

City, University of London Institutional Repository

Citation: Algaith, A. (2019). Assessing the security benefits of defence in depth.

(Unpublished Doctoral thesis, City, University of London)

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/21869/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Assessing the Security Benefits of Defence in Depth

City, University of London

School of Mathematics, Computer Science and Engineering

Areej A. Algaith

Submitted in accordance with the requirements for the degree of
Doctor of Philosophy

Under the Supervision of

Dr. Ilir Gashi

February 2019

© 2019 City, University of London, Areej Algaith

-ii-

 Intellectual Property and Publication Statements
The candidate confirms that the work submitted is her own, except

where work has formed part of jointly-authored publications. The contribution
of the candidate and the other authors to this work has been explicitly
indicated below. The candidate confirms that appropriate credit has been
given within the thesis where reference has been made to the work of others.

• Areej Algaith, Ilir Gashi, Bertrand Sobesto, Michel Cukier, Selman Haxhijaha,

Gazmend Bajrami (2016). “Comparing Detection Capabilities of AV Products:
An Empirical Study with Different Versions of Products from the Same
Vendors”. In: 2016 46th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks Workshop, pp. 48-53. (Details in Chapter
4 of the thesis). Available at: http://openaccess.city.ac.uk/15503/

The data analysis, discussion, conclusions and first authorship of the
paper is that of the candidate. The data collection was done at the Universities
of Maryland and University for Business and Technology, Prishtina who kindly
shared the data with the candidate.

• Pasha Shahegh, Tommy Dietz, Michel Cukier, Areej Algaith, Attila

Brozik, Ilir Gashi: “AV and Malware Analysis Tool”. NCA 2017, pp. 365-
368. (Details in Chapter 5 of the thesis). Available at:
http://openaccess.city.ac.uk/18334/

The candidate contributed in all the discussion regarding the inception,
requirements and design of the tool. She also analysed the data from test
reports shared by the developers at the University of Maryland, and provided
detailed bug reports, which helped with the tool debugging. The candidate
also contributed towards the writing of the paper, specifically the tool design
and testing sections, as well as providing comments on several versions
during the paper writing process. The implementation of the AVAMAT tool
was done at the University of Maryland.

• Areej Algaith, Ivano Alessandro Elia, Ilir Gashi, Marco Vieira: “Diversity

with intrusion detection systems: An empirical study”. NCA 2017, pp. 19-
23. (Details in Chapter 6 of the thesis). Available at:
http://openaccess.city.ac.uk/18335/

The data analysis, discussion, conclusions and first authorship of the
paper is that of the candidate. The data collection was done at the University
of Coimbra, who kindly shared the data with the candidate.

-iii-

• Areej Algaith, Paulo Nunes, Jose Fonseca, Ilir Gashi, Marco Viera
(2018). “Finding SQL Injection and Cross Site Scripting Vulnerabilities
with Diverse Static Analysis Tools”. 14th European Dependable
Computing Conference (EDCC’18) (pp.57-64). (Details in Chapter 7 of the
thesis). Available at: http://openaccess.city.ac.uk/20065/

The data analysis, discussion, conclusions and first authorship of the
paper is that of the candidate. The data collection, and plug-in analysis were
done at the University of Coimbra and Polytechnic Institute of Guarda, who
kindly shared the data with the candidate.

-iv-

Acknowledgements

First of all, I would like to thank Allah who always guided me to resolve
crisis during my PhD research.

This research would not see the light without my parents
encouragements, with their prayers, love and support. Thank you, mother,
Laila Aljalajel. Thank you, father, Abdulrahman Algaith. Your sacrifices made
my path always light and shine.

I am sincerely thankful to the government of Saudi Arabia for awarding
me the scholarship and the opportunity they have given me.

I am extremely grateful to my supervisor Dr. Ilir Gashi for his
supervision, patience, advice and commitment throughout whole this PhD
research. This work would not have been possible without him.

I would also like to thank Professor Lorenzo Strigini for his discussion
and useful input in the optimal adjudication function.

I am also very grateful to Dr. Vladimir Stankovic for the insightful advice
on the MPhil-to-PhD Transfer Report.

A special thanks also to Dr. Michel Cukier from University of Maryland
in the USA for his guidance and making the AntiVirus data available.

I would also like to thank Mr. Paulo Nunes and Dr. Jose Fonseca from
the Department of Computer Science, Polytechnic Institute of Guarda (IPG),
and Dr. Ivano Elia and Professor Marco Vieira from the University of Coimbra,
Portugal for their valuable discussion and making data available.

I am indebted to all my family members, my friends and everyone who
supported and helped me along my Journey towards the completion of my
study. Thank you all.

-v-

Abstract

Most modern computer systems are connected to the Internet. This brings

many opportunities for revenue generation via e-commerce and information

sharing, but also threats due to the exposure of these systems to malicious

adversaries. Therefore, almost all organisations deploy security tools to

improve overall detection capabilities. However, all security tools have

limitations: they may fail to detect attacks, fail to uncover all vulnerabilities or

generate alarms for non-malicious traffic or non-vulnerable code. Using

terminology from signalling theory, we can state that security tools suffer from

two types of failures: failure to correctly label a malicious event as malicious

(False Negatives); and failure to correctly label a non-malicious event as non-

malicious (False Positive). These failures may vary from one tool to another,

since security tools are diverse in their weaknesses as well as their strengths.

Therefore, an obvious design paradigm when deploying these defences is

Diversity or Defence in Depth: the expectation is that employing multiple tools

increases the chance of detecting malicious behaviour. This thesis presents

research to assess the benefits (or harm) from using diversity. This thesis

begins with a literature review on defence in depth, diversity and fault

tolerance while identifying areas for further research. This review is followed

by the presentation of the overall methodology that we have used to perform

the diversity assessment for three types of defence tools namely AntiVirus

(AV) products, Intrusion Detection Systems (IDS) and Static Analysis Tools

(SAT). The context of this project is inspired by the EPSRC D3S1 project in

the Centre for Software Reliability (CSR) at the City, University of London as

well as the previous work on diversity conducted at the same centre, but also

elsewhere in the world. This thesis presents the results using the well-known

metrics for binary classifiers: Sensitivity and Specificity; and assesses the

various forms of adjudication that may be used: 1-out-of-N (1ooN – raise an

1 http://www.city.ac.uk/news/2015/march/researchers-at-citys-centre-for-software-reliability-are-the-
recipients-of-a-563,089

-vi-

alarm as long as ANY of the defences do so), N-out-of-N (NooN – raise an

alarm only if ALL the defences do so), majority voting (raise an alarm where

a MAJORITY of the defences do so) or optimal adjudication (raise an alarm

in such a way that it minimises the overall loss to the system from a failure).

The first study compares the detection capabilities of nine different AV
products. Additionally, for each vendor, the detection capabilities of the
version of the product that is available for free in the VirusTotal2 platform are
compared with the full capability version of that product that is available from
the same vendor’s website. Counterintuitively, the free version of AVs from
VirusTotal performed better (in most cases) than the commercial versions
from the same vendor.

The second study compares the detection capabilities of IDS when
deployed in a combined configuration. The functionally diverse combinations
are shown to increase the true positive rate significantly while experiencing
smaller increases in false positive rate.

The third study analyses the improvements and deteriorations of using
diverse SATs to detect web vulnerabilities. The largest improvements in
sensitivity, with the least deterioration in specificity was observed with the
1ooN configurations, in NooN configurations there is an improvement in
specificity compared with individual systems, and there is a deterioration in
sensitivity.

Finally, the benefits of “optimal adjudication” were also investigated:
the result shows that the total loss that can result from the two types of failures
considered (False Positives and False Negatives) can be significantly
reduced with optimal adjudication configurations compared with more
conventional methods of adjudication such as 1ooN, NooN or majority voting.

 In conclusion, using diverse security protection tools is shown to be
beneficial to improving the detection capability of three different families of
products and optimal adjudication techniques can help balance the benefits
of improved detection while lowering the false positive rates.

2 VirusTotal is a web service providing online malware analysis based on several AV products,

available at https://www.virustotal.com/

-vii-

Table of Contents

Abstract .. v

Table of Contents .. vii
List of Tables .. xi
List of Figures .. xiii
Acronyms and Abbreviations ... xvi
(1) INTRODUCTION .. 18

1.1 Context of the research ... 19

1.2 Aims and objectives .. 20

1.3 Contributions of the research .. 21

1.4 Thesis outline structure ... 23

1.5 Publications ... 24

(2) BACKGROUND AND RELATED WORK 25

2.1 Background on fault tolerance, diversity and defence in
depth ... 26

2.2 Assessment of a binary decision system 28

2.2.1 ROC background .. 29

2.2.2 Applications of ROC graph analysis 31

2.3 Threats .. 31

2.3.1 Cross-site scripting (XSS) ... 33

2.3.2 Examples of SQLi and XSS vulnerabilities 33

2.4 Related work on assessing AntiVirus (AV) products 35

2.5 Related work on assessing Intrusion Detection Systems
(IDSs) .. 38

2.6 Related work on assessing diverse configurations of Static
Analysis Tools (SATs) ... 38

2.7 Gaps in the Literature ... 41

(3) METHODOLOGY ... 42

3.1 Introduction ... 43

3.2 Assessing diversity for binary decision systems 43

3.3 Justification for choosing to study diversity with AVs, IDSs
and SATs .. 46

3.4 Conclusions .. 47

(4) DIVERSITY WITH ANTIVIRUS PRODUCTS (AV) 49

4.1 Introduction ... 50

-viii-

4.2 Study objectives .. 50

4.3 The experimental design ... 51

4.4 Summary results ... 52

4.5 Comparison of the detection capabilities of the two versions
from each vendor .. 53

4.6 Visualising the dataset over the three dimensions (AV, MW,
Dates) ... 56

4.7 Time lag analysis .. 59

4.8 Difference in signature labels between full capability versions
and VirusTotal versions .. 60

4.9 Discussion, Conclusions and Limitations 62

(5) AVAMAT: AN ANTIVIRUS AND MALWARE ANALYSIS TOOL
 .. 66

5.1 Introduction ... 67

5.2 Study objectives .. 68

5.3 AVAMAT architecture ... 68

5.4 Some results with AVAMAT .. 69

5.5 Lessons learnt ... 71

5.6 Discussion, Conclusions and Further Work 73

(6) DIVERSITY WITH INTRUSION DETECTION SYSTEMS (IDSs)
 .. 74

6.1 Introduction ... 75

6.2 Study objectives .. 76

6.3 Dataset, IDSs, and web applications 76

6.3.1 Intrusion Detection Systems 77

6.3.2 Web applications .. 79

6.4 Analysis of single version systems 80

6.5 Diversity analysis for two version systems 81

6.5.1 Overall summary and analysis by type of IDS
combination .. 81

6.5.2 Analysis by HTTP method .. 90

6.5.3 Differences over a single IDS setup 91

6.5.4 Averages for different two-version diverse setups 96

6.6 Diversity analysis for configurations with more than two
versions ... 97

6.6.1 Averages for different diverse setups 99

-ix-

6.6.2 Averages for functionally-redundant and diverse
setups .. 101

6.7 Discussion, Conclusions and Limitations 104

(7) DIVERSITY WITH STATIC ANALYSIS TOOLS (SATs) 107

7.1 Introduction ... 108

7.2 Study objectives .. 109

7.3 Dataset .. 110

7.4 Analysis of single version systems 113

7.5 Results .. 114

7.5.1 Visualising diversity .. 114

7.5.2 Sensitivity, specificity and ROCs for diverse SATs ... 116

7.5.3 Averages for different diverse setups 120

7.6 Analysis of the plugin .. 123

7.7 Discussion, Conclusions and Limitations 125

(8) OPTIMAL ADJUDICATION .. 127

8.1 Introduction ... 128

8.2 Study objectives .. 128

8.3 Optimal adjudication ... 129

8.4 Illustration of the use of optimal adjudication 130

8.5 Analysis methodology ... 132

8.6 Results of the analysis of optimal adjudication with the two
datasets .. 133

8.7 “Weighted loss” analysis ... 135

8.8 Discussion, Conclusions and Limitations 141

(9) CONCLUSIONS AND FUTURE WORK 142

9.1 Introduction ... 143

9.2 Summary of conclusions ... 143

9.3 Review of aims and objectives .. 145

9.4 Provisions for further work .. 146

9.5 Final remarks .. 147

References ... 149

Appendix A (Supporting Chapter 4 of the thesis) 157

Appendix A-1: Analysing the Dataset over the Three Dimensions
(AV, Malware, Dates) .. 157

Appendix A-2: Malware Classification 160

-x-

Appendix B (Supporting Chapter 6 of the thesis) 162

Appendix B-1 – Heatmaps .. 162

Appendix C (Supporting Chapter 8 of the thesis) 170

-xi-

List of Tables

TABLE 2-1 THE VARIOUS DEFINITIONS FROM A BINARY DECISION SYSTEM (SALAKO, 2018) 29

TABLE 4-1 COUNTS OF DETECTIONS AND NON-DETECTIONS ... 53

TABLE 4-2 DETECTIONS AND NON-DETECTIONS FOR ALL DEMANDS ... 54

TABLE 4-3 DETECTIONS AND NON-DETECTIONS FOR THE FIRST INSPECTION OF A MALWARE BY AN

AV VERSION IN OUR EXPERIMENT .. 54

TABLE 4-4 DETECTIONS AND NON-DETECTIONS FOR ALL DEMANDS ON BOTH VERSIONS 55

TABLE 4-5 DETECTIONS AND NON-DETECTIONS FOR THE FIRST INSPECTION OF A MALWARE BY AN

AV VERSION IN OUR EXPERIMENT – CATEGORISED BY COUNTS ON BOTH VERSIONS PER

VENDOR ... 56

TABLE 4-6 TIME LAG BETWEEN DETECTIONS BY THE TWO VERSIONS OF AN AV VENDOR 60

TABLE 4-7 SIGNATURE LABEL COUNTER ... 61

TABLE 4-8 EXAMPLES FOR SIGNATURE LABEL CATEGORISING .. 61

TABLE 4-9 MALWARE TYPE CLASSIFICATION .. 62

TABLE 6-1 CLASSIFICATION OF THE TYPES OF IDSS IN OUR STUDY .. 77

TABLE 6-2 THE COUNTS OF CRAWLING ACTIONS TRAFFIC AND SUCCESSFUL ATTACKS TRAFFIC PER

WEB APPLICATION ... 80

TABLE 6-3 THE NINE DISTINCT IDS DEPLOYMENTS .. 80

TABLE 6-4 COUNTS OF DETECTIONS AND FAILURES FOR BENIGN TRAFFIC (FALSE POSITIVE AND

TRUE NEGATIVE) AND FOR LEGITIMATE ATTACK (FALSE NEGATIVE AND TRUE POSITIVE) FOR

EACH IDS AND FOR THE 36 COMBINATIONS OF 2-VERSION SYSTEMS 1OO2 AND 2OO2 FOR

MYREFERENCES AND TAKING INTO ACCOUNT THE TYPE OF IDS .. 83

TABLE 6-5 COUNTS OF DETECTIONS AND FAILURES FOR BENIGN TRAFFIC (FALSE POSITIVE AND

TRUE NEGATIVE) AND FOR LEGITIMATE ATTACK (FALSE NEGATIVE AND TRUE POSITIVE) FOR

EACH IDS AND FOR THE 36 COMBINATIONS OF 2-VERSION SYSTEMS 1OO2 AND 2OO2 FOR

PHPBB AND TAKING INTO ACCOUNT THE TYPE OF IDS .. 84

TABLE 6-6 COUNTS OF DETECTIONS AND FAILURES FOR BENIGN TRAFFIC (FALSE POSITIVE AND

TRUE NEGATIVE) AND FOR LEGITIMATE ATTACK (FALSE NEGATIVE AND TRUE POSITIVE) FOR

EACH IDS AND FOR THE 36 COMBINATIONS OF 2-VERSION SYSTEMS 1OO2 AND 2OO2 FOR

TIKIWIKI AND TAKING INTO ACCOUNT THE TYPE OF IDS .. 85

TABLE 6-7 THE COUNTS OF SUCCESSFUL ATTACKS BY USING GET AND POST ATTACK METHOD

PER WEB APPLICATION .. 90

TABLE 6-8 THE AVERAGE SENSITIVITY, SPECIFICITY AND ACCURACY FOR SINGLE IDS AND THE

1OO2 AND 2002 PAIRS, PER TYPE AND PER WEB APPLICATION ... 97

TABLE 6-9 THE AVERAGES OF SENSITIVITY (TPR) AND SPECIFICITY (1-FPR) FOR THE COMBINED

IDSS, IN 1OON, ROON AND NOON CONFIGURATIONS, FOR MYREFERENCES 100

-xii-

TABLE 6-10 THE AVERAGES OF SENSITIVITY (TPR) AND SPECIFICITY (1-FPR) FOR THE COMBINED

IDSS, IN 1OON, ROON AND NOON CONFIGURATIONS, FOR PHPBB 100

TABLE 6-11 THE AVERAGES OF SENSITIVITY (TPR) AND SPECIFICITY (1-FPR) FOR THE COMBINED

IDSS, IN 1OON, ROON AND NOON CONFIGURATIONS, FOR TIKIWIKI 100

TABLE 6-12 THE AVERAGE SENSITIVITY, SPECIFICITY AND ACCURACY FOR SINGLE IDS AND PER

WEB APPLICATION ... 102

TABLE 6-13 THE AVERAGE SENSITIVITY AND SPECIFICITY FOR (1OO3,2OO3 AND 3OO3) PER WEB

APPLICATION .. 102

TABLE 6-14 THE AVERAGE SENSITIVITY AND SPECIFICITY FOR (1OO5,3OO5 AND 5OO5) PER WEB

APPLICATION .. 103

TABLE 6-15 THE AVERAGE SENSITIVITY AND SPECIFICITY FOR (1OO7,4OO7 AND 7OO7) PER WEB

APPLICATION .. 103

TABLE 6-16 THE AVERAGE SENSITIVITY AND SPECIFICITY FOR (1OO9,5OO9 AND 9OO9) PER WEB

APPLICATION .. 104

TABLE 7-1 PLUGIN INFORMATION ... 113

TABLE 7-2 DATASET .. 113

TABLE 7-3 THE FIVE SATS AND THE FP, TN, FN AND TP COUNTS ... 113

TABLE 7-4 THE FIVE SATS AND THE SENSITIVITY (SENS.) AND SPECIFICITY (SPEC.) MEASURES FOR

EACH SAT ... 114

TABLE 7-5 SENSITIVITY (SENS.) AND SPECIFICITY (SPEC) FOR THE 1OON, MAJORITY VOTE AND

NOON CONFIGURATIONS FOR N BETWEEN 2 AND 5 FOR SQLI ... 118

TABLE 7-6 SENSITIVITY (SENS.) AND SPECIFICITY (SPEC) FOR THE 1OON, MAJORITY VOTE AND

NOON CONFIGURATIONS FOR N BETWEEN 2 AND 5 FOR XSS .. 119

TABLE 7-7 AVERAGE SENSITIVITY AND SPECIFICITY FOR EACH DIVERSE VERSION AND EACH CLASS

OF VULNERABILITIES ... 123

TABLE 8-1 THE SYNDROMES OF THREE IDSS. .. 131

TABLE 8-2 THE OPTIMAL ADJUDICATION LOOKUP TABLE FOR THE THREE-VERSION SYSTEM OF TABLE

8-1 .. 131

TABLE 8-3 – TOTAL LOSS PROBABILITY OF THE DIVERSE 9-VERSION IDSS FOR EACH APPLICATION

 ... 135

TABLE 8-4 - TOTAL LOSS PROBABILITY OF THE DIVERSE 5-VERSION SATS FOR EACH APPLICATION

 ... 135

-xiii-

List of Figures

FIGURE 2-1 ROC GRAPH ... 30

FIGURE 2-2 DATA FLOW VULNERABILITIES ... 34

FIGURE 2-3 PHP CODE FOR INSERTING CONTACTS IN A DATABASE. .. 34

FIGURE 2-4 PHP CODE FOR SEARCHING CONTACTS IN A DATABASE ... 35

FIGURE 4-1 DATE (X-AXIS), MALWARE (Y-AXIS) AND THE PROPORTION OF AVS (GIVEN BY THE

INTENSITY OF THE COLOUR IN THE PLOT) THAT FAIL TO DETECT A MALWARE ON A GIVEN DATE.

FIGURE 4-1(A) FULL CAPABILITY VERSIONS; FIGURE 4-1(B) SIGNATURE BASED DETECTION

ENGINES AS FOUND IN VIRUSTOTAL. .. 58

FIGURE 4-2 AV (X-AXIS), MALWARE (Y-AXIS) AND THE PROPORTION OF DAYS (GIVEN BY THE

INTENSITY OF THE COLOUR IN THE PLOT) THAT A GIVEN AV FAILED TO DETECT A GIVEN

MALWARE. FIGURE 4-2(A) FULL CAPABILITY VERSIONS; FIGURE 4-2(B) SIGNATURE BASED

DETECTION ENGINE AS FOUND IN VIRUSTOTAL. ... 58

FIGURE 4-3 AV (X-AXIS), DATES (Y-AXIS) AND THE PROPORTION OF MALWARE (GIVEN BY THE

INTENSITY OF THE COLOUR IN THE PLOT) THAT FAILED TO BE DETECTED BY A GIVEN AV ON A

GIVEN DATE. FIGURE 4-3(A) FULL CAPABILITY VERSIONS; FIGURE 4-3 (B) SIGNATURE BASED

DETECTION ENGINES AS FOUND IN VIRUSTOTAL. ... 58

FIGURE 5-1 THE AV PRODUCTS AND OSS CURRENTLY SUPPORTED IN AVAMAT. EACH BOX IS ONE

VIRTUAL MACHINE (WE REFER TO A BOX AS VM(A,O)). AVIRA AND EMISOFT NO LONGER

SUPPORT WINDOWS XP VERSIONS, HENCE THEY ARE MISSING FROM THE FIGURE ABOVE

;WINDOWS XP ON LEFT-SIDE OF BOX ... 69

FIGURE 5-2 3D PLOT OF THE DETECTION CAPABILITIES OF COMODO, RUNNING ON WINDOWS 7 OS,

WHEN SUBJECTED TO 5855 MALWARE (Y-AXIS) OVER A 7 DAY PERIOD (X-AXIS) 71

FIGURE 5-3 3D PLOT SHOWING THE RATE OF MALWARE DETECTION (Z-AXIS) BY THE DIFFERENT

VM(A,O) (Y-AXIS) PER STAGE OF DETECTION (X-AXIS; NON-DETECTION IS STEP 1111) 71

FIGURE 6-1 THE ROC PLOT SHOWING THE INDIVIDUAL IDSS, 1OO2 AND 2OO2 CONFIGURATIONS.

CHARTS A)-C) SHOW THE ROC FOR EACH APPLICATION .. 88

FIGURE 6-2 THE ROC PLOTS SHOWING THE INDIVIDUAL IDSS, 1OO2 AND 2OO2 CONFIGURATIONS:

CHARTS A)-C) THE ROCS FOR EACH APPLICATION WHEN THE PAIRS WERE FUNCTIONALLY

REDUNDANT; CHARTS D)-F) THE ROCS FOR EACH APPLICATION WHEN THE PAIRS WERE

FUNCTIONALLY DIVERSE .. 88

FIGURE 6-3 THE ACCURACY DIFFERENCE OF 1OO2 AND 2OO2 CONFIGURATIONS, COMPARED WITH

THE BEST SINGLE SYSTEM IN THE RESPECTIVE PAIR, CHARTS A)-C) SHOW THESE

DIFFERENCES FOR EACH APPLICATION WHEN THE PAIRS WERE FUNCTIONALLY REDUNDANT OR

DIVERSE ... 89

FIGURE 6-4 THE SPECIFICITY DIFFERENCE OF 1OO2 AND 2OO2 CONFIGURATIONS, COMPARED WITH

THE BEST SINGLE SYSTEM IN THE RESPECTIVE PAIR, CHARTS A)-C) SHOW THESE

-xiv-

DIFFERENCES FOR EACH APPLICATION WHEN THE PAIRS WERE FUNCTIONALLY REDUNDANT OR

DIVERSE. .. 89

FIGURE 6-5 THE SENSITIVITY DIFFERENCE OF 1OO2 AND 2OO2 CONFIGURATIONS, COMPARED WITH

THE BEST SINGLE SYSTEM IN THE RESPECTIVE PAIR, CHARTS A)-C) SHOW THESE

DIFFERENCES FOR EACH APPLICATION WHEN THE PAIRS WERE FUNCTIONALLY REDUNDANT OR

DIVERSE ... 89

FIGURE 6-6 THE SENSITIVITY DIFFERENCE OF 1OO2 AND 2OO2 CONFIGURATIONS COMPARED WITH

THE BEST SINGLE SYSTEM IN THE RESPECTIVE PAIR, CHARTS A)-C) SHOW THESE

DIFFERENCES FOR EACH APPLICATION WHEN ATTACKS WERE READ (GET); WHEREAS CHARTS

D-F), SHOW THEM WHEN THEY WERE WRITE (POST). ... 91

FIGURE 6-7 DIFFERENCES IN SENSITIVITY AND SPECIFICITY FOR A GIVEN SYSTEM A WHEN PAIRED

WITH ANOTHER SYSTEM B FOR MYREFERENCES FOR A 1OO2 CONFIGURATION 93

FIGURE 6-8 DIFFERENCES IN SENSITIVITY AND SPECIFICITY FOR A GIVEN SYSTEM A WHEN PAIRED

WITH ANOTHER SYSTEM B FOR MYREFERENCES FOR A 2OO2 CONFIGURATION 93

FIGURE 6-9 DIFFERENCES IN SENSITIVITY AND SPECIFICITY FOR A GIVEN SYSTEM A WHEN PAIRED

WITH ANOTHER SYSTEM B FOR PHPBB FOR A 1OO2 CONFIGURATION 94

FIGURE 6-10 DIFFERENCES IN SENSITIVITY AND SPECIFICITY FOR A GIVEN SYSTEM A WHEN PAIRED

WITH ANOTHER SYSTEM B FOR PHPBB FOR A 2OO2 CONFIGURATION 94

FIGURE 6-11 DIFFERENCES IN SENSITIVITY AND SPECIFICITY FOR A GIVEN SYSTEM A WHEN PAIRED

WITH ANOTHER SYSTEM B FOR TIKIWIKI FOR A 1OO2 CONFIGURATION 95

FIGURE 6-12 DIFFERENCES IN SENSITIVITY AND SPECIFICITY FOR A GIVEN SYSTEM A WHEN PAIRED

WITH ANOTHER SYSTEM B FOR TIKIWIKI FOR A 2OO2 CONFIGURATION 95

FIGURE 6-13 THE ROC PLOT SHOWING THE INDIVIDUAL IDSS, 1OON AND NOON CONFIGURATIONS

FOR EACH APPLICATION. .. 99

FIGURE 6-14 PLOTS SHOW THE AVERAGES OF TPR AND 1-FPR FOR THE COMBINED IDSS, IN

1OON, ROON AND NOON CONFIGURATIONS FOR ALL THE WEB APPLICATIONS 101

FIGURE 7-1 EXAMPLE POP CODE IN THE ANALYSED PLUGINS. ... 112

FIGURE 7-2 EXAMPLE OOP CODE IN THE ANALYSED PLUGINS. ... 112

FIGURE 7-3 DIVERSITY BETWEEN SATS FOR SQL INJECTION AND CROSS SITE SCRIPTING (XSS)

 ... 116

FIGURE 7-4 - ROC PLOTS FOR THE DIFFERENT DIVERSE COMBINATIONS AND THE TWO CLASSES OF

VULNERABILITIES. ... 122

FIGURE 7-5 VULNERABLE AND NON-VULNERABLE LINES COUNT PER PLUGIN AND SENSITIVITY

MEASURES, FOR SQLI AND XSS. ... 124

FIGURE 8-1 TOTAL LOSS PROBABILITY OF THE DIVERSE IDSS FOR THE THREE APPLICATIONS, FOR

N=3, 5 AND 7. .. 134

FIGURE 8-2 TOTAL LOSS PROBABILITY OF THE DIVERSE SATS FOR THE TWO APPLICATIONS, FOR

N=3. .. 135

-xv-

FIGURE 8-3 THE AVERAGE LOSS PER DIVERSE IDS SETUP FOR EACH APPLICATION (WHERE N=3,5,

7 AND 9) .. 137

FIGURE 8-4 THE AVERAGE LOSS DIFFERENCE BETWEEN THE OPTIMAL ADJUDICATION FUNCTION AND

THE OTHER DIVERSTY IDS SETUPS (1OON,MAJORITY VOTE AND NOON) FOR EACH

APPLICATION. FOR N=3, 5, 7 AND 9. .. 138

FIGURE 8-5 THE AVERAGE LOSS PER SAT DIVERSE SETUP FOR EACH APPLICATION (WHERE N=3

AND 5) ... 139

FIGURE 8-6 THE AVERAGE LOSS DIFFERENCE BETWEEN THE OPTIMAL ADJUDICATION FUNCTION AND

THE OTHER DIVERSE SAT SETUP (1OON,MAJORITY VOTE AND NOON) FOR EACH

APPLICATION. ... 140

-xvi-

Acronyms and Abbreviations

1ooN One-out-of-N

ACD Anomalous Character Distribution

ADJ Adjudication

API Application Programming Interface

AV AntiVirus

AVAMAT AntiVirus and Malware Analysis Tool

AVFC AntiVirus Full Capability

AVSB AntiVirus Signature Based

CA Crawling Action

CAS Centre for Assured Software

CMS Content Management System

DF Detection/Failure

DID Defence in Depth

EP Entry Point

FC Full Capability AV

FN False Negative

FP False Positive

FR Failure Rate

IDS Intrusion Detection System

IE Internet Explorer

KVM Kernel-based Virtual Machine

MW Malware

NooN N-out-of-N

-xvii-

NVLOC Non-Vulnerable Line of Code

ROC Receiver Operating Characteristic

RooN R-out-of-N (majority voting)

SA Successful Attack

SAT Static Analysis Tool

Sen. Sensitivity

Spec. Specificity

SQL Structured Query Language

SQLi SQL injection

SS Sensitive Sink

TN True Negative

TP True Positive

VT Virus Total

VLOC Vulnerable Line of Coe

XSS Cross-site Scripting

-18-

(1) INTRODUCTION

(1) INTRODUCTION ... 18

1.1 Context of the research .. 19

1.2 Aims and objectives ... 20

1.3 Contributions of the research ... 21

1.4 Thesis outline structure .. 23

1.5 Publications .. 24

-19-

1.1 Context of the research

An important part of design for security is defence in depth, consisting of
“layers” of defence that reduce the probability of successful attacks. Guidance
documents now advocate defence in depth as an obvious need3; but their
qualitative guidance ignores the decision problems. Crucially, these questions
concern diversity: defences should be diverse in their weaknesses. Any attack
that happens to defeat one defence should with high probability be stopped or
detected by another one. Ultimately, diversity and defence in depth are two
facets of the same defensive design approach. Another term used in the
literature is defence in breadth: the difference between the two is often (either
explicitly or implicitly) understood to be that defence in depth is applying
diversity between the layers and the defence in breadth across the same
layer. In this thesis we mainly use the terms diversity and defence in depth,
and unless explicitly stated otherwise, we use them interchangeably.

The important questions are not about defence in depth and diversity
being "a good idea", but about whether a set of specific defences would
improve security more than another set; and about – if possible – quantifying
the security gains.

The security community is aware of diversity as potentially valuable (e.g.
references in (Littlewood & Strigini, 2004) and (Garcia et al., 2014)).
Discussion papers argue the general desirability of diversity among network
elements, like communication media, network protocols, operating systems
etc. Research projects studied distributed systems using diverse off-the-shelf
products for intrusion tolerance (e.g. the U.S. projects Cactus, HACQIT
(Reynolds et al., 2002) and SITAR4; the EU MAFTIA project5). New uses of
diversity appear every now and then, e.g., diverse AV software in a
commercial E-mail scanner6 and “in the cloud” (Oberheide, Cooke and
Jahanian, 2008), metrics for effectiveness of defence in depth7, etc.

3 https://www.iad.gov/iad/library/ia-guidance/archive/defense-in-depth.cfm

4 http://www.cs.arizona.edu/cactus/ , http://people.ee.duke.edu/~kst/sitar.html

5 http://research.cs.ncl.ac.uk/cabernet/www.laas.research.ec.org/maftia/

6 http://www.gfi.com/products-and-solutions/email-and-messaging-solutions/gfi-
mailessentials/specifications/up-to-five-AV-engines

7 http://ids.cs.columbia.edu/sites/default/files/law2011-aldr-final2.pdf

-20-

But there has been only sparse research (e.g. Gupta, 2003; Singh et al.,
2003) on how to choose among alternative layered defences; occasionally,
unsuitable models appear relying on the naive assumption of independent
failures (Wang et al., 2011). Official guidance shows trust in defence in depth
but glosses over the need for quantification. For example, justifications like
“Even the best available Information Assurance products have inherent
weaknesses... it is only a matter of time before an adversary will find an
exploitable vulnerability”8 ignore the probabilistic nature of security. What
matters is not that adversaries will eventually break through – this applies to
layered defences too! It is how soon they are likely to break through. Added
layers of defence postpone that moment, directly by requiring extra steps, and
indirectly by allowing for detection and defensive steps. But by how much?
Thus the main outcomes of the research we present in this thesis will be
methods for measuring security to drive rational decisions, and quantitative
assessment of diversity with widely used security tools.

1.2 Aims and objectives

We note from our review of diversity in security (cf. Chapter 2) that
although there is plentiful literature on defence in depth models and some
literature on mitigation strategies, there is insufficient research on assessing
the benefits (and harm) of defence in depth. In this research we address this
gap by presenting results from three empirical studies with different types of
defence. At a high level, our aim is to analyse:

• the variety of architectural options about how diverse security controls
are assembled and their responses combined (“adjudication”). For
instance, a security architecture may have multiple defences: the
adjudication can be such as to make this architecture a “1-out-of-N”
system (successful at stopping attacks if just one of the N “layers’”
succeeds), or weaker but less likely to report “false alarms” – blocking
non-hostile activities (e.g. if it only treats an activity as an attack if a
quorum of the defences flags it as such);

the interplay between the risks of failing to react to true attacks and of false
alarms (“false negative” and “false positive” failures, where "failure" may mean
different things – penetration, lack of detection, etc. – depending on the

8 www.nsa.gov/ia/_files/support/defenseindepth.pdf

-21-

function concerned). Receiver Operating Characteristic (ROC) curves (Egan,
1975) are often used to describe this trade-off for each detector and type of
attack, but not fully studied for complex compositions of subsystems (Ulvila,
Gaffney and Jr, 2003)

We have conducted experiments with three types of defence tools: AV
products, Intrusion Detection Systems (IDS) and Static Analysis Tools (SAT).
We present the results using the well-known metrics for binary classifiers:
namely Sensitivity and Specificity; and we assess the various forms of
adjudication that may be used when configuring diverse tools: 1-out-of-N
(raise an alarm as soon as ANY of the defences do so), N-out-of-N (raise an
alarm only if ALL the defences do so), majority voting (raise an alarm where
a MAJORITY of the defences do so) or optimal adjudication (raise an alarm in
such a way that it minimises the overall loss to the system from a failure).
The main goals of our research are:

1. Analyse the security benefits (or harm) of defence tools individually;

presented in Chapters 4, 5, 6 and 7.

2. Analyse the benefits (or harm) of the use of defence tools in diverse

configurations; presented in Chapters 4, 5, 6, 7 and 8.

3. Analyse the diversity that exists in the vulnerabilities of different

applications – three web applications in Chapter 6 and a content

management system with many plugins presented in Chapter 7.

4. Analyse the benefits of “optimal adjudication” (Giandomenico and

Strigini, 1990); presented in Chapter 8.

5. Provide an analysis methodology for assessing the performance (in

terms of lower false negative and false positive rates) of N-version

diverse security decision support systems presented in Chapter 3.

1.3 Contributions of the research

The research presented in this thesis describes a number of novel
analyses to help us quantify the possible benefits (and harm) of diversity for
security, and hence help improve decision making for security. The main
contributions are as follows:
• An assessment of detection capabilities of different AV products from

different vendors, and the different versions that those vendors provide

-22-

(i.e. the free version of the AV that is made available through services like

VirusTotal and their commercial counterparts). We presented three types

of analysis:

• Analysis of the detection rate of full capability AV products compared

to the detection rate provided by the free version of the same product.

• Analysis of the detection time difference, in other words, if both AV

products are able to detect the same malware, which version manages

to detect the malware first and calculate the time difference between

them.

• Analysis of the labels that an AV version assigns to a given malware.

The labels may be important to provide a security analyst with extra

information on what type of malware they are dealing with, which may

help them with the diagnosis. Analyses are achieved first by checking

whether the labels assigned by the two versions of a given AV product

were exactly the same, and second by analysing the classifications that

the AV products used for these different types of malware.

• An assessment of the performance of diverse IDS configurations: We

used a previously published dataset (Elia et al., 2010) that used nine IDS

configurations, when they were monitoring 3 web applications that were

subjected to SQL injection attacks and benign crawling actions. We

present the results using the well-established measures for binary

classifiers: sensitivity, specificity and accuracy, and use ROCs to visualise

the results.

• An assessment of the performance of diverse Static Analysis Tool (SAT)

configurations: We used a previously published dataset composed of five

diverse SATs aimed to find SQL Injections (SQLi) and Cross-Site

Scripting (XSS) vulnerabilities in 134 WordPress plugins (Nunes et al.,

2017). We present the results using ROCs, sensitivity and specificity, for

all possible diverse combinations that can be constructed using these five

SATs.

• Assessing the benefits of optimal adjudication: Using the IDS and SAT

datasets described above we evaluate the security tools in different

adjudication setups (1ooN, NooN, majority voting and Optimal

-23-

adjudication), and quantify how much better optimal adjudication performs

in reducing total loss, compared with the other adjudication setups.

• We provide empirically-supported guidance on which combination of tools

is better at detecting most vulnerabilities, and with low false alarms,

depending on the requirements of the decision maker.

• We provide an analysis method that may help other researchers with their

analysis of diversity and defence in depth. This should prove useful to

other researchers and organisations to assess diversity in their setups.

In addition to the assessment work outlined above, we also designed,
implemented and tested a tool for assessing diverse AV products called
AVAMAT (presented in Chapter 5). This work was a joint effort with University
of Maryland, with the author of this thesis being primarily involved in the design
and testing of AVAMAT (implementation was done primarily at the University
of Maryland).

1.4 Thesis outline structure

The second Chapter provides a review of literature in defence in depth
for security, background on diversity research, as well as empirical and
experimental studies for assessing diversity. The third Chapter present the
analysis methodology that we have used in the thesis to assess the diversity
with AV, IDS and SAT products. The fourth Chapter presents the results of
analysis that compare the detection capabilities of full-capability AV products
and signature-based AV products. The fifth Chapter presents AVAMAT: a tool
for assessing full-capability diverse AV products. The sixth Chapter presents
the analysis of a study in which we have assessed the detection capabilities
of intrusion detection systems when deployed in diverse, defence in depth
configurations. The seventh Chapter presents the result of an experiment in
which five diverse SATs have been used to detect SQLi and XSS
vulnerabilities in 132 plug-ins of the WordPress content management system.
The eighth Chapter presents an analysis on the use of optimal adjudication
with the SATs and IDSs and their comparison with the conventional forms of
adjudication (namely 1-out-of-N, N-out-of-N and majority voting). Finally,
Chapter 9 summarises the conclusions of the research and provisions for
further work.

