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Appendix A: Long Replenishment Lead Time

We analyze the case when the replenishment lead time is long so that both (instead of one) retailers place their

orders “before” the market size M is realized. We show numerically that the structural results continue to hold.

A.1. Setting 2: Selling two substitutable products through one retailer

Observe that Setting 2 (Figure 4-2) corresponds to the base case when sm1 = sm2 = 0. Hence, D1 = m ·

(p2−sb2 )−δ(p1−sb1 )
δ−1 , and D2 =m · [1− (p2−sb2 )−(p1−sb1 )

δ−1 ].

Retailer’s pricing problem. Because the retailer’s pricing problem occurs after the orders z1 and z2 are

placed and the market size m is realized, the ordering costs (i.e., w1 · z1, w2 · z2) are “sunk” and the sales

S1 = min{D1, z1} and S2 = min{D2, z2}; respectively. Therefore, the retailer’s problem is: maxp1,p2 {(p1 + sr1) ·

D1 + (p2 + sr2) ·D2}, s.t. D1 ≤ z1,D2 ≤ z2. LetM2 = 2z2·(δ−1)
δ−1−s1+s2

andM3 = 2(z1+z2)
1+s1

, we can show that:

p∗1 =


1
2 (1 + sb1 − sr1) if m≤M3

1 + sb1 − z1+z2
m

if m≥M3

, p∗2 =



1
2 (δ+ sb2 − sr2) if m≤M2

m(2δ−1−s1+2sb2 )−2z2(δ−1)
2m ifM2 <m<M3

δ+ sb2 − z1+δ·z2
m

if m≥M3

S∗1 =



m·(δ·s1−s2)
2(δ−1) if m≤M2

1
2m(1 + s1)− z2 ifM2 <m<M3

z1 if m>M3

, S∗2 =


m·(δ−1+s2−s1)

2(δ−1) if m≤M2

z2 if m>M2

Retailer’s ordering problem. By using (p∗1, p∗2) and (S∗1 , S∗2 ), the retailer’s problem is:

max
z1,z2

EM [Πr(m)] =
∫ M2

0
Πr,1(m) · f(m)dm+

∫ M1

M2

Πr,2(m) · f(m)dm+
∫ ∞

M1

Πr,3(m) · f(m)dm, where

Πr(m) = (p∗1 + sr1) ·S∗1 + (p∗2 + sr2) ·S∗2 −w1 · z1−w2 · z2 =



Πr,1(m) if m≤M2

Πr,2(m) ifM2 <m<M1

Πr,3(m) if m≥M1

.

Donor’s problem. When offering uniform subsidy s1 = s2 = s, the donor’s problem is: maxs EM [S∗1 +

S∗2 ] s.t. EM [s · (S∗1 +S∗2 )]≤K, where

EM [S∗1 +S∗2 ] =
∫ M2

0

m(δ · s+ δ− 1)
2(δ− 1) · f(m)dm+

∫ M1

M2

(m · s2 + z∗2) · f(m)dm+
∫ ∞

M1

(z∗1 + z∗2) · f(m)dm.

1
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A.2. Setting 3: Two manufacturers sell two products separately through two retailers

We now consider Setting 3 (Figure 4-3) that corresponds to the base case when sm1 = sm2 = 0 and the wholesale

price is exogenous.

Retailers’ pricing problem. By using the same approach as before, each retailer solves:

max
p1

{(p1 + sr1) ·D1} s.t. D1 =m · (p2− sb2)− δ(p1− sb1)
δ− 1 ≤ z1, and

max
p2

{(p2 + sr2) ·D2} s.t. D2 =m · [1− (p2− sb2)− (p1− sb1)
δ− 1 ]≤ z2.

