   
4 2 2 2 4

2 22 2 2 2 2 2 2 2 2 2

4
( )

4 4

g g g
g o

g g g f f f

ω ζ ω ω ω
S ω s

ω ω ζ ω ω ω ω ζ ω ω




   
. (21) 

 
In the above equation the Kanai-Tajimi parameters ωg and ζg represent the stiffness/frequency and 
damping properties, respectively, of the supporting ground modeled by a linear damped SDOF 
oscillator driven by white noise. Further, the parameters ωf and ζf control the cut-off frequency and the 
“steepness” of a high-pass filter used to suppress the low frequency content allowed by the Kanai-
Tajimi filter. Lastly, so is chosen to achieve a desired pre-specified value for the root mean square 
acceleration aRMS of the considered seismic input. For the purposes of this study, the adopted values 
are ωg=3π, ζg=0.4, ωf=π/2, ζf=0.8, aRMS=0.062g.  
 
The vector of engineering demand parameters for defining J1(φ) includes inter-storey drifts, associated 
with the structural integrity of the primary structure, and absolute floor accelerations, associated with 
the response of secondary equipment (building contents) housed by the primary structure, for all 10 
floors, the TMD mass displacement, associated with the stroke of the damper and inerter and with the 
required clearance between the mass and the host structure (nf= 21 performance variables in total). The 
assumed thresholds βi are chosen as 3.3 cm for inter-storey drifts, 0.5g for floor accelerations, and 1m 
for the stroke (common for mass damper applications). Justification of the threshold selection is 
included in (Giaralis and Taflanidis 2017). Without loss of generality, equal weights wi=1/nz are 
considered for all performance variables. This assumes equal consequences for all failure modes and 
was chosen (see discussion in next paragraph) to provide a comparable contribution to the total failure 
probability from the drift and acceleration related failure modes.  For the uncontrolled structure, the 
objective function J1(φ) is 12.38%. When considering only drift or acceleration responses this value 
becomes 10.94% or 13.83%, respectively. The response vector z includes, additionally, the inerter and 
damper forces, leading to nz=23. The definition of the state-space output matrices for this choice of z is 
discussed in the Appendix. Since the response variables needed for the failure modes are ordered first, 
the index vector for the failure modes is if=1, .., 21.  
 
The vector of dimensionless TMDI design variables, φ, includes the damping, frequency and inertance 
ratios, defined in Eq. (3), i.e., φ=[ζd fd β]T. The mass ratio μ is treated as a fixed pre-specified variable 
and a parametric investigation is undertaken for different values of μ ranging from 0.1% to 5% of the 
total structural mass. A number of different TMDI topologies are examined, i.e. different id and ib floor 
pairs. Further, two different designs are examined with respect to the selection of J2(φ) in Equation 
(16). Primary design formulation, considering only the inerter force is denoted by D1 whereas the 
variant, examining both the inerter and damper forces, is denoted by D2. 
   



8 
 
 

5.1 Results and discussion 
 
Results are shown in Figures (2) to (4). Figure 2 plots Pareto fronts for six different TMDI topological 
configuration and six different mass ratios for design problem D1. Figure 3 shows the corresponding 
Pareto optimal values for design vector φ for three of these topological configurations. Finally, Figure 
4 includes results for design problem D2 for three topological configurations. In Figures 2 and 4 
optimal TMD designs (obtained for β=0 for each mass ration) lie on the x-axis for which J2=0. In 
Figure 3 these designs lie at the origin. For the Pareto front representation value of np is set to 22. 
Note, though, that the number of designs identified for some of the cases may not be np= 22. For 
example, for D1 design, if the TMD (β=0 and therefore J2 is minimized) outperforms TMDI for some 
specific r

mε  value, then all solutions of the optimization of Equation (18) for εr< r
mε  correspond to the 

same optimal TMD configuration and, therefore, they do not yield different Pareto optimal 
configurations. For D2 design the same argument holds with respect to the uncontrolled structure.   
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Figure 2. Pareto front for design problem D1 for six different topological configurations for the TMDI 
implementation (sub-plots) and six different mass ratios masses (curves for each subplot). 

 
The results demonstrate the usefulness and applicability of the proposed design framework to facilitate 
the identification of solutions with drastically different performance across the two examined 
objectives. As discussed in the introduction, the protection offered by the TMDI (J1 values 
significantly reduced with respect to the uncontrolled structure) comes at the expense of significant 
forces exerted by the inerter to the host structure (large J2 values). The multi-objective formulation 
allows identification of Pareto optimal configurations that establish a compromise between protection 
efficiency and inerter forces. Based on the threshold that is acceptable for this force for the specific 
application (or any other decision criterion) the final design configuration may be chosen among the 
identified Pareto optimal solutions. Comparison between Figures 2 and 4 shows that the damper force 
is significantly smaller than the inerter force and ultimately does not impact the design formulation; 
the only concern should be the safe inerter force transfer to the host structure. The inerter forces are 
primarily related to the β value as evident from the results in Figure 3; large variations exist for β 
across the front and evident correlation to the J2 value.   
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Figure 3. Optimal values for fd, ζd and β along the Pareto front [design variables are plotted with respect to the 
corresponding value of J2]. Rows corresponds to three different topological configurations. Curves in each 

subplot correspond to different mass ratios.  
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Figure 4. Pareto front for design problem D2 for three different topological configurations for the TMDI 
implementation (sub-plots) and six different mass ratios masses (curves for each subplot) 

 
With respect to the TMDI behavior for different mass ratios, variation of μ has small impact on the 
optimal performance across both objectives (Figures 2, 4) and on the optimal design configuration 
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(Figure 3) across the Pareto front up to the point that the TMD outperforms TMDI for a given μ. The 
latter creates a sharp jump of the Pareto front to the optimal TMD configuration. The insensitivity to μ 
agrees with the well-reported in the literature mass amplification effect endowed to the TMDI by the 
inerter (Marian and Giaralis 2013; Marian and Giaralis 2014; Giaralis and Petrini 2017). In general, 
larger masses tend to provide only marginally better TMDI performance, especially when the inerter 
force is constrained.  
 