-24-

1.5 Publications

- Areej Algaith, Ilir Gashi, Bertrand Sobesto, Michel Cukier, Selman
Haxhijaha, Gazmend Bajrami (2016). “Comparing Detection
Capabilities of AntiVirus Products: An Empirical Study with Different
Versions of Products from the Same Vendors”. In: 2016 46th Annual
IEEE/IFIP International Conference on Dependable Systems and
Networks Workshops (pp. 48-53). IEEE DSN-W. ISBN 978-1-5090-3688-
2. (Details in Chapter 4 of the thesis)
Available at: http://openaccess.city.ac.uk/15503/

- Pasha Shahegh, Tommy Dietz, Michel Cukier, Areej Algaith, Attila Brozik,
Ilir Gashi: “AntiVirus and Malware Analysis Tool”. IEEE NCA 2017 (pp.
365-368). (Details in Chapter 5 of the thesis)
Available at: http://openaccess.city.ac.uk/18334/

- Areej Algaith, Ivano Alessandro Elia, Ilir Gashi, Marco Vieira: “Diversity

with intrusion detection systems: An empirical study”. IEEE NCA
2017 (pp. 19-23). (Details in Chapter 6 of the thesis)
Available at: http://openaccess.city.ac.uk/18335/

- Areej Algaith, Paulo Nunes, Jose Fonseca, Ilir Gashi, Marco Viera (2018).
“Finding SQL Injection and Cross Site Scripting Vulnerabilities with
Diverse Static Analysis Tools”. 14th European Dependable Computing
Conference (EDCC’18) (pp.57-64) 10-14 September, Iasi, Romania.
(Details in Chapter 7 of the thesis)
Available at: http://openaccess.city.ac.uk/20065/

-25-

(2) BACKGROUND AND RELATED WORK

(2) BACKGROUND AND RELATED WORK ... 25

2.1 Background on fault tolerance, diversity and defence in
depth .. 26

2.2 Assessment of a binary decision system 28

2.2.1 ROC background ... 29

2.2.2 Applications of ROC graph analysis 31

2.3 Threats ... 31

2.3.1 Malware collection and analysis .. 31

2.3.2 SQL Injection ... 32

2.3.3 Cross-site scripting (XSS) .. 33

2.3.4 Examples of SQLi and XSS vulnerabilities 33

2.4 Related work on assessing AntiVirus (AV) products 35

2.5 Related work on assessing Intrusion Detection Systems
(IDSs) ... 38

2.6 Related work on assessing diverse configurations of Static
Analysis Tools (SATs) .. 38

2.7 Gaps in the Literature .. 41

-26-

2.1 Background on fault tolerance, diversity and defence in
depth

A discussion on fault and intrusion tolerance usually begins with the
definition of the “bad” events that the system designer wants to tolerate. The
definitions of the terms fault (or bug), error and failure given in this section
are based on (Avižienis et al., 2004). A failure is said to occur when the system
stops performing its required functions. An error is an erroneous (defective)
internal state in the system, which propagates through the system and causes
the failure. A fault is the triggering condition which when activated causes an
error. Therefore the event of the system failure lies in the end of a causal chain
that begins with the activation of a fault under certain operating conditions
followed by the propagation of an erroneous internal state through the system.

The definitions of the fault tolerance terms and mechanisms defined in this
section are based on (Lee and Anderson, 1990). A fault-tolerant system is a
system that can continue in operation after some system faults have
manifested themselves. Fault tolerance is therefore based on the premise that
faults exist and that it is possible for the computer system to handle them
without external interventions. The goal of fault tolerance is to ensure that
system faults do not result in system failure. Fault tolerance can be achieved
through both software and hardware, but throughout this thesis the software
mechanisms will be discussed unless otherwise stated. Apart from (Lee and
Anderson, 1990), other references which provide extensive coverage of
software fault tolerance are (Bishop, 1995; Pullum, 2001).

 The MAFTIA project9 extended the definitions of fault tolerance when
reasoning about malicious events and hence tolerance mechanisms aimed at
ensuring system security. So the fault-error-failure model described in
(Avižienis et al., 2004) is further extended by the concepts of: attack – a
malicious interaction fault, through which an attacker aims to deliberately
violate one or more security properties (i.e. an intrusion attempt);
vulnerability – a fault created during development of the system, or during
operation, that could be exploited to create an intrusion; intrusion – a
malicious, externally-induced fault resulting from an attack that has been
successful in exploiting a vulnerability. This relationship between attack,
vulnerability and intrusion is referred to as the AVI security model in MAFTIA

9 http://research.cs.ncl.ac.uk/cabernet/www.laas.research.ec.org/maftia/

-27-

terminology (Verıssimo et al., 2003), and an intrusion-tolerant system is one
that can continue in operation in the presence of vulnerabilities and attacks.
The goal of intrusion tolerance is to ensure that system vulnerabilities and
attacks do not result in successful intrusions (cf. analogy with the fault
tolerance definition from the previous paragraph).

 The central theme of this thesis is the use of diverse security products
to increase the security of a system. Software design diversity is the
phenomenon of bespoke development or reuse of multiple diverse versions
of a software program (or existing product) from a common requirement
specification with the goal of increasing the system reliability or availability.
The intuitive underlying principle of design diversity is the simple longstanding
belief that “two heads are better than one” and its advocacy for use with
computer systems may be thought of as first being proposed by Charles
Babbage(Babbage, 1982)10 although by computer he meant a person.

The main reason for employing design diversity in software is due to
software suffering from design faults (Littlewood et al., 2001) and not physical
faults (such as wear-and-tear for example) which are hardware specific. A
design fault in its simplest definition is a fault that is introduced in the software
during its development (hence the word design in this context is used for the
whole software development process). If non-diverse redundant copies of the
same software product are used then these design faults will be simply
replicated across the copies. Such replication of faulty software elements fails
to enhance the fault tolerance of the system with respect to design faults.

The ideal goal of employing design diversity is to achieve negative
dependence between the failure modes of the software products (i.e.
whenever one fails the other one does not). Independent failure modes of the
channels that constitute the diverse system would also be highly desirable as
they would enable an assessor to easily calculate the probability of failure of
the diverse system: the product of the failure probabilities of the individual
channels in the diverse system would give the failure probability of the diverse
system. However virtually all of the experimental studies performed for
measuring the benefits of design diversity (Chen &wiki Avizienis, 1995; Kelly
& Avizienis, 1983; Knight & Leveson, 1986) have found faults, which cause

10 The paper from Charles Babbage titled "On the Mathematical Powers of the Calculating Engine

(Unpublished manuscript, December 1837)" can be found on the aforementioned edited book by
Brian Randell.

-28-

coincident failures in more than one version with probability significantly higher
than would be expected if the versions truly had independent failure modes.

Additionally, in the context of security tools which rely on updates of
rules/signatures to detect malicious events, the diversity in their behaviour
may come from the diversity in their rules and the frequency with which the
tool vendors update these rules.

In summary, there is a lot of literature on design diversity: a more
thorough review of the effectiveness of design diversity (both experimental
results and probabilistic modelling) is given in (Littlewood et al., 2001); design
aspects are discussed in (Strigini, 2005). Diversity for security is reviewed
more thoroughly in (Littlewood and Strigini, 2004), and in a more recent study
in diversity for security in (Garcia et al., 2014). But there has been only sparse
research (e.g. Gupta, 2003; Singh et al., 2003) on how to choose among
alternative layered defences.

2.2 Assessment of a binary decision system

A binary decision system (or a binary classifier) is a system which
given some input (e.g. piece of code, network traffic etc.) produces an output
selected from two (binary) choices: e.g. true or false, alarm or no alarm etc.
For most of the assessment work we will present in this thesis, the inputs are
divided into two categories, e.g. malicious or non-malicious, vulnerable or non-
vulnerable etc. In that context, if there are two outputs for each of these two
inputs, then there can be four different categories of outcomes. Using an
example of code, and the outputs from an SAT that labels the code as
vulnerable or non-vulnerable, then these four categories are:
• For code that is not vulnerable:

• False Positive (FP): the binary decision system incorrectly
determines that the code is vulnerable;

• True Negative (TN): the binary decision system correctly
determines that the code is not vulnerable.

• For code that is vulnerable:
• False Negative (FN): the binary decision system incorrectly

determines that the code is not vulnerable;
• True Positive (TP): the binary decision system correctly

determines that the code is vulnerable.

-29-

From the four categories above, various measures can be calculated. A
concise summary is given in Table 2-1 (Salako, 2018) below.

Table 2-1 The various definitions from a binary decision system (Salako, 2018)

Given the nature of the systems that are presented in this thesis (IDSs,
AVs and SATs), the outputs of which can usually be classified as true or false,
and the inputs are of two types (malicious or benign), then we looked into the
best practice in assessment of these types of systems and the types of
measures that are used in the literature. We found that ROC graphs are used
extensively for visualising the performance of different systems, and the two
axes in the ROC curve that are used more extensively are sensitivity and
specificity (or sensitivity vs 1-specificity). In what follows we will give a more
detailed description of ROC graphs, their origins and their applications.

2.2.1 ROC background
A Receiver Operating Characteristic (ROC) is a graphical plot for

illustrating, organizing and choosing classifiers based on their performance.
Decision makers plot the (ROC) curves for each system of interest when
analysing the decisions of a binary classifier. ROC graphs are used in signal
detection theory to represent the trade-off between false alarms and true
alarms (P. Egan, 1975; Swets, Dawes and Monahan, 2000).

The first use of ROC was during World War II to analyse the signals of
radars. ROC analysis was developed to overcome the minor radar
discrepancies between different types of aircraft, mainly to correctly detect
Axis (in this case Japanese) aircraft from radar signals (Hopley and
Schalkwyk, 2011).

-30-

ROC graph is a two-dimensional graph, where the usual practice is for
the X-axis to plot the false positive rate (FPR) and the Y-axis to plot the true
positive rate (TPR). An ROC graph shows the relation between the benefits
(in TP) with the costs (in FP). Figure 2-1 illustrates an ROC graph and the five
points (A, B, C, D and E) represent different classifiers.

Figure 2-1 ROC graph

Each classifier provides a “FPR, TPR” pair corresponding to a single
point in the ROC graph. The lower left corner (0, 0) represents the no positive
classification, means no false positive error and no true positives also. In the
upper right corner (1,1) represents the point where there are no false
negatives, but also no true negatives (i.e. the system alerts for all demands).
(0,1) is the optimal classification point (no false negatives and no false
positives): in the ROC graph above system D is perfect. The ROC graph
allows an analyst to visually compare the performance of the different
classifiers. For example; classifiers on the left-hand side and close to the X-
axis can be conservative because they produced low true positive and few
positive errors (FP). However, classifiers on the upper right-hand can be
liberal because they produced high false positive rate and few true positive
errors (TP). In the figure classifier A is more conservative than B.

In this thesis we have primarily used sensitivity and specificity measures,
as they tend to be the measures most commonly used in literature. Though
the other measures listed in Table 2-1 above can be derived from the FP, TP,
FN and TN counts which we provide in Chapters 6, 7 and 8.

-31-

2.2.2 Applications of ROC graph analysis
ROC analysis for visualising the diagnostic systems behaviour (Swets,

1988) is to a large extent based on the experience from the extensive literature
in the medical decision making. ROC graphs are used extensively in the
medical field. A few examples are: (Rangayyan et al., 1997) where ROC
graphs are used to analyse the results of different cases (benign and
malignant) mammogram scans for early diagnosis of breast cancer; in
(Buscombe et al., 2001) ROC graph analysis was used to investigate if a
combination of x-ray of mammography and scintimammography11 was more
accurate than a single test alone for patients with suspected primary breast
cancer; etc.

In the computer science area ROC analysis is used extensively in the
machine learning area. An example is in (Spackman, 1989) where ROC
analysis was used to compare and evaluate different machine learning
algorithms. The use of ROC graphs in machine learning field is particularly
prominent because of a need for a more holistic analysis than just using
accuracy metric, which is considered a poor metric for measuring performance
(Provost and Fawcett, 1997).

2.3 Threats

There are a multitude of threats that affect computer systems, from
vulnerabilities in applications, to attacks from various adversaries (from script
kiddies to nation states). In this thesis we have looked into malware, and
attacks and vulnerabilities that affect web applications (including XSS and
SQLi). We concentrated on these types of malware and attacks as they are
the most prevalent types of threats that affect systems exposed to the Internet.

2.3.1 Malware collection and analysis
Malware, or malicious software, is any software or file that typically

disrupts, damages, takes control of computer, gains unauthorised access to a
computer system or gathers information from a computer. The malware can
be categorized into types depending on the malware's method of operation
(Aycock, 2006).

Several dynamic malware analysis solutions exist on the Internet as
online services. They offer a website and sometimes an API to submit

11 Scintimammography is a type of breast imaging test that is used to detect cancer cells.

-32-

malware samples. A report of the observed behaviour is generated and
provided to the user. The authors in (Bayer et al., 2006) introduced a tool to
dynamically analyse the execution behaviour of Windows executable files
which is called Anubis. This tool was made available online (Seclab, 2011).
(Willems et al., 2007) introduced Malware Analysis CWSandbox
(CWSandbox, 2013) which is currently available at (VMRay, 2014) and is
another online service for malware analysis which later became the
commercial solution called Threat Analyzer12. VMRay is another example of
a commercial tool (VMRay, 2014). Malwr.com provides a public web interface
for Cuckoo sandbox, a tool dedicated to malware dynamic analysis.

Over the past several years, researchers and practitioners have used
honeypots to learn about attacks, attackers and malware. These systems can
be categorised as security tools whose value lies in being probed, attacked,
or compromised (Spitzner, 2002). These carefully monitored systems allow
security researchers to attract hackers, analyse their actions and profile them
(Ramsbrock et al., 2007). Additionally they can also be used to collect the
latest malware samples that attackers use. Honeypot systems can be found
at different scales: from a single host to more complex honeypot networks.
These networks, also called honeynets, can be deployed on a few IP
addresses within a local network. The project Leurre.com (Pouget, 2005),
SGNET (Leita and Dacier, 2008) and the honeynet initiative from CAIDA
(Vrable et al., 2005) are all examples of distributed honeypot networks that
have been used in the past and deployed in different locations. Not all the data
that is collected in the honeynets is necessarily harmful – for example, there
may be test data that the attackers have uploaded, or malware may be
“malformed” during the uploading process making the files innocuous. Hence
experiment designers need to be careful to analyse and if necessary filter the
data before using the collected data as malicious inputs in experiments.

2.3.2 SQL Injection
SQL Injection vulnerabilities exist due to user inputs that are not

adequately validated (HTTP POST and GET variables, cookies, server
variables, database values, etc.). In practice, when such inputs are not
correctly sanitised, an attacker may be able to exploit them to maliciously
inject new SQL commands and/or modify the logic of the existing ones. In this
way, the attackers may read sensitive data from the database, modify it, and

12 https://www.threattrack.com/malware-analysis.aspx

-33-

even execute administration commands (Barnett, 2015; W3Schools, 2016;
OWASP, 2017). According to several reports (IBM Security Solutions, 2013;
Acunetix, 2015; OWASP, 2017) SQL Injection attacks are considered one of
the most dangerous types of attack for web applications and at the same time
among the most common.

Given the relevance of SQL injection attacks countermeasures have
been investigated (Halfond et al., 2006). The best defence from SQL injection
attacks is through preventive identification of vulnerabilities. However, the
ubiquity of such vulnerabilities (IBM Security Solutions, 2013; Acunetix, 2015)
shows that this approach is often disregarded due to time and resource
constraints. For this reason, systems capable of runtime detection and
prevention of intrusions have received a lot of attention (Buehrer, Weide and
Sivilotti, 2005; Halfond and Orso, 2005). In fact, a significant amount of
research has been undertaken to create novel methods for detecting SQL
Injection attacks (Lee et al., 2012; Sharma et al., 2012; Shar and Tan, 2013).
However, security practitioners are still concerned with the effectiveness of
IDSs (Richardson, 2011).

2.3.3 Cross-site scripting (XSS)
Cross-site scripting vulnerabilities appeared in 1996, in the first few

years of the World Wide Web (Fogie et al., 2007). In 1999, Georgi Guninski
(security researcher) was working on finding flaws in Internet Explorer’s (IE)
security model. David Ross (security researcher at Microsoft) was influenced
by the work of Georgi Guninski. Ross published the first paper on the cross-
site scripting vulnerabilities “Script Injection” (Fogie et al., 2007). Ross
explained that the script content can be used to bypass the same security
controls and the fault can exist on the server-side. In the XSS vulnerability the
attacker can exploit the vulnerabilities by injecting malicious scripts in the new
web page. The browser renders the page and executes the scripts in the
victim’s machine as a trusted script which can hijack user sessions, deface
web sites, or redirect the user to malicious sites (OWASP, 2017)

2.3.4 Examples of SQLi and XSS vulnerabilities
OWASP provides the top ten most critical web application security risks.

SQLi and XSS vulnerabilities are in the list, and are particularly damaging
(Halfond and Orso, 2005; OWASP, 2017). According to several reports (IBM
Security Solutions, 2013; Acunetix, 2015; OWASP, 2017) , SQL Injection
attacks are considered one of the most dangerous types of attack for web
applications and at the same time among the most common. An SQLi

-34-

vulnerability occurs when untrusted data flowing from Entry Points (EPs, e.g.
user input) with inadequate input validation (i.e. inadequate analysis of the
data against a predefined patterns) is used for constructing SQL queries. An
attacker may explore these data flows and execute queries not expected by
the application developer or may access sensitive data without proper
authorisation (OWASP, 2017). These vulnerabilities occur whenever data
input coming into applications from untrusted EPs is not validated, sanitised
or escaped and flows through the application reaching Sensitive Sinks (SSs)
(see Figure 2-2). An SS is a call of a function that exposes private data to
external systems. An example for SQLi is the PHP mysql_query function,
which executes an SQL query and returns the results. The PHP print function
that outputs HTML/JavaScript to the browser is an example of an SS for XSS.
XSS vulnerabilities occur whenever an application includes untrusted data in
a new web page without proper validation, sanitisation or escaping (OWASP,
2017).

Figure 2-2 Data flow vulnerabilities

To explain how SQLi vulnerabilities occur, and how they can be
exploited, we use a PHP script example (Figure 2-3). The script inserts
contacts data (name and phone) in a database without any validation. In this
script, there are two EPs, ($_POST array at lines 1 and 2) and one SS (line 4).
The data flowing from the EPs to the SS are not validated, so there is one
SQLi vulnerability in line 4.

1 $name = $_POST['name']; EP
2 $phone = $_POST['phone']; EP
3 $sql = "INSERT INTO Contacts (name, phone)

VALUES ('$name', '$phone')";
4 $result = mysqli_query($connection, $sql); SS

Figure 2-3 PHP code for inserting contacts in a database.

The PHP script in Figure 2-4 shows an example of an XSS vulnerability.
It searches contacts by name in the database and displays the results in an
HTML page. The user provides the name (EP, line 1) to be searched through
the $_GET array parameter. The script outputs the value of the parameter
without any proper escaping (line 2). In this case, there is one reflected or first
order XSS vulnerability. In reflected XSS the untrusted data coming from the
user is immediately written back. The exploitation of this class of vulnerabilities

-35-

requires some kind of social engineering by the attacker to convince the victim
to click in the crafted URL. In line 3, the script makes use of the same
parameter ($name) to build the SQL query to be sent to the database server
(line 4). In this case, there is also one SQLi vulnerability. Similarly to the data
flowing from the user input, the database is also a source of untrusted data
due to inappropriate validation when inserted in the database, as shown in
Figure 2-3. In fact, any attacker can insert in the database malicious code
instead of a valid contact name. Therefore, the PHP statement in line 7 is an
EP in the application that retrieves untrusted data from the database. These
data are outputted in lines 9 and 10 without any escaping, hence two stored
or second order XSS vulnerabilities exist. This class of vulnerabilities is
especially dangerous because it does not require any kind of social
engineering to trick the victim and a single piece of malicious code stored in
the database can be executed in the browser of all users visiting the website.

1 $name = $_GET['name']; EP
2 print("<h1>Your search for: $name</h1>"); SS
3 $sql="SELECT * FROM Contacts where name like '%$name%'";
4 $result=mysqli_query($connection, $sql); SS
5 echo '<table><tr><th>Name</th><th>Phone</th></tr>';
6 $n=0;
7 while($row = mysqli_fetch_array($result)) { EP
8 echo '<tr>';
9 echo '<td>' . $row[name] . '</td>'; SS
10 echo "<td>{$row['phone']}</td>"; SS
11 echo '<tr>'; $n++;
12 }
13 printf("Total records: %d", $n); SS

Figure 2-4 PHP code for searching contacts in a database

For a given class of vulnerability one line of code (LOC) is potentially
vulnerable if it contains an SS function call with at least one parameter (Nunes
et al., 2017). A vulnerable line of code (VLOC) is a LOC with an SS and a
variable with data coming from EPs without any validation. A non-vulnerable
line of code (NVLOC) is a LOC with an SS where all variables are sanitised
(Rutar et al., 2004; Kiezun et al., 2009; Backes et al., 2017) Lines 2, 4, 9 and
10 of the script in Figure 2-4 are examples of VLOCs and line 13 is an example
of a NVLOC.

2.4 Related work on assessing AntiVirus (AV) products

AV products are one of the most widely used security protection
systems. They are usually deployed as the last line of defence on desktop,
laptop, tablet and smartphone devices for both home and business use.
Studies that compare their detection capabilities are widely available13.

13 av-comparatives.org/, av-test.org/, virusbtn.com/index

-36-

There are two major platforms that allow for suspicious files to be
uploaded for scanning by multiple AV products, namely VirusTotal and
Metadefender14.

VirusTotal is an online service that hosts (at the time of writing) 56
signature-based detection engines from different AV vendors. It is a service
that is widely used by both academia and industry to submit and inspect
malware samples. It also provides an Application Programming Interface (API)
through which multiple malware samples can be submitted.

Metadefender is also an online service that hosts (at the time of writing)
42 signature-based detection engines. It provides a service similar to
VirusTotal, and it also provides an API for submitting malware samples.

Both of these services provide a valuable resource to malware
researchers and the security community. But they have some limitations when
it comes to more in depth analysis of AV detection capabilities:

- Both platforms run signature-based detection engines of these AV
products, rather than the full capability products that would run on an end-
point, making comparisons with full capability versions of these products
difficult. Metadefender states the following on its “Statistics” page15 “ Please
note that the detection data comes from Software Development Kit (SDK)
and Command Line Interface (CLI) package versions of these anti-malware
engines, using static analysis only, and not from endpoint desktop
applications which may be capable of enhanced behavioural and other
dynamic analysis, so detection results may differ significantly from
commercial endpoint performance. The data below should not be used for
comparing performance of desktop or server anti-malware applications”.

VirusTotal states the following on its “About” page: “VirusTotal's AV engines
are command-line versions, so depending on the product, they will not
behave exactly the same as the desktop versions: for instance, desktop
solutions may use techniques based on behavioural analysis and count
with personal firewalls that may decrease entry points and mitigate
propagation”.

14 https://www.metadefender.com/

15 https://www.metadefender.com/stats#!/1

-37-

- Both platforms are essentially “black box” testing platforms. In other words,
the user submits a file, and gets a response on whether the file was
detected as malicious, which AV products detected it as such, and the
signature used for the detection. But they do not provide more detail about
when the file was detected (e.g. “on entry” – before being downloaded on
the endhost; after it was downloaded but without forcing a scan; only after
a scan is performed), or on which operating system the AV product was
running when it detected (or not) a file as malicious. This makes it more
difficult to assess the potential damage that a file may cause on the end
host before malware is actually detected, and whether it would have caused
any damage at all on a given operating system (some malware could be
malicious on one operating system, but innocuous on another).

- Both platforms, on their free versions, put restrictions on the number of files
that can be uploaded at any given time (which is reasonable to allow fair
use). For researchers wishing to upload thousands of malware files on a
daily basis, they need to pay a fee, which can run into several tens of
thousands of dollars per year.

Empirical analyses of the benefits of diversity with diverse AV products
are rare. We know of three published studies that have looked at the problem.

A study with a deployment of the Cloud-AV implementation in a
university network over a six month period is given in (Oberheide, Cooke and
Jahanian, 2008) . For the executable files observed in the study, the network
overhead and the time needed for an AV product to make a decision are
relatively low. This is because the processes running on the local host, during
the observation period, could make a decision on the maliciousness of the file
in more than 99% of the cases they examined a file. The authors acknowledge
that the performance penalties could be much higher if more types of files than
just executables are examined, or if the number of new files observed on the
host is high (since the host will need to forward the files for examination to the
network service more often).

The work in (Bishop et al., 2011; Gashi et al., 2009) uses the VirusTotal
service for the analysis. The analysed dataset is composed of 1599 malware
samples collected by a real world honeypot deployment – SGNET (Leita and
Dacier, 2008) SGNET is a distributed honeypot deployment for the
observation of server-side code injection attacks. The dataset in (Bishop et
al., 2011; Gashi et al., 2009) was collected in the period February to August

-38-

2008. Each sample in the SGNET dataset was resubmitted to VirusTotal on a
daily basis for a period of no more than 30 days. Further results on diversity
of AV products, with newer datasets and different data collection
environments, were also presented in (Gashi et al., 2013). Since these studies
are based on results obtained from interaction with VirusTotal, they suffer from
the imitations highlighted earlier, namely that VirusTotal uses the signature
based detection engines of these AV products, rather than the full capability
versions; VirusTotal gives the results on whether an AV product detected a
malware or not (and when it detects it, the signature that the AV product
assigned to that malware), but does not tell us when the malware was
detected, or on which operating system the AV product was running when the
detection happened etc.

2.5 Related work on assessing Intrusion Detection Systems
(IDSs)

A very extensive survey on evaluation of intrusion detection systems is
presented in (Milenkoski et al., 2015). This survey analyses and systematises
a vast number of research works in the field. The main features analysed in
the survey are the workloads used to test the IDSs, the metrics utilised for the
evaluation of the collected experimental data, and the used measurement
methodology. The survey demonstrates that IDS evaluation is a key research
topic and that one of the main benefits that IDS evaluation can bring is related
with guidelines on how to improve IDS technologies.

Several works try to provide a comprehensive analysis of IDSs for SQL
injection (Tajpour et al., 2013), (Shrivastava and Tripathi, 2012). However
differently from what is suggested in (Milenkoski et al., 2015), in most cases
the comparison is limited to a review of the features and characteristics of the
IDSs and does not deal with the actual verification of their real effectiveness
by testing their capabilities.

2.6 Related work on assessing diverse configurations of
Static Analysis Tools (SATs)

(Rutar, Almazan and Foster, 2004) studied five well-known SATs on a
small set of Java programs with different sizes, and from various domains.
They concluded that the results of each tool are highly correlated with the
techniques used for finding bugs, and that no single tool can be considered

-39-

the best to detect defects. They proposed a meta-tool to automatically
combine and correlate SAT outputs. This meta-tool is based on a set of scripts
that combine the results of the various tools in a common format. The bugs
found were not manually reviewed, thus, there is no distinction between TP
and FP. The metric used to evaluate and compare the tools was the number
of bugs that each SAT found.

(Na et al., 2008) proposed an approach to merge the results of multiple
SATs. The user specifies the programs to be analysed and chooses the
classes of bugs to be scanned. After determining which tools can search for
the specified class of bugs, it generated the necessary tool configurations, ran
the tools, combined the outputs in a single report, and applied two prioritizing
policies to rank the results. They used this approach to conclude that
developers could benefit by using more than one SAT. However, neither were
the SAT outputs classified as TP and FP nor did the authors propose any
metric to evaluate the approach. The workload was composed of a small Java
program that is not representative of real applications. Therefore, with such
limited validation, it is very difficult to assess the strength and drawbacks of
the solution.

(Wang et al., 2008) proposed an approach that combines multiple SATs
in a simple Web Service. The user has the possibility to upload the source
code and auxiliary information such as the programming language and the
classes of bugs to be scanned. The tools perform the analysis of the source
code and the results are merged in such a way that the same defect is
reported only once. The experiments were quite limited, having just a single
Java test case, and the approach was evaluated in terms of the running time
when combining two SATs, lacking the validation of the effectiveness of the
vulnerability detection.

The NSA Centre for Assured Software (CAS) specified a methodology,
the CAS Static Analysis Tool Study Methodology, that measures and rates the
effectiveness of SATs and combination of SATs in a standard and repeatable
manner (NIST, 2018). The metrics used are Precision, Recall, F-Score, and
Discrimination Rate (DR). A discrimination occurs if a SAT reports a
vulnerability in the vulnerable test case (TP) and keeps quiet in the non-
vulnerable test case (TN). The CAS created a collection over 81,000 synthetic
C/C++ and Java programs with known flaws, which was called the Juliet Test
Suite (NIST, 2018). Each test case is a slice of artificial code having exactly
one flaw and at least one non-flaw construct similar to the vulnerability. In

-40-

2011, the CAS conducted a study with the purpose of determining the
capabilities of five SATs for C/C++ and Java (Britton, 2011). In this study, the
authors proposed the combination of two SATs to show that adding a second
SAT might complement the first one. However, the evaluation of the
combinations is limited because it is based on the Recall and DR metrics. The
Recall does not consider the number of FP reported, and the DR severely
penalises the SATs that report both many vulnerabilities and many FP.
Furthermore, they also evaluated the overall coverage (Recall) of four
combinations of five different SATs. They concluded that the Recall increases
as the number of tools increases.

(Nunes et al., 2017) studied the problem of combining the outputs of
diverse static analysis tools to detect web vulnerabilities. They argued that the
use of two or more SATs might be helpful, as more vulnerabilities may be
reported. However, the drawback is that the number of FPs may at the same
time increase. Moreover, they claim that the acceptable/expected outcome of
the static analysis process (in terms of TPs and FPs) depends on the software
development scenario. They considered four software development scenarios
with different goals and constraints, ranging from low budget to high-end (e.g.
business critical) applications. For each scenario, they used one main metric
to rank the combinations of the tools and a tiebreaker metric used only when
there is a tie. For example, for the high-end scenario the main metric is the
Recall and the tiebreaker metric is the Precision. In this scenario, the goal is
to find the highest number of vulnerabilities at any cost. Therefore, the Recall
metric captures this goal. They evaluated all 32 1-out-of-N adjudicator
combinations of the outputs of five free SATs finding SQLi and XSS
vulnerabilities in a workload composed by 134 WordPress plugins organised
by scenarios. The results showed that the best solution depends on the class
of the vulnerability and on the scenario. In fact, the best solution never
includes all the SATs and in some cases, a single SAT performs better than
the best combination of SATs. The approach is based on a considerable
amount of software in production characterised in terms of vulnerable and
non-vulnerable lines of code for a more precise classification of the outputs of
the tools with respect to TP and FP. One limitation of this work is that all the
combinations are based on 1-out-of-N adjudicator combinations. For instance,
in the less stringent scenario, where the resources for vulnerability fixing are
very low, every FP is an important cause of concern. In this case, N-out-of-N
adjudicator combinations might increase the confidence of the results. For

-41-

instance, a potential vulnerability reported by more than one SAT has higher
probability to be a true vulnerability than one reported only by one tool.

2.7 Gaps in the Literature

The previous sections gave an overview of the type of research in
security in relation to design diversity and defence in depth. Few of the
pervious works have provided empirical assessment of the benefits, or harm,
resulting from defence in depth, or what adjudication mechanisms may be
used when diverse systems are deployed. In particular, there is not enough
research in previous studies on assessing the benefits of diversity and
defence in depth for security of binary decision systems. The rest of the thesis
provides details of the work done to address these gaps.

-42-

(3) METHODOLOGY

(3) METHODOLOGY ... 42

3.1 Introduction .. 43

3.2 Assessing diversity for binary decision systems 43

3.3 Justification for choosing to study diversity with AVs, IDSs
and SATs ... 46

3.4 Conclusions ... 47

-43-

3.1 Introduction

In this chapter we present the analysis methodology that we have used
in the thesis to assess the diversity with AV, IDS and SAT products. The
methodology we used was influenced by the objectives we set-out at the start
of the thesis. Namely, to study:

• the variety of architectural options about how diverse security controls
are assembled and their responses combined (“adjudication”);

• the interplay between the risks of failing to react to true attacks and of
false alarms (“false negative” and “false positive” failures).

For the first objective above, we studied the most common types of
adjudications reported in the literature, namely 1-out-N, N-out-of-N and
majority voting. Additionally we also applied the “optimal adjudication”
function, which was described in the papers by (Giandomenico and Strigini,
1990). For the second objective, we used the extensive prior work on the
assessment of binary decisions systems (as referenced in Chapter 2 earlier)
and used it to assess diversity in defence systems where the output from the
defences can be reduced to a binary decision (e.g. true or false; alarm or no
alarm etc).

Note that we could not apply the method in full to all three studies. This
is because for the AV products we only had data about malicious events
(malware). Hence we can only measure the false negative rate. For the other
two studies (namely IDSs and SATs) we applied the methodology in full.

The rest of the chapter is organised as follows: section 3.2 outlines the
method for assessing diversity for binary decision systems; section 3.3
presents a justification for why the AVs, IDSs and SATs were chosen in the
thesis; and finally section 3.4 concludes the chapter.

3.2 Assessing diversity for binary decision systems

The same as for any binary decision system, we can classify the
decisions of a binary decision security defence system into four classes:

- For benign inputs (e.g. benign crawling actions, non-vulnerable code, non-
malicious files etc):

o False Positive (FP): the security defence system, incorrectly,
determines that a benign input is malicious;

-44-

o True Negative (TN): the security defence system, correctly,
determines that a benign input is not malicious.

- For malicious input (e.g. attacks, vulnerable code, malicious software etc.):

o False Negative (FN): the security defence system, incorrectly,
determines that a malicious input is not malicious;

o True Positive (TP): the security defence system, correctly,
determines that a malicious input is malicious.

In our work we extend the analysis from the viewpoint of diversity. We
analysed all possible pairs, triplets,…, “N-plets”, that can be constructed with
the N versions of the security defences that we study16. The decision that a
N-version defence system would make on a given input will depend on how it
does the voting/adjudication on the results it receives from each of the
individual systems. We studied the following adjudication schemes:

- 1-out-of-N (abbreviated 1ooN): an input is labelled as malicious as long as
ANY one of the N versions in the defence system determines that the input
is malicious;

- N-out-of-N (abbreviated NooN): an input is labelled as malicious only if ALL
the N versions in the defence system determine that the input is malicious;

- r-out-of-N (abbreviated rooN17): an input is labelled malicious only if r out of
the N versions in the defence system determine that the input is malicious;

- Optimal adjudication: an input is labelled malicious according to a cost
function (optimal adjudicator) that minimises the overall cost of failure. More
on this in Chapter 8.

In practice, each system is being asked whether a given input is
malicious or not. Hence, we use the following conventional statistical
measures of the performance of a binary classification test18:

16 For AVs we decided to study the differences between versions of the product from the same vendor instead, as

there has already been prior work in assessing diversity between products from different vendors, as we
referenced in the previous chapter.

17 Where r = (N/2)+1 when N is an even number; and r = ((N-1) / 2) +1 when N is an odd number.

18 Very clear definitions with examples are provided in the following article:
https://www.medcalc.org/manual/roc-curves.php

-45-

- Sensitivity (True Positive rate) – measures the performance of the
security defence in detecting malicious inputs;

- Specificity (True Negative rate) – measures the performance of the
security defence in not raising alarms for benign inputs;

- Accuracy – measures the combined performance of a security defence
against malicious and benign inputs.

There are many other measures that can be used. We already provided
some of them in the Literature Review (specifically section 2.2). A review of
these and similar measures in the context of security is provided in (Antunes
and Vieira, 2015). We chose the measures above as they are the most widely
used and most easily understood, as evidenced from their widespread use in
both security and medical fields. In any case, all the other measures are easily
derived from the FP, FN, TP and TN counts, which we provide in full for each
study. So practitioners can derive the other measures of interest directly from
the counts above.

The analysis approach followed in this study provides an analyst with a
useful methodology to help them with decision problems when configuring
defence in depth architectures. Some of the problems for which we provide
useful guidance are:

- How to choose diverse systems from a pool of similar products to improve
the overall system security?

- If an organisation is already running a defence system and would like to
add another that best complements the existing one (in terms of low false
positives and low false negatives), which one should be chosen?

- What are the trade-offs between false positives and false negatives when
analysing diverse defence systems in different applications and different
attack profiles?

Our analysis methodology, though based on well-known and established
techniques for analysing decision-based systems, should also prove useful to
other researchers who need to analyse combinations of diverse protection
systems (such as firewalls, or combinations of functionally different defences)
etc.

-46-

Decision makers also plot the Receiver Operating Characteristic19
(ROC) curves for each system of interest when analysing the decisions of a
binary classifier. ROC curves are used to determine how a threshold should
be set for a decision system to get an optimal configuration20 that maximises
the TP and minimises the FP rates. However, since the systems in our case
are already pre-configured, the ROC plots show only a point for each system.
By showing all the points for the single and diverse systems in the same plot,
we can visualise which systems are configured optimally for a given
application.

In summary, in our analysis we did the following for each study (and each
application in the IDS and SAT studies):

- We calculate the FP, FN, TP, TN counts for each diverse configuration;

- We calculate the measures of interest (specificity, sensitivity and accuracy)
or each diverse configuration, overall and by type of malicious input;

- We generate the ROC plots showing all the diverse configurations and the
individual defence systems, overall, by type of cconfiguration and by type
of malicious input;

- We calculate the differences in the measures of interest between diverse
configurations and individual systems to measure the possible
improvements or deteriorations from switching to a diverse system.

3.3 Justification for choosing to study diversity with AVs,
IDSs and SATs

We have conducted experiments with three types of defence tools: AV
products, Intrusion Detection Systems (IDS) and Static Analysis Tools (SAT).
The main reasons for choosing to study these products are as follows:

- Deployment in real systems: AV products and IDSs are some of the most
widely used security defence tools in both personal computing and
commercial/organisational settings. The practical advice from any
operating system vendor when starting up a machine is to make sure that
an AntiVirus product is installed before connecting to the interne (or

19 https://www.medcalc.org/manual/roc-curves.php

20 What is “optimal” for a give system will inevitably depend on the relative cost that the decision maker assigns to
the FP and FN failures.

-47-

connecting some external device to the machine). Similarly, IDSs are
widely used in organisations as another layer of defence to complement
the defences that are deployed on the end hosts. SATs are used at a
different stage of a system lifecycle (i.e. during its development), but can
also be used to test existing code bases for potential vulnerabilities. As
such they are also widely used for software developers for vulnerabilities,
especially if that software will be exposed to the web.

- The availability of multiple products in the same product family: since
the primary aim of our research is the assess diversity, we chose product
families that had multiple products from different vendors available for
them, and for which there is a sufficient number of open source/freeware
versions available. There are other product families for which there are
multiple vendors, firewalls being the most clear example, but most of the
products available in this family are prohibitively expensive for academic
research.

- The availability of datasets that facilitate assessment of diversity: one
way in which we thought we could make a substantial contribution in
research, in a time efficient manner, was to leverage the very good work
done by other researchers and build on top of it. This has the advantage of
fostering collaboration between different institutions, and also making sure
that the work is reviewed from multiple sites, enabling a higher level of
scrutiny of the results and hence leading to better quality of research. To
this end we approached colleagues in Europe and US who had extensive
data collection infrastructures, who had published the datasets so that the
data had already been scrutinised by the community, but who had not
analysed the data from a diversity perspective. The three datasets we used
were extensive, very well documented, included multiple products and had
research colleagues who were available to answer questions we had about
the datasets, how they were collected etc.

3.4 Conclusions

In this chapter we presented the methodology that we have used to
perform the diversity assessment with AV, IDS and SAT products. We will
reference this methodology in the subsequent chapters where the results of
the diversity assessment with these products are presented in more detail. As
we mentioned, the entire methodology could not be applied to the all the

-48-

products, so we will make it clear in subsequent chapters which part of the
methodology presented here applies in that context.

-49-

(4) DIVERSITY WITH ANTIVIRUS PRODUCTS (AV)

(4) DIVERSITY WITH ANTIVIRUS PRODUCTS (AV) 49

4.1 Introduction .. 50

4.2 Study objectives ... 50

4.3 The experimental design .. 51

4.4 Summary results .. 52

4.5 Comparison of the detection capabilities of the two versions
from each vendor ... 53

4.6 Visualising the dataset over the three dimensions (AV, MW,
Dates) .. 56

4.7 Time lag analysis ... 59

4.8 Difference in signature labels between full capability versions
and VirusTotal versions ... 60

4.9 Discussion, Conclusions and Limitations 62

This chapter compares the full capability AV and signature based AV products.
Most sections in this chapter have been published in:

- Algaith, A., Gashi, I., Sobesto, B., Cukier, M., Haxhijaha, S. & Bajrami, G.
(2016). “Comparing Detection Capabilities of AntiVirus Products: An
Empirical Study with Different Versions of Products from the Same
Vendors”. In: 2016 46th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks Workshops. (pp. 48-53). IEEE. ISBN
978-1-5090-3688-2. Available at: http://openaccess.city.ac.uk/15503/

-50-

4.1 Introduction

In this chapter we report results of an empirical analysis of the detection
capabilities of nine AV products when they were subjected to 3605 malware
samples collected on an experimental network over a period of 31 days in
November-December 2013. We compared the detection capabilities of the
version of the AV products that the vendors make available for free in
VirusTotal versus the full capability products that they make available via their
own website. The analysis has been done using externally observable
properties of the AV products: namely whether they detect a given malware,
and, if they detect it, what label they assign to that malware.

The methodology we described in Chapter 3 could only be applied with
respect to sensitivity assessment, since we only have malicious inputs
(malware samples) that were sent to the AV products.

