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Population structure can have a significant effect on evolution. For some systems with sufficient sym-
metry, analytic results can be derived within the mathematical framework of evolutionary graph theory
which relate to the outcome of the evolutionary process. However, for more complicated heterogeneous
structures, computationally intensive methods are required such as individual-based stochastic simula-
tions. By adapting methods from statistical physics, including moment closure techniques, we first show
how to derive existing homogenised pair approximation models and the exact neutral drift model. We
then develop node-level approximations to stochastic evolutionary processes on arbitrarily complex struc-
tured populations represented by finite graphs, which can capture the different dynamics for individual
nodes in the population. Using these approximations, we evaluate the fixation probability of invading
mutants for given initial conditions, where the dynamics follow standard evolutionary processes such as
the invasion process. Comparisons with the output of stochastic simulations reveal the effectiveness of
our approximations in describing the stochastic processes and in predicting the probability of fixation of
mutants on a wide range of graphs. Construction of these models facilitates a systematic analysis and is
valuable for a greater understanding of the influence of population structure on evolutionary processes.

© 2019 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

Models of evolutionary dynamics were originally determinis-
tic and assumed well-mixed populations in which every individ-
ual of a given type is identical. Stochastic models of these finite
well-mixed populations have been studied (Moran, 1958), however
real populations are usually characterised by a complicated rela-
tionship structure between individuals (Zhang et al., 2007). To ac-
count for this, a class of mathematical models known as evolution-
ary graph theory have been developed which show that the pop-
ulation structure can significantly influence the outcome of evo-
lutionary dynamics (Lieberman et al., 2005; Traulsen and Hauert,
2010). In these models, structured populations are represented by
finite graphs, where each node represents an individual in the pop-
ulation and relationships between individuals are represented by
the edges of the graph. Stochastic evolutionary processes can be
considered analytically and precise results can be derived for a
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number of simple graphs, such as the circle, star and complete
graphs (Broom et al., 2010; Broom and Rychtaf, 2008; Lieberman
et al., 2005), mainly due to their symmetry. Analytic approaches
for investigating evolutionary dynamics on complex graphs have
also been proposed. However, such methods are usually limited by
assumptions such as large populations (Nowak et al., 2010; Ohtsuki
et al., 2006) or are specifically designed for investigating evolution-
ary processes under weak selection (Allen et al., 2017; Zhong et al.,
2013), where the evolutionary game has only a small effect on re-
productive success.

Important quantities of interest such as the exact fixation prob-
ability and time can, in principle, be obtained by solving the
discrete-time difference equations of the underlying stochastic
model (Hindersin et al., 2016), although this is only feasible for
very small populations unless there are simplifying symmetries.
Individual-based stochastic simulations (Barbosa et al., 2010; Ma-
ciejewski et al., 2014) provide numerically accurate representations
of the evolutionary process on arbitrary graphs but have limited
scope for generating conceptual insights into the dynamics on their
own. They can also be computationally expensive on larger graphs,

0022-5193/© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)
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but as a precise representation of the underlying stochastic model,
they allow us to evaluate the accuracy of approximate models by
comparison.

Here we develop approximations to the stochastic model by
using insights from methods in statistical physics that have also
been used extensively for epidemic modelling (Born and Green,
1946; Keeling and Eames, 2005; Kirkwood, 1947; Pellis et al,,
2015; Sharkey, 2008; Sharkey et al., 2015). Such methods have
been applied to develop pair approximations for evolutionary
processes on graphs which satisfy the homogeneity assump-
tion that all individuals can be considered identical and inter-
changable (Hadjichrysanthou et al., 2012; Hauert and Szabd, 2005;
Morita, 2008; Pena et al., 2009; Szabé and Fath, 2007). However,
the underlying assumptions linking these models to the underly-
ing stochastic dynamics are not always clear. One contribution of
this work is to derive these models explicitly by identifying the re-
quired assumptions. The starting point for all of our approxima-
tions is to derive an equation to describe the time-evolution of
the state of any given individual node. From this equation, various
routes to approximation become apparent by applying different as-
sumptions. We then investigate the applicability and accuracy of
the resulting approximation methods.