LetM′
2 = z2·(4δ−1)·(δ−1)

2δ2−δ(2+s1)+(2δ−1)s2
andM′

3 = z1(2δ−1)+z2δ
(1+s1)·δ , we get:

p∗1 =



δ−1−sb1−s2+2δ(sb1−sr1 )
4δ−1 if m≤M′

2

m((δ−1)(1+sb1 )−δsr1 )−z2(δ−1)
m(2δ−1) ifM′

2 <m<M′
3

1 + sb1 − z1+z2
m

if m≥M′
3

, p∗2 =



2δ2−2δ−sb2−δs1+2δ(sb2−sr2 )
4δ−1 if m≤M′

2

m(δ(2δ−2−s1)+(2δ−1)sb2 )−2z2(δ−1)δ
m(2δ−1) ifM′

2 <m<M′
3

δ+ sb2 − z1+z2δ
m

if m≥M′
3

S∗1 =



m · δ
2(1+2s1)−δ(1+s1+s2)

(4δ−1)(δ−1) if m≤M′
2

δ·(m(1+s1)−z2)
2δ−1 ifM′

2 <m<M′
3

z1 if m≥M′
3

, S∗2 =


m · (2δ−1)·s2+δ(2δ−2−s1)

(4δ−1)(δ−1) if m≤M′
2

z2 if m>M′
2

Retailers’ ordering problem. By using (p∗1, p∗2) and (S∗1 , S∗2 ), each retailer’s profit Πi
r(m), i= 1,2 is:

Π1
r(m) = (p∗1 + sr1) ·S∗1 −w1 · z1 =



Π1
r,1(m) if m≤M′

2

Π1
r,2(m) ifM′

2 <m<M′
3

Π1
r,3(m) if m≥M′

3

Π2
r(m) = (p∗2 + sr2) ·S∗2 −w2 · z2 =



Π2
r,1(m) if m≤M′

2

Π2
r,2(m) ifM′

2 <m<M′
3

Π2
r,3(m) if m≥M′

3

Hence, each retailer maximizes its own profit by solves:

max
z1

EM [Π1
r(m)] =

∫ M′2

0
Π1
r,1(m) · f(m)dm+

∫ M′3

M′2

Π1
r,2(m) · f(m)dm+

∫ ∞

M′3

Π1
r,3(m) · f(m)dm,

max
z2

EM [Π2
r(m)] =

∫ M′2

0
Π2
r,1(m) · f(m)dm+

∫ M′3

M′2

Π2
r,2(m) · f(m)dm+

∫ ∞

M′3

Π2
r,3(m) · f(m)dm
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Donor’s problem. When offering uniform subsidy s1 = s2 = s, the donor’s problem is: maxs EM [S∗1 +

S∗2 ] s.t. EM [s · (S∗1 +S∗2 )]≤K, where

EM [S∗1 +S∗2 ] =
∫ M′2

0

m(s+ δ(3 + 2s))
4δ− 1 · f(m)dm+

∫ M′3

M′2

(δ(m(1 + s)− z∗2)
2δ− 1 + z∗2) · f(m)dm+

∫ ∞

M′3

(z∗1 + z∗2) · f(m)dm.

A.3. Numerical Analysis

We consider the market size M ∼N(1,0.04), set w1 = 0.5,w2 = 0.8, set δ = 1.2, and we get Figure 1.
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Figure 1 Optimal uniform subsidy (left) and the corresponding total sales (right)

From Figure 1, we find that the optimal per unit subsidy s∗ is lower in setting 3, and the total sales (S∗1 +S∗2 )

is higher in setting 3. Hence, we can conclude that, by using the same budget K, having more retail-channel

choice can increase product adoption. Therefore, our structural results obtained in Section 5 continue to hold

even when the replenishment lead time is long so that both retailers have to place their orders before the market

size is realized.

Appendix B: Proofs

Proof of Proposition 1 By considering the budget constraint, we can obtain that D ≤ 1−w+
√

(1−w)2+8K
4 . As

the objective function is increasing in D, we know that the optimal D∗ = 1−w+
√

(1−w)2+8K
4 . And we can then

calculate the optimal s∗ via substitution.

Proof of Proposition 2 By taking the first order derivative of f1(D1,D2) with respect to D1, D2, we get:

∂f1

∂D1
= 4(D1 +D2) + (w1− 1) = 2s1 + (1−w1) = 2(D1 +D2) + s1 > 0,

∂f1

∂D2
= 4(D1 + δD2) + (w2− δ) = 2s2 + (δ−w2) = 2(D1 + δD2) + s2 > 0,
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from which we know that f1(D1,D2) is increasing in both D1 and D2. As the objective function D1 + k ·D2

is also increasing in both D1 and D2, we know that the optimal D∗1 and D∗2 should satisfy the binding budget

constraint (i.e., f1(D∗1 ,D∗2) =K). Next, by considering the first order condition of the objective function of the

donor’s problem given by (10), we obtain D∗2 = (δ−w2)−(1−w1)
4(δ−1) . When δ−w2 ≥ 1−w1, then D∗2 is feasible, else

when δ−w2 < 1−w1, we can find that the objective function is always decreasing in D2 when D2 > 0, thus we

can obtain D∗2 = 0. As such, we can get the corresponding D∗1 and optimal subsidy (s∗bi , s
∗
ri

) via substitution.