Connecting the inerter at a higher floor provides significant deterioration of the performance [compare 
parts (d) and (e) in Figure 2] and should be avoided as also shown in (Giaralis and Taflanidis 2017). 
Placement of the entire TMDI configuration at lower floors [compare parts (d), (f) to (a) in Figure 2] 
or connecting the inerter to a floor two [part (b) in Figure 2 or 4] or three [part (c) in Figure 2] stories 
below the id story provides greater protection efficiency. This agrees with the trends reported by 
Giaralis and Taflanidis (2017) and Giaralis and Petrini (2017). The interesting extension here is the 
investigation of the impact on the inerter force. Placement of the TMDI at a lower floor does not have 
a significant impact on the inerter forces. Note that the Pareto optimal β values [compare parts (a) and 
(c) in Figure 3] do not significantly change either. On the other hand, configurations in which the 
inerter spans two or three stories offer considerable reduction with respect to the inerter forces [note 
also the reduced β values in part (b) of Figure 3]. This new finding adds yet another advantage of 
connecting the inerter to the lowest floor possible subject to architectural constraints; not only greater 
protection efficiency is achieved (smaller J1 values) but also a reduced demand is created with respect 
to the (generally significant) inerter forces transferred to the host structure (smaller J2 values).  
 
   
6. CONCLUSIONS 
 
The multi-objective design of the tuned-mass-damper-inerter (TMDI) was considered in this study for 
seismic excitations modeled as stationary stochastic process. The objectives examined include both the 
protection efficiency as well as the forces that are exerted by the inerter on the host structure. The first 
objective, representing the vibration suppression, was defined using first-passage reliability criteria, 
considering outcrossing of failure modes related to floor accelerations, inter-storey drifts and attached 
mass displacement. A linear combination of the probabilities related to these modes was taken as 
objective function, following current performance-based seismic design practices. The second 
objective, representing the strengthening of the host structure required to accommodate the TMDI 
forces, was taken as the stationary inerter force. A variant of the optimization problem was also 
considered by adopting as secondary objective the maximum force of either the inerter or the damper 
utilized in the TMDI configuration. Linear structural model was considered and all required statistics 
(stationary response, first passage probabilities) were analytically obtained leveraging state-space 
formulation. For the solution of the multi-objective problem the epsilon constraint method was chosen 
due to its abilities to identify non-convex fronts and offer a evenly populated discrete representation of 
the front. Selection of the constraints was done by considering first the single-objective design for 
minimizing the vibration suppression. As case study an implementation to 10-storey frame was 
considered. Different topologies were examined with respect to the TMDI configuration. It was 
verified in the example that the inerter forces are significant, much larger than the damper forces, and 
that the proposed design formulation facilitates the identification of solutions with drastically different 
performance across the two examined objectives. Since the damper forces are smaller than the inerter 
ones their explicit consideration offers little practical interest. The main design variable changing 
across the Pareto front was found to be the inertance value. Finally it was shown that connection of the 
inerter to a floor lower than the one immediately underneath the TMDI mass offers significant 
benefits. Not only greater protection efficiency is achieved but also a reduced demand is created with 
respect to the inerter forces transferred to the host structure. 
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APPENDIX 
 
The state-space representation of the TMDI-equipped n-story structure in Equations (1) and (2)  reads  
 

( ) ( ) ( ) ( ) ( ),       ( ) ( ) ( )ss s ss s g s sst t x t t t  x A φ x E φ z C φ x   (22) 

 
where xss

2 2n  is the state vector collecting relative to the ground displacements and velocities of all 
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stories and of the attached mass (relative to ib floor), [ ]T T T
s s sy yx x x  , and the matrices in 

Equation (22) are defined as 
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 (23) 

 
In the above expressions, the output matrix ( )sC φ  accounts for a performance (output) variables 
vector z that includes inter-storey drifts and absolute accelerations for all floors, the attached mass 
displacement, the inerter force and the damper (dashpot) force, respectively, as needed in the 
illustrative design example. Further, Ia is the identity matrix of dimension a, 0axb is the zero matrix of 
dimensions axb, Ts is a transformation matrix defining relative responses between consecutive floors 
(i.e., a square matrix with dimension ns with 1 in the diagonal and -1 in the first off-diagonal), and the 
auxiliary matrix Mt  reads as 
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( , )

T T
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M φ θ

R R
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Combining Equations (22) and (4) leads to the representation in Equation (5) where 
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Lastly, the state-space matrices of the excitation model assumed in the design example, given by 
Equation (21),  read as  
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where σo is chosen such that the excitation has the desired aRMS intensity.  
 