Evolutionary graph theory is traditionally explored as a
discrete-time stochastic model. While it is possible to work with
these dynamics, it is easier to work with a continuous-time ap-
proximation to the process. The continuous-time system is repre-
sented by a master equation describing how the probability of be-
ing in each system state changes. From the master equation we ob-
tain exact equations (with respect to the continuous-time process)
for the probabilities of the states of individual nodes (Theorem 2.1).
These equations can then be approximated by adopting moment-
closure methods. We focus on evaluating the probability that at the
end of the evolutionary process, an initial subset of mutants placed
on the graph will take over the whole population and ‘fixate’. Us-
ing this continuous-time system is justified because the fixation
probability and expected time to fixation are identical to those of
the original discrete-time process. Within this framework we study
when accurate approximations can be derived.

In Sections 2.1-2.3 we introduce the stochastic evolutionary dy-
namics and the master equation, and derive a description of how
node-level quantities change in the master equation. We then dis-
cuss and develop various techniques that can be used to approx-
imate these systems of equations in Section 3. Within these ap-
proximation frameworks we derive the pair approximation mod-
els used in the literature, which we will call the homogenised pair
approximation, and the exact neutral drift model, and build new
node level approximation methods. In Section 4 we demonstrate
how the different methods can be used to approximate the dynam-
ics of the original discrete-time process. Section 4.1 studies how
the methods perform when approximating the fixation probabil-
ity of a single initial mutant placed on idealised and on complex
graphs. Section 4.2 then shows how the methods perform when
studying the evolutionary game dynamics in a Hawk-Dove game.
In Section 5 we discuss the results obtained from the methods de-
veloped and the insights these can give.

2. The stochastic model
2.1. Stochastic evolutionary dynamics

We consider a population whose relationship structure is rep-
resented by a strongly connected undirected graph (V, E) where
V ={1,2,...,N} is the set of nodes and E denotes the set of edges.
This can be represented by an adjacency matrix G, where G;; =1
if j is connected to i, and G;; =0 otherwise, with G; =0 for all
ieV. We consider populations consisting of two types of individu-

als, type A and type B, either of which can be in the role of invad-
ing mutant in a resident population. Each node is occupied by ei-
ther an A or a B individual. Therefore we can let A; = 1 if and only
if node i is occupied by an A individual and A; = 0 otherwise and
let B; denote the same for individuals of type B. Since B; =1 — A;,
the state of the system can be represented by the values of A; at
any given time. If there exists an edge (i, j)eE between nodes i,
jeV, then the offspring of the individual in node j can replace the
individual in node i and vice versa. To study the evolutionary dy-
namics between these two types of individual we require a mea-
sure of fitness. We can describe the fitness payoff received from
interactions between individuals by the following payoff matrix:

A B

Afa b\,
B\c d

where an A individual obtains a payoff a when interacting with
another A individual and payoff b when interacting with a B indi-
vidual. Similarly, a B individual obtains payoffs c and d when inter-
acting with an A individual and a B individual respectively.

To define fitness based on the payoff, following similar defini-
tions in the literature (Hadjichrysanthou et al., 2011; Lieberman
et al., 2005; Ohtsuki et al., 2006; Taylor et al., 2004; Traulsen
and Hauert, 2010), the fitness of each individual is assumed to be
f = fpack + WP, where fyq is the background fitness of all individ-
uals, P is the average payoff received from interactions with neigh-
bours, and we [0, o) is a parameter which controls the contribu-
tion of the game payoff to fitness. )

The fitness of an A individual which occupies node j, fj, is
therefore given by

ay s GyAi+ b YL, GijB;
i G

and similarly the fitness of a B individual occupying node j is given

by

= foack +w : (1)

cY N, GyAi +d Y, GijB;
i1 Gij
In the special case of constant fitness, where the fitness of individ-

uals remains constant independent of the interactions with other
individuals, we take the payoff matrix as

A B

Afr 1Y,
B\1 1

so that A individuals have relative payoff equal to r.