The rest of the chapter is organised as follows: section 4.2 outlines the
objectives of the study; section 4.3 describes how the data was collected;
section 4.4 presents a summary of the results; section 4.5 presents a
comparison of the detection capabilities of the two versions of AV from each
vendor; section 4.6 visualises the dataset over the three dimensions of
analysis (dates, malware and AV), section 4.7 presents an analysis over time;
section 4.8 presents an analysis of the labels used by AVs for malware; and
finally section 4.9 presents a discussion, conclusions and provisions for further
work.

4.2 Study objectives

The main objective of this experiment is to compare the detection rates
of full capability products versus the version that the vendors make available
for free via VirusTotal, which can help security researchers, who may have
results from experimentations with VirusTotal alone, to compare and improve
their estimates. Analysis of the labels/signature that AV products assign to the
malware that they detect are also presented. The labels may be helpful to
researchers and administrators with diagnosing the type of malware they are
dealing with in their systems, and to check whether knowledge gained from
analysing labels assigned by AVs in full capability versions are transferable to
the labels that they assign to their VirusTotal versions, and vice versa.

-51-

4.3 The experimental design

Dionaea21, a low-interaction honeypot tool that emulates common
Internet services, was deployed by the University of Maryland on a distributed
honeypot architecture to collect the malware analyzed in this study. 1136
public IP addresses have been used to implement Dionaea. These IP
addresses are distributed across six different locations in four different
countries: France, Germany, Morocco and the USA. The goal of the study is
not to compare the malware collected on the different networks or locations.
The goal is to study the detection capabilities for a malware set. The subnets
do not have the same size and their configuration differs from one network to
another. Note that none of the networks have the same security policy.
Besides, these networks are not protected in the same way.

The implemented configuration of Dionaea exposes different Internet
services and protocols. For each of these services and protocols, Dionaea
emulates vulnerabilities used to trap malware attempting to exploit them.
Because of the nature of the vulnerabilities and protocols emulated, we mainly
collect Windows Portable Executable (PE) files22.

Binary files can be captured in different ways and they can have different
formats. Only Microsoft Windows PE files were kept for this study. This format
is easily identifiable and executable on any Windows operating system.

Once a day, a Perl script fetches the malware and the information
relative to their capture (stored in a SQLite database) from the different Linux
virtual machines. This script then submits to VirusTotal the entire malware
repository for analysis. When using the submission API, VirusTotal returns a
scan key for each malware sample submitted. This scan key is composed of
the binary’s SHA1 hash and the submission timestamp. The Perl program
stores the different scan keys returned by the website to later retrieve the
analysis reports.

An additional Perl script is executed once all the malware has been
submitted. This program uses the previously stored scan keys to fetch the
analysis reports for all the malware in the repository.

21 http://dionaea.carnivore.it

22 https://docs.microsoft.com/en-us/windows/desktop/debug/pe-format

-52-

 Everyday a new database entry is created for each malware. This entry
contains the information related to the VirusTotal submission. The AV
product’s names, versions and the malware signature names are also
uploaded in various tables and linked together with the file submission.

9 AV products (AntiVir, AVG, Comodo, F-Secure, Kaspersky, McAfee,
Microsoft, Sophos and Symantec) were deployed at the University for
Business and Technology, Prishtina. The same malware samples collected in
the experimental architecture described above were sent to these AV products
on the same dates as when they were sent to VirusTotal. These AV products
were chosen because:

- they represent some of the most widely deployed AV products on the
market;

- experience of using them in the past in experiments.

4.4 Summary results

We start our analysis by describing some initial statistics of the data. As
previously mentioned, our empirical analysis is with two versions (VirusTotal
version and full capability version) of AV products of nine different vendors
when they were subjected to 3605 malware samples collected in our
experimental infrastructure, over a 31 day period (11-November-2013–11-
December-2013). Hence the inputs to our empirical analysis consist of a
series of triplets {AVi*2, Malwarej, Dayk}: a given malware j is inspected on a
given date k by two versions of a given AVi . For each of these triplets we
observe a detection (stored as 0, or no failure), or no detection (stored as 1,
or failure). For those triplets where we see a detection we also store the labels
which a given AV version assigns to a given malware on a given date.

We send malware to the two AV versions every day from the first date a
malware is observed in the honeypots in our infrastructure until the last day of
the observation period. However, the total number of triplets we observed was
less than 3605 Malware * 31 Days * 9 AVs * 2 Versions. This is because:

- Each day we observed new malware in the infrastructure and we could not
send to VirusTotal a malware to be inspected by an AV product from an
earlier date.

-53-

- Some of the AV products in VirusTotal are not active on certain dates for
certain malware and hence we have no results for them, means they do not
score neither zero nor one.

In this analysis we use all the triplets {AVi*2, Malwarej, Dayk} for which
we had observations from both versions of a given vendor allowing us to do a
like-for-like comparison. Overall we had 958,972 * 2 such triplets, as shown in
Table 4-1.

Table 4-1 Counts of detections and non-detections

Detection/Failure (DF) Full Capability (FC) VirusTotal (VT)

DF=0 - No failure: Detection 944,718 946,375

DF=1 - Failure: No Detection 14,254 12,597

Total 958,972 958,972

4.5 Comparison of the detection capabilities of the two
versions from each vendor

Table 3-2 shows the counts of demands (detected and undetected) for
the full capability and VirusTotal versions of the nine vendor products in our
study. A demand is a pair {Malwarej, Dayk} which links a given malware j and
the date k to a given version of an AV that inspected it. The total number of
demands for the vendors are comparable, apart from F-Secure for which we
did not get responses for several days in VirusTotal.

A surprising first observation is that for seven out of nine of these
vendors, the version of their products that they had available in VirusTotal had
a better detection rate compared with their full capability products (for each
vendor we have highlighted in green which version gives the better detection
rate).

Additionally, we were interested in finding out what were the detection
rates for the AV products when they first had to inspect a newly observed
malware in our honeypots. Table 4-3 shows these results. The ordering is
similar to Table 4-2 with the exception of Comodo which fails to detect more
malware the first time it encounters it in the full capability version compared
with the VirusTotal version.

-54-

Table 4-2 Detections and non-detections for all demands

AV Name DFFC=0 DFFC=1 FRFC DFVT=0 DFVT=1 FRVT

AntiVir 108,141 455 0.004190 108,171 425 0.003914

AVG 108,051 61 0.000564 106,235 1877 0.017362

Comodo 108,423 148 0.001363 108,101 470 0.004329

F-Secure 91,339 1436 0.015478 91,383 1392 0.015004

Kaspersky 106,348 2146 0.019780 106,380 2114 0.019485

McAfee 103,969 4463 0.041159 106,392 2040 0.018814

Microsoft 105,817 2560 0.023621 105,974 2403 0.022173

Sophos 105,826 2612 0.024088 106,635 1803 0.016627

Symantec 106,804 373 0.003480 107,104 73 0.000681

FRFC : Failure Rate of Full Capability Products

FRVT : Failures Rate of Virus Total Products

Table 4-3 Detections and non-detections for the first inspection of a malware by an AV version in our
experiment

AV Name DFFC=0 DFFC=1 DFVT=0 DFVT=1

AntiVir 3590 15 3591 14

AVG 3603 2 3543 62

Comodo 3600 5 3603 2

F-Secure 3549 56 3550 55

Kaspersky 3535 70 3536 69

McAfee 3410 195 3538 67

Microsoft 3526 79 3526 79

Sophos 3459 146 3546 59

Symantec 3535 70 3604 1

DFFC : Detection Failures of Full Capability Products

DFVT : Detection Failures of Virus Total Products

The two preceding tables give a good overview of the detection
capabilities of the versions separately. We then checked in more detail which
demands are being detected in one version but not the other (and vice versa).
Tables 4-4 and 4-5 give these numbers for all demands (Table 4-4) and for
the first inspection of a given malware by a given AV version (Table 4-5). The
total of the demands in the different columns of the two tables are as follows.
First column: detected by both versions; second column: detected by the full

-55-

capability product but not by VirusTotal; third column: detected by VirusTotal
but not by the full capability product; and the fourth column: failed to be
detected by both versions. For three products (AntiVir, McAfee and Sophos)
the number of malware that have been detected by the full capability version
but not detected by VirusTotal version is zero. For these products there seems
to be no gain in detection capability from using the full capability product. For
AVG, we have the opposite observation: the full capability product detected
everything that the signature based detection engine detects in VirusTotal and
more. For the other five vendors, the detection capabilities of the two versions
of the product seem complementary: one version detected some demands
that the other one cannot, and vice versa.

Table 4-4 Detections and non-detections for all demands on both versions

AV Name
DFFC=0 AND

DFVT=0

DFFC=0 AND

DFVT=1

DFFC=1 AND

DFVT=0

DFFC=1 AND

DFVT=1

AntiVir 108,141 0 30 425

AVG 106,235 1,816 0 61

Comodo 108,016 407 85 63

F-Secure 91,337 2 46 1,390

Kaspersky 106,334 14 46 2,100

McAfee 103,969 0 2,423 2,040

Microsoft 105,817 0 157 2,403

Sophos 105,820 6 815 1,797

Symantec 106,760 44 344 29

-56-

Table 4-5 Detections and non-detections for the first inspection of a malware by an AV version in our
experiment – categorised by counts on both versions per vendor

AV Name
DFFC=0 AND

DFVT=0

DFFC=0 AND

DFVT=1

DFFC=1 AND

DFVT=0

DFFC=1 AND

DFVT=1

AntiVir 3,590 0 1 14

AVG 3,543 60 0 2

Comodo 3,600 0 3 2

F-Secure 3,549 0 1 55

Kaspersky 3,535 0 1 69

McAfee 3,410 0 128 67

Microsoft 3,526 0 0 79

Sophos 3,459 0 87 59

Symantec 3,575 0 29 1

4.6 Visualising the dataset over the three dimensions (AV,
MW, Dates)

Next, we investigated more closely the overall distributions of the
detection rates to analyse any patterns or anomalies in the detection
capabilities of the different vendors. Figures 4-1, 4-2 and 4-3 show this
visualisation. Each of the figures represents three dimensional plots, with the
x and y axes representing any two of the three dimensions of interest
(Malware, AV or Date), and the z axis (given by the intensity of the colour)
represents the proportion of demands of the remaining third dimension that
have detection failures. We will use Figure 4-1(a) for explanation: the x-axis
contains the dates (ordered from start to finish) of the collection period; the y-
axis shows the malware (ordered by MD523 – same ordering preserved in
parts (a) and (b) of the figure to make the visual comparison easier). A cell on
the plot shows the proportion of full capability AV products that failed to detect
a given malware on a given date. The colours of the cells represent the
proportion of failures: white colour means none of the AV products failed to
detect a given malware at a given date (i.e. they all detected the malware);
black colour means missing data; the range from light green to dark red
represents the failure rates from greater than 0 to 1 (in this case the failure

23 The MD5 hash of the file is the unique identifier “signature”.

-57-

rate is given as a proportion of AV versions that failed to detect a given
malware at a given date). Figure 4-1(b) shows the same plot for the VirusTotal.
The cells in Figures 4-2 show the proportion of dates in which a given AV
failed to detect a given malware, whereas Figure 4-3 shows the proportion of
malware that failed to be detected by a given AV on a particular date. The
colour encoding is the same. More analysis for Figures (4-1 and 4-2) are
provided in Appendix A.

Main observations from these plots:

- Figure 4-1: it is visually clear that the full capability versions have a higher
failure rate (due to the greater prevalence of non-white cells in Figure 4-1
(a)). A number of malware have a high failure rate throughout the period for
both setups (as is clear from the red lines that run across the data collection
period).

- Figure 4-2: There is some visible diversity in the “difficulty” of the malware
across different vendors: we have red lines that run across several AV
products (maximum six AVs for full capability products; maximum eight AVs
for VirusTotal versions). The detection rates that we observed in Table 4-3
are confirmed in the figure: Comodo and AVG have a lower number of
coloured cells in part (a) of the figure compared with (b); vice versa for the
others.

- Figure 4-3: Only the VirusTotal version of Symantec has a perfect
detection rate of all malware on a few dates of the experiment (as seen
from the white gaps in Figure 4-3(b) for Symantec). The rest of the versions
all fail on at least one malware. None of the full capability versions of AVs
had a perfect detection rate on all the malware on any dates of the
collection period. Comodo has a few days in the experimental period with
a high failure rate in VirusTotal (as can be seen from the red areas in the
top part of Figure 4-2(b) for Comodo). It is not clear why this is as VirusTotal
is a black box for us. We can speculate that during this period Comodo was
not updating its signature database in VirusTotal (or the update led to it
failing to detect malware that it had detected in the past).

-58-

FIGURE 4-1(a)

FIGURE 4-1(b)
FIGURE 4-1 Date (x-axis), Malware (y-axis) and the proportion of AVs (given by the intensity of the colour in the plot) that fail to detect a malware on a
given date. Figure 4-1(a) full capability versions; Figure 4-1(b) signature based detection engines as found in VirusTotal.

FIGURE 4-2 (a)

FIGURE 4-2 (b)

FIGURE 4-2 AV (x-axis), Malware (y-axis) and the proportion of days (given by the intensity of the colour in the plot) that a given AV failed to detect a
given Malware. Figure 4-2(a) full capability versions; Figure 4-2(b) signature based detection engine as found in VirusTotal.

FIGURE 4-3 (a)

FIGURE 4-3(b)

FIGURE 4-3 AV (x-axis), Dates (y-axis) and the proportion of Malware (given by the intensity of the colour in the plot) that failed to be detected by a
given AV on a given date. Figure 4-3(a) full capability versions; Figure 4-3 (b) signature based detection engines as found in VirusTotal.

-59-

4.7 Time lag analysis

Apart from looking at the detection capabilities of the two versions of the
AV vendors in our study, we also looked at which version first detected a
malware and what is the time-lag between detections of malware by the two
versions. The results are given in Table 4-6. The first column (Difference in
Days) represents the time lag in days: a 0 value means that both versions
detected a malware on the same day; a positive value gives the difference in
days between the first date that a full capability version detected a malware
and the first time it was detected by the VirusTotal version (e.g. a value of 2
means the VirusTotal version detected the malware two days ahead of full
capability); The subsequent columns to the column labelled as “Difference in
Days” then give the counts of malware for each vendor. We should be clear
that this is the malware for which both AV versions of a given vendor
eventually did detect the malware: what we are measuring here is the
difference in the time it took each vendor to first detect it in our collection
period. It is worth to mention that the full capability products in this experiment
are turned on, therefore the AVs are always using the latest updates when
inspecting a malware. Most of the malware is either detected on the same
date or VirusTotal detects them a day earlier: this might be because of the
slight delay with which we send the malware to the two versions (the malware
are sent to the VirusTotal versions on average two hours earlier than it is sent
to the full capability versions, which should give a slight advantage to the full
capability versions as they would work with a signature ruleset which is
“fresher” by two hours). Row A shows the count of undetected malware from
both versions, row B shows the count of undetected malware by full capability
but detected by VirusTotal, and row C shows the count of the detected
malware by full capability but not detected by VirusTotal. As we can see, only
AVG of VirusTotal could not detect 60 malware while the full capability version
was able to detect them.

-60-

Table 4-6 Time lag between detections by the two versions of an AV vendor

4.8 Difference in signature labels between full capability
versions and VirusTotal versions

As we have mentioned before, when we submit a malware sample to the
two versions of an AV per vendor, we can only observe whether that version
i) detects or fails to detect a given malware on a given date; ii) if it does detect
it, what is the label that the AV assigns to the malware. So far the results we
presented concern analysis regarding part i). In the next section we analyse
the labels that an AV version assigns to a given malware. The labels may be
important to provide a system administrator with extra information on what
type of malware they are dealing with etc., which may help them with
diagnosis.

The first analysis we did was to check whether the labels assigned by
the two versions of a given AV product were exactly the same. The first two
columns of Table 4-7 show these results. Next, we analysed in more detail the
labels that did not match, and checked whether there was a level of similarity
between them. We observed two main categories: in some cases the full
capability version just added further context to a label (see examples in Table

A
nt

iV
ir

A
VG

C
om

od
o

F-
Se

cu
re

K
as

pe
rs

ky

M
cA

fe
e

M
ic

ro
so

ft

So
ph

os

Sy
m

an
te

c

 A 14 2 2 54 69 67 79 59 1
 B 1 0 3 0 1 17 0 16 0
 C 0 60 0 0 0 0 0 0 0

D
iff

er
en

ce
 in

 D
ay

s

0 3590 3543 3600 3550 3535 3410 3526 3459 3575
 1 76 27
 2 1 9 1
 3 36
 4 35
 5 1
 11 2
 14 1
 17 2
 22 11
 23 10

Ø A : Malware have not been detected by both versions
Ø B : Malware have been detected by VT version but not detected by FC
Ø C : Malware have been detected by FC version but not detected by VT
Ø Difference in days: number of days that VT detected the same malware before the FC version from the same

vendor.

-61-

4-8) or the labels were completely different. The main observations from this
analysis are:

- Microsoft is the only vendor which provides the same labels when detecting
malware on both the full capability and VirusTotal versions; FSecure also
has the same labels for all but one malware (which it identified differently
on 23 days of our observation period);

- Kaspersky uses a different way of labelling malware in its full capability
versions compared with the VirusTotal version;

- Four AV vendors (AntiVir, AVG, Comodo and Sophos) use mainly the same
labels but add some extra information for the full capability version.

Table 4-7 Signature label counter

AV Name
Matching

Signature Labels

Non Matching

Signature Labels

Non Matching

Because of Extra Info

Added to the Label

Very different

AntiVir 0 108,141 108,139 2

AVG 0 106,235 105,384 851

Comodo 0 108,016 106,349 1,667

F-Secure 91,314 23 0 23

Kaspersky 0 106,334 0 106,334

McAfee 60,394 43,575 31 43,544

Microsoft 105,817 0 0 0

Sophos 0 105,820 105,635 185

Symantec 106,323 437 16 421

Table 4-8 Examples for signature label categorising

Signature Label Category Vendor Name Full Version Signature Label Free Version Signature Label

Matching Signature Labels F-Secure Worm:W32/Downadup.gen!A Worm:W32/Downadup.gen!A

N
on

 M
at

ch
in

g
Si

gn
at

ur
e

La
be

ls

Non Matching Because Of

Extra Info Added To The Label
Comodo

NetWorm.Win32.Kido.A@132

026498

NetWorm.Win32.Kido.A

Totally Different McAfee W32/Conficker.worm.gen.a Artemis!01273BEC3497

-62-

We also analysed the classifications that some of the AV products used
for these different types of malware. We concentrated on the full capability
versions. We compared the classifications used by different AV vendors. We
found that the vendors seem to be categorising and classifying the malware
differently from each other. Table 4-9 shows an example of this for two of the
products (AntiVir and AVG). We can see from this table that AntiVir classifies
40,822 demands as Trojan horses, whereas AVG classifies 10,924 as such.
Full results for all AVs are provided in Appendix A (section A-2)24. The lack of
an interoperable standard for labelling the malware makes comparisons
between vendors very difficult. This adds further confusion on diagnosis and
recovery processes that a system administrator needs to perform when using
diverse AVs (especially if they are used to the labelling and classification of
malware by a different vendor than the one they need to administer presently).

Table 4-9 Malware type classification

4.9 Discussion, Conclusions and Limitations

In this section we summarise the main observations we have made from
our experiment and discuss the possible implications they may have on
product selection and administration.

Observation: Out of nine vendors in our study, only two of them had a
full capability version which had a detection rate that was better than their
VirusTotal counterpart. Implication: This suggests that for most of these
products the free version they have in VirusTotal is perfectly suitable for

24 The exception is Kaspersky. In our study the full capability version of Kaspersky labelled each

detected malware by its MD5 value only, and gave no other label. So for Kaspersky we show the
VirusTotal labels.

AntiVir AVG

Malware type Count Malware type Count

Backdoor 377 Trojan horse / Backdoor 10,924

Dropper 184 N/A 0

Root kit 30 N/A 0

Trojan horse 40,822 Trojan horse 1,208

Virus 6,541 Virus 5,649

Worm 60,187 “Virus identified –Worm” 88,464

-63-

malware detection and may even perform better compared with a full
capability one.

Observation: The full capability versions of some of these AV vendors
detected a malware in some cases more than three weeks after their
VirusTotal version had detected the same malware. Implication: This is a
strange and counterintuitive observation. One would expect that the
customers who have downloaded a paid version of a product would be served
the signatures first. One possible explanation for this observation might be
that the vendors are worried about false positives and want to first roll out a
signature in VirusTotal. Only after they gain enough confidence that a file is
indeed malicious do they roll it out to the full capability versions.

Observation: We sent all the malware which at least one of the versions
in our data collection had failed to detect in our observation period to the
malwr.com site which reported that some of these malware are not exhibiting
malicious behaviour when run on a sandboxed environment. Implication: All
the malware collected in our study have been uploaded to our honeypots. By
definition, any interaction with a honeypot implies malicious behaviour, as
honeypots do not have any legitimate production value. Some of the files may
be “malformed” during the uploading process by the attacker – in those
instances it is not clear whether an AV product should detect the malware or
not (most AV products do detect them as malicious as they recognise at least
a partially malicious payload). Other files are encrypted and the dynamic
analysis may not be able to execute them. There are some advanced malware
that have the ability to be aware that they are in a test of a sandbox
environment, therefore they remain benign and do not exhibit any malicious
behaviour when under observation25.

Observation: The signature based versions and full capability versions
of the same AV vendors seem to assign different labels to the malware for
Kaspersky and McAfee. For the others is seems to be mainly the same, with
some extra information added in the label of the full capability version.
Implication: This implies that for most of these products (with the exception
of Kaspersky and McAfee), it is the signature based detection engine that is
mainly responsible for labelling the malware, with some extra information
provided from the other components of the AV system which are found on a

25 A further discussion on the drawbacks of sandboxing for detecting advanced threats is here:

https://www.darkreading.com/risk/the-pros-and-cons-of-application-sandboxing/d/d-id/1138452

-64-

full capability version. Hence the free VirusTotal versions of these products
are useful for system administrators to get information on the malware, and
for most they are not likely to differ from the full capability versions.

Observation: There are differences between AV vendors in how they
classify malware. For example, what may be a Trojan horse for one vendor,
could be a worm for another. Implication: The lack of interoperability and
consistency between vendors for labelling the malware adds further confusion
on diagnosis and recovery processes that system administrators need to
perform. The administrators may have experience with the labelling and
classification of malware with a different vendor and that experience is not
directly transferable to another vendor’s products.

 The main conclusions we can draw from our analysis are:

- For most vendors in our study (seven out of nine) the VirusTotal version
has a better detection rate than their full capability version. This would imply
that investment in the full capability version of an AV product may not be
worthwhile.

- Some of the full capability versions of the AV vendors in our study only
detected some malware more than three weeks after the VirusTotal version
of the same vendor has detected the same malware. This seems to imply
that vendors for some malware are testing their detection signatures in their
VirusTotal versions first before propagating them to the full capability
versions, which may also explain the higher detection rates of the
VirusTotal versions of some of these vendors.

- There are differences between the vendors in the way in which they classify
malware. This lack of consistency between the vendor malware
classification schemes makes it more difficult for system administrators to
transfer their malware analysis expertise from one vendor’s system to
another.

- Finally, we have tried to clearly position our work compared with related
work. To the best of our knowledge this is the first study that has
specifically compared the VirusTotal versions of AVs with full capability
versions.

 The main limitations of our conclusions, and provisions for further work:

- The malware samples are Windows portable executable files. More files
types would allow for more general conclusions.

-65-

- All our analysis so far has been with malware samples, which means we
cannot get any measurements on false positive rates.

- We have looked at nine vendors over a one-month period. A longer data
collection time with more vendors may allow for stronger conclusions.

- The malware are collected on honeypots that are distributed in three
continents and were uploaded to our honeypots in the period that we
stated. For the assessment of the diversity that exists in the AV products,
and the different versions of the products from the same vendor, one
month of data is reasonably representative, We also note that the results
we observed are consistent with previous studies that have assessed
diversity with AV products (Bishop et al., 2011; Gashi et al., 2009), even
though the primary focus of our research was in assessing the diversity
that exists between different versions of the same product.

- The dataset is collected via the Dionaea project, which biases the dataset
towards self-propagating malware. These malware are not necessarily
representative of the overall malware population, which mainly propagates
"passively" via drive-by exploits or social engineering attacks.

-66-

(5) AVAMAT: AN ANTIVIRUS AND MALWARE ANALYSIS
TOOL

(5) AVAMAT: AN ANTIVIRUS AND MALWARE ANALYSIS TOOL 66

5.1 Introduction .. 67

5.2 Study objectives ... 68

5.3 AVAMAT architecture .. 68

5.4 Some results with AVAMAT ... 69

5.5 Lessons learnt .. 71

5.6 Discussion, Conclusions and Further Work 73

This chapter presents the AVAMAT tool that can be used to analyse the malware

detection capabilities of existing AV (AV) products on different operating systems.

Most sections in this chapter have been published in:

- Pasha Shahegh, Tommy Dietz, Michel Cukier, Areej Algaith, Attila Brozik, Ilir
Gashi: “AVAMAT: AntiVirus and Malware Analysis Tool”. NCA 2017: 365-368

-67-

5.1 Introduction

While working with the VirusTotal and exploring the MetaDefender
platforms, we noted several limitations of these platforms (cf. discussion in
section 2.4). To overcome these limitations a tool called AV and Malware
Analysis Tool (AVAMAT) was built: a multi-purpose tool that can be used for
analysing different malware and AV product capabilities running on different
operating systems. Currently AVAMAT supports eight full capability AV
products (i.e. the full versions of AV products, rather than just signature based
detection engines), namely: AVG, Comodo, F-Secure, Kaspersky, FProt,
Trend, Avira and Emisoft. These AV products are run, where available, on
three versions of the Microsoft Windows operating systems: XP26, 7 and 8.
The candidate contributed in all the discussion regarding the inception,
requirements and design of the tool. The candidate also analysed the data
from test reports shared by the developers at the University of Maryland, and
provided detailed bug reports, which helped with the tool debugging. The
candidate also contributed towards the writing of the paper that resulted from
this work, specifically the tool design and testing sections, as well as providing
comments on several versions during the paper writing process. The
implementation of the AVAMAT tool was done at the University of Maryland.
It was difficult to delineate the precise contribution of the candidate compared
to those of the other collaborators on this part of the work. For this reason, we
will only summarise the AVAMAT tool here, as it relates to the work that the
candidate performed and leave the details of the tool itself out of the thesis –
the interested reader can find out the details in the published paper.

The rest of the chapter is organised as follows: section 5.2 outlines the
objectives of the study; section 5.3 describes the AVAMAT architecture;
section 5.4 shows some results with AVAMAT; section 5.5 describes lessons
learnt with AVAMAT; and finally section 5.6 presents a discussion,
conclusions and provisions for further work.

26 Avira and Emisoft AVs no longer support XP, so we could not run those products on XP.

-68-

5.2 Study objectives

AVAMAT was built to enable a researcher to:

- analyse the diversity of detection capabilities between different AV software
on different operating systems. Being able to analyse the same malware
on machines with the same AV yet different operating system allows us to
investigate the operating system’s effect on AV and malware behaviour.
And analysing the detection capabilities of different AV products allows us
to compare the benefits of combining multiple diverse AV products in a
diverse defence in depth setup.

- analyse when an AV product detects a malware it encounters. We classify
the detection in four stages depending on when a malware is detected: on
entry; after a short wait; on a full scan; or after malware execution. This
allows us to, for example, better classify whether the malware will be
detected and prevented from running on the end-host machine, or whether
the malware would run first before being executed, hence potentially
requiring a clean-up and full scan of the machine. Again, we will analyse
the diversity that exists in these classifications between different AV
products and different OSs.

In the rest of the chapter we describe AVAMAT in more detail.

5.3 AVAMAT architecture

The AVAMAT architecture is built on top of open-source software and
uses custom-developed scripts to allow us to test whether an AV a, running
on a given OS o, detects a given malware m on a given date d, and, if it detects
it, when does it do so. We will use the shorthand VM(a,o) to refer to a given
virtual machine that runs an AV a on an OS o. There are four main
components of AVAMAT:

Skeleton: interfaces with custom-developed scripts on each VM(a,o).
The skeleton chooses the specific script on VM(a,o). Once selected, the
skeleton uses the functions in the custom-developed script to perform an
analysis on malware m;

Updaters: at the start of each experimental campaign, updates the OS
and AV with the latest updates and patches available for each VM(a,o);

-69-

Snapshot Manager: at the start of each experimental campaign, takes
a snapshot of each virtual machine VM(a,o); after the virtual machine is
finished inspecting a given malware m it reverts back to the last snapshot
(ensuring that all malware in a given experimental campaign are executed by
the same AV a and OS o);

Experiment Scheduler: the administrator of the experiment can specify
how many times an experimental campaign should be repeated. This may be
important to allow, for example, assessment of the capability of an AV product
to continue detecting a malware or for testing how long it takes for an AV
product to detect a malware it has not detected in the past. For each repetition
of the experiment:

- We run the Updaters once for each VM(a,o);

- We run the Snapshot manager to take a snapshot of each VM (a,o) once
at the start of the experiment (i.e. before sending any malware to it). We
then revert back to this clean snapshot of a given VM(a,o) after each
malware m is inspected by that VM(a,o);

- We run the Skeleton once after each malware m is sent to a VM(a,o).

- Figure 5-1 shows the AV products and OSs currently supported in AVAMAT
(so each coloured box represents one VM(a,o)).

Figure 5-1 The AV products and OSs currently supported in AVAMAT. Each box is one virtual machine (we refer to

a box as VM(a,o)). Avira and Emisoft no longer support Windows XP versions, hence they are missing from the
figure above ;Windows XP on left-side of box.

5.4 Some results with AVAMAT

AVAMAT is currently a prototype. In what follows we show some
examples of analysis using results obtained from testing AVAMAT. The

-70-

malware we used during testing have been collected from research honeypots
from the University of Maryland.

Figure 5-2 shows a 3D plot of the detection capabilities of Comodo AV,
running on Windows 7 OS, when subjected to 5,855 malware (y-axis) over a
seven day period (x-axis). The different colours on the plot show the stages
of detection (light green means detected on entry (the best possibility); dark
green for detecting after 10 seconds; dark blue for detecting on scan; orange
for detecting on execution), failure to detect that malware at all (red), or
missing data (black). Since this data was collected during the testing of
AVAMAT, it was useful for us to debug when malware were not being sent to
the tool (as is evident in day 5). But for research purposes it is useful to
analyse when the different malware are being detected by the AV product,
and what risk the machine is exposed to if the malware is not detected
immediately on entry.

Figure 5-3 is a 3D plot showing the rate of malware detection (z-axis) by
the different VM(a,o) (y-axis) 27 per stage of detection (x-axis; non-detection
is step 1111). This graph illustrates the type of analysis we can do with results
from AVAMAT to show the diversity that exists in malware detection, and
stages of malware detection, between the different AV products and different
OSs. For example the rate of malware detection by diverse 20 systems in the
first step (x-axis 0: on entry) equals 0.8 but for the last step (x-axis 1111: non-
detection) almost equals zero.

27 Note that this analysis does not have all 22 VM(a,o) in the y-axis, as not all of them were

operational when this part of testing was performed.

-71-

Figure 5-2 3D plot of the detection capabilities of Comodo, running on Windows 7 OS, when
subjected to 5855 malware (y-axis) over a 7 day period (x-axis)

Figure 5-3 3D plot showing the rate of malware detection (z-axis) by the different VM(a,o) (y-axis) per
stage of detection (x-axis; non-detection is step 1111)

5.5 Lessons learnt

AVAMAT is being built to overcome the limitations of existing malware
testing platforms, such as VirusTotal and Metadefender, that do use multiple
AV products, but only their command line interfaces that have limited
functionality. These platforms also do not provide details on when an AV
product actually detected the malware (on entry, on scan, once malware
executes, etc.). AVAMAT enables researchers to analyse different malware
and AV product capabilities running on different OSs. Currently AVAMAT

-72-

supports eight full capability AV products (i.e. the full versions of AV products,
rather than just signature based detection engines) that are run, where
available, on three versions of the Microsoft Windows OS: XP, 7 and 8. We
have chosen the Windows platform because the majority of malware samples
collected from our previous experiments with honeypots were Windows
executable files. Moreover, based on the literature surveyed, we found that
Windows is the most “target-rich” environment for malware samples. We have
used XP, 7 and 8 as these were the most popular Windows versions when we
started work on AVAMAT. However, support for Windows 10 is also planned
in the future versions of AVAMAT.

AVAMAT allows running experimental campaigns to help answer
research questions such as the following (the list is not exhaustive):

- What are the differences in the detection capabilities of different AV
products?

- Are there differences in detection capabilities depending on which OS
platform the AV product runs?

- Are there differences by type of malware the AV products inspect?

- Do the AV products continue to detect a malware over time, or are there
cases of regressions in detection behaviour?

- How do we combine multiple AV products to improve detection capabilities
against malware?

- What are the false positive rates of AV products when subjected to benign
files? Are there differences in these rates: by OS platform? By type of file?
Etc.

Once the product is ready for wider release, there are two options of
making the tool publicly available for other researchers to use:

- Release the code so that users can build their own version of AVAMAT,
with their own AV products and licenses in their own environments;

- Provide an API through which users can submit malware samples for
analysis to AVAMAT (similar to the way in which VirusTotal and
Metadefender can be used). This is the preference of the authors, as is to
make the tool free for use. But there are inevitable infrastructure costs for
deploying a tool such as this, so the exact deployment and use model for
AVAMAT remains to be decided.

-73-

5.6 Discussion, Conclusions and Further Work

We presented AVAMAT: AV and Malware Analysis Tool - a tool for
analyzing the malware detection capabilities of AV (AV) products running on
different operating system (OS) platforms. Even though similar tools are
available, such as VirusTotal and MetaDefender, they have several limitations
which motivated us to create of our own tool. With AVAMAT analyses of
stages of inspection than an AV on a given OS detects a malware is possible.
This allows a researcher to run experimental campaigns to answer various
research questions, ranging from the detection capabilities of AVs on OSs, to
optimal ways in which AVs could be combined to improve malware detection
capabilities.

Current work and future enhancement for AVAMAT include:

- Building support for more AV products;

- Building support for more operating systems;

- Improving the code so that it is more modular, enabling easier
maintenance;

- Producing a user manual and demonstration for use of the tool;

- Building a front-end extension (or a separate tool that connects to
AVAMAT) for analysing data obtained from AVAMAT.

-74-

(6) DIVERSITY WITH INTRUSION DETECTION SYSTEMS
(IDSs)

(6) DIVERSITY WITH INTRUSION DETECTION SYSTEMS (IDSs) 74

6.1 Introduction .. 75

6.2 Study objectives ... 76

6.3 Dataset, IDSs, and web applications ... 76

6.3.1 Intrusion Detection Systems .. 77

6.3.2 Web applications ... 79

6.4 Analysis of single version systems .. 80

6.5 Diversity analysis for two version systems 81

6.5.1 Overall summary and analysis by type of IDS
combination ... 81

6.5.2 Analysis by HTTP method ... 90

6.5.3 Differences over a single IDS setup 91

6.5.4 Averages for different two-version diverse setups 96

6.6 Diversity analysis for configurations with more than two
versions .. 97

6.6.1 Averages for different diverse setups 99

6.6.2 Averages for functionally-redundant and diverse setups ... 101

6.7 Discussion, Conclusions and Limitations 104

This chapter presents results of analysing the performance of diverse Intrusion

Detection Systems (IDSs) configurations. Most sections in this chapter have been

published in:

Areej Algaith, Ivano Alessandro Elia, Ilir Gashi, Marco Vieira: “Diversity with
intrusion detection systems: An empirical study”. NCA 2017: pp: 19-23

-75-

6.1 Introduction

In this chapter we provide empirical results on the assessment of
diversity with Intrusion Detection Systems (IDSs). We utilise a dataset
published by (Elia et al., 2010), who have helpfully made their data publicly
available28. An attack injection methodology was used, consisting of injecting
realistic vulnerabilities in three web applications (MyReferences, phpBB and
TikiWiki) and sending attacks that attempt to exploit those vulnerabilities. In
order to protect these web applications, four diverse IDS products were
deployed (Apache Scalp, Anomalous Character Distribution (ACD) monitor,
GreenSQL and Snort). Some of these IDSs were configured in different ways
(depending, for example, on the rulesets they used and the threshold for
identifying malicious requests), which produced nine different IDS
configurations in total. While the authors in Elia et al. (2010) performed various
analyses to assess the performance of the IDSs individually, they did not
explore whether the different IDS products could be combined to improve the
performance. This is the focus of our research and in this chapter we report
our analysis and main conclusions.

We apply in full the methodology we described in Chapter 3. Namely, we
calculate the FP, FN, TP, TN counts for each diverse configuration; we
calculate the measures of interest (specificity, sensitivity and accuracy) or
each diverse configuration, overall and by type of attack; we generate the
ROC plots showing all the diverse configurations and the individual defence
systems, overall, by type of configuration and by type of malicious input; we
calculate the differences in the measures of interest between diverse
configurations and individual systems to measure the possible improvements
or deteriorations from switching to a diverse system.

The rest of the Chapter is organised as follows: section 6.2 outlines the
objectives of the study; section 6.3 describes the dataset; section 6.4 provides
the results for single version systems; section 6.5 presents the results from
analysing two-version diverse systems; section 6.6 presents results from
analysing diverse systems with more than two versions; and finally section 6.7
presents a discussion, conclusions and provisions for further work.

28 Full dataset is available from: https://goo.gl/MDOhsw

-76-

6.2 Study objectives

Compared with the previous chapters, where we only had malicious
inputs, in this chapter we present results from assessing diversity when both
malicious and benign inputs have to be considered by security protection
tools. We first did an analysis of the simplest possible diverse configuration:
i.e. a two-version system, before we expanded it to consider configurations
with more systems (up to N). With two version systems, there are two possible
configurations of the voter/adjudicator:

- One-out-of-two (1oo2): the system flags an input as malicious (i.e. raises
an alarm) as long as either one of the two IDSs flags that input as malicious.

- Two-out-of-two (2oo2): the system flags an input as malicious (i.e. raises
an alarm) only if both of the IDSs flag that input as malicious.

- Since we have nine different IDS product configurations, we can construct
36 distinct two-version IDS combinations (9C2 = 36). In practice, each
system is being asked whether a given input29 is malicious or not. Hence,
we used the sensitivity, specificity and accuracy measures as described in
Chapter 3.

We analysed these measures for each of the 36 combinations of IDSs
in the context of each of the three web applications (MyReferences, phpBB
and TikiWiki). Additionally, we classified and analysed the results by:

- Type of IDS, i.e. whether an IDS is primarily configured to monitor for
attacks at the Application, Database or Network levels;

- Type of attacks, distinguishing between HTML POST and HTML GET
attacks.

We then extended this analysis to consider diversity with a larger value
of N(triplets, quadruples etc.)

6.3 Dataset, IDSs, and web applications

The data used for the diversity analysis presented here is the result of
the experimental campaign conducted by the authors of Elia et al. (2010).

29 The 4 IDSs (and the 9 configurations that ensue from their use) are targeting different types of web-

traffic, from 3 web applications. In reality the IDS is subjected to different type of attacks not only
SQLi, though SQLi attacks are some of the most prominent, as discussed in Chapter 2.

-77-

Their campaign aimed at testing a set of IDSs in terms of their capability of
detecting SQL Injection attacks. In order to produce realistic SQL Injection
attacks to test the IDSs a Vulnerability and Attack Injection technique was
used. This technique allowed the authors of Elia et al. (2010) to introduce
realistic vulnerabilities in the code of a web application by code mutation
(Vulnerability injection) and afterwards to automatically exploit those
vulnerabilities by performing SQL injection attacks (Attack Injection). The
injected vulnerabilities were considered realistic because they were based on
an extensive field study on real web application vulnerabilities (Fonseca et al.,
2014).

The vulnerability and attack injection tool30 used in Elia et al. (2010) runs
on an Ubuntu virtual machine, configured to inject vulnerabilities in a set of
three web applications. The IDSs under test were deployed in the same virtual
machine, and exposed to attacks generated by the attack injector and to non-
malicious interactions carried out through a web crawler. In the remainder of
this section, we briefly introduce the IDSs and web applications used in Elia
et al. (2010).

6.3.1 Intrusion Detection Systems
The experimental setup in Elia et al. (2010) includes four different IDSs,

some of which were tested using different configurations, leading to a total of
nine distinct deployments. The IDSs tested in these experiments are
composed of both well-known security tools and implementation of detection
approaches proposed in research papers. The tested IDSs are also diverse in
terms of both detection approach (anomaly-based, signature-based) and
monitored layer (application level, database level, network level). Table 6-1
outlines the details.