Moreover, as (D∗1 ,D∗2) = ( 1
4 (1− w1 +

√
8K + (1−w1)2),0) is always a feasible solution of donor’s problem in

setting 2, we know that total demand in setting 2 D∗1 +D∗2 ≥ 1
4 (1−w1 +

√
8K + (1−w1)2).

Proof of Proposition 3 By denoting the subsidy cost (i.e., the left hand side of (13)) as f2(D1,D2) and by

taking the first order derivative of f2(·) with respect to D1, D2, we get:

∂f2

∂D1
= 2D1 ·

2δ− 1
δ

+ 2D2 + (w1− 1) = 2s1 + (1−w1) = 2δ− 1
2δ ·D1 +D2 + s1 > 0,

∂f2

∂D2
= 2(2δ− 1)D2 + 2D1 + (w2− δ) = 2s2 + (δ−w2) = (2δ− 1)D2 +D1 + s2 > 0,

from which we know that f2(D1,D2) is increasing in both D1 and D2. As the objective function D1 +D2 is

also increasing in both D1 and D2, we know that the optimal D∗1 and D∗2 should satisfy the binding budget

constraint (i.e., f2(D∗1 ,D∗2) = K). Also, from (12), we know that Di only depends on the total subsidy si for

each product so that we can solve out the unique si based on the binding budget constraint, while the optimal

s∗bi and s
∗
ri

are not uniquely determined.

Proof of Corollary 1 To achieve the same demand (D1,D2), the donor should spend f1(D1,D2) = 2D2
1 +

2δD2
2 + 4D1D2 + (w1− 1)D1 + (w2− δ)D2 in setting 2 and spend f2(D1,D2) = 2δ−1

δ
D2

1 + 2D1D2 + (2δ− 1)D2
2 +

(w1− 1)D1 + (w2− δ)D2 in setting 3. By comparing f1(D1,D2) and f2(D1,D2), we obtain:

f1(D1,D2)− f2(D1,D2) = (2− 2δ− 1
δ

) · (D2
1 + δD2

2) + 2D1D2 > 0.

Hence we know that to get the same (D1,D2), the donor needs to spend more money in a single retailer case (i.e.,

setting 2) than two competing retailers case (i.e., setting 3). Recall Proposition2 and 3, the optimal solutions of

the donor’s problem all satisfy the binding constraint. Therefore, we know that the optimal solution (D∗1,1,D∗1,2)

of setting 2 with a single retailer satisfies f1(D∗1,1,D∗1,2) =K. Meanwhile, we also know that f2(D∗1,1,D∗1,2)<K,

which means (D∗1,1,D∗1,2) is not the optimal solution of setting 3 with two competing retailers. As such, we know

that the optimal solution of setting 3 yields a greater total demand (i.e., the objective function D1 +D2) than

the optimal solution of setting 2.
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Proof of Proposition 4 It is easy to check that the objective function D= 1−c
4 + s′

4 and the donor’s subsidy

cost s′ · ( 1−c
4 + s′

4 ) are both increasing in s′. Hence we know that the budget constraint is binding at the

optimal solution. By solving the binding budget constraint, we obtain s′ = −(1−c)+
√

(1−c)2+16K
2 and we then

get D∗ = (1−c)+
√

(1−c)2+16K
8 , W ∗ = [(1−c)+

√
(1−c)2+16K]2

128 , π∗r = [(1−c)+
√

(1−c)2+16K]2

64 , π∗m = [(1−c)+
√

(1−c)2+16K]2

32 via

substitution.