Traditional evolutionary graph theory considers a discrete-time
Markovian evolutionary process in which only one event can hap-
pen at each time step. When an event occurs, one individual re-
produces and a connected individual dies, with the offspring re-
placing it. We refer to the mechanism by which this takes place
as an update mechanism or rule. The probability of a certain event
taking place depends upon this update mechanism. Some of the
most commonly considered update mechanisms are birth-death
with selection on birth (invasion process) (Lieberman et al., 2005),
death-birth with selection on birth (Masuda, 2009), birth-death
with selection on death (Antal et al., 2006) and death-birth with
selection on death (voter model) (Ohtsuki et al., 2006). The meth-
ods developed in this paper will be presented in the general case,
and can be applied to any of the above update rules, but we shall
focus on the invasion process when generating specific examples.
In the invasion process, we select an individual to reproduce in
proportion to their fitness (selection on birth) and then the off-
spring replaces a connected individual selected uniformly at ran-
dom for death (birth then death).

fé :fback+W (2)
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2.2. The master equation

To approximate the discrete-time evolutionary process we first
translate the discrete-time system to an approximate continuous-
time system. To do this we model each (replacement) event using
a Poisson process. The rate at which each event happens is equal
to the probability of that event in the discrete-time model. There-
fore the total event pressure will be the sum of all such probabil-
ities, which is equal to one, so that the time until the next event
follows a Poisson process with rate parameter one. We then deter-
mine which event takes place using the relevant probability. Under
this continuous-time system the fixation probability and expected
time to fixation will be identical to those of the discrete-time sys-
tem, since we use the same probabilities whenever an event occurs
and the expected time between events is constant. This is impor-
tant because these are the main quantities of interest in evolution-
ary dynamics.

We will use this system to build approximation methods
to study the original discrete-time process. We choose to use
continuous-time because it enables us to build a system of ordi-
nary differential equations to approximate the dynamics, which al-
low us to make use of efficient numerical solvers and enable us to
derive some analytic results.

Since this evolutionary process is a continuous-time Markov
process, we can construct a master equation to describe the dy-
namics. Let S; = (s1,52,-.., sy) be a state of the system, where
ie{1,...,2V} and where s; =1 if node j is a type A individ-
ual and s; =0 otherwise. We define S; = (0,0,...,0) and Syn =
(1,1,...,1) to be the states consisting of only B individuals and
only A individuals, respectively.

We introduce a vector p(t) which represents the probabilities
of each system state at time t. That is, the ith entry of p(t), p;(t), is
the probability that the system is in state S; at time t. This Marko-
vian evolutionary process has 2N possible states and the transitions
between them are governed by a 2V x 2N transition rate matrix R
whose entries depend upon the graph and update mechanism we
consider.

We write the rate of change in the state probabilities using the
master equation of the Markov process:

dp
i =Rp. (3)

Such an equation can be constructed for any graph under a Marko-
vian update mechanism. The absorbing states correspond to the all
type B or all type A states, S; and S,n, so are given by p; and p,n.

Since we consider a strongly connected adjacency matrix G,
provided we have at least one type A and one type B it is pos-
sible to get to either of the absorbing states and therefore from
any mixed initial condition the system will always end up dis-
tributed between these two states. We define the fixation proba-
bility fIX(S(l)) of type A from an initial state S(i) to be the proba-
bility of being in the all A absorbing state, that is

P (S) = lim (p(0)|pi(0) = 1),

where p;(0) is the probability of being in the state S; at time t = 0.
Similarly we define the fixation probability of type B as

P (S) = lim (p1(©)[pi(0) = 1).

The computational cost of implementing system (3) increases ex-
ponentially with N (Hindersin et al., 2016), and thus the compu-
tation of the fixation probability becomes infeasible as the popu-
lation size increases. Therefore it is of interest to build approxi-
mation methods. Pair approximations of the master equation have
been developed under the homogeneity assumption that all nodes
on the underlying graph are identical and interchangeable (Hauert
and Szabé, 2005; Szab6 and Fath, 2007), which can give interesting

insight into the evolutionary dynamics. However the homogeneity
assumptions made in these approximations result in the loss of in-
sight into graph and node-specific dynamics, so we aim to develop
approximations of the master equation which can capture this in-
formation.