Table 6-1 Classification of the Types of IDSs in our Study

Tool
Architectural Level

monitored
Detection Approach Data Source

ACD Application Anomaly Based Apache Log

Apache Scalp Application Signature Based Apache Log

Snort Network Signature Based Network Traffic

GreenSQL Database Signature Based SQL Proxy Traffic

30 https://github.com/JoseCarlosFonseca/Vulnerability-and-Attack-Injector

-78-

The Anomalous Character Distribution (ACD) monitor is an anomaly-
based tool that works at the application level. It analyses the Apache access
log using the detection approach described in Kruegel and Vigna (2003),
which is based on the character distribution in the URLs of the HTTP requests
sent to the web application. The user must define the deviation threshold that
separates the requests identified as malicious from those considered benign.
In Elia et al. (2010) the configurations of threshold values were: 1, 3, 10, 30,
and 100. In the rest of the analysis here we refer to these IDSs configurations
as ACD1, ACD3, ACD10, ACD30 and ACD100, and in the graphs we assign
them labels 1A-5A respectively (“A” being a shorthand for “Application” type
IDS).

GreenSQL (version 1.2.2) is an IDS that focuses on the detection of
attacks targeting a database. The experiments were performed on the open
source version of the tool31 (a commercial version of the tool). It was deployed
as a proxy standing between the front-end and back-end of the web
applications in order to monitor the SQL communications. It evaluates each
SQL query by associating a risk-scoring matrix defining the probability of it
being malicious. In our graphs we assigned this IDS the label 6D (“D” standing
for “Database” IDS).

Apache Scalp (version 0.4)32 is another Apache access log analyser.
It uses a signature-based approach that compares the requested URLs in the
access log against a set of attack signatures for web application attacks like
SQL Injection, Cross Site Scripting, Cross Site Request Forgery and Path
Traversal, etc. In Elia et al. (2010) the authors considered only the signatures
for SQL injection attacks. In the rest of the analysis in this chapter we refer to
this IDSs as SCALP sqlia, and in the graphs we assigned it the label 7A.

Snort (version 2.8.4.1)33 is a signature based network level IDS. In
practice, Snort is a network sniffer and thus has access to both the HTTP and
SQL traffic. The detection approach is based on a very large set of attack
signatures (the Snort Rules) maintained by the community. These signatures
are then evaluated against the network traffic collected by the sniffer. The
users are allowed to customise their set of Snort rules. In Elia et al. (2010) the

31 https://github.com/larskanis/greensql-fw

32 https://code.google.com/archive/p/apache-scalp/

33 https://www.snort.org/

-79-

analysis was performed using two configurations: using only the official
community rule set; and using a set of experimental Customised Rules (later
identified with CR) provided in Mookhey and Burghate (2004). In our graphs
we assigned these two configurations the labels 8N and 9N (“N” standing for
“Network” IDS).

6.3.2 Web applications
The experimental setup in Elia et al. (2010) includes three web

applications: MyReferences, TikiWiki, and phpBB, which allowed the authors
to assess IDS performance with different types of applications (MyReferences
is small; TikiWiki and phpBB are large open source projects).

- MyReferences is a publications and bibliographic references management
web application. The application was developed by the authors of Elia et
al. (2010). It provides functionality for managing (editing, querying and
displaying) documents and publications metadata (title, authors, year of
publication, etc.).

- TikiWiki34 is a groupware/CMS (Content Management System) platform
that allows collaborative contribution over the website contents in a wiki
style. It is one the most widely used applications of this type.

- phpBB35 is a one of the most widely used open-source forum solutions.

Table 6-2 shows the total number of benign demands (labelled below as
Crawling actions) and successful attacks36 (i.e. attacks that exploited a
vulnerability) for each application, as reported in Elia et al. (2010). Each of the
nine IDS37 configurations got to inspect the same traffic for each application.
These data form the basis of our analysis.

34 https://tiki.org

35 https://www.phpbb.com/

36 The authors state that they had some attacks that, when sent to the applications, were “unsuccessful”,
i.e. they did not lead to an exploit of the vulnerability, and others that were “Successful”. In this
study we only consider the successful attacks , since we were uncertain on how to classify the
behaviour of an IDS if it does not raise an alarm for an attack that is not successful.

37 Including the functionally diverse IDSs

-80-

Table 6-2 The counts of crawling actions traffic and successful attacks traffic per web application

Web Application IDS
Crawling

Actions

Successful

Attack

MyReferences 9 45 136

phpBB 9 97 245

TikiWiki 9 80 76

6.4 Analysis of single version systems

Table 6-3 presents the nine configurations of the IDSs and the labels we
will use to refer to them in the graphs in the rest of this chapter. Next to them
we also note the specificity and sensitivity for each of the three applications.
The authors of Elia et al. (2010) already presented these classifications, and
the results for each IDS individually.

Table 6-3 The nine distinct IDS deployments

La
be

l

ID
S

N
am

e MyReferences phpBB TikiWiki

Se
ns

iti
vi

ty

Sp
ec

ifi
ci

ty

Se
ns

iti
vi

ty

Sp
ec

ifi
ci

ty

Se
ns

iti
vi

ty

Sp
ec

ifi
ci

ty

1A ACD1 0.89 0.76 0.93 0.37 0.49 0.48

2A ACD3 0.61 0.84 0.22 0.68 0.24 0.75

3A ACD10 0.35 1 0.07 0.99 0.20 0.99

4A ACD30 0.27 1 0.04 1 0.20 1

5A ACD100 0.10 1 0.02 1 0.00 1

6D GREENSQL 0.12 1 0.63 1 1 1

7A SCALP sqlia 0.25 0.91 0 1 0.21 1

8N SNORT 2.8 0 1 0 1 0 1

9N
SNORT 2.8 plus

CR
0.59 1 1 1 0.5000 1

In our work we extend the analysis from the viewpoint of diversity. We
analysed all possible pairs, triplets etc., that can be constructed with the 9
IDS38.

38 Including the functionally diverse see examples in Table 6-4 to 6-6

-81-

6.5 Diversity analysis for two version systems

In this section we present the results of our analysis:

- Summary results and analysis for each application: FP, TN, FN, TP rates,
ROC plots, and differences in the sensitivity, specificity and accuracy for
each application, categorised by type of IDS combination;

- Analysis by type of attack: differences in sensitivity by type of attack (i.e.
GET and POST attacks) for each application;

- Differences in sensitivity, specificity and accuracy between diverse and
single IDS systems for each application;

- Averages: averages for sensitivity, specificity and accuracy for individual
systems and the different types of IDS configurations, for each application.

6.5.1 Overall summary and analysis by type of IDS combination
Table 6-4 shows the full results for the MyReferences application. The

table should be read as follows: the first column shows the label we assign to
a particular combination (the label is meant to be short but meaningful: so 1-
2 AA means a combination of IDS 1A and IDS 2A from Table 6-4 etc.); the
second and third columns show the two IDS systems in that combination; and
the subsequent columns show the FP, TN, FN and TN values for: the first
system in the pair; the second system in the pair; the 1oo2 system and the
2oo2 system configurations. In the table we have highlighted cases where the
diverse combination does better (green cells) than the best single system in
that pair, or worse (red cells) than the worst single system in that pair. In cases
where there is no improvement compared with the best single version (or no
deterioration compared with the worst single system) we do not highlight any
cells in a row. We also show the specificity and sensitivity values for each pair
for the 1oo2 and 2oo2 cases.
The table is split into two sections:
- The first 16 rows show all the combinations that can be built when the two

individual systems in the pair are of the same type (so Application-only (AA)
– first 15 rows; or Network-only (NN) – the 16th row). We only have one DB
IDS so we cannot build any DB-only pair). We labelled these as
“Functionally redundant” pairs.

- The remaining 20 rows are for the pairs of IDSs that are of different types
(e.g. Application and Network (AN) – 12 pairs; Application and Database

-82-

(AD) – 6 pairs: and Database and Network (DN) – 2 pairs). We labelled
these as “Functionally diverse” pairs.

 We have also built these tables for the other two applications phpBB
and TikiWiki see Tables 6.5 and 6.6.

From the results in the table we can already see some patterns
emerging: the 1oo2 systems are better at detecting attacks (higher TP and
lower FN rates), compared with best individual systems; on the other hand,
2oo2 systems are better at correctly labelling benign traffic (higher TN and
lower FP rates). This is to be expected as:

- 1oo2 systems will in all cases perform:

- better or equal to the best single system in the pair for malicious
traffic, as any alarm from any of the two systems will lead to an alarm
in a 1oo2 system;

- equal or worse than the worst single system in the pair for benign
traffic, as any alarm from either single system for benign traffic will
be incorrectly labelled as malicious.

- 2oo2 systems will in all cases perform:

- better or equal to the best single system for benign traffic as the
2oo2 system only raises an alarm for benign traffic if both the single
systems in the pair raise an alarm;

- equal or worse than the worst single system in the pair for malicious
traffic, as the 2oo2 system will only label an attack as malicious if
both the single systems in the pair label it as such.

What is important is how much better, or how much worse, would a
diverse pair perform in these setups, and the results in Table 6-4 already give
us some indications about this. But looking at these numbers in isolation
makes it difficult to make a decision about the overall system performance.
The ROC plots help with this.

-83-

Table 6-4 Counts of detections and failures for benign traffic (False Positive and True Negative) and
for legitimate attack (False Negative and True Positive) for each IDS and for the 36

combinations of 2-version systems 1oo2 and 2oo2 for MyReferences and taking into account
the type of IDS

FP TN FN TP Sensitivity Specificity

C
om

bi
ne

d

Sy
st

em
 L

ab
el

A B

FP
 (A

)

FP
 (B

)

FP
 1

oo
2

FP
 2

oo
2

(A
,B

)
TN

 (
A

)

TN
 (B

)

TN
 1

oo
2

(A
,B

)
TN

 2
oo

2

(A
,B

)
FN

 (A
)

FN
 (B

)

FN
 1

oo
2

(A
,B

)
FN

 2
oo

2

(A
,B

)
TP

 (A
)

TP
 (B

)

TP
 1

oo
2

(A
,B

)
TP

 2
oo

2

(A
,B

)
1o

o2
 (A

,B
)

2o
o2

 (A
,B

)

1o
o2

 (A
,B

)

2o
o2

 (A
,B

)

Fu
nc

tio
na

ll y
 R

ed
un

da
nt

1-2 AA 1A 2A 11 7 15 3 34 38 30 42 15 53 15 53 121 83 121 83 0.89 0.61 0.67 0.93
1-3 AA 1A 3A 11 0 11 0 34 45 34 45 15 89 15 89 121 47 121 47 0.89 0.35 0.76 1
1-4 AA 1A 4A 11 0 11 0 34 45 34 45 15 99 15 99 121 37 121 37 0.89 0.27 0.76 1
1-5 AA 1A 5A 11 0 11 0 34 45 34 45 15 123 15 123 121 13 121 13 0.89 0.10 0.76 1
1-7 AA 1A 7A 11 4 13 2 34 41 32 43 15 102 8 109 121 34 128 27 0.94 0.20 0.71 0.96
2-3 AA 2A 3A 7 0 7 0 38 45 38 45 53 89 53 89 83 47 83 47 0.61 0.35 0.84 1
2-4 AA 2A 4A 7 0 7 0 38 45 38 45 53 99 53 99 83 37 83 37 0.61 0.27 0.84 1
2-5 AA 2A 5A 7 0 7 0 38 45 38 45 53 123 53 123 83 13 83 13 0.61 0.10 0.84 1
2-7 AA 2A 7A 7 4 11 0 38 41 34 45 53 102 46 109 83 34 90 27 0.66 0.20 0.76 1
3-4 AA 3A 4A 0 0 0 0 45 45 45 45 89 99 89 99 47 37 47 37 0.35 0.27 1 1
3-5 AA 3A 5A 0 0 0 0 45 45 45 45 89 123 89 123 47 13 47 13 0.35 0.10 1 1
3-7 AA 3A 7A 0 4 4 0 45 41 41 45 89 102 73 118 47 34 63 18 0.46 0.13 0.91 1
4-5 AA 4A 5A 0 0 0 0 45 45 45 45 99 123 99 123 37 13 37 13 0.27 0.10 1 1
4-7 AA 4A 7A 0 4 4 0 45 41 41 45 99 102 82 119 37 34 54 17 0.40 0.13 0.91 1
5-7 AA 5A 7A 0 4 4 0 45 41 41 45 123 102 89 136 13 34 47 0 0.35 0 0.91 1
8-9 NN 8N 9N 0 0 0 0 45 45 45 45 136 56 56 136 0 80 80 0 0.59 0 1 1

Fu
nc

tio
na

ll y
 D

iv
er

se

1-8 AN 1A 8N 11 0 11 0 34 45 34 45 15 136 15 136 121 0 121 0 0.89 0 0.76 1
1-9 AN 1A 9N 11 0 11 0 34 45 34 45 15 56 5 66 121 80 131 70 0.96 0.51 0.76 1
2-8 AN 2A 8N 7 0 7 0 38 45 38 45 53 136 53 136 83 0 83 0 0.61 0.00 0.84 1
2-9 AN 2A 9N 7 0 7 0 38 45 38 45 53 56 10 99 83 80 126 37 0.93 0.27 0.84 1
3-8 AN 3A 8N 0 0 0 0 45 45 45 45 89 136 89 136 47 0 47 0 0.35 0 1 1
3-9 AN 3A 9N 0 0 0 0 45 45 45 45 89 56 28 117 47 80 108 19 0.79 0.14 1 1
4-8 AN 4A 8N 0 0 0 0 45 45 45 45 99 136 99 136 37 0 37 0 0.27 0.00 1 1
4-9 AN 4A 9N 0 0 0 0 45 45 45 45 99 56 36 119 37 80 100 17 0.74 0.13 1 1
5-8 AN 5A 8N 0 0 0 0 45 45 45 45 123 136 123 136 13 0 13 0 0.10 0 1 1
5-9 AN 5A 9N 0 0 0 0 45 45 45 45 123 56 43 136 13 80 93 0 0.68 0 1 1
7-8 AN 7A 8N 4 0 4 0 41 45 41 45 102 136 102 136 34 0 34 0 0.25 0 0.91 1
7-9 AN 7A 9N 4 0 4 0 41 45 41 45 102 56 56 102 34 80 80 34 0.59 0.25 0.91 1
1-6 AD 1A 6D 11 0 11 0 34 45 34 45 15 120 12 123 121 16 124 13 0.91 0.10 0.76 1
2-6 AD 2A 6D 7 0 7 0 38 45 38 45 53 120 47 126 83 16 89 10 0.65 0.07 0.84 1
3-6 AD 3A 6D 0 0 0 0 45 45 45 45 89 120 73 136 47 16 63 0 0.46 0 1 1
4-6 AD 4A 6D 0 0 0 0 45 45 45 45 99 120 83 136 37 16 53 0 0.39 0 1 1
5-6 AD 5A 6D 0 0 0 0 45 45 45 45 123 120 107 136 13 16 29 0 0.21 0 1 1
6-7 DA 6D 7A 0 4 4 0 45 41 41 45 120 102 93 129 16 34 43 7 0.32 0.05 0.91 1
6-8 DN 6D 8N 0 0 0 0 45 45 45 45 120 136 120 136 16 0 16 0 0.12 0 1 1
6-9 DN 6D 9N 0 0 0 0 45 45 45 45 120 56 48 128 16 80 88 8 0.65 0.06 1 1

-84-

Table 6-5 Counts of detections and failures for benign traffic (False Positive and True Negative) and
for legitimate attack (False Negative and True Positive) for each IDS and for the 36

combinations of 2-version systems 1oo2 and 2oo2 for phpBB and taking into account the type
of IDS

 FP TN FN TP Sensitivity Specificity

C
om

bi
ne

d

Sy
st

em
 L

ab
el

A B

FP
 (A

)

FP
 (B

)

FP
 1

oo
2

FP
 2

oo
2

(A
,B

)
TN

 (
A

)

TN
 (B

)

TN
 1

oo
2

(A
,B

)
TN

 2
oo

2

(A
,B

)
FN

 (A
)

FN
 (B

)

FN
 1

oo
2

(A
,B

)
FN

 2
oo

2

(A
,B

)
TP

 (A
)

TP
 (B

)

TP
 1

oo
2

(A
,B

)
TP

 2
oo

2

(A
,B

)
1o

o2
 (A

,B
)

2o
o2

 (A
,B

)

1o
o2

 (A
,B

)

2o
o2

 (A
,B

)

Fu
nc

tio
na

lly
 R

ed
un

da
nt

1-2 AA 1A 2A
61 31 61 31 36 66 36 66 16 192 16 192 229 53 229 53 0.93 0.22 0.37 0.68

1-3 AA 1A 3A 61 1 61 1 36 96 36 96 16 227 16 227 229 18 229 18 0.93 0.07 0.37 0.99
1-4 AA 1A 4A 61 0 61 0 36 97 36 97 16 234 16 234 229 11 229 11 0.93 0.04 0.37 1.00
1-5 AA 1A 5A 61 0 61 0 36 97 36 97 16 239 16 239 229 6 229 6 0.93 0.02 0.37 1.00
1-7 AA 1A 7A 61 0 61 0 36 97 36 97 16 245 16 245 229 0 229 0 0.93 0.00 0.37 1.00
2-3 AA 2A 3A 31 1 31 1 66 96 66 96 192 227 192 227 53 18 53 18 0.22 0.07 0.68 0.99
2-4 AA 2A 4A 31 0 31 0 66 97 66 97 192 234 192 234 53 11 53 11 0.22 0.04 0.68 1.00
2-5 AA 2A 5A 31 0 31 0 66 97 66 97 192 239 192 239 53 6 53 6 0.22 0.02 0.68 1.00
2-7 AA 2A 7A 31 0 31 0 66 97 66 97 192 245 192 245 53 0 53 0 0.22 0.00 0.68 1.00
3-4 AA 3A 4A 1 0 1 0 96 97 96 97 227 234 227 234 18 11 18 11 0.07 0.04 0.99 1.00
3-5 AA 3A 5A 1 0 1 0 96 97 96 97 227 239 227 239 18 6 18 6 0.07 0.02 0.99 1.00
3-7 AA 3A 7A 1 0 1 0 96 97 96 97 227 245 227 245 18 0 18 0 0.07 0.00 0.99 1.00
4-5 AA 4A 5A 0 0 0 0 97 97 97 97 234 239 234 239 11 6 11 6 0.04 0.02 1.00 1.00
4-7 AA 4A 7A 0 0 0 0 97 97 97 97 234 245 234 245 11 0 11 0 0.04 0.00 1.00 1.00
5-7 AA 5A 7A 0 0 0 0 97 97 97 97 239 245 239 245 6 0 6 0 0.02 0.00 1.00 1.00
8-9 NN 8N 9N 0 0 0 0 97 97 97 97 245 0 0 245 0 245 245 0 1.00 0.00 1.00 1.00

Fu
nc

tio
na

lly
 D

iv
er

se

1-8 AN 1A 8N 61 0 61 0 36 97 36 97 16 245 16 245 229 0 229 0 0.93 0.00 0.37 1.00
1-9 AN 1A 9N 61 0 61 0 36 97 36 97 16 0 0 16 229 245 245 229 1.00 0.93 0.37 1.00
2-8 AN 2A 8N 31 0 31 0 66 97 66 97 192 245 192 245 53 0 53 0 0.22 0.00 0.68 1.00
2-9 AN 2A 9N 31 0 31 0 66 97 66 97 192 0 0 192 53 245 245 53 1.00 0.22 0.68 1.00
3-8 AN 3A 8N 1 0 1 0 96 97 96 97 227 245 227 245 18 0 18 0 0.07 0.00 0.99 1.00
3-9 AN 3A 9N 1 0 1 0 96 97 96 97 227 0 0 227 18 245 245 18 1.00 0.07 0.99 1.00
4-8 AN 4A 8N 0 0 0 0 97 97 97 97 234 245 234 245 11 0 11 0 0.04 0.00 1.00 1.00
4-9 AN 4A 9N 0 0 0 0 97 97 97 97 234 0 0 234 11 245 245 11 1.00 0.04 1.00 1.00
5-8 AN 5A 8N 0 0 0 0 97 97 97 97 239 245 239 245 6 0 6 0 0.02 0.00 1.00 1.00
5-9 AN 5A 9N 0 0 0 0 97 97 97 97 239 0 0 239 6 245 245 6 1.00 0.02 1.00 1.00
7-8 AN 7A 8N 0 0 0 0 97 97 97 97 245 245 245 245 0 0 0 0 0.00 0.00 1.00 1.00
7-9 AN 7A 9N 0 0 0 0 97 97 97 97 245 0 0 245 0 245 245 0 1.00 0.00 1.00 1.00
1-6 AD 1A 6D 61 0 61 0 36 97 36 97 16 91 16 91 229 154 229 154 0.93 0.63 0.37 1.00
2-6 AD 2A 6D 31 0 31 0 66 97 66 97 192 91 45 238 53 154 200 7 0.82 0.03 0.68 1.00
3-6 AD 3A 6D 1 0 1 0 96 97 96 97 227 91 80 238 18 154 165 7 0.67 0.03 0.99 1.00
4-6 AD 4A 6D 0 0 0 0 97 97 97 97 234 91 80 245 11 154 165 0 0.67 0.00 1.00 1.00
5-6 AD 5A 6D 0 0 0 0 97 97 97 97 239 91 85 245 6 154 160 0 0.65 0.00 1.00 1.00
6-7 DA 6D 7A 0 0 0 0 97 97 97 97 91 245 91 245 154 0 154 0 0.63 0.00 1.00 1.00
6-8 DN 6D 8N 0 0 0 0 97 97 97 97 91 245 91 245 154 0 154 0 0.63 0.00 1.00 1.00
6-9 DN 6D 9N 0 0 0 0 97 97 97 97 91 0 0 91 154 245 245 154 1.00 0.63 1.00 1.00

-85-

Table 6-6 Counts of detections and failures for benign traffic (False Positive and True Negative) and
for legitimate attack (False Negative and True Positive) for each IDS and for the 36

combinations of 2-version systems 1oo2 and 2oo2 for TikiWiki and taking into account the
type of IDS

FP TN FN TP Sensitivity Specificity

C
om

bi
ne

d

Sy
st

em

La
be

l

A B

FP
 (A

)

FP
 (B

)

FP
 1

oo
2

FP
 2

oo
2

(A
,B

)
TN

 (
A

)

TN
 (B

)

TN
 1

oo
2

(A
,B

)
TN

 2
oo

2

(A
,B

)
FN

 (A
)

FN
 (B

)

FN
 1

oo
2

(A
,B

)
FN

 2
oo

2

(A
,B

)
TP

 (A
)

TP
 (B

)

TP
 1

oo
2

(A
,B

)
TP

 2
oo

2

(A
,B

)
1o

o2
 (A

,B
)

2o
o2

 (A
,B

)

1o
o2

 (A
,B

)

2o
o2

 (A
,B

)

Fu
nc

tio
na

l ly
 R

ed
un

da
nt

1-2 AA 1A 2A 42 20 42 20 38 60 38 60 39 58 39 58 37 18 37 18 0.49 0.24 0.48 0.75
1-3 AA 1A 3A 42 1 42 1 38 79 38 79 39 61 39 61 37 15 37 15 0.49 0.20 0.48 0.99
1-4 AA 1A 4A 42 0 42 0 38 80 38 80 39 61 39 61 37 15 37 15 0.49 0.20 0.48 1.00
1-5 AA 1A 5A 42 0 42 0 38 80 38 80 39 70 39 70 37 6 37 6 0.49 0.08 0.48 1.00
1-7 AA 1A 7A 42 0 42 0 38 80 38 80 39 60 34 65 37 16 42 11 0.55 0.14 0.48 1.00
2-3 AA 2A 3A 20 1 20 1 60 79 60 79 58 61 58 61 18 15 18 15 0.24 0.20 0.75 0.99
2-4 AA 2A 4A 20 0 20 0 60 80 60 80 58 61 58 61 18 15 18 15 0.24 0.20 0.75 1.00
2-5 AA 2A 5A 20 0 20 0 60 80 60 80 58 70 58 70 18 6 18 6 0.24 0.08 0.75 1.00
2-7 AA 2A 7A 20 0 20 0 60 80 60 80 58 60 52 66 18 16 24 10 0.32 0.13 0.75 1.00
3-4 AA 3A 4A 1 0 1 0 79 80 79 80 61 61 61 61 15 15 15 15 0.20 0.20 0.99 1.00
3-5 AA 3A 5A 1 0 1 0 79 80 79 80 61 70 61 70 15 6 15 6 0.20 0.08 0.99 1.00
3-7 AA 3A 7A 1 0 1 0 79 80 79 80 61 60 53 68 15 16 23 8 0.30 0.11 0.99 1.00
4-5 AA 4A 5A 0 0 0 0 80 80 80 80 61 70 61 70 15 6 15 6 0.20 0.08 1.00 1.00
4-7 AA 4A 7A 0 0 0 0 80 80 80 80 61 60 53 68 15 16 23 8 0.30 0.11 1.00 1.00
5-7 AA 5A 7A 0 0 0 0 80 80 80 80 70 60 56 74 6 16 20 2 0.26 0.03 1.00 1.00
8-9 NN 8N 9N 0 0 0 0 80 80 80 80 76 38 38 76 0 0 0 0 0.50 0.00 1.00 1.00

Fu
nc

tio
na

lly
 D

iv
er

se

1-8 AN 1A 8N 42 0 42 0 38 80 38 80 39 76 39 76 37 0 37 0 0.49 0.00 0.48 1.00
1-9 AN 1A 9N 42 0 42 0 38 80 38 80 39 38 20 57 37 38 56 19 0.74 0.25 0.48 1.00
2-8 AN 2A 8N 20 0 20 0 60 80 60 80 58 76 58 76 18 0 18 0 0.24 0.00 0.75 1.00
2-9 AN 2A 9N 20 0 20 0 60 80 60 80 58 38 31 65 18 38 45 11 0.59 0.14 0.75 1.00
3-8 AN 3A 8N 1 0 1 0 79 80 79 80 61 76 61 76 15 0 15 0 0.20 0.00 0.99 1.00
3-9 AN 3A 9N 1 0 1 0 79 80 79 80 61 38 31 68 15 38 45 8 0.59 0.11 0.99 1.00
4-8 AN 4A 8N 0 0 0 0 80 80 80 80 61 76 61 76 15 0 15 0 0.20 0.00 1.00 1.00
4-9 AN 4A 9N 0 0 0 0 80 80 80 80 61 38 31 68 15 38 45 8 0.59 0.11 1.00 1.00
5-8 AN 5A 8N 0 0 0 0 80 80 80 80 70 76 70 76 6 0 6 0 0.08 0.00 1.00 1.00
5-9 AN 5A 9N 0 0 0 0 80 80 80 80 70 38 34 74 6 38 42 2 0.55 0.03 1.00 1.00
7-8 AN 7A 8N 0 0 0 0 80 80 80 80 60 76 60 76 16 0 16 0 0.21 0.00 1.00 1.00
7-9 AN 7A 9N 0 0 0 0 80 80 80 80 60 38 38 60 16 38 38 16 0.50 0.21 1.00 1.00
1-6 AD 1A 6D 42 0 42 0 38 80 38 80 39 0 0 39 37 76 76 37 1.00 0.49 0.48 1.00
2-6 AD 2A 6D 20 0 20 0 60 80 60 80 58 0 0 58 18 76 76 18 1.00 0.24 0.75 1.00
3-6 AD 3A 6D 1 0 1 0 79 80 79 80 61 0 0 61 15 76 76 15 1.00 0.20 0.99 1.00
4-6 AD 4A 6D 0 0 0 0 80 80 80 80 61 0 0 61 15 76 76 15 1.00 0.20 1.00 1.00
5-6 AD 5A 6D 0 0 0 0 80 80 80 80 70 0 0 70 6 76 76 6 1.00 0.08 1.00 1.00
6-7 DA 6D 7A 0 0 0 0 80 80 80 80 0 60 0 60 76 16 76 16 1.00 0.21 1.00 1.00
6-8 DN 6D 8N 0 0 0 0 80 80 80 80 0 76 0 76 76 0 76 0 1.00 0.00 1.00 1.00
6-9 DN 6D 9N 0 0 0 0 80 80 80 80 0 38 0 38 76 38 76 38 1.00 0.50 1.00 1.00

-86-

Figure 6-1 shows the three ROC plots, one for each of the three
applications (MyRefereces, phpBB and TikiWiki). On each plot we have the
following:

- The blue diamonds represent the single IDS system (and we have labelled
them in the plot);

- The orange squares represent the 1oo2 systems;

- The green triangles represent the 2oo2 systems.

The optimal system in a ROC plot is one that appears on the top left-
hand corner (i.e. one that has a true positive rate of 1 (it detects all attacks)
and a false positive rate of 0 (it never raises an alarm for benign traffic)). We
have one such system for phpBB and TikiWiki, but not for MyReferences (i.e.
there were no IDSs with perfect performance for MyReferences). From Figure
5-1 in general we observe a lot of 1oo2 systems outperforming the individual
IDS on the true positive rates, and 2oo2 systems outperforming individual IDS
on the true negative rates. This is consistent across all three applications.
Figure 6-2 gives ROCs per application again, but now we have split the points
of the “functionally redundant” (subfigures a-c) and “functionally diverse” (sub-
figures d-f) pairs. Overall we see that the functionally diverse pairs are
performing better than functionally redundant pairs (as evident by the higher
number of 1oo2 systems (squares) appearing in the top half of the plot, and a
higher number of 2oo2 systems (triangles) appearing on the left of the plot in
subfigures d-f, compared with those in a-c).

Next, we measured the differences in the Accuracy (Figure 6-3),
Specificity (Figure 6-4) and Sensitivity (Figure 6-5) of the diverse systems
versus the best individual IDS in those respective pairs. The goal is to
understand how much better, or how much worse, a given diverse system
performs compared with the best IDS in that pair. So we subtract from a given
measure (accuracy, specificity or sensitivity) of a 1oo2 or 2oo2 system, the
corresponding measure of the best individual IDS in the pair.

We kept the ordering in the x-axis the same as in Table 6-4. Hence the
leftmost 16 points in the x-axis are for the functionally redundant pairs, and
the remaining ones for functionally diverse pairs. The y-axis shows the
differences. A positive value means that the diverse system has a better
performance than the best single IDS of the respective pair; a negative value
means the performance of the pair is worse than the best single system of the

-87-

respective pair; and a zero value in the y-axis means the performance of the
new diverse pair is the same as the best single system in the respective pair.

In summary:

- For accuracy: 1oo2 systems perform better overall for MyReferences and
phpBB applications. The picture is less clear for TikiWiki, where 2oo2
systems perform at least no worse than the best single IDS for most of the
application-only IDSs, though for diverse pairs 1oo2 systems perform better
or at least no worse than the best IDS in the pair. We should note that
Accuracy may not be a fair measure for MyReferences and phpBB
applications in the dataset we have used, as the traffic that is being
inspected for these applications is attack intensive (hence favouring 1oo2
configurations). The traffic sent to TikiWiki was more balanced between
attacks and benign traffic and this is reflected in the smaller differences
between 1oo2 and 2oo2 setups for that application in most cases.

- Specificity: we would expect gains only in 2oo2 setups. For this dataset
we only get improvements in some cases for MyReferences, and in all
cases they are application-only setups. This is because the specificity of an
individual system is already very high. We are much worse off for 1oo2
setups, especially for some pairs of application-only 1oo2 systems.

- Sensitivity: we see improvements in sensitivity of 1oo2 systems,
especially for application-network (specifically of ACD IDSs with 9N –
“Snort 2.8 plus CR”) and application-database pairs. Diversity in failure
behaviour against malicious traffic, benefits 1oo2 setups considerably.
2oo2 systems on the other hand perform very badly in most cases for
sensitivity compared with the best individual IDS in the pair.

-88-

a)

b)

c)

Figure 6-1 The ROC plot showing the individual IDSs, 1oo2 and 2oo2 configurations. charts a)-c) show the ROC for each application

a)

b)

c)

d)

e)

f)

Figure 6-2 The ROC plots showing the individual IDSs, 1oo2 and 2oo2 configurations: charts a)-c) the ROCs for each application when the
pairs were functionally redundant; charts d)-f) the ROCs for each application when the pairs were functionally diverse

-89-

a) 	

	

b) 	

	

c) 	

	

Figure 6-3 The accuracy difference of 1oo2 and 2oo2 configurations, compared with the best single system in the respective pair,
charts a)-c) show these differences for each application when the pairs were functionally redundant or diverse

a) 	

	

b) 	

	

c) 	

	

Figure 6-4 The specificity difference of 1oo2 and 2oo2 configurations, compared with the best single system in the respective pair,
charts a)-c) show these differences for each application when the pairs were functionally redundant or diverse.

a) 	

	

b) 	

	

c) 	

	

Figure 6-5 The sensitivity difference of 1oo2 and 2oo2 configurations, compared with the best single system in the respective pair,
charts a)-c) show these differences for each application when the pairs were functionally redundant or diverse	

-90-

6.5.2 Analysis by HTTP method
The authors in Elia et al. (2010) also classified the attacks based on the

HTTP method used to carry out the attack: through a GET or a POST. We
also analysed this aspect in Table 6-7, which gives the counts of successful
attacks using GET and POST for each Web application.

Table 6-7 The counts of successful attacks by using GET and POST attack method per web
application

Web Application GET Method POST Method

MyReferences 99 37

phpBB 77 168

TikiWiki 33 43

Since we are only dealing with attack traffic, we will concentrate on
sensitivity differences only. These are given in Figure 6-6 Plots a)-c) of this
figure give the differences in Sensitivity for GET attacks; whereas plots d)-f)
give the differences in Sensitivity for POST attacks.

It becomes clear from these difference plots that for these applications
the gains in diversity (in the 1oo2 setups) are almost entirely from GET attacks
(and this seems to be mainly for MyReferences and TikiWiki applications). We
see no improvements in most cases for POST attacks. This is likely due to
the way some of these IDSs monitor the traffic. As reported in Elia et al. (2010)
the Scalp and ACD IDSs monitor the Apache access log. Only the malicious
payload of GET based attacks are stored in the access log, thus making POST
based attacks almost undetectable by these tools and their variants.

We should note that since the differences in improvements /
deteriorations are between the 1oo2 / 2oo2 systems and the best system in a
given pair, the results presented in figure 6-6 may seem at first glance to not
be consistent with those in Figure 6-5. For example, for phpBB, we see no
improvements compared with the best system in the pair when we look at the
demands separately in Figure 6-6, but we did see improvements when we
looked at all the demands in Figure 6-5. We checked the results and we found
that for those pairs (usually ACD versions with GreenSQL) all the
improvements in sensitivity for 1oo2 for GET demands were from ACD
versions of the IDS. Whereas for POST demands the improvement were due
to GreenSQL. So when we look at the demands separately we see no gain
compared with the best system in the pair, but when we look at all demands
we do see the gains.

-91-

a) 	

	

b) 	

	

c) 	

	

d) 	

	

e) 	

	

f) 	

	

Figure 6-6 The sensitivity difference of 1oo2 and 2oo2 configurations compared with the best single system in the respective pair, charts
a)-c) show these differences for each application when attacks were Read (Get); whereas charts d-f), show them when they were
Write (Post). 	

6.5.3 Differences over a single IDS setup
So far the results are useful for a decision maker that is deciding which

two IDSs to choose for a diverse setup. However, organisations may already
be using an IDS, and costs of switching to a different pair of IDSs may be
prohibitively high (in terms of licensing, re-training staff, etc.). For these
organisations it may be useful to know which IDS B they should choose to run
alongside their existing product A in a diverse 1oo2 or 2oo2 AB setup. Figure
6-7 shows results for this type of comparison for MyReferences application.
For each IDS, we show the improvements (positive values in the y-axis -
shown in orange bars), or deterioration (negative values in the y-axis – shown
in blue bars), in sensitivity and specificity for 1oo2 (sub-figure a), and 2oo2
(sub-figure b). Each IDS can be paired with eight other IDSs in our study.
Using the left-most box in subfigure a) as an example, the first blue bar shows
the deterioration in specificity that a user of ACD1 IDS would observe if they
switched to a 1oo2 setup ACD1-ACD3. Since there is no corresponding
orange bar it means there is no improvement in sensitivity for users of ACD1
from switching to a 1oo2 ACD1-ACD3 configuration. Note that for users of

-92-

ACD3 the observation could be different, and indeed it is, as can be seen from
the first stacked bar in the second dashed-line-box (ACD3): we can see that
these users would see a sizeable sensitivity improvement from switching to a
1oo2 setup (though a specificity deterioration as well). Whether this
improvement in sensitivity would be worth it for the organisation that uses
ACD3 would of course depend on the relative costs that this organisation
places on false positives and false negatives.

From Figure 6-7 we observe the following for 1oo2 setups:

- For application-based IDSs, pairing with a functionally diverse IDS
(“GreenSQL” or “Snort 2.8 plus Custom Rules”), in a 1oo2 setup brings
considerable improvements in sensitivity at no cost to specificity.

- For GreenSQL (database IDS) pairing with the functionally-diverse “Snort
2.8 plus Custom Rules” in a 1oo2 setup brings considerable improvements
in sensitivity at no cost to specificity.

- The same is also true when pairing with the functionally-diverse anomaly-
based ACD with higher thresholds (ACD10, ACD30 and ACD100). When
pairing with ACD1 and ACD3 and Scalp, there are improvements in
sensitivity but there is also some deterioration in specificity.

- For “Snort 2.8 plus Custom Rules” pairing with the functionally-diverse ACD
with a higher threshold (ACD10, ACD30 and ACD100), or with GreenSQL
leads to improvements in sensitivity at no cost to specificity.

- The largest improvements in sensitivity from switching to a diverse 1oo2
configuration would be observed by organisations that are using an
anomaly-based application IDS with a high threshold value (ACD30,
ACD100) and they are paired with another anomaly-based application IDS
that has a low threshold value (ACD1 and ACD3 for example). But for these
organizations it would be more cost effective to just use a single IDS with a
lower threshold value, if sensitivity is their primary concern.

In 2oo2 setups (part b) of Figure 6-8 we observe some improvements
in specificity but these are in most cases far outweighed by the significant
deteriorations in sensitivity.

The observations above about functional diversity pairings are consistent
also for the other two applications (phpBB and TikiWiki), as we can observe
from the remaining Figures (6-9 to 6-12); for example in phpBB all the 245
attacks are detected by Snort 2.8 Plus Custom Rules, accordingly when

-93-

pairing any single functionally diverse IDS with Snort 2.8 Plus it improves
sensitivity, see Figure (6-9).

-1
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

A
C

D
3

A
C

D
10

A
C

D
30

A
C

D
10

0
G

R
EE

N
SQ

L
SC

A
LP

 s
q

lia
SN

O
R

T
2.

8
SN

O
R

T
2.

8
 P

lu
s

A
C

D
1

A
C

D
10

A
C

D
30

A
C

D
10

0
G

R
EE

N
SQ

L
SC

A
LP

 s
q

lia
SN

O
R

T
2.

8
SN

O
R

T
2.

8
 P

lu
s

A
C

D
1

A
C

D
3

A
C

D
30

A
C

D
10

0
G

R
EE

N
SQ

L
SC

A
LP

 s
q

lia
SN

O
R

T
2.

8
SN

O
R

T
2.

8
 P

lu
s

A
C

D
1

A
C

D
3

A
C

D
10

A
C

D
10

0
G

R
EE

N
SQ

L
SC

A
LP

 s
q

lia
SN

O
R

T
2.

8
SN

O
R

T
2.