Proof of Proposition 5 By denoting f1(D1,D2) as the subsidy cost (i.e., the left hand side of (19)) and taking

the first order derivative, we obtain:

∂f1

∂D1
= [−1 + c1 + 4(D1 +D2)] + 4D1 + 4D2 = s′1 + 4(D1 +D2)> 0,

∂f2

∂D2
= [−δ+ c2 + 4(δD2 +D1)] + 4(D1 + δD2) = s′2 + 4(D1 + δD2)> 0.

Hence we know that for feasible s′1, s′2,D1,D2, the donor’s expense f1(D1,D2) is increasing in D1 and D2. As the

objective function D1 +D2 is also increasing in D1 and D2, we know the optimal (D∗1 ,D∗2) satisfies the binding

budget constraint (i.e., [−1+ c1 +4(D∗1 +D∗2)] ·D∗1 +[−δ+ c2 +4(D∗1 + δD∗2)] ·D∗2 =K). Next, by considering the

first order condition of donor’s objective function given by (20), we obtainD∗2 = δ−c2−(1−c1)
δ(δ−1) . When δ−c2 ≥ 1−c2,

D∗2 > 0 so that we can further compute D∗1 = c2−c1δ
8(δ−1) + 1

8

√
c2

1− 2c2 + 16K + (c1−c2)2

δ−1 + δ via substitution. When

δ− c2 < 1− c2, δ−c2−(1−c1)
δ(δ−1) < 0 so that the objective function is always increasing in D2 when D2 > 0. Hence we

get the optimal D∗2 = 0 and D∗1 = 1
8 (1− c1) +

√
(1− c1)2 + 16K. And we can then further compute the optimal

subsidy (s′∗1 , s′∗2 ), and the corresponding π∗m, π∗r and W ∗ via substitution.

Proof of Proposition 6 By denoting f2(D1,D2) as the subsidy cost (i.e., the left hand side of (22)) and taking

the first order derivative of f2(D1,D2) with respect to D1 and D2, we get:

∂f2

∂D1
= c1− 1 + 2D2 + 2D1 · (4 + 1

1− 2δ −
2
δ

) = 2s′1 + 1− c1 > 0

∂f2

∂D2
= c2− δ+ 2D1 +D2 · (−5 + 1

1− 2δ + 8δ) = 2s′2 + δ− c2 > 0

Therefore, for feasible s′1, s′2,D1,D2, the donor’s expense f2(D1,D2) is increasing in D1 and D2. As the objective

function D1 +D2 is also increasing in D1 and D2, we obtain that the optimal (D∗1 ,D∗2) should satisfy the binding

budget constraint (i.e., [c1− 1 +D∗2 +D∗1 · (4 + 1
1−2δ −

2
δ
)] ·D∗1 + [c2− δ+D∗1 +D∗2 · (− 5

2 + 1
2−4δ + 4δ)] ·D∗2 =K),

which is stated as the first statement of Proposition 6. Next, we know from (21) that Di only depends on s′i,

which also implies that the total subsidy per unit s′i for product i is uniquely determined but the optimal subsidy

(s∗bi , s
∗
ri
, s∗mi) are not unique. Then we can easily check that π∗r , π∗m, and W ∗ also only depend on s′i. Finally,
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we show the third statement by the following. To achieve the same demand (D1,D2), the donor should spend

f1(D1,D2) in the setting 2 and spend f2(D1,D2) in the setting 3. By comparing f1(D1,D2) and f2(D1,D2), we

obtain:

f1(D1,D2)− f2(D1,D2) = 1
2 [D2(12D1 + 5D2) + 4D2

1
δ

+ 2D2
1 +D2

2
2δ− 1 ]> 0.

Hence we know that to get the same (D1,D2), the donor needs to spend more money in setting 2 than setting

3. As the optimal solutions of the donor’s problem all satisfy the binding constraint, we know that the optimal

solution (D∗1,1,D∗1,2) of setting 2 satisfies f1(D∗1,1,D∗1,2) =K. Meanwhile, we also know that f2(D∗1,1,D∗1,2)<K,

which means (D∗1,1,D∗1,2) is not the optimal solution of setting 3. As such, we know that the optimal solution of

setting 3 yields a greater total demand (i.e., D1 +D2) than setting 2.