2.3. Node level equations

We approximate the master equation by approximating the dy-
namics of the state probabilities of individual nodes in the popula-
tion. This is motivated by approaches in statistical physics and epi-
demic modelling (Born and Green, 1946; Kirkwood, 1947; Sharkey,
2008; Sharkey et al., 2015), and first requires exact equations de-
scribing how the probability of each node being occupied by a cer-
tain type changes with time, which can be derived from the master
equation (3).

Definition 2.1. Let X(Q;ﬂisf) denote the rate at which the indi-
vidual in node j replaces the individual in node i at time t given
that the system is in state S at time t; we refer to this as the re-
placement rate.

Definition 2.2. Xé denotes the event that the set of nodes C is in
state X at time t; for example A‘{i} is the event that node i is in the

type A state at time ¢t.

Throughout this paper we shall use the shorthand Bt Ai]}Xf to

represent the intersection of events Bfl} ﬂAgj} nXxt.

Theorem 2.1. Under any Markovian update mechanism, for a struc-
tured population represented by the adjacency matrix G, the rate of
change of the probability that the individual in node i is an A individ-
ual is
dP(Afl}) N

=D > GiPBLALX i) X (1Bl AL X i)
j=1 XV\ (]

- Z Z GUP(At }Bt V\ ij} )X(Qjﬁlmt }B[ IJ})
J=1 Xn\ijy

(4)
where the sum over Xy;;) is over all possible states of the nodes
Wi, j}

Proof. See Appendix A. O

This theorem can be applied to any update mechanism by
choosing an appropriate definition for the replacement rate,
X (Q?M), which we shall define for the invasion process as an ex-
ample.

Example 2.1 (Invasion process). The invasion process is an adapta-
tion of the Moran process (Moran, 1958) to structured populations.
Each event is determined by selecting an individual to reproduce
with probability proportional to its fitness. It produces an identical
offspring which replaces one of the connected individuals which is
chosen uniformly at random. Therefore the rate at which the indi-
vidual in node j replaces the individual in node i at time t under
the invasion process rules is given by

fils 1
FOSE,

where f; is the fitness of the individual occupying node j at time t,

X(QLIS) = (5)

Ft =3 N_. f is the total fitness of the population, and k; denotes
the degree of node j. Here, the factor f; /Ft is the rate at which
node j is selected to reproduce, and 1/k; is the probability of re-
placing the neighbouring individual i which is selected uniformly
at random.
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When calculating x (sti) in equation (4), we will use the fol-
lowing expression for the fitness of the individual at a given node
j at time ¢,

ayl, GyP(AL) + b, GyP(BY,)
i1 Gij

CY, GiP(AL) +d T, GiP(BE)
i Gij ’

which is a sum of equations (1) and (2) weighted by the node

probabilities. We use this definition because when we evaluate

equation (6) given that the system is in a particular state S, as re-
quired by equation (4), the values of P(A }) and P(Bt ) are either
1 or 0, which leads to the fitness of node j j in that partlcular system
state equations(1) and (2). However, by defining fitness in terms of
the node probabilities, this allows us to have a description of fit-
ness which we can approximate (see Sections 3.2 and 3.3).

f; = fback +WP(AL'})

+WP(BL,) (6)

3. Approximating the stochastic model

In other fields, such as epidemiology, the construction of node-
level equations such as equation (4) can lead to a hierarchy of
moment equations whereby these equations are written in terms
of pair probabilities, pairs are written in terms of triples and so
on, until the full system state size is reached and the hierarchy
is closed. This is useful when we can find appropriate closure ap-
proximations to close this hierarchy at a low order. However, we
see that such an approach cannot be used here because we condi-
tion against the full system state in equation (4) which means that
the full system size appears even at the first order. We therefore
attempt to find other methods to simplify this system of equations.