8
 P

lu
s

A
C

D
1

A
C

D
3

A
C

D
10

A
C

D
30

G
R

EE
N

SQ
L

SC
A

LP
 s

q
lia

SN
O

R
T

2.
8

SN
O

R
T

2.
8

 P
lu

s
A

C
D

1
A

C
D

3
A

C
D

10
A

C
D

30
A

C
D

10
0

SC
A

LP
 s

q
lia

SN
O

R
T

2.
8

SN
O

R
T

2.
8

 P
lu

s
A

C
D

1
A

C
D

3
A

C
D

10
A

C
D

30
A

C
D

10
0

G
R

EE
N

SQ
L

SN
O

R
T

2.
8

SN
O

R
T

2.
8

 P
lu

s
A

C
D

1
A

C
D

3
A

C
D

10
A

C
D

30
A

C
D

10
0

G
R

EE
N

SQ
L

SC
A

LP
 s

q
lia

SN
O

R
T

2.
8

 P
lu

s
A

C
D

1
A

C
D

3
A

C
D

10
A

C
D

30
A

C
D

10
0

G
R

EE
N

SQ
L

SC
A

LP
 s

q
lia

SN
O

R
T

2.
8

D
if

fe
re

n
ce

 in
 S

e
n

si
ti

vi
ty

 a
n

d
 S

p
e

ci
fi

ci
ty

Differences in Sensitivity and Specificity for a given system A when Paired with another System B in a 1oo2 configuration for MyReferences

Sensitivity difference in a 1oo2 system Specificity difference in a 1oo2 system

ACD1 ACD3 ACD10 ACD30 ACD100 GREEN SQL SCALP sqalia SNORT 2.8 SNORT 2.8 Plus

-1
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

A
C

D
3

A
C

D
1

0
A

C
D

3
0

A
C

D
1

0
0

G
R

E
E

N
S

Q
L

S
C

A
LP

 s
q

li
a

S
N

O
R

T
 2

.8
S

N
O

R
T

 2
.8

 P
lu

s
A

C
D

1
A

C
D

1
0

A
C

D
3

0
A

C
D

1
0

0
G

R
E

E
N

S
Q

L
S

C
A

LP
 s

q
li

a
S

N
O

R
T

 2
.8

S
N

O
R

T
 2

.8
 P

lu
s

A
C

D
1

A
C

D
3

A
C

D
3

0
A

C
D

1
0

0
G

R
E

E
N

S
Q

L
S

C
A

LP
 s

q
li

a
S

N
O

R
T

 2
.8

S
N

O
R

T
 2

.8
 P

lu
s

A
C

D
1

A
C

D
3

A
C

D
1

0
A

C
D

1
0

0
G

R
E

E
N

S
Q

L
S

C
A

LP
 s

q
li

a
S

N
O

R
T

 2
.8

S
N

O
R

T
 2

.8
 P

lu
s

A
C

D
1

A
C

D
3

A
C

D
1

0
A

C
D

3
0

G
R

E
E

N
S

Q
L

S
C

A
LP

 s
q

li
a

S
N

O
R

T
 2

.8
S

N
O

R
T

 2
.8

 P
lu

s
A

C
D

1
A

C
D

3
A

C
D

1
0

A
C

D
3

0
A

C
D

1
0

0
S

C
A

LP
 s

q
li

a
S

N
O

R
T

 2
.8

S
N

O
R

T
 2

.8
 P

lu
s

A
C

D
1

A
C

D
3

A
C

D
1

0
A

C
D

3
0

A
C

D
1

0
0

G
R

E
E

N
S

Q
L

S
N

O
R

T
 2

.8
S

N
O

R
T

 2
.8

 P
lu

s
A

C
D

1
A

C
D

3
A

C
D

1
0

A
C

D
3

0
A

C
D

1
0

0
G

R
E

E
N

S
Q

L
S

C
A

LP
 s

q
li

a
S

N
O

R
T

 2
.8

 P
lu

s
A

C
D

1
A

C
D

3
A

C
D

1
0

A
C

D
3

0
A

C
D

1
0

0
G

R
E

E
N

S
Q

L
S

C
A

LP
 s

q
li

a
S

N
O

R
T

 2
.8

D
if

fe
re

n
ce

 in
 S

e
n

si
ti

v
it

y
a

n
d

 S
p

e
ci

fi
ci

ty

Differences in Sensitivity and Specificity for a given system A when Paired with another System B in a 2oo2 configuration for MyReferences

Sensitivity difference in a 2oo2 system Specificity difference in a 2oo2 system

ACD1 ACD3 ACD10 ACD30 ACD100 GREEN SQL SCALP sqalia SNORT 2.8 SNORT 2.8 Plus

Figure 6-7 Differences in sensitivity and specificity for a given system A when paired with another System B for MyReferences for a 1oo2
configuration

Figure 6-8 Differences in sensitivity and specificity for a given system A when paired with another System B for MyReferences for a
2oo2 configuration

-94-

-1
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

A
C

D
3

A
C

D
1

0
A

C
D

3
0

A
C

D
1

0
0

G
R

E
E

N
S

Q
L

S
C

A
LP

 s
q

li
a

S
N

O
R

T
 2

.8
S

N
O

R
T

 2
.8

 P
lu

s
A

C
D

1
A

C
D

1
0

A
C

D
3

0
A

C
D

1
0

0
G

R
E

E
N

S
Q

L
S

C
A

LP
 s

q
li

a
S

N
O

R
T

 2
.8

S
N

O
R

T
 2

.8
 P

lu
s

A
C

D
1

A
C

D
3

A
C

D
3

0
A

C
D

1
0

0
G

R
E

E
N

S
Q

L
S

C
A

LP
 s

q
li

a
S

N
O

R
T

 2
.8

S
N

O
R

T
 2

.8
 P

lu
s

A
C

D
1

A
C

D
3

A
C

D
1

0
A

C
D

1
0

0
G

R
E

E
N

S
Q

L
S

C
A

LP
 s

q
li

a
S

N
O

R
T

 2
.8

S
N

O
R

T
 2

.8
 P

lu
s

A
C

D
1

A
C

D
3

A
C

D
1

0
A

C
D

3
0

G
R

E
E

N
S

Q
L

S
C

A
LP

 s
q

li
a

S
N

O
R

T
 2

.8
S

N
O

R
T

 2
.8

 P
lu

s
A

C
D

1
A

C
D

3
A

C
D

1
0

A
C

D
3

0
A

C
D

1
0

0
S

C
A

LP
 s

q
li

a
S

N
O

R
T

 2
.8

S
N

O
R

T
 2

.8
 P

lu
s

A
C

D
1

A
C

D
3

A
C

D
1

0
A

C
D

3
0

A
C

D
1

0
0

G
R

E
E

N
S

Q
L

S
N

O
R

T
 2

.8
S

N
O

R
T

 2
.8

 P
lu

s
A

C
D

1
A

C
D

3
A

C
D

1
0

A
C

D
3

0
A

C
D

1
0

0
G

R
E

E
N

S
Q

L
S

C
A

LP
 s

q
li

a
S

N
O

R
T

 2
.8

 P
lu

s
A

C
D

1
A

C
D

3
A

C
D

1
0

A
C

D
3

0
A

C
D

1
0

0
G

R
E

E
N

S
Q

L
S

C
A

LP
 s

q
li

a
S

N
O

R
T

 2
.8

D
if

fe
re

n
ce

 in
 S

e
n

si
ti

v
it

y
a

n
d

 S
p

e
ci

fi
ci

ty

Differences in Sensitivity and Specificity for a given system A when Paired with another System B in a 2oo2 configuration for PhpBB

Sensitivity difference in a 2oo2 system Specificity difference in a 2oo2 system

ACD1 ACD3 ACD10 ACD30 ACD100 GREEN SQL SCALP sqalia SNORT 2.8 SNORT 2.8 Plus

-1
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

A
C

D
3

A
C

D
10

A
C

D
30

A
C

D
10

0
G

R
EE

N
SQ

L
SC

A
LP

 s
q

lia
SN

O
R

T
2.

8
SN

O
R

T
2.

8
 P

lu
s

A
C

D
1

A
C

D
10

A
C

D
30

A
C

D
10

0
G

R
EE

N
SQ

L
SC

A
LP

 s
q

lia
SN

O
R

T
2.

8
SN

O
R

T
2.

8
 P

lu
s

A
C

D
1

A
C

D
3

A
C

D
30

A
C

D
10

0
G

R
EE

N
SQ

L
SC

A
LP

 s
q

lia
SN

O
R

T
2.

8
SN

O
R

T
2.

8
 P

lu
s

A
C

D
1

A
C

D
3

A
C

D
10

A
C

D
10

0
G

R
EE

N
SQ

L
SC

A
LP

 s
q

lia
SN

O
R

T
2.

8
SN

O
R

T
2.

8
 P

lu
s

A
C

D
1

A
C

D
3

A
C

D
10

A
C

D
30

G
R

EE
N

SQ
L

SC
A

LP
 s

q
lia

SN
O

R
T

2.
8

SN
O

R
T

2.
8

 P
lu

s
A

C
D

1
A

C
D

3
A

C
D

10
A

C
D

30
A

C
D

10
0

SC
A

LP
 s

q
lia

SN
O

R
T

2.
8

SN
O

R
T

2.
8

 P
lu

s
A

C
D

1
A

C
D

3
A

C
D

10
A

C
D

30
A

C
D

10
0

G
R

EE
N

SQ
L

SN
O

R
T

2.
8

SN
O

R
T

2.
8

 P
lu

s
A

C
D

1
A

C
D

3
A

C
D

10
A

C
D

30
A

C
D

10
0

G
R

EE
N

SQ
L

SC
A

LP
 s

q
lia

SN
O

R
T

2.
8

 P
lu

s
A

C
D

1
A

C
D

3
A

C
D

10
A

C
D

30
A

C
D

10
0

G
R

EE
N

SQ
L

SC
A

LP
 s

q
lia

SN
O

R
T

2.
8

D
if

fe
re

n
ce

 in
 S

e
n

si
ti

vi
ty

an
d

 S
p

e
ci

fi
ci

ty

Differences in Sensitivity and Specificity for a given system A when Paired with another System B in a 1oo2 configuration for PhpBB

Sensitivity difference in a 1oo2 system Specificity difference in a 1oo2 system

ACD1 ACD3 ACD10 ACD30 ACD100 GREEN SQL SCALP sqalia SNORT 2.8 SNORT 2.8 Plus

Figure 6-9 Differences in sensitivity and specificity for a given system A when paired with another System B for phpBB for a 1oo2
configuration

Figure 6-10 Differences in sensitivity and specificity for a given system A when paired with another System B for phpBB for a 2oo2
configuration

-95-

-1
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

A
C

D
3

A
C

D
1

0
A

C
D

3
0

A
C

D
1

0
0

G
R

E
E

N
S

Q
L

S
C

A
LP

 s
q

li
a

S
N

O
R

T
 2

.8
S

N
O

R
T

 2
.8

 P
lu

s
A

C
D

1
A

C
D

1
0

A
C

D
3

0
A

C
D

1
0

0
G

R
E

E
N

S
Q

L
S

C
A

LP
 s

q
li

a
S

N
O

R
T

 2
.8

S
N

O
R

T
 2

.8
 P

lu
s

A
C

D
1

A
C

D
3

A
C

D
3

0
A

C
D

1
0

0
G

R
E

E
N

S
Q

L
S

C
A

LP
 s

q
li

a
S

N
O

R
T

 2
.8

S
N

O
R

T
 2

.8
 P

lu
s

A
C

D
1

A
C

D
3

A
C

D
1

0
A

C
D

1
0

0
G

R
E

E
N

S
Q

L
S

C
A

LP
 s

q
li

a
S

N
O

R
T

 2
.8

S
N

O
R

T
 2

.8
 P

lu
s

A
C

D
1

A
C

D
3

A
C

D
1

0
A

C
D

3
0

G
R

E
E

N
S

Q
L

S
C

A
LP

 s
q

li
a

S
N

O
R

T
 2

.8
S

N
O

R
T

 2
.8

 P
lu

s
A

C
D

1
A

C
D

3
A

C
D

1
0

A
C

D
3

0
A

C
D

1
0

0
S

C
A

LP
 s

q
li

a
S

N
O

R
T

 2
.8

S
N

O
R

T
 2

.8
 P

lu
s

A
C

D
1

A
C

D
3

A
C

D
1

0
A

C
D

3
0

A
C

D
1

0
0

G
R

E
E

N
S

Q
L

S
N

O
R

T
 2

.8
S

N
O

R
T

 2
.8

 P
lu

s
A

C
D

1
A

C
D

3
A

C
D

1
0

A
C

D
3

0
A

C
D

1
0

0
G

R
E

E
N

S
Q

L
S

C
A

LP
 s

q
li

a
S

N
O

R
T

 2
.8

 P
lu

s
A

C
D

1
A

C
D

3
A

C
D

1
0

A
C

D
3

0
A

C
D

1
0

0
G

R
E

E
N

S
Q

L
S

C
A

LP
 s

q
li

a
S

N
O

R
T

 2
.8

D
if

fe
re

n
ce

 in
 S

e
n

si
ti

v
it

y
a

n
d

 S
p

e
ci

fi
ci

ty

Differences in Sensitivity and Specificity for a given system A when Paired with another System B in a 1oo2 configuration for TikiWiki

Sensitivity difference in a 1oo2 system Specificity difference in a 1oo2 system

ACD1 ACD3 ACD10 ACD30 ACD100 GREEN SQL SCALP sqalia SNORT 2.8 SNORT 2.8 Plus

-1
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

A
C

D
3

A
C

D
10

A
C

D
30

A
C

D
10

0
G

R
EE

N
SQ

L
SC

A
LP

 s
q

lia
SN

O
R

T
2.

8
SN

O
R

T
2.

8
 P

lu
s

A
C

D
1

A
C

D
10

A
C

D
30

A
C

D
10

0
G

R
EE

N
SQ

L
SC

A
LP

 s
q

lia
SN

O
R

T
2.

8
SN

O
R

T
2.

8
 P

lu
s

A
C

D
1

A
C

D
3

A
C

D
30

A
C

D
10

0
G

R
EE

N
SQ

L
SC

A
LP

 s
q

lia
SN

O
R

T
2.

8
SN

O
R

T
2.

8
 P

lu
s

A
C

D
1

A
C

D
3

A
C

D
10

A
C

D
10

0
G

R
EE

N
SQ

L
SC

A
LP

 s
q

lia
SN

O
R

T
2.

8
SN

O
R

T
2.

8
 P

lu
s

A
C

D
1

A
C

D
3

A
C

D
10

A
C

D
30

G
R

EE
N

SQ
L

SC
A

LP
 s

q
lia

SN
O

R
T

2.
8

SN
O

R
T

2.
8

 P
lu

s
A

C
D

1
A

C
D

3
A

C
D

10
A

C
D

30
A

C
D

10
0

SC
A

LP
 s

q
lia

SN
O

R
T

2.
8

SN
O

R
T

2.
8

 P
lu

s
A

C
D

1
A

C
D

3
A

C
D

10
A

C
D

30
A

C
D

10
0

G
R

EE
N

SQ
L

SN
O

R
T

2.
8

SN
O

R
T

2.
8

 P
lu

s
A

C
D

1
A

C
D

3
A

C
D

10
A

C
D

30
A

C
D

10
0

G
R

EE
N

SQ
L

SC
A

LP
 s

q
lia

SN
O

R
T

2.
8

 P
lu

s
A

C
D

1
A

C
D

3
A

C
D

10
A

C
D

30
A

C
D

10
0

G
R

EE
N

SQ
L

SC
A

LP
 s

q
lia

SN
O

R
T

2.
8

D
if

fe
re

n
ce

 in
 S

e
n

si
ti

vi
ty

an
d

 S
p

e
ci

fi
ci

ty

Differences in Sensitivity and Specificity for a given system A when Paired with another System B in a 2oo2 configuration for TikiWiki

Sensitivity difference in a 2oo2 system Specificity difference in a 2oo2 system

ACD1 ACD3 ACD10 ACD30 ACD100 GREEN SQL SCALP sqalia SNORT 2.8 SNORT 2.8 Plus

Figure 6-12 Differences in sensitivity and specificity for a given system A when paired with another System B for TikiWiki for a 2oo2
configuration

Figure 6-11 Differences in sensitivity and specificity for a given system A when paired with another System B for TikiWiki for a 1oo2
configuration

-96-

6.5.4 Averages for different two-version diverse setups
We conclude our analysis of two-version systems with a summary table

(Table 6-8) showing the average Sensitivity, Specificity and Accuracy for
single IDSs compared with these same averages for 1oo2 and 2oo2
configurations. The averages are sub-divided by type of configurations and
application. These results confirm the observations shown so far:

- For 1oo2 systems: improvements in sensitivity compared with individual
systems are around 40% on average for the three applications, but come
with around 10% specificity deterioration on average.

- For 1oo2 systems: the largest improvements in sensitivity, with the least
deterioration in specificity are from functionally-diverse pairs of IDSs;

- For 2oo2 systems: improvements in specificity compared with individual
systems are around 10% on average for the three applications, but come
with around 60% sensitivity deterioration on average;

- For 2oo2 systems: the largest improvements in specificity, with the least
deterioration in sensitivity, are from functionally-diverse pairs of IDSs
(specifically Application & Database, and Network & Database).

-97-

Table 6-8 The average sensitivity, specificity and accuracy for single IDS and the 1oo2 and 2002
pairs, per type and per web application

6.6 Diversity analysis for configurations with more than two
versions

So far we presented the results for two-version systems. We then
expanded the analysis to consider all the possible combinations we can build
with the 9 IDSs. We calculate the sensitivity and specificity for each of the
diverse combinations with the nine IDSs, for three types of adjudication setups
considered (namely 1ooN, simple Majority vote – e.g. 2-out-of-3, 3-out-of-5
etc., and NooN).

Figure 6-13 shows the ROC plots, one for each of the three web
applications (MyRefereces, phpBB and TikiWiki). On each plot we have the
following:

- The green X symbols represent the single IDS system;

- The orange squares represent the 1ooN systems;

- The blue diamonds represent the NooN systems.

Averages

MyReferences PhpBB TikiWiki

Se
ns

iti
vi

ty

Sp
ec

ifi
ci

ty

A
cc

ur
ac

y

Se
ns

iti
vi

ty

Sp
ec

ifi
ci

ty

A
cc

ur
ac

y

Se
ns

iti
vi

ty

Sp
ec

ifi
ci

ty

A
cc

ur
ac

y

Single System 0.32 0.91 0.63 0.32 0.89 0.49 0.32 0.91 0.63

1o
o2

Overall 1oo2 0.51 0.83 0.68 0.56 0.80 0.63 0.51 0.83 0.68

Functionally

Redundant

Application-only 0.33 0.76 0.55 0.39 0.70 0.48 0.33 0.76 0.55

Network-only 0.50 1 0.76 1 1 1 0.50 1 0.76

Functionally

Diverse

Application & Network 0.41 0.87 0.65 0.61 0.84 0.67 0.41 0.87 0.65

Application & Database 1 0.87 0.93 0.73 0.84 0.76 1 0.87 0.93

Network & Database 1 1 1 0.81 1 0.87 1 1 1

2o
o2

Overall 2oo2 0.13 0.99 0.57 0.09 0.99 0.34 0.13 0.99 0.57

Functionally

Redundant

Application-only 0.13 0.98 0.57 0.04 0.98 0.31 0.13 0.98 0.57

Network-only 0 1 0.51 0 1 0.28 0 1 0.51

Functionally

Diverse

Application & Network 0.07 1 0.55 0.11 1 0.36 0.07 1 0.55

Application & Database 0.23 1 0.63 0.11 1 0.37 0.23 1 0.63

Network & Database 0.25 1 0.63 0.31 1 0.51 0.25 1 0.63

-98-

- The green triangles with the black border represent the RooN (majority
vote) systems, which were calculated for odd values of N, as they allow a
simple majority vote to be calculated.

The best system in an ROC plot is one that appears on the top right-
hand corner (i.e. one that has a true positive rate of 1 (it detects all attacks)
and a false positive rate of 1 (it never raises an alarm for benign traffic)). From
Figure 6-13 we observe a similar picture to what we have seen with two-
versions systems so far: 1ooN systems outperforming the individual IDS on
sensitivity, and NooN systems outperforming individual IDS on specificity.

N MyReferences PHBBB TikiWiki

3,

9C3= 84

	

	

	

4,

9C4 =

126

	 	

	

5,

9C5 =

126

	

	

	

0

0.2

0.4

0.6

0.8

1

0

0.
2

0.
4

0.
6

0.
8 1

TR
U

E
PO

SI
TI

VE
 R

AT
E

1-FALSE POSITIVE RATE FPR

0

0.2

0.4

0.6

0.8

1

0

0.
2

0.
4

0.
6

0.
8 1

TR
U

E
PO

SI
TI

VE
 R

AT
E

1-FALSE POSITIVE RATE FPR

0

0.2

0.4

0.6

0.8

1

0

0.
2

0.
4

0.
6

0.
8 1

TR
U

E
PO

SI
TI

VE
 R

AT
E

1-FALSE POSITIVE RATE FPR

0

0.2

0.4

0.6

0.8

1

0

0.
2

0.
4

0.
6

0.
8 1

TR
U

E
PO

SI
TI

VE
 R

AT
E

1-FALSE POSITIVE RATE FPR

0

0.2

0.4

0.6

0.8

1

0

0.
2

0.
4

0.
6

0.
8 1

TR
U

E
PO

SI
TI

VE
 R

AT
E

1-FALSE POSITIVE RATE FPR

0

0.2

0.4

0.6

0.8

1
0

0.
2

0.
4

0.
6

0.
8 1

TR
U

E
PO

SI
TI

VE
 R

AT
E

1-FALSE POSITIVE RATE FPR

0

0.2

0.4

0.6

0.8

1

0

0.
2

0.
4

0.
6

0.
8 1

TR
U

E
PO

SI
TI

VE
 R

AT
E

1-FALSE POSITIVE RATE FPR

0

0.2

0.4

0.6

0.8

1

0

0.
2

0.
4

0.
6

0.
8 1

TR
U

E
PO

SI
TI

VE
 R

AT
E

1-FALSE POSITIVE RATE FPR

0

0.2

0.4

0.6

0.8

1

0

0.
2

0.
4

0.
6

0.
8 1

TR
U

E
PO

SI
TI

VE
 R

AT
E

FALSE POSITIVE RATE FPR

-99-

6,

9C6 = 84

	
	 	

7,

9C7 = 36

	

	 	

8,

9C8 = 9

	

	

	

9,

9C9 = 1

	

	

	

Figure 6-13 The ROC plot showing the individual IDSs, 1ooN and NooN configurations for each application.

6.6.1 Averages for different diverse setups
Tables 6-9 to 6-11 below show the average sensitivity and specify for

each application for each of the main adjudication setups. Figure 6-14 then
shows three graphs (one for each application) that visualise the numbers from
the preceding three tables. The results are consistent with what we observed
so far:

0

0.2

0.4

0.6

0.8

1

0

0.
2

0.
4

0.
6

0.
8 1

TR
U

E
PO

SI
TI

VE
 R

AT
E

1-FALSE POSITIVE RATE FPR

0

0.2

0.4

0.6

0.8

1

0

0.
2

0.
4

0.
6

0.
8 1

TR
U

E
PO

SI
TI

VE
 R

AT
E

1-FALSE POSITIVE RATE FPR

0

0.2

0.4

0.6

0.8

1

0

0.
2

0.
4

0.
6

0.
8 1

TR
U

E
PO

SI
TI

VE
 R

AT
E

1-FALSE POSITIVE RATE FPR

0

0.2

0.4

0.6

0.8

1

0

0.
2

0.
4

0.
6

0.
8 1

TR
U

E
PO

SI
TI

VE
 R

AT
E

1-FALSE POSITIVE RATE FPR

0

0.2

0.4

0.6

0.8

1

0

0.
2

0.
4

0.
6

0.
8 1

TR
U

E
PO

SI
TI

VE
 R

AT
E

1-FALSE POSITIVE RATE FPR

0

0.2

0.4

0.6

0.8

1

0

0.
2

0.
4

0.
6

0.
8 1

TR
U

E
PO

SI
TI

VE
 R

AT
E

1-FALSE POSITIVE RATE FPR

0

0.2

0.4

0.6

0.8

1

0

0.
2

0.
4

0.
6

0.
8 1

TR
U

E
PO

SI
TI

VE
 R

AT
E

1-FALSE POSITIVE RATE FPR

0

0.2

0.4

0.6

0.8

1

0

0.
2

0.
4

0.
6

0.
8 1

TR
U

E
PO

SI
TI

VE
 R

AT
E

1-FALSE POSITIVE RATE FPR

0

0.2

0.4

0.6

0.8

1

0

0.
2

0.
4

0.
6

0.
8 1

TR
U

E
PO

SI
TI

VE
 R

AT
E

1-FALSE POSITIVE RATE FPR

0

0.2

0.4

0.6

0.8

1

0

0.
2

0.
4

0.
6

0.
8 1

TR
U

E
PO

SI
TI

VE
 R

AT
E

1-FALSE POSITIVE RATE FPR

0

0.2

0.4

0.6

0.8

1

0

0.
2

0.
4

0.
6

0.
8 1

TR
U

E
PO

SI
TI

VE
 R

AT
E

1-FALSE POSITIVE RATE FPR

0

0.2

0.4

0.6

0.8

1

0

0.
2

0.
4

0.
6

0.
8 1

TR
U

E
PO

SI
TI

VE
 R

AT
E

1-FALSE POSITIVE RATE FPR

-100-

- Improvements in sensitivity for 1ooN systems as we increase N.

- Improvements in specificity for NooN systems as we increase N.

- Deterioration in specificity for 1ooN systems as we increase N.

- Deterioration in sensitivity for NooN systems as we increase N.

The tables below allow us to calculate more precisely just what those
improvements (or deteriorations are).

Table 6-9 The averages of Sensitivity (TPR) and Specificity (1-FPR) for the combined IDSs, in 1ooN,
RooN and NooN configurations, for MyReferences

N TPR 1ooN 1-FPR 1ooN TPR RooN 1-FPR RooN TPR NooN 1-FPR NooN
2 0.5727 0.8944 0.1315 0.9969
3 0.7145 0.8463 0.2890 0.9907 0.0528 1
4 0.8049 0.7991 0.0211 1
5 0.8745 0.7593 0.2533 1 0.0071 1
6 0.9194 0.7204 0.0015 1
7 0.9485 0.6846 0.2504 1 0 1
8 0.9649 0.6519 0 1
9 0.9706 0.6222 0.2647 1 0 1

Table 6-10 The averages of Sensitivity (TPR) and Specificity (1-FPR) for the combined IDSs, in 1ooN,
RooN and NooN configurations, for PhpBB

N TPR 1ooN 1-FPR 1ooN TPR RooN 1-FPR RooN TPR NooN 1-FPR NooN
2 0.5604 0.7964 0.0890 0.9906
3 0.7247 0.7086 0.2260 0.9719 0.0204 0.9999
4 0.8288 0.6301 0.0048 1
5 0.9159 0.5606 0.1415 0.9988 0.0016 1
6 0.9595 0.5001 0.0003 1
7 0.9822 0.4485 0 1 0 1
8 0.9927 0.4055 0 1
9 1 0.3711 0.0735 1 0 1

Table 6-11 The averages of Sensitivity (TPR) and Specificity (1-FPR) for the combined IDSs, in 1ooN,
RooN and NooN configurations, for TikiWiki

N TPR 1ooN 1-FPR 1ooN TPR RooN 1-FPR RooN TPR NooN 1-FPR NooN
2 0.5128 0.8326 0.1334 0.9924
3 0.6430 0.7603 0.2523 0.9774 0.0739 1
4 0.7404 0.6952 0.0471 1
5 0.8205 0.6374 0.2221 0.9985 0.0279 1
6 0.8830 0.5866 0.0160 1
7 0.9722 0.5427 0.2127 1 0.0080 1
8 0.9708 0.5056 0.0029 1
9 1 0.4750 0.2237 1 0 1

-101-

6.6.2 Averages for functionally-redundant and diverse setups
In the preceding section we gave the averages for any diverse

configuration. Similarly to what was presented for two-versions systems, we
also did an analysis of the functionally redundant and functionally diverse
configurations. Since we have 9 IDS, but only 4 IDS function types, then we
have differentiated the different “degrees” of diversity for systems with more
than two-versions.

Table 6-12 shows the average sensitivity, specificity and accuracy for
single IDSs. This is the base reference. Tables 6-13, 6-14, 6-15 and 6-16 show
averages for 1ooN, RooN and NooN configurations for each application for
N=3, N=5, N=7 and N=9. We have subdivided these averages by the degree
of diversity that exists between the types of IDS (A: Application, D: Database
and N: Network), for each application. So for example AAD, means we have
two IDSs of application type, and one IDS of Database type, in the three-
version configuration. For 3-version and 5-version systems, since we have 6
Application level IDSs, we can still have functionally-redundant configurations
(of application-only types). For 7-version and 9-version systems we can only
have functionally-diverse configurations. In the tables, on each column, we
highlight the best (green coloured cell) and worst (red coloured cell)

Figure 6-14 Plots show the averages of TPR and 1-FPR for the combined IDSs, in 1ooN, RooN and NooN configurations for
all the web applications

MyReferences	 PHBBB	 TikiWiki	

	 	 	

-102-

performing configuration on average for each application and each
adjudication scheme.

The results show that:

- On the Sensitivity measure:

- For 1ooN systems, the functionally diverse systems are always
performing best on average in all cases;

- For majority vote and NooN, the functionally redundant systems
perform best on average for MyReferences in most cases.

- On the Specificity measure:

- Functionally diverse systems are always performing best on
average in all cases, for all adjudicators.

Table 6-12 the average sensitivity, specificity and accuracy for single IDS and per web application
 MyReferences PhpBB TikiWiki

IDS Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

Single System 0.45 0.94 0.1 0.32 0.89 0.49 0.32 0.91 0.63

Table 6-13 The average sensitivity and specificity for (1oo3,2oo3 and 3oo3) per web application

 MyReferences PhpBB TikiWiki

 Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

IDS Combination
Types

1oo3 2oo3 3oo3 1oo3 2oo3 3oo3 1oo3 2oo3 3oo3 1oo3 2oo3 3oo3 1oo3 2oo3 3oo3 1oo3 2oo3 3oo3

Overall 0.71 0.29 0.05 0.10 0.99 1.00 0.72 0.23 0.02 0.71 0.97 1.00 0.64 0.25 0.07 0.76 0.98 1.00

Functionally
redundant 0.76 0.38 0.10 0.00 0.99 1.00 0.73 0.24 0.02 0.60 0.95 1.00 0.59 0.24 0.11 0.67 0.96 1.00

Fu
nc

tio
na

lly
 d

iv
er

se

Overall 0.71 0.26 0.03 0.87 0.99 1.00 0.78 0.27 0.02 0.75 0.98 1.00 0.72 0.27 0.07 0.79 0.99 1.00

AAN 0.70 0.28 0.05 0.85 0.99 1.00 0.67 0.20 0.01 0.72 0.98 1.00 0.62 0.25 0.07 0.77 0.98 1.00

AAD 0.74 0.31 0.05 0.84 0.99 1.00 0.73 0.17 0.02 0.70 0.96 1.00 0.56 0.20 0.05 0.76 0.97 1.00

ANN 0.77 0.28 0.02 0.86 1.00 1.00 0.83 0.42 0.10 0.74 1.00 1.00 0.73 0.38 0.09 0.78 1.00 1.00

NND 0.32 0.05 0.00 0.91 1.00 1.00 0.63 0.00 0.00 1.00 1.00 1.00 1.00 0.21 0.00 1.00 1.00 1.00

fully
diverse:ADN 0.65 0.17 0.01 0.91 1.00 1.00 0.81 0.27 0.01 0.81 1.00 1.00 0.82 0.29 0.05 0.85 1.00 1.00

-103-

Table 6-14 The average sensitivity and specificity for (1oo5,3oo5 and 5oo5) per web application

 MyReferences PhpBB TikiWiki

 Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

IDS Combination Types 1oo5 3oo5 5oo5 1oo5 3oo5 5oo5 1oo5 3oo5 5oo5 1oo5 3oo5 5oo5 1oo5 3oo5 5oo5 1oo5 3oo5 5oo5

Overall 0.87 0.25 0.01 0.76 1.00 1.00 0.92 0.14 0.00 0.56 1.00 1.00 0.82 0.22 0.03 0.64 1.00 1.00

Functionally redundant 0.89 0.35 0.04 0.67 1.00 1.00 0.81 0.06 0.00 0.42 0.99 1.00 0.50 0.21 0.05 0.52 0.99 1.00

Fu
nc

tio
na

lly
 d

iv
er

se

Overall 0.87 0.25 0.01 0.76 1.00 1.00 0.92 0.15 0.00 0.57 1.00 1.00 0.84 0.22 0.03 0.64 1.00 1.00

AAAAN 0.88 0.32 0.02 0.72 1.00 1.00 0.84 0.08 0.00 0.49 1.00 1.00 0.57 0.20 0.03 0.58 1.00 1.00

AAAAD 0.84 0.32 0.00 0.72 1.00 1.00 0.89 0.06 0.00 0.49 1.00 1.00 1.00 0.23 0.07 0.58 1.00 1.00

AAANN 0.93 0.25 0.00 0.76 1.00 1.00 1.00 0.09 0.00 0.54 1.00 1.00 0.67 0.16 0.00 0.62 1.00 1.00

AAAND 0.84 0.21 0.00 0.79 1.00 1.00 0.93 0.19 0.00 0.61 1.00 1.00 0.98 0.25 0.03 0.68 1.00 1.00

AANND 0.91 0.14 0.00 0.84 1.00 1.00 1.00 0.28 0.00 0.68 1.00 1.00 1.00 0.26 0.01 0.74 1.00 1.00

Table 6-15 The average sensitivity and specificity for (1oo7,4oo7 and 7oo7) per web application

 MyReferences PhpBB TikiWiki

 Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

IDS Combination Types 1oo7 4oo7 7oo7 1oo7 4oo7 7oo7 1oo7 4oo7 7oo7 1oo7 4oo7 7oo7 1oo7 4oo7 7oo7 1oo7 4oo7 7oo7

Fu
nc

tio
na

lly
 d

iv
er

se

Overall 0.95 0.25 0.00 0.68 1.00 1.00 0.98 0.06 0.00 0.45 1.00 1.00 0.93 0.21 0.01 0.54 1.00 1.00

AAAAAND 0.93 0.28 0.00 0.67 1.00 1.00 0.96 0.06 0.00 0.42 1.00 1.00 1.00 0.23 0.02 0.52 1.00 1.00

AAAAAAN 0.95 0.32 0.00 0.62 1.00 1.00 0.97 0.06 0.00 0.37 1.00 1.00 0.64 0.21 0.01 0.48 1.00 1.00

AAAANND 0.96 0.20 0.00 0.72 1.00 1.00 1.00 0.06 0.00 0.49 1.00 1.00 1.00 0.21 0.00 0.58 1.00 1.00

AAAAANN 0.96 0.28 0.00 0.67 1.00 1.00 1.00 0.06 0.00 0.42 1.00 1.00 0.71 0.18 0.00 0.52 1.00 1.00

AAAAAAD 0.95 0.32 0.00 0.62 1.00 1.00 0.93 0.07 0.00 0.37 1.00 1.00 1.00 0.22 0.03 0.48 1.00 1.00

-104-

Table 6-16 the average sensitivity and specificity for (1oo9,5oo9 and 9oo9) per web application

 MyReferences PhpBB TikiWiki

 Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

IDS Combination Types 1oo9 5oo9 9oo9 1oo9 5oo9 9oo9 1oo9 5oo9 9oo9 1oo9 5oo9 9oo9 1oo9 5oo9 9oo9 1oo9 5oo9 9oo9

AAAAAANND I 0.97 0.26 0.00 0.62 1.00 1.00 1.00 0.07 0.00 0.37 1.00 1.00 1.00 0.22 0.00 0.48 1.00 1.00

6.7 Discussion, Conclusions and Limitations

In this chapter we presented results of analysing the performance of
diverse IDS configurations. The analysis is performed using a previously
published dataset by the authors of (Elia et al., 2010), which used nine
individual IDS configurations to monitor three web applications, that were
subjected to SQL injection attacks and benign crawling actions. From the nine
individual IDSs we built all the possible diverse pairs, triplets, quadruples etc.,
of IDSs. While analysing the results we considered three possible
configurations of the adjudicator: 1-out-of-N (raise an alarm when any one of
the IDS in the N configuration raise it); majority vote (raise an alarm only when
a majority of the systems in an N configuration raise it; when N is even, we
use the minimum number needed to reach a majority, e.g. 3oo4, 4oo6 etc)
and N-out-of-N (raise an alarm only when all IDSs in the N configuration raise
it). We presented the results using the well-established measures for binary
classifiers: sensitivity, specificity and accuracy.

The main conclusions from our analysis are:

- For 1oo2 systems: improvements in sensitivity compared with individual
systems are around 40% on average for the three applications, but come
with around 10% specificity deterioration on average. The largest
improvements in sensitivity, with the least deterioration in specificity are
from functionally-diverse pairs of IDSs;

- For 2oo2 systems: improvements in specificity compared with individual
systems are around 10% on average for the three applications, but come
with around 60% sensitivity deterioration on average;

- For 1ooN systems: on average there is an improvement in sensitivity
compared with individual IDS, and a deterioration in specificity ;

- For NooN systems: specificity can be perfect in most setups, but with
severe deterioration in sensitivity on average;

-105-

- Majority voting systems usually offer a compromise between the
extremes of 1ooN and NooN setups, but for these setups they tended to
negatively impact the sensitivity measures, with marginal gains in
specificity.

We also explored the level of “functional diversity” that exists in the IDSs
and how that impacts the sensitivity and specificity measures. On average we
found that the more functionally diverse the system is the better the sensitivity
and specificity on average, though not in all cases.

Apart from the results presented, we also provide a well-documented,
step-by-step analysis methodology for assessing the performance of N-
version diverse security decision support systems. This should prove useful
to other researchers and organisations to assess diversity in their setups.

There are a few limitations of the dataset we have used which prevent
us from making more generalised conclusions on the possible benefits of
diversity with IDSs:

- The dataset is from 2009, hence it may not accurately reflect the prevalence
of current attacks. However, we should stress that we are matching like
with like: i.e. attacks and IDSs at some snapshot in time, in this case 2009.
And SQL Injection attacks still remain largely prevalent and topical for web
applications today. Good datasets are difficult to find, but future work could
involve analysis with more current attack mechanisms and IDS versions.
This will allow comparison with our results and hence analyse diverse IDS
performance over time;

- The dataset is for web applications only. Ideally we would want datasets for
a wider array of applications. However, web applications dominate the
market, and because they are directly exposed to attackers, are the ones
security engineers spend the most effort trying to protect;

- The attacks are limited to SQL Injection. A wider array of attacks would be
preferable. Though we should stress that SQL Injection attacks are some
of the most dangerous and widely used attacks for database driven web
applications, hence the focus on them is valid;

- The data is generated by a vulnerability and attack injection tool and may
not be representative of operational scenarios used by different
organisations. Though we should stress that it is difficult to get operational
datasets, as organisations rarely share them, so authors in (Elia et al.,

-106-

2010) state that they took extra care to select attacks that were
representative of those seen in the field;

- Dataset for MyReferences and phpBB is dominated by attacks. As
mentioned before, the accuracy measure is likely to be dominated by TP
and FN in these circumstances. So we recommend using the sensitivity
measures for these applications.

- As we also mentioned for the AV study, we should emphasise that despite
the limitations stated above our main aim is to assess diversity between
tools in a particular snapshot in time. Our results show that diversity can be
effective and we have quantified this effectiveness.

-107-

(7) DIVERSITY WITH STATIC ANALYSIS TOOLS (SATs)

(7) DIVERSITY WITH STATIC ANALYSIS TOOLS (SATs) 107

7.1 Introduction .. 108

7.2 Study objectives ... 109

7.3 Dataset ... 110

7.4 Analysis of single version systems .. 113

7.5 Results ... 114

7.5.1 Visualising diversity ... 114

7.5.2 Sensitivity, specificity and ROCs for diverse SATs 116

7.5.3 Averages for different diverse setups 120

7.6 Analysis of the plugin ... 123

7.7 Discussion, Conclusions and Limitations 125

This chapter presents results of analysing the performance of diverse Static Analysis

Tools (SATs) configurations. Most sections in this chapter have been published in:

Algaith, A., Nunes, P., Fonseca, J., Gashi, I. and Viera, M. (2018). “Finding
SQL Injection and Cross Site Scripting Vulnerabilities with Diverse Static
Analysis Tools”. 14th European Dependable Computing Conference
(EDCC’18), pp.57-64.

-108-

7.1 Introduction

Static analysis tools are used to inspect software looking for
vulnerabilities, without executing the code. Since they can cover all the source
code effectively, they are a valuable tool to help security researchers to
automate the task of discovering some type of vulnerabilities. However, as
with any other binary decision system, SATs also suffer from false negative
(FN) errors (missing vulnerabilities in the code they inspect) and false positive
(FP) errors (incorrectly labelling code as containing a vulnerability when in fact
it does not).

There are many SATs available, and each one has its own strengths and
weaknesses. Rather than using just one tool, several diverse SATs can be
used for finding vulnerabilities to reduce the probability of vulnerabilities
remaining undetected. However, for diversity to be effective, the SATs should
be diverse in their design. This way, a vulnerability undetected by one SAT
should, with high probability, be detected by another one, while at the same
time not increasing prohibitively the number of false positives. The important
questions are whether a specific set of SATs would improve vulnerability
detection more than another set; quantifying these gains; and quantifying the
false positives.