Proof of Proposition 7 Then by taking the second order derivative of Em[Πr(m)] with respect to z and using

the Leibniz integral rule, we obtain

∂2Em[Πr(m)]
∂z2 =−

∫ ∞

2z
1+s

2
m
· f(m)dm< 0

Hence we know the expected profit function of the retailer is concave. Hence the optimal z∗ satisfies the

first order condition (i.e.,
∫∞

2z∗
1+s

(1 + s − 2z∗
m

) · f(m)dm − w = 0). We use g(z, s,w) to represent the function∫∞
2z∗
1+s

(1+s− 2z∗
m

) ·f(m)dm−w, and we have g(z∗, s,w) = 0. By taking the first order derivative of g(z, s,w) with

respect to z, s and w, we get:

∂g

∂z
=−

∫ ∞

2z
1+s

2
m
· f(m)dm< 0, ∂g

∂s
=

∫ ∞

2z
1+s

f(m)dm> 0, ∂g

∂w
=−1< 0

From the above, we know that g(z, s,w) is increasing in s and decreasing in z and w. Hence to ensure g(z∗, s,w) =

0, we can easily know that z∗ is increasing in s and decreasing in w.

Proof of Proposition 8 By taking the first order derivative of EM [S] with respect to s, we get:

∂EM [S]
∂s

=1 + s

2 · 2z∗

1 + s
· f( 2z∗

1 + s
) · ∂( 2z∗

1 + s
)/∂s+

∫ 2z∗
1+s

0

m

2 · f(m)dm

− z∗f( 2z∗

1 + s
) · ∂( 2z∗

1 + s
)/∂s+

∫ ∞

2z∗
1+s

∂z∗

∂s
· f(m)dm

=
∫ 2z∗

1+s

0

m

2 · f(m)dm+
∫ ∞

2z∗
1+s

∂z∗

∂s
· f(m)dm

From Proposition 7 we know that z∗ is increasing in s. Hence we obtain that ∂EM [S]
∂s

> 0, which indicates that

the total sale is increasing in the donor’s subsidy s. With the objective function EM [S] and the total subsidy
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cost s ·EM [S] both increasing in s, we know that the optimal solution will be achieved at the binding budget

constraint. With the binding budget constraint, we know that when the budget K increase, the optimal s∗ will

increase.

By taking the first order derivative of the subsidy cost s · EM [S] with respect to z∗, we get ∂(s·EM [S])
∂z∗

= s ·

(
∫∞

2z
1+s

f(m)dm)> 0, from which we know the cost is increasing in z∗. As we have shown in Proposition 7 that z∗

is decreasing in the wholesale price w, we obtain that the cost is decreasing in w. To ensure budget constraint

is binding, we get that when w increases, the optimal s∗ will increase.

Proof of Proposition 9 By taking the second order derivative of EM [Πr(m)], we get:

∂E2
M [Πr(m)]
∂z2

1
= ∂M1

∂z1
· 0 +

∫ ∞

M1

(−2(δ− 1)
mδ

) · f(m)dm< 0,

from which we know the retailer’s expected profit by selling product 1 is a concave function of z1. By consid-

ering the first order condition, we obtain that the optimal ordering decision for product 1 (i.e., z∗1) satisfies∫∞
2z∗1 (δ−1)
δs1+w2−s2

[−2(δ−1)z∗1
mδ

+ δs1−s2+w2
δ

] · f(m)dm−w1 = 0.

We use g(z1, s1, s2,w1,w2) to represent
∫∞

2z1(δ−1)
δs1+w2−s2

[−2(δ−1)z1
mδ

+ δs1−s2+w2
δ

] · f(m)dm − w1, and we have

shown that g(z∗1 , s1, s2,w1,w2) = 0. By taking the first order derivative of g(z1, s1, s2,w1,w2) with respect to

z1, s1, s2, w1, w2, we get:

∂g

∂z1
=

∫ ∞

M1

(−2(δ− 1)
mδ

) · f(m)dm< 0, ∂g

∂s1
=

∫ ∞

M1

f(m)dm> 0,

∂g

∂s2
=

∫ ∞

M1

−1
δ
f(m)dm< 0, ∂g

∂w1
=−1< 0, ∂g

∂w2
=

∫ ∞

M1

1
δ
f(m)dm> 0

To ensure g(z∗1 , s1, s2,w1,w2) = 0, we can easily obtain that z∗1 is increasing s1 and w2, while is decreasing in s2

and w1.