In this section we will describe three different techniques to
derive approximations for this system. The first technique yields
a system of equations which become computationally infeasible
in some circumstances, but by applying homogeneity assumptions
to the underlying graph, we can derive the existing pair approxi-
mation models currently used in the literature (Hadjichrysanthou
et al., 2012; Hauert and Szab6, 2005; Morita, 2008; Pena et al.,
2009; Szab6 and Fath, 2007) (Section 3.1). To reduce computation
costs, we then develop methods based on restricting the number
of states which we condition against in the replacement rate. We
first obtain a method whose computational complexity scales lin-
early with the population size N and, after an appropriate scal-
ing, approximates the fixation probability well on a wide range
of graphs (Section 3.2). Then, in Section 3.3, we obtain a method
which, although it scales with N2, provides a good approximation
to the evolutionary dynamics over the whole time series for var-
ious graphs, and in particular provides a very accurate approxi-
mation to the initial dynamics of the evolutionary process on all
graphs.

3.1. Deriving the homogenised pair approximation model

One way of simplifying (4) is to assume that the fitness f; does

not need to be normalised by the total fitness F' in the replace-
ment rate (e.g. as in equation (5) for the invasion process). This ap-
proximation is justified because it does not change the final value
to which the exact node-level equations converge (and therefore
the fixation probability), and will only transform the time series
until fixation. Making this assumption, the node level equations
simplify so that we only sum over the neighbours of the individ-
ual that we selected based on fitness. That is, when looking at the
event where node j replaces node i, if we are selecting on death
we need to condition against the state of all neighbours of i, and
if selecting on birth we need to condition against the state of all

neighbours of j. As an example, we shall assume here that selec-
tion occurs on birth so that we require conditioning on the neigh-
bourhood of node j, however we can also make similar arguments
when selecting on death. Using x to represent this modification of
x in (4) and Q to represent the new probability distribution with
the modified time series we obtain

dQ(At N

=Y Y GyjQBALX

] 1X\\|)

\{l})X(QJ%JBt At Xt i})

- Z > GijQUAY B X ) X (251 AL B X 3y)-
=1 Xy, i

(7)

where Nj is the neighbourhood of node j; i.e. all nodes that are
connected to j. To solve this system exactly requires the develop-
ment of equations describing how the probability of each possible
neighbourhood of nodes changes. This in turn would lead to a hier-
archy of equations which is computationally similar to the master
equation. However it is possible to develop approximation methods
by assuming independence at the level of lower-order terms, such
as individuals or pairs of nodes, and approximating the neighbour-
hood probabilities as a function of these.

For example, we can make a pair approximation by applying
Bayes’ Theorem and assuming statistical independence at the level
of pairs to rewrite the neighbourhood probability in terms of pair
probabilities. Applying Bayes’ Theorem to the probabilities on the
right hand side of equation (7) we get

dQ(A, ) &
} t t t
=2 D GiQ(AL)QBXL, i lAl,)
J=1 Xwi
t t t
x X (Q_i 1B A XA\ i)

N
=2 > GyQUBQA XL 1B

j=1 X\',\m

x X (94 |AE,‘ }va \{i} ) (8)
If we assume statistical independence of all nodes in the neigh-
bourhood of j, given the state of Jj, we can rewrite the neighbour-
hood probability Q(A‘]})Q(B‘ N\{l |Aij}) as

j—i

QAL QB! XL 14T ~ QUALDQB AL T QX 1AL
leN;\ (i}

where X{‘} is event where node [ is in the same state as it is in the
event Xf VG Substituting this into equation (8) gives

dQAy) &
VI
T S 2 2 GiQALDQBIA)
J=1Xvj\i
H Q(Xt|Atl})X(Qj%l|Bt At Xt \{1})
lenj\ii}