We provide empirical results to help with the problem of deciding which
combination of SATs to use. We present results of analysing the performance
of diverse SAT configurations based on a previously published dataset (Nunes
et al., 2017). The dataset consists of five SATs that were individually used to
find two types of vulnerabilities, namely SQL Injection (SQLi) and Cross-Site
Scripting (XSS), in 134 plugins of the WordPress Content Management
System (CMS). WordPress powers 30% of the web and represents 60% of all
CMSs. According to the Hacked Website Report, WordPress is the most
infected CMS (Sucuri Remediation Group, 2017) it accounted for 74% of all CMS
infections in Q3 of 2016, and 83% of all CMS infections in 2017.

We apply in full the methodology we described in Chapter 3. Namely, we
calculate the FP, FN, TP, TN counts for each diverse configuration with SAT
tools; we calculate the measures of interest (specificity, sensitivity and
accuracy) or each diverse configuration, overall and by type of vulnerability;
we generate the ROC plots showing all the diverse configurations and the
individual defence systems, overall, by type of configuration and by type of
malicious input; we calculate the differences in the measures of interest

-109-

between diverse configurations and individual systems to measure the
possible improvements or deteriorations from switching to a diverse system.

The rest of the chapter is organised as follows: section 7.2 outlines the
objectives of the study; section 7.3 describes the dataset; section 7.4
describes the analysis methodology; section 7.5 presents the results from
analysing diverse systems with the different configurations; section 7.6
presents an analysis of the plug-ins in which the vulnerabilities were found;
and finally section 7.7 presents a discussion, conclusions and provisions for
further work.

7.2 Study objectives

In this study, we investigate all the possible diverse configurations that
we can build with the five individual SATs: 10 diverse pairs, 10 diverse triplets,
five diverse quadruples and one diverse quintet SAT system. We considered
various configurations for the adjudicator: 1-out-of-N (raise an alarm for a
vulnerability when any of N SATs in the diverse configuration does so); N-out-
of-N (raise an alarm for a vulnerability only when all N SATs in the diverse
configuration do so); and simple majority (raise an alarm for a vulnerability
when the majority of the N SATs in a diverse configuration do so).

Results are presented using the well-established measures for binary
classifiers: sensitivity (measures the performance of the SAT to find
vulnerabilities) and specificity (measures the performance of the SAT to not
raise false alarms). These measures capture the main requirements of
practitioners when selecting SATs: a tool that finds most vulnerabilities without
raising too many false alarms.

We analysed the measures for all possible two-SAT, three-SAT, four-
SAT and five-SAT diverse configurations. We found that none of the SATs, or
combinations of SATs, was able to find all the vulnerabilities in the target
plugins. But, we found that some of the SATs exhibit considerable diversity in
their ability to detect the types of vulnerabilities analysed. We then provide
empirically supported guidance on which combination of SATs provide the
most benefits in the ability to detect vulnerabilities, with a reduced false
positive rate. Hence, this study provides a significant new contribution
compared with the previous work in (Nunes et al., 2017) on which only 1-out-
of-N configurations were analysed. 1-out-of-N systems raise an alarm as long
as any one of the SATs in the system raise an alarm. One limitation of these

-110-

configurations is the potential increase of FPs, which may be unacceptable in
many situations. In the present work, we look at all the possible N-out-of-N
and majority voting configurations. This way a security researcher has more
evidence on the interplay between FPs and FNs in diverse SAT
configurations.

7.3 Dataset

A standard way to evaluate and compare the effectiveness of SATs is to
make them search for vulnerabilities in a set of applications (i.e. the workload),
followed by the computation of the evaluation metrics. The workload strongly
determines the results, so it should be representative of all applications.
Unfortunately, this is very hard to attain. To make the problem treatable, the
workload can be built for a particular domain. However, the selection of a set
of representative applications in a given domain is still a difficult task. Another
difficulty is the characterization of the applications in the workload (especially
if they are real applications) concerning the vulnerable (VLOC) and non-
vulnerable (NVLOC) lines of code (LOC). Moreover, the computation of
several evaluation metrics requires the outputs of all the tools to be classified
into FP, FN (False Negatives), TP and TN (True Negatives). To compare the
results of two or more SATs we need their outputs to be in a common format
with detailed data about the vulnerabilities such as the LOC, the SS, the
vulnerable variables, the chains of data/control dependencies of the
vulnerable variables from the Entry points (EPs) to the Sensitive Sink (SS) to
prove that the user input reaches the SS. Unfortunately, SATs report the
vulnerabilities they find in different formats with varying degrees of detail. For
example, some SATs report data in HTML pages and others in a GUI.
Although these data are human readable, they need to be converted to a
common format. To accomplish this in a seamless way (Nunes et al., 2017)
developed a tool able to automate the process.

The workload in (Nunes et al., 2017) builds on previous study (Na et al.,
2008). In that work (Na et al., 2008), the study proposed an approach to select
applications based on public repositories of vulnerabilities that include
confirmed vulnerabilities in real software. It applied this methodology to the
domain of WordPress plugins and for SQLi and XSS vulnerabilities based on
the online WPScan Vulnerability Database (WPVD) (wpvulndb, 2018). The
workload is a set of 134 plugins composed of 4,975 PHP files, 1,339,427 LOC
and where each plugin has at least one SQLi and/or one XSS VLOC (i.e. a

-111-

LOC with at least one vulnerable SS). As identifying all VLOCs and NVLOCs
(i.e. a LOC with all SSs non-vulnerable) in the workload is a hard task that
requires a thorough review by security experts, our approach to find more
VLOCs than those present in the WPVD was based on searching for further
vulnerabilities in the workload with one or more SATs, followed by a manual
review to confirm if they are TPs or FPs. The merge of all TPs with the
vulnerabilities of the WPVD becomes the list of VLOCs in the workload (which
is, nevertheless, a best-effort subset of all of them). Therefore, the list of
NVLOCs is obtained from all LOCs with a SS with at least one variable,
excluding those that were reported by the tools and confirmed manually as
TP.

To detect the SQLi and XSS vulnerabilities in the plugins, the following
five SATs were used: RIPS v0.55 (Dahse et al., 2014), Pixy v3.03(2007)
(Jovanovic et al., 2006), phpSAFE (Na et al., 2008), WAP v2.0.1(Medeiros et
al., 2014) and WeVerca v20150804 (Hauzar & Kofroň, 2015)

RIPS performs static taint analysis and string analysis. RIPS and Pixy
are two of the most referenced PHP SATs in the literature, but they are not
ready for Object Oriented Programming (OOP) analysis. RIPS has been
developed as open source until 2014, and only its recently released
commercial version is able to fully analyse OOP code. WAP, phpSAFE, and
WeVerca are recent tools under active development and they are prepared for
OOP code.

Static analysis is a complex task, and the tools may be unable to fully
process some files of the workload. Overall, phpSAFE was unable to analyse
130 files, RIPS could not analyse 2179 files, Pixy did not process 1473 files,
and WeVerca was not able to analyse a total of 20 files. To make the analysis
comparable we consider only the results obtained from files that could be
successfully analysed by all five tools.

Overall, the plugins contain 713,456 LOC and 402,218 logical LOC
(LLOC, i.e. commented and whitespace lines are excluded), as can be seen
in Table 6-1. The counting of the LOC and LLOC was performed using the
phploc39. WordPress plugin are constructed with the PHP language which
allows a mixture of OOP (Object Oriented Programming) and POP (Procedure

39 https://phar.phpunit.de/phploc.phar

-112-

Oriented Programming) code. The authors in (Nunes et al., 2017) provided a
classification of vulnerable and non-vulnerable POP and OOP code in the
plug-ins that they analysed. Examples are provided in the code extracts in the
two figures below Figure (7-1) and (7-2)

Figure 7-1 Example POP code in the analysed plugins.

Figure 7-2 Example OOP code in the analysed plugins.

In summary, (Nunes et al., 2017) considered a module to be OOP if that
module had a definition of a class. However within the same module, there
can be code, outside functions and methods of a class which would be POP.
Hence a LoC in their classification is always either POP or OOP, but not both.
But within a module there can be a mixture of OOP and POP LoCs.

Since programming orientation may be relevant for the performance of
the SATs, Table 7-1 also shows the LLOCs that are classified as POP code
and those that are classified as OOP code40.

40 A LOC cannot be categorised as both OOP or POP.

-113-

Table 7-1 Plugin Information

Table 7-2 shows the VLOCs and NVLOCs for SQLi and XSS for the
workload in Table 7-1. In this, we can see more XSS than SQLi data, but that
is also usual in real life applications.

Table 7-2 Dataset

7.4 Analysis of single version systems

Table 7-3 presents the five SATs, the labels (in brackets) we use to refer
to them in the rest of the study, and the FP, TN, FN and TP counts
respectively, for each of the two classes of vulnerabilities. Table 7-4 presents
the sensitivity and specificity measures for each SAT.

Table 7-3 The five SATs and the FP, TN, FN and TP counts

SAT
SQLi XSS

FP TN FN TP FP TN FN TP

phpSAFE (A) 53 6126 268 379 213 19682 2293 2056

RIPS (B) 116 6063 465 182 454 19441 1469 2880

WAP (C) 0 6179 492 155 25 19870 3964 385

Pixy (D) 31 6148 583 64 172 19723 3313 1036

WeVerca (E) 4 6175 608 39 24 19871 3488 861

SQLi XSS

 LLOC LLOC

Plug. Files POP OOP Plug. Files POP OOP
117 2168 120917 46617 130 3401 175747 58937

Vulnerability Code Type VLOC NVLOC Total

SQLi POP 138 605 743
 OOP 509 5574 6083

 Total 647 6179 6826
XSS POP 965 1370 2335

 OOP 3384 18525 21909

 Total 4349 19895 24244

-114-

Table 7-4 The five SATs and the sensitivity (sens.) and specificity (spec.) measures for each SAT

SAT
SQLi XSS

Sens. Spec. Sens. Spec.
phpSAFE (A) 0.586 0.991 0.473 0.989

RIPS (B) 0.281 0.981 0.662 0.977

WAP (C) 0.240 1.000 0.089 0.999

Pixy (D) 0.099 0.995 0.238 0.991

WeVerca (E) 0.060 0.999 0.198 0.999

In the present study, we extend the analysis of (Nunes et al., 2017) from
the viewpoint of diversity. From the five SAT configurations, we can build a
total of:

- 10 two-version combinations (5C2),

- 10 three-version combinations (5C3),

- 5 four-version combinations (5C4), and

- 1 five-version combination (5C5).

7.5 Results

In this section, we present the results of our analysis of the diversity in
the SAT tools.

7.5.1 Visualising diversity
We begin our analysis with a simple visualisation that shows the

commonality and diversity of the tools on the vulnerable and non-vulnerable
code. Figure 7-3 contains these plots for the two classes of vulnerabilities. We
will use Figure 7-3(a) to illustrate what each plot shows:

- The x-axis lists the five SAT tools;

- The y-axis lists the VLOCs (647 in total for SQLi).

A green cell in the plot shows for each SAT whether they detected the
vulnerable code as such (i.e. the green cells represent true alarms (TPs); the
white cells represent no alarms (in this case, FNs)).

Figure 7-3(b) is the same but for the XSS vulnerabilities. Figures 7-3(c)
and 7-3(d) are similar but in these plots we visualise the responses from SATs
on code that was not vulnerable – NVLOC (hence an alarm is a false positive
(FP) represented by a red coloured cell; no alarms are again represented as

-115-

white cells (in this case they are TNs)) for the SQLi and XSS vulnerabilities,
respectively. In 7.3(c) and 7.3(d) we show only the NVLOCs on which at least
one of the SATs reports an FP.

From these plots, we can observe that there is noticeable diversity
between some of the SATs (e.g. considerable diversity for both SQLi and XSS
between phpSAFE and RIPS, as is evident by the limited overlap in their
alarms in the graphs).

-116-

Vulnerability detected by SAT

(a) SQLi (VLOC: 647) (b) XSS (VLOC: 4349)

False alarm for non-vulnerabilities

(c) SQLi (NVLOC: 6179, of which 200 in the y-axis below

for NVLOCs with FPs for at least one of the SATs. The

rest had no FPs on any SAT)

(d) XSS (NV: 19, 895, of which 700 in the y-axis below for

NVLOCs with FPs for at least one of the SATs. The rest

had no FPs on any SAT)

Figure 7-3 Diversity between SATs for SQL Injection and Cross Site Scripting (XSS)

7.5.2 Sensitivity, specificity and ROCs for diverse SATs
We then proceeded to calculate the sensitivity and specificity for each of

the diverse combinations with the five SATs, for the three types of adjudication
setups considered (namely 1ooN, simple Majority vote (2oo3, 3oo4 and 3oo5)
and NooN). Table 7-5 presents the results of this analysis for all the possible
two-version, three-version, four-version and five version combinations for
SQLi. Table 7-6 shows the results for XSS.

From Tables 7-5 and 7-6 we can see some patterns emerging: the 1ooN
systems are better at finding vulnerabilities (better sensitivity), compared with
the best individual SATs; on the other hand, NooN systems are better at

-117-

correctly labelling non-vulnerable code (higher specificity). This is to be
expected since (similarly to what we also stated for the IDS systems in the
preceding chapter):

- 1ooN systems will in all cases perform:

- better or equal to the best single SAT in the diverse combination N
for vulnerable code, as any “alarm” from any of the N SATs systems
will lead to an alarm in a 1ooN system;

- equal or worse than the worst single SAT in the diverse combination
N for non-vulnerable code, as any “alarm” from any single SAT will
lead to this code being incorrectly labelled as vulnerable.

- NooN systems will in all cases perform:

- better or equal to the best single SAT for non-vulnerable code as the
NooN system only raises an “alarm” for non-vulnerable code if ALL
the SATs in the diverse configuration do so;

- equal or worse than the worst single SAT system in the diverse
configuration N for vulnerable code, as the NooN system will only
label code as vulnerable if ALL the single SATs in the diverse
configuration do so.

- Majority voting setups usually balance out these extremes, as they are not
as “trigger happy” as 1ooN setups in raising alarms, but also not as
conservative as NooN setups in remaining silent.

What is important to understand is how much better, or how much worse,
would a diverse configuration perform in these setups, and the results in
Tables 7-5 and 7-6 provide us with some interesting observations.

-118-

Table 7-5 Sensitivity (sens.) and specificity (Spec) for the 1ooN, Majority vote and NooN
configurations for N between 2 and 5 for SQLi

SQLi
1ooN Majority NooN

Sens. Spec. Sens. Spec. Sens. Spec.

(a, b) 0.782 0.976 - - 0.085 0.996

(a, c) 0.770 0.991 - - 0.056 1.000

(a, d) 0.655 0.987 - - 0.029 0.999

(a, e) 0.624 0.991 - - 0.022 1.000

(b, c) 0.444 0.981 - - 0.077 1.000

(b, d) 0.289 0.981 - - 0.091 0.995

(b, e) 0.297 0.981 - - 0.045 0.999

(c, d) 0.280 0.995 - - 0.059 1.000

(c, e) 0.277 0.999 - - 0.023 1.000

(d, e) 0.111 0.995 - - 0.048 0.999

(a, b, c) 0.901 0.976 0.193 0.999 0.012 1.000

(a, b, d) 0.787 0.976 0.153 0.998 0.026 0.999

(a, b, e) 0.796 0.976 0.111 0.994 0.020 1.000

(a, c, d) 0.784 0.987 0.138 0.999 0.003 1.000

(a, c, e) 0.787 0.991 0.097 0.999 0.002 1.000

(a, d, e) 0.668 0.987 0.056 0.998 0.022 1.000

(b, c, d) 0.447 0.981 0.119 0.998 0.045 1.000

(b, c, e) 0.457 0.981 0.102 0.994 0.022 1.000

(b, d, e) 0.301 0.981 0.094 0.994 0.045 0.999

(c, d, e) 0.292 0.995 0.083 0.998 0.023 1.000

(a, b, c, d) 0.901 0.976 0.087 1.000 0.003 1.000

(a, b, c, e) 0.913 0.976 0.051 1.000 0.002 1.000

(a, b, d, e) 0.799 0.976 0.053 0.998 0.020 1.000

(a, c, d, e) 0.796 0.987 0.045 1.000 0.002 1.000

(b, c, d, e) 0.459 0.981 0.079 0.998 0.020 1.000

(a, b, c, d, e) 0.913 0.976 0.094 0.998 0.000 1.000

-119-

Table 7-6 Sensitivity (sens.) and specificity (spec) for the 1ooN, Majority vote and NooN
configurations for N between 2 and 5 for XSS

XSS
1ooN Majority NooN

Sens. Spec. Sens. Spec. Sens. Spec.

(a, b) 0.963 0.970 - - 0.172 0.9963

(a, c) 0.522 0.989 - - 0.040 0.9991

(a, d) 0.631 0.982 - - 0.080 0.9985

(a, e) 0.586 0.988 - - 0.084 0.9997

(b, c) 0.687 0.977 - - 0.064 0.9990

(b, d) 0.683 0.976 - - 0.218 0.9921

(b, e) 0.733 0.977 - - 0.127 0.9989

(c, d) 0.271 0.991 - - 0.056 0.9995

(c, e) 0.251 0.998 - - 0.035 0.9998

(d, e) 0.334 0.991 - - 0.102 0.9994

(a, b, c) 0.981 0.970 0.208 0.996 0.034 0.9992

(a, b, d) 0.967 0.970 0.342 0.989 0.064 0.9991

(a, b, e) 0.986 0.970 0.309 0.995 0.037 0.9998

(a, c, d) 0.655 0.982 0.113 0.998 0.032 0.9997

(a, c, e) 0.613 0.988 0.133 0.999 0.013 0.9999

(a, d, e) 0.681 0.982 0.189 0.998 0.039 0.9998

(b, c, d) 0.702 0.976 0.236 0.991 0.051 0.9996

(b, c, e) 0.751 0.977 0.169 0.998 0.029 0.9998

(b, d, e) 0.747 0.976 0.257 0.991 0.095 0.9995

(c, d, e) 0.357 0.990 0.143 0.999 0.025 0.9999

(a, b, c ,d) 0.981 0.970 0.088 0.998 0.031 0.9997

(a, b, c, e) 0.998 0.970 0.073 0.999 0.013 0.9999

(a, b, d, e) 0.990 0.970 0.139 0.998 0.032 0.9999

(a, c, d, e) 0.696 0.982 0.071 0.999 0.012 1.0000

(b, c, d, e) 0.759 0.976 0.125 0.999 0.025 0.9999

(a, b, c, d, e) 0.998 0.970 0.154 0.998 0.003 1.0000

Sensitivity: Combining SATs phpSAFE (A), RIPS (B) and WAP (C) in a
1ooN setup (meaning we identify code as vulnerable as soon as any one of
these tools identifies it as such) gives very large gains in sensitivity for both
SQL Injection and XSS. Sensitivity for the best of these tools for SQL injection
is 0.56. 1oo3 configuration of these three tools (as listed in the row (a,b,c)) is
0.9. Adding the remaining two SATs (Pixy and WeVerca) improves sensitivity
a little bit more (to 0.91) in a 1oo5 setup (row (a,b,c,d,e)). For XSS, phpSAFE

-120-

(A) and RIPS (B) in a 1oo2 setup have a sensitivity score of 0.96 (individually
RIPS (B) had the best sensitivity at 0.66). Combining all five tools in a 1oo5
setup meant all the XSS vulnerabilities in the plugins we considered were
detected. As we would expect, we see large deteriorations in sensitivity for
NooN setups. We also observe poor sensitivity results for majority voting
setups.

Specificity: We see gains in specificity in NooN setups (meaning we
only label code as vulnerable if all N tools in the setup agree that the code is
vulnerable). Many configurations never raise false alarms in these
configurations. However, they also have very poor sensitivity values. As
expected, majority voting setups do better for sensitivity compared with NooN,
but worse for specificity.

ROC plots also help a decision maker to visualise these results and
compare the performance of the different systems. Figure 7-4 shows the eight
ROC plots, one for each vulnerability (SQLi and XSS), and for each
configuration of N, 2≤N≤5. In addition to the 1ooN, simple majority (1oo3, 3oo4
and 3oo5), and NooN setups that we showed in Tables 7-5. and 7-6, we also
calculated the remaining voting setups (2oo4, 2oo5, 4oo5) not shown in those
tables.

The optimal system in an ROC plot is one that appears on the top right-
hand corner (i.e. one that has both sensitivity and specificity of 1, since it
detects all vulnerabilities and never raises an alarm for code that does not
contain vulnerabilities). We have no such system in the configurations in our
examples. As we have seen from the results in Tables 7-5 and 7-6, most of
the results in our configurations have extremes of high sensitivity (1ooN) or
high specificity (NooN). The ROC plots make it easier to identify configurations
that lie between these extremes.

7.5.3 Averages for different diverse setups
We conclude our analysis with a summary table (Table 7-7) showing the

average Sensitivity and Specificity for non-diverse setups (abbreviated “1v” in
the first row of the table) compared with the averages for the different diverse
configurations. These results confirm the observations we have shown so far:

- For 1ooN systems: more than 70% improvements in sensitivity on average
in a 1oo2 setup compared with average individual SATs. More than three
times the improvements in sensitivity on average on a 1oo5 setup

-121-

compared with individual SATs. However, this comes at a correspondingly
high deterioration in specificity;

- For NooN systems: almost perfect specificity can be achieved when using
NooN setups (especially for configurations of N > 2). But this comes at a
large deterioration in sensitivity;

- Simple majority voting setups on average lead to a deterioration in
sensitivity (of between 30-65%) but with some improvements in specificity.

-122-

	
SAT phpSAFE RIPS WAP Pixy WeVerca

SAT Label A B C D E

N	 SQLi	 XSS	

N=2,

5C2 = 10

	
	 	

N=3,

5C3= 10

	 	

N=4,

5C4 = 5

	 	

N=5,

5C5 = 1

	 	

Figure 7-4 - ROC plots for the different diverse combinations and the two classes of
vulnerabilities.

A,B

0

0.2

0.4

0.6

0.8

1

0.
95

0.
96

0.
97

0.
98

0.
99 1

TR
U

E
PO

SI
TI

VE
 R

AT
E

(S

EN
SI

TI
VI

TY
)

SPCIFICITY

A,B

0

0.2

0.4

0.6

0.8

1

0.
95

0.
96

0.
97

0.
98

0.
99 1

TR
U

E
PO

SI
TI

VE
 R

AT
E

(S

EN
SI

TI
VI

TY
)

SPECIFICITY

A,B,C

0

0.2

0.4

0.6

0.8

1

0.
95

0.
96

0.
97

0.
98

0.
99 1

TR
U

E
PO

SI
TI

VE
 R

AT
E

(S

EN
SI

TI
VI

TY
)

SPECIFICITY

A,B,C

A,B,D

A,B,E

0

0.2

0.4

0.6

0.8

1

0.
95

0.
96

0.
97

0.
98

0.
99 1

TR
U

E
PO

SI
TI

VE
 R

AT
E

(S

EN
SI

TI
VI

TY
)

SPECIFICITY

A,B,C,D

A,B,C,E

0

0.2

0.4

0.6

0.8

1

0.
95

0.
96

0.
97

0.
98

0.
99 1

TR
U

E
PO

SI
TI

VE
 R

AT
E

(S

EN
SI

TI
VI

TY
)

SPECIFICITY

A,B,C,E

0

0.2

0.4

0.6

0.8

1
0.

95

0.
96

0.
97

0.
98

0.
99 1

TR
U

E
PO

SI
TI

VE
 R

AT
E

(S

EN
SI

TI
VI

TY
)

SPECIFICITY

0

0.2

0.4

0.6

0.8

1

0.
95

0.
96

0.
97

0.
98

0.
99 1

TR
U

E
PO

SI
TI

VE
 R

AT
E

(S

EN
SI

TI
VI

TY
)

SPECIFICITY

0

0.2

0.4

0.6

0.8

1

0.
95

0.
96

0.
97

0.
98

0.
99 1

TR
U

E
PO

SI
TI

VE
 R

AT
E

(S

EN
SI

TI
VI

TY
)

SPECIFICITY

-123-

7.6 Analysis of the plugin

In this section we present the results of our analysis by the plug-ins of
WordPress that the SAT tools analysed. We did this to understand better the
observed diversity in detection capabilities of the SAT tools.

Figures 7-5(a) and (b) show the ordering of the plugins by total number of
VLOCs (left to right, those with most VLOCs are on the left of the graph) for
SQLi and XSS respectively. Figure 7-5(c) and 7-5(d) shows the sensitivity of
each SAT for each of these plugins (the order in the x-axis of figures 7-5(c)
and 7-5 (d) corresponds to the order in Figures 7-5(a) and 7-5(b) respectively).
We see that there is considerable diversity in the sensitivity of the tools for the
different plugins. For example, Figure 7-5 (d) shows a large cluster of orange
diamonds (RIPS (B)) in the top left, which indicates that this tool was
outperforming phpSAFE (A) on sensitivity for these plug-ins, even though
phpSAFE was better on average overall. RIPS (B) for SQLi reports many
vulnerabilities in the levelfourstorefront.8.1.14 plugin (S_P4) and the
phpSAFE (A) reports none (we highlighted this plugin in Figure 7-5(c)).
However, for the sendit.2.1.0 plugin (S_P7) the SAT phpSAFE reports many

Table 7-7 Average Sensitivity and Specificity for each diverse version and each class of
vulnerabilities

 SQLi XSS

SAT
Configurations Sens. Spec. Sens. Spec.

1v 0.25 0.99 0.33 0.99
1oo2 0.45 0.99 0.57 0.98
1oo3 0.62 0.98 0.74 0.98
1oo4 0.77 0.98 0.89 0.97
1oo5 0.91 0.98 0.99 0.97
2oo2 0.05 0.99 0.10 0.99
3oo3 0.02 0.99 0.04 0.99
4oo4 0.01 1.00 0.02 0.99
5oo5 0.00 1.00 0.003 0.99
2oo3 0.11 0.99 0.21 0.99
2oo4 0.17 0.99 0.32 0.99
2oo5 0.21 0.99 0.43 0.99
3oo5 0.09 0.99 0.15 0.99
4oo5 0.04 1.00 0.06 0.99

-124-

VLOCs and the other SATs none.
(a) SQLi Plugins

(b) XSS Plugins

___Total number of VLOCs ___Total number of NVLOCs

(c) SQLi Sensitivity of SAT per Plugin (d) XSS Sensitivity of SAT per Plugin

0
20
40
60
80

100
120
140
160
180
200

Vu
ln

er
ab

le
 a

nd
 N

on
-V

ul
ne

ra
bl

e
Li

ne
s

209

381
451

639

427

0

100

200

300

400

500

600

700

Vu
ln

er
ab

le
 a

nd
 N

on
-V

ul
ne

ra
bl

e
Li

ne
s

1076

733

983

2517800

-1.5

-1

-0.5

0

0.5

1

1.5

Se
ns

iti
vi

ty

A B C D E

B_response to S_P4

A_response to S_P4

-1.5

-1

-0.5

0

0.5

1

1.5

Se
ns

iti
vi

ty

A B C D E

X_
P1

X_
P7

X_
P1

3
X_

P1
9

X_
P2

5
X_

P3
1

X_
P3

7
X_

P4
3

X_
P4

9
X_

P5
5

X_
P6

1
X_

P6
7

X_
P7

3
X_

P7
9

X_
P8

5
X_

P9
1

X_
P9

7
X_

P1
03

X_
P1

09
X_

P1
15

X_
P1

21
X_

P1
27

Plugin Label

Figure 7-5 Vulnerable and non-vulnerable lines count per plugin and sensitivity measures, for SQLi and XSS.

S_
P1

S_
P7

S_
P1

3
S_

P1
9

S_
P2

5
S_

P3
1

S_
P3

7
S_

P4
3

S_
P4

9
S_

P5
5

S_
P6

1
S_

P6
7

S_
P7

3
S_

P7
9

S_
P8

5
S_

P9
1

S_
P9

7
S_

P1
03

S_
P1

09
S_

P1
15

Plugin Label

-125-

7.7 Discussion, Conclusions and Limitations

In this study, we presented results of analysing the performance of diverse
Static Analysis Tools (SATs) configurations. The analysis is performed using
a previously published dataset, where five SATs were used for finding two
types of vulnerabilities, namely SQL Injections (SQLi) and Cross-Site Scripting
(XSS), in 134 WordPress plugins. From the five individual SATs, we built 10
diverse pairs, 10 diverse triplets, 5 diverse quadruples and one diverse quintet
SAT system. When analysing the results, we considered various
configurations of the adjudicator: 1ooN (raise an alarm for a vulnerability when
any of N SATs in the diverse configuration do so); NooN (raise an alarm for a
vulnerability only when all N SATs in the diverse configuration do so); and
simple majority (raise an alarm for a vulnerability when the majority of the N
SATs in a diverse configuration do so). We presented the results using the
well-established measures for binary classifiers: sensitivity and specificity.
The main conclusions from our analysis are:

• For 1ooN systems: improvements in sensitivity compared with individual
SAT are from 70% on average for 1oo2 systems, to more than 300% for
1oo5 systems, but come with a corresponding specificity deterioration on
average. The largest improvements in sensitivity, with the least
deterioration in specificity are from combining phpSAFE with WAP SATs
in a diverse 1oo2 configuration;

• For NooN systems: specificity can be perfect in most setups, but with
severe deterioration in sensitivity on average;

• For simple majority voting setups: average deterioration in sensitivity
(of between 30-65%) but with some improvements in specificity.

For organisations primarily interested in detecting vulnerabilities (improved
sensitivity) and that are willing to invest resources in sifting through alarms to
separate out the false alarms from true alarms, diverse setups in a 1ooN
adjudication setup can be very beneficial. In particular, phpSAFE, RIPS and
WAP SATs exhibit considerable diversity in vulnerability detection.

Work conducted by colleagues from Universities of Coimbra and
Polytechnic Institute of Guarda provided further insight into the observed
diversity between the SAT tools. They found that some of the tools are better
at detecting vulnerabilities in certain code constructs than others (for example
the way in which they analyse arrays, control flow constructs etc.), which helps

-126-

explain the observed benefits in vulnerability detection overall that we
presented in the previous sections.

There are some limitations to the conclusions we can draw from the
research and several provisions for further work:

- Lack of sufficient automation for extracting the slices of code and deriving
the test cases. Hence automating this process is further work. We found
that using small test cases derived from the plugins is one helpful way to
find strengths and weaknesses of the SATs;

- The analysis is based on plug-ins of WordPress which are written in php.
Hence the conclusions are limited primarily to web applications written in
php. Using SATs to analyse vulnerabilities in code other that PHP, and with
a wider range of applications than just WordPress plug-ins, is useful further
work;

- The conclusions are limited to SQLi and XSS vulnerabilities. Using SATs
that can analyse different types of vulnerabilities other than SQLi and XSS
would be more beneficial. However we should state that SQLi and XSS
vulnerabilities are some of the most widely spread and most dangerous
vulnerabilities, as evidenced from them being consistently ranked in the top
10 most critical web application security risks by The Open Web
Application Security Project (OWASP) in the last 5 years (OWASP, 2017).

As we also mentioned for the AV and IDS studies in preceding chapters, we
should emphasise that despite the limitations stated above our main aim is to
assess diversity between tools in a particular snapshot in time. Our results
show that diversity can be effective and we have quantified this effectiveness.

-127-

(8) OPTIMAL ADJUDICATION

(8) OPTIMAL ADJUDICATION ... 127

8.1 Introduction .. 128

8.2 Study objectives ... 128

8.3 Optimal adjudication .. 129

8.4 Illustration of the use of optimal adjudication 130

8.5 Analysis methodology .. 132

8.6 Results of the analysis of optimal adjudication with the two
datasets ... 133

8.7 “Weighted loss” analysis .. 135

8.8 Discussion, Conclusions and Limitations 141

-128-

8.1 Introduction

In this chapter we describe how an algorithm that ensures “optimal
adjudication” – an adjudication function which deterministically combines the
random outputs of several tools to give outputs that guarantee no other
scheme can be shown to be quantifiably better – can be used with SATs and
IDSs. The algorithm is the work of (Giandomenico & Strigini, 1990) and is
based on the observation that if we have a criterion for choosing between two
adjudication functions which one is better to deploy (given what we know
about the replicas with which it will work, and our loss functions or the various
kinds of erroneous adjudicated output), then we implicitly know how to specify
an adjudicator function that is optimal with respect to that criterion. We
illustrate that use of the optimal adjudication with the IDS and SAT datasets
that we outlined in the preceding two chapters (namely, Chapters 6 and 7).

The rest of the chapter is organised as follows: section 8.2 outlines the
objectives of the study; section 8.3 describes the optimal adjudication function;
section 8.4 illustrates the use of optimal adjudication with an example; section
8.5 describes the analysis methodology; section 8.6 presents the results of
the analysis of optimal adjudication and its comparison with other forms of
adjudication (namely 1ooN, majority vote and NooN) for the two datasets;
section 8.7 shows the average losses for each type of adjudicator (1ooN,
majority vote, NooN and “optimal adjudicator”) when we treat each loss as
equal, as well as when we assign different weights to the losses; and finally
section 8.8 presents a discussion, conclusions and provisions for further work.

8.2 Study objectives

The commonly used solutions for adjudication are some variation of
“voting”, the simplest being majority voting: if out of – say – three opinions,
two are in agreement and disagree with the third one, then the two that agree
are more likely to be correct than the third one. This is a reasonable
assumption, for instance, in many cases of redundancy used against
hardware failures and it yields a very effective design. These kinds of
considerations are often behind the choice of voting as an adjudication
function in diverse-redundant systems. However, for many applications of
redundancy and diversity, including most security applications, these obvious
considerations do not necessarily hold. Taking the example of attack sensors,
we use diversity to give ourselves a chance that if one sensor cannot detect

-129-

a certain attack, another sensor might. We expect all sensors to have flaws –
i.e., that they will not detect some zero-day attacks, or even known attacks for
which the designers failed to specify a fully effective detection method, or even
that the implementation of a good specification has some bugs. With luck, and
as demonstrated in the empirical studies so far in this thesis, these
weaknesses will not be common to all the sensors we deploy; likewise, among
different sensors only some will raise an alarm on any given situation of
innocuous traffic: diversity “works”. But some of the systematic errors will be
common to more than one sensor. In principle, we could have two sensors
that consistently fail to detect exactly the same attacks, while the third sensor
correctly flags them; and thus, a 2-out-of-3 vote will produce a FN error. We
will be no better off than if we had used that third sensor alone. Of course
similar perverse alignments between errors may affect non-attacks as well, so
that a 2-out-of-3 voter might also frequently produce FPs. Does this mean that
diversity will not work in practice despite its intuitive attractiveness? Can we
better realise its potential by more refined adjudication? To this effect we used
a technique called optimal adjudication outlined in a paper by (Giandomenico
& Strigini, 1990) and applied it to the IDS and SAT datasets. We assessed
how much better can optimal adjudication do compared with other
conventional forms of adjudication we described so far (1ooN, majority voting
or NooN) in reducing the total loss from the two types of failures (FPs and
FNs).

8.3 Optimal adjudication

The optimal adjudication described in (Giandomenico & Strigini, 1990)
is based on the observation that if we have a criterion for choosing between
two adjudication functions which one is better to deploy (given what we know
about the replicas with which it will work, and our loss functions or the various
kinds of erroneous adjudicated output), then we implicitly know how to specify
an adjudicator function that is optimal with respect to that criterion. For
instance, a reasonable criterion is minimising expected loss. To assess the
expected loss due to a certain adjudication function, we need the probability
of each event of interest: e.g., probability of real attack and false negative
output of the adjudicator, of no attack and false positive output, etc. If the
adjudicator is specified to calculate a function of the outputs of all the replicas,
it can be assessed – we can calculate the expected loss from one decision on
the set of outputs of a certain set of replicas, and therefore we can compare

-130-

different adjudication functions and choose the best one – given the
probabilities of each replica (each sensor in our case), pair of replicas, etc.,
giving a correct answer on each kind of input.

The process of specifying an optimal adjudicator, as described in
(Giandomenico & Strigini, 1990), is:

1) for each possible combination of sub-component outputs to adjudicate
– syndrome, assess the two probabilities of it occurring in the presence
of an attack and in the presence of a non-attack situation (0,1);

2) the adjudicator function is defined as a simple table, which for each
syndrome will contain what output the adjudicator should issue if it
receives that syndrome as input;

3) to choose this specified adjudicated output, calculate the values of
expected loss that would be associated with that particular syndrome if
the adjudicator indicated “attack” and if it were to output “non-attack”;
choose the output with lower expected loss.

8.4 Illustration of the use of optimal adjudication

This section illustrates the use of optimal adjudication described in
(Giandomenico & Strigini, 1990) using a practical example with Intrusion
Detection Systems. We will use an example with three IDSs, using actual
numbers which we will present in more detail in next sections.

Table 8-1 shows the eight possible syndromes of a three version system.
We label the output from each IDS as either one (i.e. raises an alarm) or zero
(i.e. no alarm raised). The syndromes are the input of the adjudication
function.

We then check each syndrome against the actual inputs to the IDSs. In
our examples we have two types of inputs: Attacks (labelled as A) and non-
attacks (labelled as NA). Table 8-2 shows a small excerpt of this input table
for some of the inputs. In this example we have a total of 136 Attack inputs,
and 45 Non-Attack inputs. In this simple example we have assumed that the
losses associated with False Positives (i.e. alarms raised for Non Attacks) and
False Negatives (i.e. no alarms for Attacks) are the same. So, we associate a
loss unit of 1 for each FP or FN error.

-131-

Now that we have a look up table for all inputs to the IDSs, the
syndromes (i.e. the outputs of the IDSs), and the loss values for the two types
of failures we can proceed with calculating the optimal adjudicated output.

Table 8-1 The Syndromes of three IDSs.

Output from

SCALP sqlia

 Output from

SNORT 2.8

 Output from

SNORT 2.8 Plus
Syndromes

0 0 0 0
0 0 1 1
0 1 0 10
0 1 1 11
1 0 0 100
1 0 1 101
1 1 0 110
1 1 1 111

Table 8-2 The optimal adjudication lookup table for the three-version system of Table 8-1

As we stated previously, we do this by first calculating the values of
expected loss that would be associated with that particular syndrome if the
adjudicator indicated “attack” and if it were to output “non-attack” and then
choosing the output with lower expected loss. Table 8-2 shows these results
for the example with the three IDSs. Let us explain the table in more detail:

Syndromes à

0 1 10

11

10
0

10
1

11
0

11
1

To
ta

l

Attack 56 46 0 0 0 34 0 0 136

Non-Attack 41 0 0 0 4 0 0 0 45

Total Demands 97 46 0 0 4 34 0 0 181

P(Syndrome) 0.54 0.25 0 0 0.02 0.19 0 0 1

Adjudged Output 1 1 1 1 0 1 1 1

P(attack|Si) 0.58 1 0 0 0 1 0 0

P(fn | Si) 0 0 0 0 0 0 0 0

P(fp | Si) 0.42 0 1 1 0 0 1 1

Total Probability of FP Errors (sum of product of P(fp | Si) * P(Syndrome)) 0.227

Total Probability of FN Errors (sum of product of P(fn | Si) * P(Syndrome)) 0

Total probability of error: Total Probability of FP Errors + Total Probability of FN Errors 0.227

-132-

the first column represents syndrome 0: i.e. all three IDSs did not raise an
alarm. From the lookup table we found that all three IDSs did not raise an
alarm for 56 attacks, and 41 non-attacks. Raising an alarm would lead to 41
FPs, but not raising an alarm would lead to 56 FNs. Since we associated the
same loss value to both FNs and FPs, then we chose the output that
minimises the overall loss: in this case (counterintuitively), when all three IDSs
do not raise an alarm, the optimal choice for the adjudicator is to actually raise
an alarm, as indicated by the “1” in the “Adjudged Output” row. We proceed
to do the same for each of the other syndromes. When we have no data (as
in examples for Syndromes 10, 11, 110 or 111) we can set the optimal
adjudicator to either 1 or 0. If we are more concerned about FNs, we would
rather set it to 1 in those cases (i.e. in this case we are stating that even if we
have not seen any inputs so far with that syndrome, if we do see them in the
future, we would rather raise an alarm so that an administrator can investigate
them). As we observe more inputs in the future, we would update the lookup
table which could then lead the optimal adjudication outputs to also change.