Proof of Proposition 10 We use SS1(m) and SS2(m) to represent the total sales (i.e., S1 +S2) under cases

when m≤M1 and m≥M1, respectively; and we have SS1(M1) = SS2(M1). By taking the first order derivative

of EM [S1 +S2] with respect to s, we obtain:

∂EM [S1 +S2]
∂s

=∂M1

∂s
·SS1(M1) · f(M1) +

∫ M1

0

m

2 · f(m)dm

− ∂M1

∂s
·SS2(M1) · f(M1) +

∫ ∞

M1

(∂z
∗
1

∂s
+ m

2δ ) · f(m)dm

=
∫ M1

0

m

2 · f(m)dm+
∫ ∞

M1

(∂z
∗
1

∂s
+ m

2δ ) · f(m)dm
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When s1 = s2 = s, we know that the optimal order quantity z∗1 satisfies g(z∗1 , s,w1,w2) =
∫∞

2z∗1 (δ−1)
δs+w2−s

[−2(δ−1)z1
mδ

+

δs−s+w2
δ

] · f(m)dm−w1 = 0. By taking the first order derivative of g(·), we find that ∂g
∂z1

< 0 and ∂g
∂s
> 0, from

which we can further know z∗1 is increasing in s so as to ensure g(z∗1 , s,w1,w2) = 0. As z∗1 is increasing in s, we

can obtain that the total expected sales is increasing in s (i.e., ∂EM [S1+S2]
∂s

> 0). Moreover, it is obvious that the

total expense EM [s · (S1 +S2)] = s ·EM [S1 +S2] is also increasing in s. Hence we know that the optimal per unit

subsidy s∗ should satisfy the binding budget constraint.

Proof of Proposition 11 By taking the first order derivative of EM [Πr1(M)] with respect to z1, we get:

∂EM [Πr1(m)]
∂z1

=∂M2

∂z1
·Πr1,1(M2) · f(M2) +

∫ M2

0
(−w1) · f(m)dm

− ∂M2

∂z1
·Πr1,2(M2) · f(M2) +

∫ ∞

M2

[− 4(δ− 1)
m(2δ− 1) · z1 + δ− 1− (s2−w2)

2δ− 1 + s1−w1] · f(m)dm

=−w1 +
∫ ∞

M2

[− 4(δ− 1)
m(2δ− 1) · z1 + δ− 1− (s2−w2)

2δ− 1 + s1] · f(m)dm

By checking the second order derivative of EM [Πr1(m)], we obtain: ∂2EM [Πr1 (m)]
∂z2

1
= δ−1

2δ−1 · [ 1
δ
· f(M2) −

4
∫∞
M2

1
m
f(m)dm]< 0 when 1

δ
·f(M2)< 4

∫∞
M2

1
m
f(m)dm. Hence we know that EM [Πr1(M)] is a concave function

of z1; and we can obtain Proposition 11 by considering the first order condition.

Proof of Proposition 12 By taking the first order derivative of EM [S1 +S2] with respect to s, we get:

∂EM [S1 +S2]
∂s

=
∫ M2

0

1 + 2δ
4δ− 1 ·m · f(m)dm+

∫ ∞

M2

[ 2(δ− 1)
2δ− 1 ·

∂z∗1
∂s

+ m

2δ− 1 ] · f(m)dm

From Proposition 11, we know that −w1 +
∫∞
M2

[− 4(δ−1)
m(2δ−1) · z

∗
1 + δ−1−(s2−w2)

2δ−1 + s1] · f(m)dm = 0. Hence when

s1 = s2 = s, we denote g(s, z1) =−w1 +
∫∞
M2

[− 4(δ−1)
m(2δ−1) · z

∗
1 + δ−1−(s−w2)

2δ−1 + s] · f(m)d and we know g(s, z∗1) = 0. It

is easy to check that ∂g
∂z
< 0 and ∂g

∂s
> 0, from which we can obtain that z∗1 is increasing in s so as to ensure

g(s, z∗1) = 0. With ∂z∗1
∂s

> 0, we can show ∂EM [S1+S2]
∂s

> 0. Therefore, we obtain that both the objective function

and the subsidy cost shown in the donor’s problem (41) is increasing in s, from which we know that the budget

constraint should be binding at the optimal solution.