N
- > Y GiyQ(BlQAilBY)
J=1Xvj\im
x 1 QEXEIBY) R (2l B X )-
leNj\{i}
Since Q(B{l} |AE].}) = Q(Bfi}Agj})/Q(Ai].}), in order to evaluate these
equations we require additional equations describing how pair

probabilities change with time or some appropriate closure of pairs
in terms of single node probabilities. From the master equation
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we can derive exact equations describing pairs. For the probabil-
ity P(Bfl.}Aij}) we obtain

dP(Bf Do e
Z Z G P (B{y B ALy Xin (i)

k=1 X\ jk)

x X (S jI1Biy By A Xin (i)

k—j

- Z > GiP(BiyA Bl Xi i)
k=1 Xv\(ijk)
x X (R 1Bl AL B X (i)

k—j

t t t t
+ Z > GuPBAGA X (i)
k=1 XV\ {i.jk}

X X (il By A A )Xo i)

k—i
- Z > GuP Ay BlyAX i )

k=1 Xu\(i jky
XX (il A Bl AL Xin ) (9)

k—1i

We can now apply the same assumption regarding total fitness
that we used for the single node probabilities so that

dQ(Bj,A(;)

PO _ 5 3 G B
k=1 Xy \ii.j)
xx(Qk_)]|Bt Bt At Nk\ 1]})

- Z > GiQBlHAT B Xk i)

k=1 Xu; \ (1.

x X (S B AL Bl X (1))

k—j {k} N G}

+ Z Z G,kQ(Bf Af Af x;k\,])
k=1 X (i)
 F QUi IBly A AL XA iy

k—1i
- Z Z leQ(A[ }Bt
k=1 Xy (i)

X R (21| AG Bl ALXE () (10)

t
XN

k—i

Applying Bayes’ Theorem to the neighbourhood probability
Q(B{I}B A{ }X N\ ]}) we obtain

Q(B{ By Al X i) = QB AU QB X .y 1Bl Aly)

We can now assume statistical independence of the remaining
nodes given the state of j and k so that

t t t t ~ t t t t t
QBB A X i) ~ QB AL QB B jAly)
t t t
< T QxfyIBi,AL)-

leN\{i.f}
Since we know that node i is connected to node j we can assume
that given the state of node j, the state of node i is independent of

node k, and similarly the state of any node in the neighbourhood
of k is independent of node j, which gives us

QUB B AL X () ~ QUBL AL QB B
< [T QifylAy

leN\ i, j}

Substituting this into equation (10) gives

dQ(BtA At ) N
—— R DT GRQBY A QY B )
k=1 Xy \tijt
< [T QX 1AL X (R 1B B A Xk i)
i)

N
=2 > GrQUA[; Bl QB 1)

k=1 Xy \tijt

X l_[ Q(X |Btk )X(Qkélet A[ Bt /Vr\{'l})

leNi\{i.j}

N
+ ) > GyQABlQAL, 1AL

k=1 X0

X l_[ QX l}|Bt/< )X(Qk~ﬂ|At At B XVk\{lJ})
leN\{i.j}

N
=Y > GuQ(B{,A}))QA], B

k=1 Xy (it

[T QEX{y AL X (1Bl A AL X i ))-
leN\fi. j}
While this system is closed, its computational complexity increases
exponentially with the maximum node degree of the graph, so it
is not numerically feasible for graphs with highly connected nodes.
While this could potentially be addressed by introducing approxi-
mations for nodes with high degree and this may lead to accu-
rate models, here we continue towards a simplified model. To do
this, we follow the same process as in epidemic models and make
a homogeneity assumption by assuming that any pair is equally
likely to be in any given state (Kiss et al., 2017; Sharkey, 2008); i.e.
(X{fl.}|Y{fj}) = Q(X!|Y") for all pairs (i, j). This leads to
d At. N
T 2 ¥ Gy QB A
J=1 Xv0

x X(QHJBt Af]}Xf,\ )
N
=33 GyQUBE,)QUAT B )™ QBB
J=1 X\
xx(QPllA‘ Bt /v\{})
where k; is the degree of nodej and ny is the number of type A in-

dividuals in state XN]_\{,'}. Since the transition rate only depends on
the number of type A and type B individuals in the neighbourhood
of node j and not on their positions, the summand on the right
hand side is equal for all states Xni\ (i} which have the same con-
figuration of A and B individuals. The frequency of a certain neigh-
bourhood state across all possible configurations is given by the
binomial coefficient, so that

N kj—1

) 559 et oty oy
A
336 (4, )awer ) o m)
x;(( Qi [n+1).

where ¥ (2 _In) is the rate at which we select one of the type
A individuals to reproduce and replace a type B, given that there



50 C.E. Overton, M. Broom and C. Hadjichrysanthou et al./Journal of Theoretical Biology 468 (2019) 45-59

are n type A individuals and k; — n type B individuals in the neigh-
bourhood of the selected node.