Based on the adjudged output then (Giandomenico & Strigini, 1990) also
describe how to calculate the total probability of FP errors, and the total
probability of FN errors. These may be smaller or larger than other forms of
adjudication for a given system, but the total probability of error for the system
(the sum of these two errors) will always be smallest for the optimal
adjudicator. In the example above, we correctly labelled all attacks as such
(i.e. we have 0 FNs) but have failed to correctly label 41 non-attacks as such
(i.e. we have 41 FPs) out of a total of 181 demands. So, 41 / 181 is = 0.227 .

8.5 Analysis methodology

Using the method of calculating the probability of errors illustrated in the
previous section we proceeded to calculate these probabilities for the optimal
adjudicator for all the possible combinations of diverse systems for both IDSs
and SATs. In this chapter we show the total probability of error for all four
adjudicators (1ooN, majority vote, NooN and “optimal adjudication”), for the
two studies (IDSs and SATs) and all their corresponding applications (3 for
IDSs and 2 for SATs) to enable us to compare the different options.

In summary, we did the following:

- We calculated the FP, FN, TP, and TN counts for each diverse
configuration (as previously explained in Chapter 3);

-133-

- We calculated the total probability of error for each configuration and each
adjudicator, as explained in section 8.4;

- We calculated the average total probability of error for each configuration
and each adjudicator.

In the rest of this chapter we will present the results.

8.6 Results of the analysis of optimal adjudication with the
two datasets

Figures 8-1 and 8-2 below show the total probability of error calculated
for the different types of adjudicators we are studying (1ooN, simple majority
vote, NooN and optimal adjudicator), for the two datasets (IDS and SATs) for
each of the applications (three for IDSs and two for SATs). To enable a fair
comparison, we chose the N values that allow for a simple majority vote to be
calculated and where we have more than one diverse IDS system (i.e. N=3,
5, and 7 for the IDS; N=3 for the SATs). Tables 8-3 and 8-4 show the total
probability of errors for the 9-version IDS and 5-version SAT for each of the
adjudicators, for each application (since there is a single such system that we
can calculate there was no need to draw a graph).

As expected, we can observe that the “optimal adjudicator” always
performs best, or equally best compared with any of the other adjudicators. In
some cases it can outperform the other adjudicators by a large amount.

-134-

Figure 8-1 Total loss probability of the diverse IDSs for the three applications, for N=3, 5 and 7.

___1OON ___ NOON ___ ROON _ _ _ ADJ

MyReferences phpBB TikiWiki
N=3, 9C3= 84

N=5, 9C5 = 126

N=7, 9C7 = 36

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1 10 19 28 37 46 55 64 73 82

To
ta

l p
ro

ba
bi

lit
y

of
 e

rr
or

s

Diverse IDSs

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1 10 19 28 37 46 55 64 73 82

To
ta

l p
ro

ba
bi

lit
y

of
 e

rr
or

s

Diverse IDSs

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1 9 17 25 33 41 49 57 65 73 81

To
ta

l p
ro

ba
bi

lit
y

of
 e

rr
or

s

Diverse IDSs

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1 14 27 40 53 66 79 92 10
5

11
8

To
ta

l p
ro

ba
bi

lit
y

of
 e

rr
or

s

Diverse IDSs

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1 14 27 40 53 66 79 92 10
5

11
8

To
ta

l p
ro

ba
bi

lit
y

of
 e

rr
or

s

Diverse IDSs

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1 14 27 40 53 66 79 92 10
5

11
8

To
ta

l p
ro

ba
bi

lit
y

of
 e

rr
or

s
Diverse IDSs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 5 9 13 17 21 25 29 33

To
ta

l p
ro

ba
bi

lit
y

of
 e

rr
or

s

Diverse IDSs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 5 9 13 17 21 25 29 33

To
ta

l p
ro

ba
bi

lit
y

of
 e

rr
or

s

Diverse IDSs

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1 5 9 13 17 21 25 29 33

To
ta

l p
ro

ba
bi

lit
y

of
 e

rr
or

s

Diverse IDSs

-135-

	 SQLi	 XSS	

N=3,

 5C3= 10

	 	

Table 8-3 – Total loss probability of the diverse 9-version IDSs for each application

 MyReferences phpBB TikiWiki

1oo9 0.116 0.178 0.525

5oo9 0.552 0.664 0.776

9oo9 0.751 0.716 1

Optimal Adjudication 0.055 0 0

Table 8-4 - Total loss probability of the diverse 5-version SATs for each application

 SQLi XSS

1oo5 0.033 0.025

3oo5 0.088 0.153

5oo5 0.499 0.499

Optimal Adjudication 0.029 0.025

8.7 “Weighted loss” analysis

The total probabilities of error we have shown do not discriminate
between the different loss values that an organisation may associate with an
FP or an FN error. For example the loss that an organisation associates with
an FN error may be 10 times higher than for an FP error. We did a simple

0

0.05

0.1

0.15

0.2

1 2 3 4 5 6 7 8 9 10

To
ta

lp
ro

ba
bi

lit
y

of
 e

rr
or

s

Diverse SATs

0

0.05

0.1

0.15

0.2

1 2 3 4 5 6 7 8 9 10

To
ta

lp
ro

ba
bi

lit
y

of
 e

rr
or

s

Diverse SATs

Figure 8-2 Total loss probability of the diverse SATs for the two applications, for N=3.

-136-

experiment where we associate different loss “weights” to different errors and
compare how much better does an optimal adjudicator perform compared with
the other adjudicators as we vary the weights (or in other words by how much
the optimal adjudicator can reduce total loss compared with the other
adjudicators).

Figure 8-3 shows the average losses (y-axis) for all the possible 3-
version, 5-version, 7-version and 9-version IDS systems, for each application.
Each row in the table shows a different weight for the FPs and FNs: the first
row, shows the examples where we weigh the losses with same weight; and
the other rows show the weight we associate with FPs and FNs. Figure 8-5
shows a similar table for the SATs (3-version and 5-version).

We observe that the ordering of the best systems, as well as the gains
from optimal adjudication can vary depending on the losses associated with
the different errors. The average added losses compared with optimal
adjudication for the 1ooN, majority voting and NooN setups are given in the
stacked-bar charts in Figures 8-4 for IDSs and Figures 8-6 for SATs (for each
application, respectively). So these figures provide an organisation with
measures on the savings they could make by reducing losses due to FP or
FN errors if they switch from a conventional adjudicator (1oon, majority vote
or NooN) to an optimal adjudicator setup.

-137-

Y-axes: The averages of weighted losses; X-axes: Number of IDSs (N=3,5,7,9)

 MyReferences phpBB TikiWiki
W1(FP)=1,

W2(FN)=1

W1(FP)=9,

W2(FN)=1

W1(FP)=7,

W2(FN)=3

W1(FP)=3,

W2(FN)=7

W1(FP)=1,
W2(FN)=9

Figure 8-3 The average loss per diverse IDS setup for each application (where N=3,5, 7 and 9)

0

50

100

150

3 5 7 9
0

50
100
150
200
250
300

3 5 7 9
0

20

40

60

80

3 5 7 9

0

50

100

150

200

3 5 7 9
0

100
200
300
400
500
600

3 5 7 9
0

100

200

300

400

3 5 7 9

0

100

200

300

400

500

3 5 7 9
0

200

400

600

800

3 5 7 9
0

100

200

300

400

3 5 7 9

0

200

400

600

800

1000

3 5 7 9
0

500

1000

1500

2000

3 5 7 9
0

100
200
300
400
500
600

3 5 7 9

0

500

1000

1500

3 5 7 9
0

500

1000

1500

2000

2500

3 5 7 9
0

200

400

600

800

3 5 7 9

-138-

Y-axes: The averages of weighted losses; X-axes: Number of IDS s(N=3,5,7,9)

 MyReferences phpBB TikiWiki
W1(FP)=1,

W2(FN)=1

W1(FP)=9,

W2(FN)=1

W1(FP)=7,

W2(FN)=3

W1(FP)=3,

W2(FN)=7

W1(FP)=1,
W2(FN)=9

Figure 8-4 The average loss difference between the optimal adjudication function and the other
diversty IDS setups (1ooN,majority vote and NooN) for each application. For N=3, 5, 7 and 9.

0

50

100

150

200

250

N=3 N=5 N=7 N=9
0

100
200
300
400
500
600

N=3 N=5 N=7 N=9
0

50

100

150

200

N=3 N=5 N=7 N=9

0

100

200

300

400

N=3 N=5 N=7 N=9
0

200
400
600
800

1000
1200

N=3 N=5 N=7 N=9
0

100
200
300
400
500
600

N=3 N=5 N=7 N=9

0

200

400

600

800

N=3 N=5 N=7 N=9
0

500

1000

1500

2000

N=3 N=5 N=7 N=9
0

200

400

600

800

N=3 N=5 N=7 N=9

0

500

1000

1500

2000

N=3 N=5 N=7 N=9
0

1000

2000

3000

4000

N=3 N=5 N=7 N=9
0

200
400
600
800

1000
1200

N=3 N=5 N=7 N=9

0

500

1000

1500

2000

2500

N=3 N=5 N=7 N=9
0

1000

2000

3000

4000

5000

N=3 N=5 N=7 N=9
0

500

1000

1500

N=3 N=5 N=7 N=9

-139-

Y-axes: The averages of weighted losses; X-axes:
Number of SATs (N=3 and 5)

 SQLi XSS
W1(FP)=1,

W2(FN)=1

W1(FP)=9,

W2(FN)=1

W1(FP)=7,

W2(FN)=3

W1(FP)=3,

W2(FN)=7

W1(FP)=1,
W2(FN)=9

Figure 8-5 The average loss per SAT diverse setup for each application (where N=3 and 5)

0

200

400

600

800

3 5
0

1000

2000

3000

4000

5000

3 5

0

500

1000

1500

2000

3 5
0

1000
2000
3000
4000
5000
6000

3 5

0

500

1000

1500

2000

2500

3 5
0

5000

10000

15000

3 5

0

1000

2000

3000

4000

5000

3 5
0

10000

20000

30000

40000

3 5

0

500

1000

1500

2000

3 5
0

10000

20000

30000

40000

50000

3 5

-140-

Y-axes: The averages of weighted losses;
X-axes: Number of SATs (N=3, and 5)

 SQLi XSS
W1(FP)=1,

W2(FN)=1

W1(FP)=9,

W2(FN)=1

W1(FP)=7,

W2(FN)=3

W1(FP)=3,

W2(FN)=7

W1(FP)=1,
W2(FN)=9

Figure 8-6 The average loss difference between the optimal adjudication function and the other
diverse SAT setup (1ooN,majority vote and NooN) for each application.

0

200

400

600

800

1000

N=3 N=5
0

2000

4000

6000

8000

N=3 N=5

0

500

1000

1500

2000

N=3 N=5
0

1000

2000

3000

4000

N=3 N=5

0
500

1000
1500
2000
2500
3000

N=3 N=5
0

5000

10000

15000

20000

N=3 N=5

0
10000
20000
30000
40000
50000
60000

N=3 N=5 0
10000
20000
30000
40000
50000
60000

N=3 N=5

0

20000

40000

60000

80000

N=3 N=5
0

10000
20000
30000
40000
50000
60000

N=3 N=5

-141-

8.8 Discussion, Conclusions and Limitations

We applied the optimal adjudication function from (Giandomenico &
Strigini, 1990) in a practical security context with IDS and SAT datasets that
we outlined in the preceding two chapters (namely, Chapters 5 and 6), and
we show the gains that an organisation can obtain from switching from a
“conventional” adjudicator (such as 1ooN, majority vote or NooN) to an
“optimal adjudicator”. While the preceding chapters showed the gains/or
penalties from using diversity with binary decision systems, in this chapter we
show the relative gains from optimal adjudication between different diverse
setups. We also show how these gains change as the relative costs of the two
types of failures vary in different scenarios.

A limitation of optimal adjudication is that we need to have labelled data
on past failures before we decide what is the “optimal” setup. But this is true
of any other adjudication scheme. We can blindly decide to use 1ooN, but we
will not know if this is working well until we see the results.

As future work, it will be useful to apply the optimal adjudicator scheme
to other types of datasets and systems to analyse the potential gains that may
be obtained. In terms of engineering further work it will be interesting to have
a version of an optimal adjudicator implemented for a working security system
that uses multiple channels. This is currently planned as work in progress by
other colleagues from City working on the EU DiSIEM project1.

1 http://disiem-project.eu/

-142-

(9) CONCLUSIONS AND FUTURE WORK

(9) CONCLUSIONS AND FUTURE WORK .. 142

9.1 Introduction .. 143

9.2 Summary of conclusions .. 143

9.3 Review of aims and objectives ... 145

9.4 Provisions for further work ... 146

9.5 Final remarks ... 147

-143-

9.1 Introduction

Each of the chapters had their own Conclusions sections. The purpose
of this chapter is to link and summarise those conclusions into a single
coherent chapter, review the aims and objectives of the research and
summarise the provisions for further work.

9.2 Summary of conclusions

We presented research that helps us quantify the possible benefits (and
harm) of diversity for security, and hence help improve decision making for
security. We conducted experiments with three types of defence tools: AV
products, Intrusion Detection Systems (IDS) and Static Analysis Tools (SAT).
We presented the results using well-known metrics for binary classifiers:
namely Sensitivity and Specificity; we assessed the various forms of
adjudication that may be used when configuring diverse tools: 1-out-of-N
(raise an alarm as soon as ANY of the defences do so), N-out-of-N (raise an
alarm only if ALL the defences do so), majority voting (raise an alarm where
a MAJORITY of the defences do so) or optimal adjudication (raise an alarm in
such a way that it minimises the overall loss to the system from a failure).

The main conclusions are as follows:
• For the study with AV products:

• For most vendors in our study (seven out of nine) the VirusTotal
version has a better detection rate than their full capability version.
This suggests that for most of these products the free version they
have in VirusTotal is perfectly suitable for malware detection and
may even perform better compared with a full capability one;

• Some of the full capability versions of the AV vendors only detected
some of the malware more than three weeks after the VirusTotal
version of the same vendor has detected the same malware. This
seems to imply that vendors for some malware are testing their
detection signatures in their VirusTotal versions first before
propagating them to the full capability versions, which may also
explain the higher detection rates of the VirusTotal versions of some
of these vendors;

-144-

• There are differences between the vendors in the way in which they
classify malware. This lack of consistency between the vendor
malware classification schemes makes it more difficult for system
administrators to transfer their malware analysis expertise from one
vendor’s system to another;

• The lack of a platform for assessing full capability products
motivated research on building AVAMAT, in collaboration with
researchers at the University of Maryland. A prototype of the tool
has been built and is currently being further tested and improved.

• For the study with IDSs:

• For 1ooN systems: improvements in sensitivity compared with
individual IDS, with a corresponding specificity deterioration on
average;

• For NooN systems: specificity can be perfect in most setups, but
with severe deterioration in sensitivity on average;

• Majority voting systems usually offer a compromise between the
extremes of 1ooN and NooN setups, but for these setups they
tended to negatively impact the sensitivity measures, with marginal
gains in specificity;

• The more “functionally diverse” a system is the better the sensitivity
and specificity on average, though not in all cases.

• For the study with SATs:

• For 1ooN systems: improvements in sensitivity compared with
individual SAT are from 70% on average for 1oo2 systems, to more
than 300% for 1oo5 systems, but come with a corresponding
specificity deterioration on average;

• For NooN systems: specificity is perfect in most setups, but with
severe deterioration in sensitivity;

• For simple majority voting setups: average deterioration in
sensitivity (of between 30-65%) but with improvements in
specificity;

• For organisations primarily interested in detecting vulnerabilities
and that are willing to invest resources in analysis alarms to
separate out the false alarms from true alarms, diverse setups in a

-145-

1ooN adjudication setup can be very beneficial. In particular, we
found phpSAFE, RIPS and WAP SATs exhibit considerable
diversity in vulnerability detection;

• Further analysis of the code in the plugins reveals the source of

diversity in the SAT behaviour: some of the tools are better at

detecting vulnerabilities in certain code constructs than others (for

example the way in which they analyse arrays, control flow

constructs etc.).

• The study with “Optimal adjudication”:

• The gains that an organisation can obtain from switching from a

“conventional” adjudicator (such as 1ooN, majority vote or NooN) to

an “optimal adjudicator” can be significant;

• Hence we show not only the gains (or penalties) from using diversity

with binary decision systems, but also the relative gains from

optimal adjudication between different diverse setups.

Throughout the thesis we noted that there are limits to the conclusions
that we can draw from some of the analysis due to the size, type and age of
datasets, the type of applications used, the tools used etc. Despite these
limitations the results we have presented should serve as enough justification
for any organisation that wishes to try diversity in their setup. Additionally we
have presented a well-documented, step-by-step analysis methodology for
assessing the performance of N-version diverse security decision support
systems. This should prove useful to other researchers and organisations to
assess diversity in their setups.

9.3 Review of aims and objectives

In the Introduction of the thesis we stated that the two main Aims and
Objectives of the research are to analyse:

1. the variety of architectural options about how diverse security controls
are assembled and their responses combined (“adjudication”);

2. the interplay between the risks of failing to react to true attacks and of
false alarms (“false negative” and “false positive” failures, where
"failure" may mean different things – penetration, lack of detection, etc.
– depending on the function concerned).

-146-

The research we have presented in the five main chapters of this thesis
(Chapters 4-8) demonstrate analysis of the adjudication options for combining
diverse systems (hence fulfilling objective 1 above), and the interplay between
the false positives and false negatives with three different widely used
categories of security products, namely AntiVirus products, Intrusion
Detection Systems and Static Analysis Tools (hence fulfilling objective 2
above). Additionally, as stated previously, we presented an analysis
methodology for assessing the performance of N-version diverse security
decision support systems.

9.4 Provisions for further work

There are several provisions for further work. We will outline these per
study that we did:
• For the AV study:

• Conduct a study with more files types than just portable executable

files;

• Extend the analysis with benign files to enable measurements of

false positive rates for AV products;

• A longer data collection time with more vendors;

• Further improvements of AVAMAT and building support for more

products and operating systems.

• For the IDS study:

• Perform the study with a more recent dataset;

• Extend the analysis with more IDS products;

• Use a wider array of applications and types of attacks.

• For the SAT study:

• Extend the analysis with more SATs;

• Use a wider array of applications and types of vulnerabilities.

• For Optimal Adjudication study:

• Apply the optimal adjudicator scheme to other types of datasets and

systems to analyse the potential gains that may be obtained;

-147-

• Build an optimal adjudicator for a working security system that uses

multiple channels (e.g. Security Information and Event

Management (SIEM) systems).

We should also note that the thesis mainly deals with the problem of
vulnerability/attack/”failure” etc., detection. There are other stages of fault
tolerance that we have not looked at in more depth, in particular diagnosis and
recovery. The datasets in our research were already labelled. In an
operational context, the operators would need to spend time sifting through
alarms and diagnosing the true alarms, as well as noting any attacks that have
penetrated through the defences while not being caught by the defences.
Machine learning algorithms may be able to help with this labelling, but they
come with their own problems of diagnosis. Recovery is another concern
when we are implementing an end-to-end solution: we need to be able to
recover the state of the end-system that we are protecting. Standard forward
or backward error recovery techniques may work in some contexts, but
nevertheless they need to be studied further depending on the context where
the system will be deployed.

Finally, we note that the studies we did were for one family of systems
at a time (i.e. we had datasets for AVs, for IDSs and SATs separately). Most
organisations deploy these systems in a defence in depth infrastructure. We
note that the methodology we have presented in this thesis can also be used
to assess the gains or losses from multiple systems in a diverse defence-in-
depth setting. The main difficulty for the experimenter will be on deciding the
level of granularity for the “demand”/”input” to the different systems that allows
for an easy like-for-like comparison between different defences. If the
granularity is too fine (e.g. at the network packet level) it may not make sense,
for example, to assess AV products at that level. If it is done at the application
layer, then some network level defences (network IDSs and Firewalls) may
not provide alerts at that level. So the experimenter would need to decide on
the right level of granularity to group the demands. And then the rest of the
analysis can proceed with the same methodology we presented in this thesis.

9.5 Final remarks

Defence in depth is an important part of design for security. Defences
should be diverse in their weaknesses and attacks that defeat one defence
should with high probability be stopped or detected by another one. There is

-148-

no need to emphasise that diversity is a "a good idea": the security community
is well aware of that. But there is a need to assess whether, for example, a
set of specific defences would improve security more than another set; and to
quantifying the security gains. We hope that the research we present in this
thesis will go some way to providing a method for measuring diversity for
security to drive rational decisions, and quantify the benefits (and harm) from
diversity with widely used security tools. We have presented a well-
documented, step-by-step analysis methodology for assessing the
performance of N-version diverse security decision support systems. This
should prove useful to other researchers and organisations to assess diversity
in their setups. To the best of our knowledge a comprehensive method, with
illustrations using several different tools and multiple datasets has not been
presented before.

-149-

References

Acunetix (2015) ‘Web Application Vulnerability Report 2015’. Available
at: https://www.infosecurityeurope.com/__novadocuments/237693?v
(Accessed: 21 December 2018).
Antunes, N. and Vieira, M. (2015) ‘On the metrics for benchmarking
vulnerability detection tools’, Proceedings of the 45th Annual
IEEE/IFIP International Conference on Dependable Systems and
Networks 22-25 June, Rio de Janeiro, Brazil, pp. 505–516. IEEE, USA,
doi: 10.1109/DSN.2015.30.
Avižienis, A., Laprie, J. C., Randell, B. and Landwehr, C. (2004) ‘Basic
concepts and taxonomy of dependable and secure computing’, IEEE
Transactions on Dependable and Secure Computing, 1(1), pp. 11–33.
IEEE , USA, doi: 10.1109/TDSC.2004.2.
Aycock, J. D. (2006) ‘Computer viruses and malware’, 22, Springer,
USA, pp. 27–203, ISBN 978-0-387-34188-0. doi: 10.1007/0-387-
34188-9.
Babbage, C. (1982) ‘On the mathematical powers of the calculating
engine (unpublished manuscript, December 1837)’, In: Randell, B.
(eds) The Origins of Digital Computers Selected Papers. 3rd edn, pp.
17–52. Springer Verlag, Berlin, Germany, doi: 10.1007/978-3-642-
61812-3_2.
Backes, M., Rieck, K., Skoruppa, M., Stock, B. and Yamaguchi, F.
(2017) ‘Efficient and flexible discovery of PHP application
vulnerabilities’, Proceedings of the 2nd IEEE European Symposium on
Security and Privacy (EuroS and P) 26-28 May, Paris, France, pp.
334–349. IEEE, USA, doi: 10.1109/EuroSP.2017.14.
Barnett, R. (2015) ‘The web application security consortium / SQL
injection’, Available at:
http://projects.webappsec.org/w/page/13246963/SQL Injection
(Accessed: 25 December 2018).
Bayer, U., Andreas, M., Kruegel, C. and Kirda, E. (2006) ‘Dynamic
analysis of malicious code’, Journal of Computer Virology, 2(1), pp.
67–77. Springer Verlag, Berlin, Germany, doi: 10.1007/s11416-006-
0012-2.
Bishop, P. (1995) ‘Software fault tolerance’, In: Lyu, R. (eds) Software
Fault Tolerance by Design Diversity, vol1995, pp. 212–230. John
Wiley & Sons Ltd., USA, ISBN 978-0471950684. Available at:
http://www.cse.cuhk.edu.hk/~lyu/book/sft/pdf/chap9.pdf (Accessed:
16 December 2018).
Bishop, P., Bloomfield, R., Gashi, I. and Stankovic, V. (2011) ‘Diversity
for security: a study with off-the-shelf antivirus engines’, Proceedings
of the 22nd IEEE International Symposium on Software Reliability
Engineering (ISSRE) 2-5 November, Hiroshima, Japan, pp. 11–19.
IEEE, USA, Available at: http://openaccess.city.ac.uk/524/.

-150-

Britton, W. (2011) ‘Media from Black Hat, BlackHat’. Available at:
https://media.blackhat.com/bh-us-11/Willis/BH_US_11_WillisBritton
_Analyzing_Static_Analysis_Tools_WP.pdf (Accessed: 16 December
2018).
Buehrer, G., Weide, B. and Sivilotti, P. (2005) ‘Using parse tree
validation to prevent SQL injection attacks’, The 5th International
Workshop on Software Engineering and Middleware (SEM) 5-6
September, Lisbon, Portugal, pp. 106–113. ACM, New York, NY,
USA, doi: 10.1145/1108473.1108496.
Buscombe, J., Cwikla, J., Holloway, B. and Hilson, A. (2001)
‘Prediction of the usefulness of combined mammography and
scintimammography in suspected primary breast cancer using ROC
curves’, Journal of Nuclear Medicine, 42(1), pp. 3–8. doi:
10.1300/J199v06n02.
Chen, L. and Avizienis, A. (1995) ‘N-version programming: A fault-
tolerance approach to reliability of software operation’, ‘Highlights from
Twenty-Five Years’, Proceedings of the 25th IEEE International
Symposium on Fault Tolerant Computing (FTCS-25) 27-30 June,
Pasadena, CA, USA, pp. 113–119. IEEE, USA, doi:
10.1109/FTCSH.1995.532621.
Dahse, J. and Holz, T. (2014) ‘Simulation of built-in PHP features for
precise static code analysis’, Proceedings of the Network and
Distributed System Security (NDSS) Symposium 23-26 February. San
Diego, CA, USA, [no pagination]. doi: 10.14722/ndss.2014.23262.
Egan, J. (1975) ‘Signal detection theory and ROC-analysis’, Academic
Press, New York. ISBN 0122328507

Elia, I. A., Fonseca, J. and Vieira, M. (2010) ‘Comparing SQL injection
detection tools using attack injection: an experimental study’,
Proceedings of the 21st IEEE International Symposium on Software
Reliability Engineering (ISSRE) 1-4 November, San Jose, CA, USA,
pp. 289–298. IEEE, USA, doi: 10.1109/ISSRE.2010.32.
Fogie, S., Grossman, J., Hansen, R., Rager, A. and Petkov, P. D.
(2007) ‘XSS attacks: cross site scripting exploits and defense’, In:
Fogie, S. (eds) Syngress Publishing, Burlington, MA, USA. pp. 2–190.
ISBN 978-1597491549, doi: 10.1007/s13398-014-0173-7.2.
Fonseca, J., Seixas, N., Vieira, M. and Madeira, H. (2014) ‘Analysis of
field data on web security vulnerabilities’, IEEE Transactions on
Dependable and Secure Computing. IEEE, USA, 11(2), pp. 89–100.
Garcia, M., Bessani, A., Gashi, I., Neves, N. and Obelheiro, R. (2014)
‘Analysis of operating system diversity for intrusion tolerance’, In:
Buyya, R., Bishop, J., Cooper, K., Jones, R., Poggi, A. and Srirama,
S.(eds), Software: Practice and Experience, John Wiley & Sons Ltd.,
USA, 44(6), pp. 735–770. doi: 10.1002/spe.2180.
Gashi, I., Sobesto, B., Stankovic, V. and Cukier, M. (2013) ‘Does
Malware Detection Improve with Diverse Antivirus Products? An

-151-

Empirical Study’, In: Bitsch, F., Guiochet, J., Kaâniche, M. (eds),
Proceedings of the 32nd International Conference on Computer
Safety, Reliability and Security (SAFECOMP) 14-17 February,
Toulouse, France, pp. 94–105. , Springer, Berlin, Heidelberg. doi:
10.1007/978-3-642-40793-2. Available at:
http://openaccess.city.ac.uk/2338/1/Does Malware Detection Improve
With Diverse.pdf (Accessed: 6 December 2014).
Gashi, I., Stankovic, V., Leita, C. and Thonnard, O. (2009) ‘An
experimental study of diversity with off-the-shelf antivirus engines’,
Proceedings of the 8th IEEE International Symposium on Network
Computing and Applications (NCA) 9-11 July, Boston, MA, USA, pp.
4–11. IEEE, USA, doi: 10.1109/NCA.2009.14.
di Giandomenico, F. and Strigini, L. (1990) ‘Adjudicators for diverse-
redundant components’, Proceedings of the 9th IEEE Symposium on
Reliable Distributed Systems (SRDS) 9-11 October, Huntsville, AL,
USA, pp. 114–123. IEEE, USA, doi: 10.1109/RELDIS.1990.93957.
Gupta, V., Lam, V., Ramasamy, H., Sanders, W. and Singh, S. (2003)
‘Dependability and Performance Evaluation of Intrusion-Tolerant
Server Architectures’, In: de Lemos, R., Weber, T. and CamargoJr,
J.(eds), Proceedings of the 1st Latin American Symposium on
Dependable Computing, Lecture Notes in Computer Science 21-24
October, Sao Paulo, Brazil, 2847, pp. 81–101. Springer-Verlag, Berlin,
Germany, doi: 10.1007/978-3-540-45214-0_9.
Halfond, W. G. and Orso, A. (2005) ‘AMNESIA: Analysis and
Monitoring for NEutralizing SQL-injection Attacks’, Proceedings of the
20th IEEE/ACM International Conference on Automated Software
Engineering 7-11 November, Long Beach, CA, USA, pp. 174–183.
ACM Press, USA, doi: 10.1145/1101908.1101935.
Halfond, W., Viegas, J. and Orso, A. (2006) ‘A classification of SQL
injection attacks and countermeasures’, Proceedings of the IEEE
International Symposium on Secure Software Engineering,
Washington DC, USA, pp. 13–22. Available at:
https://pdfs.semanticscholar.org/81a5/02b52485e52713ccab6d260f1
5871c2acdcb.pdf (Accessed: 16 December 2018).
Hauzar, D. and Kofroň, J. (2015) ‘Framework for static analysis of
PHP’, In: Boyland, J., (eds) Proceedings of the 29th European
Conference on Object-Oriented Programming (ECOOP’15) 5-10 July,
Prague, Czech Republic, pp. 689–711. Schloss Dagstuhl, Germany,
doi: 10.1145/1101908.1101935.
Hopley, L. and Schalkwyk, J. (2011) ‘The magnificent ROC (Receiver
Operating Characteristic curve)’. Available at:
http://www.anaesthetist.com/mnm/stats/roc/Findex.htm (Accessed:
16 December 2018).
IBM Security Solutions (2013) ‘IBM X-Force 2013 mid-year trend and
risk report’, IBM Security Systems. Available at:
https://www.viftech.com/wp-content/uploads/2015/05/IBM-X-Force-

-152-

2013-Mid-Year-Trend-and-Risk-Report-Executive-Summary.pdf.
Jovanovic, N., Kruegel, C. and Kirda, E. (2006) ‘Pixy: a static
analysis tool for detecting Web application vulnerabilities’,
Proceedings of the IEEE Symposium on Security and Privacy (S and
P) 21-24 May, Oakland, CA, USA, pp. 258–263. IEEE, USA, doi:
10.1109/SP.2006.29.
Kelly, J. and Avizienis, A. (1983) ‘A specification-oriented multi-version
software experiment’, Proceedings of the 13th International
Symposium on Fault-Tolerant Computing (FTCS) 28-30 June, Milan,
Italy, pp. 121–126. IEEE, USA,
Kiezun, A., Guo, P. J., Jayaraman, K. and Ernst, M. D. (2009)
‘Automatic creation of SQL injection and cross-site scripting attacks’,
Proceedings of the 31st IEEE International Conference on Software
Engineering (ICSE)16-24 May, Vancouver, BC, Canada, pp. 199–209.
IEEE, USA, doi: 10.1109/ICSE.2009.5070521.
Knight, J. C. and Leveson, N. G. (1986) ‘An experimental evaluation
of the assumption of independence in multiversion programming’.
IEEE Transactions on Software Engineering (TSE), 12(1), pp. 96–109.
IEEE, USA, doi: 10.1109/TSE.1986.6312924.
Kruegel, C. and Vigna, G. (2003) ‘Anomaly detection of web-based
attacks’, Proceedings of the 10th ACM Conference on Computer and
Communications Security (CCS) 27-30 October, Washington D.C.,
USA, pp. 251–261. ACM, USA. doi: 10.1145/948143.948144.
Lee, I., Jeong, S., Yeo, S. and Moon, J. (2012) ‘A novel method for
SQL injection attack detection based on removing SQL query attribute
values’,In Agarwal, R. et al.(eds), Mathematical and Computer
Modelling, 55(1–2), pp. 58–68. Elsevier Ltd, Amsterdam, Netherlands.
doi: 10.1016/j.mcm.2011.01.050
Lee, P. and Anderson, T. (1990) ‘Fault tolerance: principles and
practice’, In: Avizienis, A., Kopetz, H., and Laprie, J. (eds),
Dependable Computing and Fault-Tolerant Systems, 3, Springer-
Verlag Wien, New York. ISBN 978-3-7091-8990-0, doi: 10.1007/978-
3-7091-8990-0.
Leita, C. and Dacier, M. (2008) ‘SGNET: A worldwide deployable
framework to support the analysis of malware threat models’,
Proceedings of the 7th European Dependable Computing Conference
(EDCC) 6-8 May, Kaunas, Lithuania, pp. 99–109. IEEE, USA, doi:
10.1109/EDCC-7.2008.15.
Littlewood, B., Popov, P. and Strigini, L. (2001) ‘Modeling software
design diversity: a review’, ACM Computing Surveys, 33(2), pp. 177–
208. doi: 10.1145/384192.384195.
Littlewood, B. and Strigini, L. (2004) ‘Redundancy and diversity in
security’, In: Samarati, P., Ryan, P., Gollmann, D. and Molva, R. (eds)
Proceedings of the 9th European Symposium on Research in
Computer Security (ESORICS) 13-15 September, Sophia Antipolis,

-153-

France, pp. 423–438. Springer-Verlag, Berlin, Germany, doi:
10.1007/978-3-540-30108-0_26.
Medeiros, I., Neves, N. F. and Correia, M. (2014) ‘Automatic
detection and correction of web application vulnerabilities using data
mining to predict false positives’, Proceedings of the 23rd
International Conference on World Wide Web (WWW ’14) 7-11 April.
Seoul, Korea, pp. 63–74. ACM, New York, NY, USA, doi:
10.1145/2566486.2568024.
Milenkoski, A., Vieira, M., Kounev, S., Avritzer, A. and Payne, B. D.
(2015) ‘Evaluating computer intrusion detection systems: a survey of
common practices’, ACM Computing Surveys (CSUR), 48(1), pp. 1–
41. ACM, New York, NY, USA, doi: 10.1145/2808691
Mookhey, K. and Burghate, N. (2004) ‘Detection of SQL injection and
cross-site scripting attacks’, Symantec Security Focus. Available at:
https://www.symantec.com/connect/articles/detection-sql-injection-
and-cross-site-scripting-attacks (Accessed: 4 December 2018).
MwAnalysis (2013) ‘Malware Analysis CWSandbox’. Available at:
http://www.mwanalysis.org. (Accessed: 16 December 2018).
Na, M., Qianxiang, W., Qian, W. and Hong, M. (2008) ‘An approach to
merge results of multiple static analysis tools’, Proceedings of the 8th
International Conference on Quality Software 12-13 Aug, Oxford, UK,
pp. 169–174. IEEE, USA, doi: 10.1109/QSIC.2008.30.
NIST (2018) ‘CAS static analysis tool study methodology’, SAMATE
NIST. Available at: https://www.semanticscholar.org/paper/Cas-
Static-Analysis-Tool-Study-Methodology-
Meade/966ed17141ad061c0500028a15d65cd4a0c551d7 (Accessed:
4 December 2018).
Nunes, P., Medeiros, I., Fonseca, J., Neves, N., Correia, M. and Vieira,
M. (2017) ‘On Combining Diverse Static Analysis Tools for Web
Security: An Empirical Study’, Proceedings of the 13th European
Dependable Computing Conference (EDCC) 4-8 September, Geneva,
Switzerland, pp. 121–128. IEEE, USA, doi: 10.1109/EDCC.2017.16.
Oberheide, J., Cooke, E. and Jahanian, F. (2008) ‘CloudAV: N-
version Antivirus in The Network Cloud’, Proceedings of the 17th
conference on Security Symposium 28 July-1 August, San Jose, CA,
USA, pp. 91–106. USENIX Association, Berkeley, CA, USA, doi:
10.1109/ACSAC.2006.38.
OWASP (2017) ‘Top 10 - The ten most critical web application
security risks’, Owasp. Available at:
https://www.owasp.org/images/7/72/OWASP_Top_10-
2017_%28en%29.pdf.pdf (Accessed: 4 December 2018).
Pouget, F. (2005) ‘Leurre.com: on the advantages of deploying a
large scale distributed honeypot platform’, Available at:
http://www.eurecom.fr/publication/1558 (Accessed: 7 December
2014).

-154-

Provost, F. and Fawcett, T. (1997) ‘Analysis and visualization of
classifier performance: comparison under imprecise class and cost
distributions’, Proceedings of the 3rd International Conference on
Knowledge Discovery and Data Mining (KDD’97) 14-17 August.
Newport Beach, CA, USA, pp. 43–48. AAAI Press, USA, doi:
10.1007/978-3-642-25437-6_82.
Pullum, L. (2001) ‘Software fault tolerance techniques and
implementation’, Artech House, Boston/London, ISBN 1-58053-470-8
,Available at: http://index-of.co.uk/SE/Artech%20House%20-
%20Software%20Fault%20Tolerance%20Techniques%20and%20Im
ple.pdf (Accessed: 4 January 2019).
Ramsbrock, D., Berthier, R. and Cukier, M. (2007) ‘Profiling attacker
behavior following SSH compromises’, Proceedings of the 37th
Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN’07) 25-28 June, Edinburgh, UK, pp. 119–124.
IEEE, USA, doi: 10.1109/DSN.2007.76.
Rangayyan, R., Shen, L., Shen, Y., Leo Desautels, J., Bryant, H.,
Terry, T. J., Horeczko, N. and Rose, M. (1997) ‘Improvement of
sensitivity of breast cancer diagnosis with adaptive neighborhood
contrast enhancement of mammograms’, IEEE Transactions on
Information Technology in Biomedicine, 1(3), pp. 161–170. IEEE,
USA, doi: 10.1109/4233.654859.
Reynolds, J., Just, J., Lawson, E., Clough, L., Maglich, R. and Levitt,
K. (2002) ‘The design and implementation of an intrusion tolerant
system’, Proceedings of the IEEE International Conference on
Dependable Systems and Networks (DSN) 23-26 June. Bethesda,
MD, USA, pp. 285–290. IEEE, USA, doi: 10.1109/DSN.2002.1028912.
Richardson, R. (2011) ‘2010/2011 Computer crime and security
survey’, computer security institute (15th)’, pp. 1–40. Available at:
https://cours.etsmtl.ca/gti619/documents/divers/CSIsurvey2010.pdf
(Accessed: 4 December 2018).
Rutar, N., Almazan, C. and Foster, J. (2004) ‘A comparison of bug
finding tools for Java’, Proceedings of the 15th International
Symposium on Software Reliability Engineering (ISSRE) 2-5
November, Saint-Malo, France, pp. 245–256. IEEE, USA, doi:
10.1109/ISSRE.2004.1.
Salako, K. (2018) ‘D3.2 Probabilistic modelling of diversity for security
and security trend (DiSIEM)’. Available at: http://disiem-project.eu/wp-
content/uploads/2018/03/D3.2.pdf (Accessed: 4 December 2018).
Seclab (2011) ‘Anubis: Analyzing Unknown Binaries’. Available at:
https://seclab.cs.ucsb.edu/academic/projects/projects/anubis/
(Accessed: 10 January 2019).
Shar, L. and Tan, H. (2013) ‘Defeating SQL injection’, Computer,
46(3), pp. 69–77. IEEE, USA, doi: 10.1109/MC.2012.283.
Sharma, P., Johari, R. and Sarma, S. (2012) ‘Integrated approach to

-155-

prevent SQL injection attack and reflected cross site scripting attack’,
International Journal of Systems Assurance Engineering and
Management. Springer India, 3(4), pp. 343–351.
Singh, S., Cukier, M. and Sanders, W. H. (2003) ‘Probabilistic
validation of an intrusion-tolerant replication system’, Proceedings of
the International Conference on Dependable Systems and Networks
(DSN) 22-25 June, San Francisco, CA, USA. pp. 615–624. IEEE, USA,
doi: 10.1109/DSN.2003.1209971.
Srivastava, S., Ranjan, R. and Tripathi, R. (2012) ‘Attacks due to SQL
injection & their prevention method for web-application’, International
Journal of Computer Science and Information Technology (IJCSIT),
3(2), pp. 3615–3618. AIRCC Publishing Corporation, India, Available
at: http://ijcsit.com/docs/Volume 3/Vol3Issue2/ijcsit2012030266.pdf.
Spackman, K. A. (1989) ‘Signal detection theory: valuable tools for
evaluating inductive learning’, In: Segre, A.(eds) Proceedings of the
6th International Workshop on Machine Learning 26-27 June, Ithaca,
NY, USA, pp. 160–163. Elsevier Inc, London, UK, doi: 10.1016/B978-
1-55860-036-2.50047-3.
Spitzner, L. (2002) ‘Honeypots: tracking hackers’, Addison-Wesley ,
ISBN 9780321108951. Available at: http://www.it-
docs.net/ddata/792.pdf (Accessed: 5 January 2019).
Strigini, L. (2005) ‘Fault tolerance against design faults’, In: Diab, H.
and Zomaya, A.(eds) Dependable Computing Systems: Paradigms,
Performance Issues and Applications. pp. 213–241. Wiley & Sons,
ISBN 0471674222.
Sucuri Remediation Group (2017) ‘Hacked website report’. Available
at: https://sucuri.net/reports/2017-hacked-website-report (Accessed: 4
December 2018).
Swets, J. (1988) ‘Measuring the accuracy of diagnostic systems’,
Science,USA, 240 (4857), pp.1285-1293 doi:
10.1126/science.3287615.
Swets, J., Dawes, R. and Monahan, J. (2000) ‘Better decisions through
science’, In: Ceci, S. and Bjork, R.(eds) Scientific American,Inc. , USA
1(1), pp. 82–87, doi: 10.1038/scientificamerican1000-82. Available at:
https://www.psychologicalscience.org/pdf/pspi/sciam.pdf (Accessed:
4 December 2018).
Tajpour, A., Ibrahim, S., Zamani, M. and Sharifi, M. (2013) ‘Effective
measures for evaluation of SQL injection detection and prevention
tools’, Journal of Convergence Information Technology, Advanced
Institute of Convergence Information Technology Research Center,
South Korea, 8(14), pp. 13–28.
Ulvila, J. and Gaffney, J. (2003) ‘Evaluation of intrusion detection
systems’, Journal of Research of the National Institute of Standards
and Technology, National Institute of Standards and Technology,
USA, 108(6), pp. 453–473. doi: 10.6028/jres.

-156-

Verıssimo, P., Neves, N. and Correia, M. (2003) ‘Intrusion-Tolerant
Architectures: Concepts and Design’, In: de Lemos, R., Gacek, C. and
Romanovsky, A. (eds) Architecting Dependable Systems. Lecture
Notes in Computer Science, 2677. pp. 3–36. Springer, Berlin,
Heidelberg, doi: 10.1007/3-540-45177-3_1
VMRay (2014) ‘VMRay analyzer overview’. Available at:
http://www.vmray.com/vmray-analyzer-overview/ (Accessed: 6
December 2014).
Vrable, M., Ma, J., Chen, J., Moore, D., Vandekieft, E., Snoeren, A.
C., Voelker, G. M. and Savage, S. (2005) ‘Scalability, fidelity, and
containment in the potemkin virtual honeyfarm’, in Proceedings of the
Twentieth ACM Symposium on Operating Systems Principles -
SOSP ’05. ACM, New York, NY, USA, pp. 148–162. doi:
10.1145/1095810.1095825.
W3Schools (2016) ‘SQL injection’. Available at:
https://www.w3schools.com/sql/sql_intro.asp (Accessed: 5 January
2019).
Wang, L., Islam, T., Long, T., Singhal, A. and Jajodia, S. (2008) ‘An
attack graph-based probabilistic security metric’, In: Atluri, V. (eds)
Data and Applications Security XXII, Lecture Notes in Computer
Science (DBSec) 13-16 July, London, UK, 5094, pp. 283–296.
Springer, Verlag,Germany,
Wang, L., Li, Z., Ren, S. and Kwiat, K. (2011) ‘Optimal voting
strategy against rational attackers’, Proceedings of the 6th
International Risk and Security of Internet and Systems (CRiSIS) 26-
28 September, Timisoara, Romania, pp. 1–8. IEEE, USA,
doi:10.1109/CRiSIS.2011.6061841
Willems, G., Holz, T. and Freiling, F. (2007) ‘Toward automated
dynamic malware analysis using CWSandbox’, IEEE Security and
Privacy, 5(2), pp. 32–39. IEEE, USA, doi: 10.1109/MSP.2007.45
wpvulndb (2018) ‘WPScan vulnerability database’. Available at:
https://wpvulndb.com/ (Accessed: 5 January 2019).

-157-

Appendix A (Supporting Chapter 4 of the thesis)

This appendix provides further details to support the analysis provided
in Chapter 4 of the thesis.

Appendix A-1: Analysing the Dataset over the Three
Dimensions (AV, Malware, Dates)

Appendix A. Table 1 Analysis for Figure 4-1 (a). Each cell represents the number of malware in
each of the failure rate categories, for that date: Full Capability products.

FC: MW-Date

Date -1 FR=0 0>FR>
0.25

0.25>=FR>
0.50

0.50>=FR>
0.75

0.75>=FR>
1.0 FR=1

11/11/2013 2060 1400 109 14 22 0 0
12/11/2013 68 3263 201 18 55 0 0
13/11/2013 68 3262 204 17 54 0 0
14/11/2013 67 3261 206 13 58 0 0
15/11/2013 68 3327 140 22 48 0 0
16/11/2013 67 3318 149 19 52 0 0
17/11/2013 66 3321 146 23 49 0 0
18/11/2013 59 3325 150 25 46 0 0
19/11/2013 59 3326 149 13 58 0 0
20/11/2013 56 3339 139 14 57 0 0
21/11/2013 51 3329 154 14 57 0 0
22/11/2013 46 3342 146 17 54 0 0
23/11/2013 41 3343 150 23 48 0 0
24/11/2013 41 3344 150 17 53 0 0
25/11/2013 35 3384 116 21 49 0 0
26/11/2013 31 3351 153 20 50 0 0
27/11/2013 26 3365 143 13 58 0 0
28/11/2013 26 3358 149 17 55 0 0
29/11/2013 17 3451 66 20 51 0 0
30/11/2013 17 3444 73 23 48 0 0
01/12/2013 14 3448 73 17 53 0 0
02/12/2013 8 3457 70 23 47 0 0
03/12/2013 24 3453 58 19 51 0 0
04/12/2013 12 3463 61 22 47 0 0
05/12/2013 4 3469 62 19 51 0 0
06/12/2013 4 3457 72 23 49 0 0
07/12/2013 0 3463 70 23 49 0 0
08/12/2013 0 3451 82 23 49 0 0
09/12/2013 0 3458 75 27 45 0 0
10/12/2013 2 3444 85 27 47 0 0
11/12/2013 8 3448 76 18 55 0 0

Appendix A. Table 1,2,3 and 4 represent the analysis for Figure 4-2 (a),
4-2 (b) 4-3 (a) and 4-3 (b): the three-dimensional plots (Malware, AV or Date)
in the thesis: Appendix A. Table 1 and 3 for the FC products and Appendix A.
Table 2 and 4 for the VT products.

Using Table Appendix A. Table 1 as illustration: the first column shows
the date in which the AVs inspected the malware samples; the second gives
the count of malware that were not inspected by the malware in a given date
(missing data). The rest of the columns show the failure rate range for a given

-158-

date; for example, there are 109 malware with failure rate greater than zero
and less than 0.25 in the first date of the experiment (11/11/2013) (meaning
between 0 and 25% of the AVs failed to detect them)

Appendix A. Table 2 Analysis for Figure 4-1 (b). Each cell represents the number of malware in
each of the failure rate categories, for that date: VirusTotal products.

VT: MW -Date

Date -1 FR=0 0>FR>
0.25

0.25>=FR>
0.50

0.50>=FR>
0.75

0.75>=FR>
1.0 FR=1

11/11/2013 2060 1501 9 3 32 0 0
12/11/2013 68 3444 24 6 62 1 0
13/11/2013 68 3444 24 7 60 2 0
14/11/2013 67 3450 19 6 62 1 0
15/11/2013 68 3452 17 9 58 1 0
16/11/2013 67 3452 17 6 62 1 0
17/11/2013 66 3453 17 7 61 1 0
18/11/2013 59 3459 18 6 62 1 0
19/11/2013 59 3460 17 6 62 1 0
20/11/2013 56 3463 17 6 62 1 0
21/11/2013 51 3465 20 6 62 1 0
22/11/2013 46 3473 17 6 62 1 0
23/11/2013 41 3478 17 6 62 1 0
24/11/2013 41 3477 18 6 62 1 0
25/11/2013 35 3478 23 8 59 2 0
26/11/2013 31 3486 19 9 59 1 0
27/11/2013 26 3492 18 6 62 1 0
28/11/2013 17 3502 17 6 62 1 0
29/11/2013 17 3502 16 8 62 1 0
30/11/2013 17 3498 21 7 60 2 0
01/12/2013 14 3502 20 7 61 1 0
02/12/2013 8 3510 17 9 60 1 0
03/12/2013 24 3423 89 6 61 2 0
04/12/2013 12 3394 130 7 61 1 0
05/12/2013 4 3511 21 8 60 1 0
06/12/2013 4 3478 54 7 60 2 0
07/12/2013 0 3498 38 8 60 1 0
08/12/2013 0 3466 70 9 59 1 0
09/12/2013 0 3436 100 6 61 2 0
10/12/2013 2 3477 57 8 59 2 0
11/12/2013 8 3511 17 6 61 2 0

Appendix A. Table 3 Analysis for Figure 4-2 (a)

FC : MW- AV

AV name FR=0 0>FR>
0.25

0.25>=FR>
0.50

0.50>=FR>
0.75

0.75>=FR>
1.0 FR=1

avg 3603 0 0 0 0 2
antivir 3590 0 0 0 0 15

comodo 3598 2 0 0 0 5
F-Secure 3520 30 1 0 0 54

Kaspersky 3534 0 0 1 0 70
McAFee 2637 858 0 4 22 84
Microsoft 3470 49 7 0 0 79
Sophos 3456 71 0 0 3 75

Symantec 3557 29 8 2 8 1

-159-

Appendix A. Table 4 Analysis for Figure 4-2(b)

VT : MW- AV

AV name FR=0 0>FR>
0.25

0.25>=FR>
0.50

0.50>=FR>
0.75

0.75>=FR>
1.0 FR=1

avg 3543 0 0 0 0 62
antivir 3591 0 0 0 0 14

comodo 3214 389 0 0 0 2
F-Secure 3548 2 1 0 0 54

Kaspersky 3523 13 0 0 0 69
McAFee 3537 1 0 0 0 67
Microsoft 3526 0 0 0 0 79
Sophos 3540 6 0 0 0 59

Symantec 3559 45 0 0 0 1

-160-

Appendix A-2: Malware Classification

In this section we show more details about how each AV labelled the
malware (full capability versions of the AV for each AV except for Kaspersky
for which we used VirusTotal as the full capability version of Kaspersky labelled
each detected malware by its MD5 value only). We counted the malware labels
by classes of malware associated by the AV.
Appendix A. Table 5 Examples of how antivirus products classify malware differently. These tables
provide further details to support the analysis provided in Table 4-9 in Chapter 4

Colour Code:
Back Door

Virus
Worm
Trojan

Virus identified - Worm
Trojan Horse - BackDoor

Worm -Trojan
Other

AntiVir
Malware Type Counter

back-door program 377
DR/dropper 184
JS/ Java script virus 31
RKIT root kit 30
TR/ Trojan 40,822
W32/Windows virus 6,510
Worm.Conficker.Gen virus 62
WORM/ worm 60,125

TOTAL 108,141

AVG
Malware Type Counter

Found Win32 152
Trojan horse 1,208
Trojan horse BackDoor. 10,924
Virus found 3,865
Virus identified -Worm 88,464
Virus identified Win32 1,622

TOTAL 106,235

Comodo
Malware Type Counter

.UnclassifiedMalware 3
ApplicUnsaf.Win32 29
Backdoor.Win32 453

MalCrypt.Indus!@ 90

Malware 1,302

NetWorm.Win32.Allaple.GEN 89,901

NetWorm.Win32.Trojan.Conficker 154

Packed.Win32.MUPX.Gen 118

Suspicious 362
TrojWare.Win32 7,148

Virus.Win32. 876

Worm.Win32 7,580

TOTAL 108,016

F-secure
Malware Type Counter

Backdoor. 363
Gen:Heur.Zygug.6 26
Gen:Malware.Heur. 46
Gen:Trojan. 166
Gen:Variant. 546
Generic.Malware. 225
Generic.Sdbot. 28
GenPack:Generic.Malware. 23
GenPack:Generic.Mydoom. 51
GenPack:Trojan.Inject. 28
IRC-Worm.Generic.20088 77
MemScan:Trojan.Generic. 53
Net-Worm:W32/ 15,651
Suspicious:W32/Malware!Gemini 15
Trojan 2,989
Win32.Virut.M 282
Win32.Worm.Downadup.Gen 2,805
Worm: 67,963

TOTAL 91,337

-161-

McAfee
Malware Type Counter

Artemis! 3,981
BackDoor- 212
Downloader.a!qr 774
Dropper-FED! 30
Generic 619
New 12
PWS-Zbot.gen.PMz 876
Ransom-AAY.gen.l 60
RDN/Generic.bfg!a 1,081
RDN/Sdbot.worm!bp 178
RemAdm-ProcLaunch 30
Trojan-FDCW!8342B1216DCC 29
VBObfus.da 28
W32/Autorun.worm!qq 149
W32/Conficker.gen 30
W32/Conficker.worm 76,553
W32/HAMweq.worm 19,327

TOTAL 103,969

Microsoft

Malware Type Counter

Backdoor:Win32/ 577

Exploit:Win32/ 272

PWS:Win32/Zbot 31

Trojan:Win32/ 2,040

VirTool:Win32/ 514

Virus:Win32/Parite.B 2,862

Worm:Win32/Allaple.A 99,521

TOTAL 105,817

Symantec
Malware Type Counter

Infostealer 61
Packed.Generic 241
Spyware 118
Suspicious 335
Trojan 3,841
W32 99,013

TOTAL 103,609

Sophos
Malware Type Counter

Mal/ 80,379
'Troj/Agent-AAXV'. 3,279
'W32/Allaple 22,009
or 153

TOTAL 105,820

Kaspersky (VirusTotal version) - see footnote 18
Malware Type Counter

Backdoor.Win32 3,297

Email-Worm.Win32.Updater.n 180

HEUR:Trojan.Win32.Generic 993

HEUR:Worm.Win32.Generic 30

IM-Worm.Win32.Steckt.ae 30

Net-Worm.Win32.Agent.bk 94,704

Packed.Win32.Krap.hm 69

Trojan-Downloader.Win32.Agent.cuxe 5,458

Virus.Win32.Virut.n 1,359

Worm.Win32.AutoRun.edpn 214

TOTAL 106,334

-162-

Appendix B (Supporting Chapter 6 of the thesis)

This appendix provides further details to support the analysis provided
in Chapter 6 of the thesis.

Appendix B-1 – Heatmaps

Heatmaps of detections and failures for successful attacks and benign
traffic for Single IDS (the figure below show a detailed result of Table 6-2 in
Chapter 6).

Appendix B. Figure 1 The heatmaps for successful attacks and benign traffic for each application

(a) The Heatmaps below show the successful and fail to detect with legitimate attacks for each
application.

MyReferences (SA: 136 Demands) phpBB (SA: 245 Demands) TikiWiki (SA: 76 Demands)

(b) The Heatmaps below show the false alarm and the silent one with benign traffic for each application

MyReferences (CA: 45 Demands) phpBB (CA: 97 Demands) TikiWiki (CA: 80 Demands)

-163-

In Appendix B. Figure 1: (a) the first column shows the output result of
the nine IDSs when subjected to attacks through My References web
applications (the first row represents the name of the IDSs:
ACD1,ACD3,ACD10, ACD30, ACD100, GreenSQL, SCALP scalia, SNORT 2
and SNORT 2.8 followed by the results of each IDS; the pink for failed to
detect attack and the grey for successfully determining the attack). The
second and the third table for the result of the same nine IDSs when subjected
to attacks through phpBB web applications. Part (b) shows the result of the
nine IDSs when subjected to benign traffic through My References (the first
table in b) , then phpBB web application (the second table in b) , then TikiWiki
(the third table in b), each cell in table represents the result of the IDS, the
pink cells for falsely rising alarm and the grey for correctly determines that a
benign input is not malicious.

 Main observations from Appendix B. Figure 1: none of the IDSs in
MyReferences web-application are able detect all the successful attacks.
However, for phpBB web-application Snort plus special rule, manages to
detect all the successful attacks, while in TikiWiki web-application GreenSQL
mange to detect all the successful attacks. ACD1, ACD3 and Scalp Sqlia give
false alarms in Myreferences. ACD1, ACD3 and ACD10 give false alarms in
phpBB and TikiWiki.

-164-

Appendix B-2 Demands Difficulties
In relation to the sections 6.5 and 6.6 from Chapter 6: we present here

the results of our analysis by the difficulty of the demands that the IDS flags
as malicious or benign. The more IDSs fail to correctly classify a demand, the
more “difficult” the demand is. Figure Appendix B. Figure 2 shows the difficulty
for each type of demand and each application.

a) Attack difficulty for each application

MyReferences

(SA: 136 Demands)

phpBB

(SA: 245 Demands)

TikiWiki

(SA: 76 Demands)

b) Crawling action (benign demand) difficulty for each application.

MyReferences

(CA: 45 Demands)

phpBB

(CA: 97 Demands)

TikiWiki

(CA: 80 Demands)

Appendix B. Figure 2 Demand difficulties of attack (a) and benign traffic (b) for each application.

Using the first graph from the left-side in Appendix B. Figure 3 (a) as
an illustration: x-axis: ordered list of demands (from left to right: those that
caused the least number of IDSs to fail to those that caused the most), y-axis:
count of IDSs affected by a given demand. The y-axis is shown cumulatively.
So we see that 54% of the demands caused 6 or less IDSs to fail.

1
2
3
4
5
6
7
8
9

10
0%88

%
76

%
65

%
53

%
41

%
29

%
18

%6%

N
um

be
r o

f I
DS

s t
ha

t f
ai

l t
o

de
te

ct
 th

e
at

ta
ck

Attacks

1
2
3
4
5
6
7
8
9

10
0%91

%
81

%
72

%
62

%
53

%
44

%
34

%
25

%
16

%6%

N
um

be
r o

f I
DS

s t
ha

t f
ai

l t
o

de
te

ct
 th

e
at

ta
ck

Attacks

1
2
3
4
5
6
7
8
9

10
0%89

%
79

%
68

%
58

%
47

%
37

%
26

%
16

%5%

N
um

be
r o

f I
DS

s t
ha

t f
ai

l t
o

de
te

ct
 th

e
at

ta
ck

Attacks

1
2
3
4
5
6
7
8
9

10
0%87

%
73

%
60

%
47

%
33

%
20

%7%

N
um

be
r o

f I
DS

s t
ha

t g
iv

e
a

fa
lse

al

ar
m

 p
er

 d
em

an
d

Crawling Actions

1
2
3
4
5
6
7
8
9

10
0%91

%
81

%
72

%
63

%
54

%
44

%
35

%
26

%
16

%7%

N
um

be
r o

f I
DS

s t
ha

t g
iv

e
a

fa
lse

al

ar
m

 p
er

 d
em

an
d

Crawling Actions

1
2
3
4
5
6
7
8
9

10
0%90

%
80

%
70

%
60

%
50

%
40

%
30

%
20

%
10

%

N
um

be
r o

f I
DS

s t
ha

t g
iv

e
a

fa
lse

al

ar
m

 p
er

 d
em

an
d

Crawling Actions

-165-

Main results from Appendix B. Figure 2

• There are 7 IDSs in Myreferences that fail to detect a large
proportion of attacks. A small proportion of attacks are also
“difficult” on all nine IDSs in MyReferences.

• In phpBB there are a large proportion of attacks not detected by
6 IDSs

Appendix B-3: Diversity Analysis (Distribution of TPR and 1-FPR:
ordered by TPR: further analysis for section 6.6 from Chapter 6)

The graphs below show the TPR and 1-FPR rates of each diverse
systems for each adjudicator for N=2 to N=9.

N MyReferences phpBB TikiWiki

N=2,

9C2 = 36

N=3,

9C3= 84

0

0.2

0.4

0.6

0.8

1

36312621161161

Th
e

TP
R

an
d

1-
FP

R

The diverse IDS identifier

0

0.2

0.4

0.6

0.8

1

36312621161161

Th
e

TP
R

an
d

1-
FP

R

The diverse IDS identifier

0

0.2

0.4

0.6

0.8

1

36312621161161

Th
e

TP
R

an
d

1-
FP

R

The diverse IDS identifier

0

0.2

0.4

0.6

0.8

1

846444244

Th
e

TP
R

an
d

1-
FP

R

The diverse IDS identifier

0

0.2

0.4

0.6

0.8

1

846444244

Th
e

TP
R

an
d

1-
FP

R

The diverse IDS identifier

0

0.2

0.4

0.6

0.8

1

846444244

Th
e

TP
R

an
d

1-
FP

R

The diverse IDS identifier

-166-

N=4,

9C4 = 126

N=5,

9C5 = 126

N=6,

9C6 = 84

N=7,

9C7 = 36

0

0.2

0.4

0.6

0.8

1

12
6

10
6866646266

Th
e

TP
R

an
d

1-
FP

R

The diverse IDS identifier

0

0.2

0.4

0.6

0.8

1

12
6

10
6866646266

Th
e

TP
R

an
d

1-
FP

R

The diverse IDS identifier

0

0.2

0.4

0.6

0.8

1

12
6

10
6866646266

Th
e

TP
R

an
d

1-
FP

R

The diverse IDS identifier

0

0.2

0.4

0.6

0.8

1

12
6

10
6866646266

Th
e

TP
R

an
d

1-
FP

R

The diverse IDS identifier

0

0.2

0.4

0.6

0.8

1

12
6

10
6866646266

Th
e

TP
R

an
d

1-
FP

R

The diverse IDS identifier

0

0.2

0.4

0.6

0.8

1

12
6

10
6866646266

Th
e

TP
R

an
d

1-
FP

R

The diverse IDS identifier

0

0.2

0.4

0.6

0.8

1

846444244

Th
e

TP
R

an
d

1-
FP

R

The diverse IDS identifier

0

0.2

0.4

0.6

0.8

1

846444244

Th
e

TP
R

an
d

1-
FP

R

The diverse IDS identifier

0

0.2

0.4

0.6

0.8

1

846444244

Th
e

TP
R

an
d

1-
FP

R

The diverse IDS identifier

0

0.2

0.4

0.6

0.8

1

3626166

Th
e

TP
R

an
d

1-
FP

R

The diverse IDS identifier

0

0.2

0.4

0.6

0.8

1

3626166

Th
e

TP
R

an
d

1-
FP

R

The diverse IDS identifier

0

0.2

0.4

0.6

0.8

1
3626166

Th
e

TP
R

an
d

1-
FP

R

The diverse IDS identifier

-167-

Appendix B. Figure 3 The TPR and 1-FPR Distribution Plots showing the combined IDSs, in 1ooN,
RooN and NooN configurations. for each application ordered by TPR of 1ooN (so
the x-value remains the same for each of the 6 lines on the plot). The x-axes
represents the diverse IDSs for each configuration N.

N=8,

 9C8 = 9

0

0.2

0.4

0.6

0.8

1

97531

Th
e

TP
R

an
d

1-
FP

R

The diverse IDS identifier

0

0.2

0.4

0.6

0.8

1

97531

Th
e

TP
R

an
d

1-
FP

R

The diverse IDS identifier

0

0.2

0.4

0.6

0.8

1

97531

Th
e

TP
R

an
d

1-
FP

R

The diverse IDS identifier

-168-

The figure below shows, the same analysis as in the previous figure, but
the order in the X-axis is no longer preserved (i.e. we show the ordering of
each adjudicator on each measure independently).

N MyReferences phpBB TikiWiki
N=2,
9C2 =

36

N=3,
9C3=

84

N=4,
9C4 =
126

N=5,
9C5 =
126

0

0.2

0.4

0.6

0.8

1

10
0%86

%
72

%
58

%
44

%
31

%
17

%3%

Th
e

TP
R

an
d

1-
FP

R

The proportion of IDSs

0

0.2

0.4

0.6

0.8

1

10
0%86

%
72

%
58

%
44

%
31

%
17

%3%

Th
e

TP
R

an
d

1-
FP

R

The proportion of IDSs

0

0.2

0.4

0.6

0.8

1

10
0%86

%
72

%
58

%
44

%
31

%
17

%3%

Th
e

TP
R

an
d

1-
FP

R

The proportion of IDSs

0

0.2

0.4

0.6

0.8

1

10
0%76

%

52
%

29
%5%

Th
e

TP
R

an
d

1-
FP

R

The proportion of IDSs

0

0.2

0.4

0.6

0.8

1

10
0%76

%

52
%

29
%5%

Th
e

TP
R

an
d

1-
FP

R

The proportion of IDSs

0

0.2

0.4

0.6

0.8

1

10
0%76

%

52
%

29
%5%

Th
e

TP
R

an
d

1-
FP

R

The proportion of IDSs

0

0.2

0.4

0.6

0.8

1

10
0%84

%
68

%
52

%
37

%
21

%5%

Th
e

TP
R

an
d

1-
FP

R

The proportion of IDSs

0

0.2

0.4

0.6

0.8

1

10
0%84

%
68

%
52

%
37

%
21

%5%

Th
e

TP
R

an
d

1-
FP

R

The proportion of IDSs

0

0.2

0.4

0.6

0.8

1

10
0%84

%

68
%

52
%

37
%

21
%5%

Th
e

TP
R

an
d

1-
FP

R

The proportion of IDSs

0

0.2

0.4

0.6

0.8

1

10
0%84

%
68

%
52

%
37

%
21

%5%

Th
e

TP
R

an
d

1-
FP

R

The proportion of IDSs

0

0.2

0.4

0.6

0.8

1

10
0%84

%
68

%
52

%
37

%
21

%5%

Th
e

TP
R

an
d

1-
FP

R

The proportion of IDSs

0

0.2

0.4

0.6

0.8

1

10
0%84

%

68
%

52
%

37
%

21
%5%

Th
e

TP
R

an
d

1-
FP

R

The proportion of IDSs

-169-

N=6,
9C6 =

84

N=7,
9C7 =

36

N=8,
9C8 =

9

Appendix B .Figure 4 The TPR and 1-FPR Distribution Plots showing the combined IDSs, in 1ooN,
RooN and NooN configurations. for each application ordered from low to high value. So each line is
ordered from the best (left) to the worst (right), hence the actual value in the x-axis is not meaningful
(though the proportion is).

0

0.2

0.4

0.6

0.8

1

10
0%76

%

52
%

29
%5%

Th
e

TP
R

an
d

1-
FP

R

The proportion of IDSs

0

0.2

0.4

0.6

0.8

1

10
0%76

%

52
%

29
%5%

Th
e

TP
R

an
d

1-
FP

R

The proportion of IDSs

0

0.2

0.4

0.6

0.8

1

10
0%76

%

52
%

29
%5%

Th
e

TP
R

an
d

1-
FP

R

The proportion of IDSs

0

0.2

0.4

0.6

0.8

1

10
0%72

%

44
%

17
%

Th
e

TP
R

an
d

1-
FP

R

The proportion of IDSs

0

0.2

0.4

0.6

0.8

1

10
0%72

%

44
%

17
%

Th
e

TP
R

an
d

1-
FP

R

The proportion of IDSs

0

0.2

0.4

0.6

0.8

1

10
0%72

%

44
%

17
%

Th
e

TP
R

an
d

1-
FP

R

The proportion of IDSs

0

0.2

0.4

0.6

0.8

1

10
0%78

%

56
%

33
%

11
%

Th
e

TP
R

an
d

1-
FP

R

The proportion of IDSs

0

0.2

0.4

0.6

0.8

1

10
0%78

%

56
%

33
%

11
%

Th
e

TP
R

an
d

1-
FP

R

The proportion of IDSs

0

0.2

0.4

0.6

0.8

1

10
0%78

%

56
%

33
%

11
%

Th
e

TP
R

an
d

1-
FP

R

The proportion of IDSs

-170-

Appendix C (Supporting Chapter 8 of the thesis)

This appendix provides further details to support the analysis provided
in Chapter 8 of the thesis.

Appendix C-Figures 1, 2 and 3 (for IDSs), 4 and 5 (for SATs) are the
loss values associated with the all diverse systems from which the averages
in Figure 8-3 (for IDS) and 8-5 (for SATs) in Chapter 8 of the thesis are
derived.

-171-

 MyReferences

W1(FP)=1, W2(FN)=9 W1(FP)=3, W2(FN)=7 W1(FP)=7, W2(FN)=3 W1(FP)=9, W2(FN)=1

 N=3

 N=5

 N=7

Appendix C-Figure 1 The weighted total loss (FP losses and FN losses) per diverse system
configurations (1ooN, majority vote, NooN and optimal adjudication) for (MyReferences, N=3, 5 and 7)

0
200
400
600
800

1000
1200
1400

1 15 29 43 57 71

To
ta

l L
os

s

IDSs

0

200

400

600

800

1000

1 13 25 37 49 61 73

To
ta

l L
os

s

IDSs

0

100

200

300

400

500

1 13 25 37 49 61 73

To
ta

l L
os

s

IDSs

0

50

100

150

200

1 13 25 37 49 61 73

To
ta

l L
os

s

IDSs

0
200
400
600
800

1000
1200
1400

1 19 37 55 73 91 10
9

To
ta

l L
os

s

IDSs

0

200

400

600

800

1000

1 19 37 55 73 91 10
9

To
ta

l L
os

s

IDSs

0

100

200

300

400

500

1 19 37 55 73 91 10
9

To
ta

l L
os

s

IDSs

0

50

100

150

200

1 19 37 55 73 91 10
9

To
ta

l L
os

s

IDSs

0
200
400
600
800

1000
1200
1400

1 7 13 19 25 31

To
ta

l L
os

s

IDSs

0

200

400

600

800

1000

1 7 13 19 25 31

To
ta

l L
os

s

IDSs

0

100

200

300

400

500

1 7 13 19 25 31

To
ta

l L
os

s

IDSs

0

50

100

150

200
1 7 13 19 25 31

To
ta

l L
os

s

IDSs

-172-

 phpBB

W1(FP)=1, W2(FN)=9 W1(FP)=3, W2(FN)=7 W1(FP)=7, W2(FN)=3 W1(FP)=9, W2(FN)=1

 N=3

 N=5

 N=7

Appendix C-Figure 2 The weighted total loss (FP losses and FN losses) per diverse system
configurations (1ooN, majority vote, NooN and optimal adjudication) for (phpBB, N=3, 5 and 7)

0

500

1000

1500

2000

2500

1 13 25 37 49 61 73

To
ta

l L
os

s

IDSs

0

500

1000

1500

2000

1 13 25 37 49 61 73

To
ta

l L
os

s

IDSs

0

200

400

600

800

1000

1 13 25 37 49 61 73

To
ta

l L
os

s

IDSs

0

100

200

300

400

500

600

1 13 25 37 49 61 73

To
ta

l L
os

s

IDSs

0

500

1000

1500

2000

2500

1 19 37 55 73 91 10
9

To
ta

l L
os

s

IDSs

0

500

1000

1500

2000

1 22 43 64 85 10
6

To
ta

l L
os

s

IDSs

0

200

400

600

800

1000

1 19 37 55 73 91 10
9

To
ta

l L
os

s

IDSs

0

100

200

300

400

500

600

1 19 37 55 73 91 10
9

To
ta

l L
os

s

IDSs

0

500

1000

1500

2000

2500

1 7 13 19 25 31

To
ta

l L
os

s

IDSs

0

500

1000

1500

2000

1 7 13 19 25 31

To
ta

l L
os

s

IDSs

0

200

400

600

800

1 7 13 19 25 31

To
ta

l L
os

s

IDSs

0
100
200
300
400
500
600

1 7 13 19 25 31

To
ta

l L
os

s

IDSs

-173-

 TikiWiki

W1(FP)=1, W2(FN)=9 W1(FP)=3, W2(FN)=7 W1(FP)=7, W2(FN)=3 W1(FP)=9, W2(FN)=1

 N=3

 N=5

 N=7

Appendix C-Figure 3 The weighted total loss (FP losses and FN losses) per diverse system
configurations (1ooN, majority vote, NooN and optimal adjudication) for (TikiWiki, N=3, 5 and 7)

0

200

400

600

800

1 13 25 37 49 61 73

To
ta

l L
os

s

IDSs

0

100

200

300

400

500

600

1 13 25 37 49 61 73

To
ta

l L
os

s

IDSs

0

100

200

300

400

500

1 13 25 37 49 61 73

To
ta

l L
os

s

IDSs

0

100

200

300

400

500

1 13 25 37 49 61 73

To
ta

l L
os

s

IDSs

0

200

400

600

800

1 19 37 55 73 91 10
9

To
ta

l L
os

s

IDSs

0

100

200

300

400

500

600

1 19 37 55 73 91 10
9

To
ta

l L
os

s

IDSs

0

100

200

300

400

500
1 19 37 55 73 91 10
9

To
ta

l L
os

s

IDSs

0

100

200

300

400

500

600

1 17 33 49 65 81 97 11
3

To
ta

l L
os

s
IDSs

0

200

400

600

800

1 7 13 19 25 31

To
ta

l L
os

s

IDSs

0
100
200
300
400
500
600

1 9 17 25 33

To
ta

l L
os

s

IDSs
0

100

200

300

400

500

1 7 13 19 25 31

To
ta

l L
os

s

IDSs

0

100

200

300

400

500

1 7 13 19 25 31

To
ta

l L
os

s

IDSs

-174-

SQLi

X-axes: SAT diverse systems
Y-axes: Total loss

W1(FP)=1, W2(FN)=9 W1(FP)=3, W2(FN)=7 W1(FP)=7, W2(FN)=3 W1(FP)=9, W2(FN)=1
 N=2

 N=3

 N=4

Appendix C-Figure 4 The weighted total loss (FP losses and FN losses) per diverse system
configurations (1ooN, majority vote, NooN and optimal adjudication) for (SQLi, N=2, 3 and 4)

0

1000

2000

3000

4000

5000

6000

(a
,b

)
 (a

,c
)

 (a
,d

)
 (a

,e
)

 (b
,c

)
 (b

,d
)

 (b
,e

)
 (c

,d
)

 (c
,e

)
 (d

,e
)

0

1000

2000

3000

4000

5000

(a
,b

)
 (a

,c
)

 (a
,d

)
 (a

,e
)

 (b
,c

)
 (b

,d
)

 (b
,e

)
 (c

,d
)

 (c
,e

)
 (d

,e
)

0

500

1000

1500

2000

2500

(a
,b

)
 (a

,c
)

 (a
,d

)
 (a

,e
)

 (b
,c

)
 (b

,d
)

 (b
,e

)
 (c

,d
)

 (c
,e

)
 (d

,e
)

0
200
400
600
800

1000
1200
1400
1600
1800

(a
,b

)
 (a

,c
)

 (a
,d

)
 (a

,e
)

 (b
,c

)
 (b

,d
)

 (b
,e

)
 (c

,d
)

 (c
,e

)
 (d

,e
)

0

1000

2000

3000

4000

5000

6000

7000

(a
,b

,c
)

(a
,b

,d
)

(a
,b

,e
)

(a
,c

,d
)

(a
,c

,e
)

(a
,d

,e
)

(b
,c

,d
)

(b
,c

,e
)

(b
,d

,e
)

(c
,d

,e
)

0

1000

2000

3000

4000

5000

(a
,b

,c
)

(a
,b

,d
)

(a
,b

,e
)

(a
,c

,d
)

(a
,c

,e
)

(a
,d

,e
)

(b
,c

,d
)

(b
,c

,e
)

(b
,d

,e
)

(c
,d

,e
) 0

500

1000

1500

2000

2500

(a
,b

,c
)

(a
,b

,d
)

(a
,b

,e
)

(a
,c

,d
)

(a
,c

,e
)

(a
,d

,e
)

(b
,c

,d
)

(b
,c

,e
)

(b
,d

,e
)

(c
,d

,e
) 0

200
400
600
800

1000
1200
1400
1600
1800

(a
,b

,c
)

(a
,b

,d
)

(a
,b

,e
)

(a
,c

,d
)

(a
,c

,e
)

(a
,d

,e
)

(b
,c

,d
)

(b
,c

,e
)

(b
,d

,e
)

(c
,d

,e
)

0

1000

2000

3000

4000

5000

6000

7000

(a
,b

,c
,d

)

(a
,b

,c
,e

)

(a
,b

,d
,e

)

(a
,c

,d
,e

)

(b
,c

,d
,e

)

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

(a
,b

,c
,d

)

(a
,b

,c
,e

)

(a
,b

,d
,e

)

(a
,c

,d
,e

)

(b
,c

,d
,e

) 0

500

1000

1500

2000

2500

(a
,b

,c
,d

)

(a
,b

,c
,e

)

(a
,b

,d
,e

)

(a
,c

,d
,e

)

(b
,c

,d
,e

) 0
200
400
600
800

1000
1200
1400
1600
1800

(a
,b

,c
,d

)

(a
,b

,c
,e

)

(a
,b

,d
,e

)

(a
,c

,d
,e

)

(b
,c

,d
,e

)

-175-

XSS

X-axes: SAT diverse systems

Y-axes: Total loss

W1(FP)=1, W2(FN)=9 W1(FP)=3, W2(FN)=7 W1(FP)=7, W2(FN)=3 W1(FP)=9, W2(FN)=1

 N=2

 N=3

 N=4

Appendix C-Figure 5 The weighted total loss (FP losses and FN losses) per diverse system
configurations (1ooN, majority vote, NooN and optimal adjudication) for (XSS, N=2, 3 and 4)

0
5000

10000
15000
20000
25000
30000
35000
40000

(a
,b

)
 (a

,c
)

 (a
,d

)
 (a

,e
)

 (b
,c

)
 (b

,d
)

 (b
,e

)
 (c

,d
)

 (c
,e

)
 (d

,e
)

0
5000

10000
15000
20000
25000
30000
35000

(a
,b

)
 (a

,c
)

 (a
,d

)
 (a

,e
)

 (b
,c

)
 (b

,d
)

 (b
,e

)
 (c

,d
)

 (c
,e

)
 (d

,e
) 0

2000
4000
6000
8000

10000
12000
14000

(a
,b

)
 (a

,c
)

 (a
,d

)
 (a

,e
)

 (b
,c

)
 (b

,d
)

 (b
,e

)
 (c

,d
)

 (c
,e

)
 (d

,e
)

0
1000

2000
3000
4000
5000
6000

(a
,b

)
 (a

,c
)

 (a
,d

)
 (a

,e
)

 (b
,c

)
 (b

,d
)

 (b
,e

)
 (c

,d
)

 (c
,e

)
 (d

,e
)

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

(a
,b

,c
)

(a
,b

,d
)

(a
,b

,e
)

(a
,c

,d
)

(a
,c

,e
)

(a
,d

,e
)

(b
,c

,d
)

(b
,c

,e
)

(b
,d

,e
)

(c
,d

,e
)

0
5000

10000
15000
20000
25000
30000
35000

(a
,b

,c
)

(a
,b

,d
)

(a
,b

,e
)

(a
,c

,d
)

(a
,c

,e
)

(a
,d

,e
)

(b
,c

,d
)

(b
,c

,e
)

(b
,d

,e
)

(c
,d

,e
) 0

2000
4000
6000
8000

10000
12000
14000

(a
,b

,c
)

(a
,b

,d
)

(a
,b

,e
)

(a
,c

,d
)

(a
,c

,e
)

(a
,d

,e
)

(b
,c

,d
)

(b
,c

,e
)

(b
,d

,e
)

(c
,d

,e
)

0
1000
2000
3000
4000
5000
6000

(a
,b

,c
)

(a
,b

,d
)

(a
,b

,e
)

(a
,c

,d
)

(a
,c

,e
)

(a
,d

,e
)

(b
,c

,d
)

(b
,c

,e
)

(b
,d

,e
)

(c
,d

,e
)

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

(a
,b

,c
,d

)

(a
,b

,c
,e

)

(a
,b

,d
,e

)

(a
,c

,d
,e

)

(b
,c

,d
,e

) 0
5000

10000
15000
20000
25000
30000
35000

(a
,b

,c
,d

)

(a
,b

,c
,e

)

(a
,b

,d
,e

)

(a
,c

,d
,e

)

(b
,c

,d
,e

) 0
2000
4000
6000
8000

10000
12000
14000

(a
,b

,c
,d

)

(a
,b

,c
,e

)

(a
,b

,d
,e

)

(a
,c

,d
,e

)

(b
,c

,d
,e

)

0
1000
2000
3000
4000
5000
6000

(a
,b

,c
,d

)

(a
,b

,c
,e

)

(a
,b

,d
,e

)

(a
,c

,d
,e

)

(b
,c

,d
,e

)