Since we have assumed that any pair is equally likely, this as-
sumption only holds when every node in the graph forms k con-
nections, which are chosen at random. Therefore we require that
node i is equally likely to be connected to any other node and all
nodes are topologically equivalent, so that the probability that a
given node of type B is connected to x type A neighbours is given
by a binomial distribution with n =k and p = Q(A‘|B"). Therefore
the probability of an individual being type A changes with rate

dQ(At)
de

~ kQ(A'[B')Q(B')

<3 (4, )olermy oty (2 ol

n=0

—kQ(B:|A)Q(A")
(k-1 n -
(K, el e (e,

We can also apply these assumptions to the pair-level equations
to obtain a closed system of equations which are efficient to
solve numerically. The resulting model is equivalent to the model
in Morita (2008), which was justified by using the assumption that
the population occupies a regular graph, such that all individuals
have degree k, and that all nodes are topologically equivalent, such
that every pair of individuals is equally likely to be connected. We
have shown that by applying these assumptions to the exact node-
level equations equation (4) we can derive these models.

Similarly we can obtain a pair approximation model for the
dynamics where we select on death by conditioning against
the state of the neighbours of node i. Applying analogous as-
sumptions to the previous example then leads to the model
in Hadjichrysanthou et al. (2012). These models have been shown
to yield interesting qualitative results about the relative strengths
of different strategies in evolutionary games on graphs. However,
the homogeneity assumptions made result in losing important as-
pects of the structure, such as how individual nodes in the system
can behave differently. In the next sections we will attempt to de-
velop approximation methods which can capture this node-specific
information.

As we alluded to earlier, a natural method would be to use
equation (7) as a basis for this. However, difficulties in imple-
menting this method on general networks as well as the number
of equations that result leads us to a different direction for the
present work.

3.2. An unconditioned fitness approximation model

Here we develop a method which removes the need to include
the probability of whole neighbourhoods by removing the condi-
tioning in the replacement rate. This causes the replacement rate
to only depend on the marginal probabilities of the state of each
node rather than the full system state. This assumption also mo-
tivated a model in Szabé and Fath (2007) in which the authors
construct a population-level approximation describing how the ex-
pected number of individuals of each type change with time. Un-
der this assumption, equation (4) becomes

dP(A) N
d Z Z Gl]P(Btl At }X\g\ {i,j} )X(Q]‘),)
j= 1XV\(U)

C Y Y G B 2 (),
J=1Xn\ijy

Since X(Qj‘ai) is now the same for all system states,

dP(At) X t t t t
T~ 2 GiP (Bl AL x () ZGqu B ;) x ().
Jj=1 j=1

Adding and subtracting Z?’:] GijP(At{i}Aij})x (Q;Hi) we obtain

dP(At

N
Z [GUP(B{I}At]})X(Qj%l) + GijP(At
j=1

COX(Q)]

[

N
— 3 [GuPCAl Bl X () + GiPAG AL ()]
j=

—_

~ ZGUP(At]})X(Q]_H ZG,]P(At )X(Q]_,,)

j=1
which is a closed set of N equations with at most N summands on
the right hand side. Therefore by defining P as an approximation
to the probability distribution P we obtain the closed system

dP(Af,) N
U2 = S Gy AL X (24 Zcup(m, )X (). (1)
j=1 j=1

which is easy to solve numerically for an arbitrary graph.

Example 3.1 (Neutral drift). In the special case of neutral drift, i.e.
when all individuals have identical fitness, the unconditioned fit-
ness model gives the exact fixation probability. With the dynamics
of the invasion process under neutral drift we obtain x (€2

) —
]~>1
Nk , and therefore equation (11) can be written as

dP(At N
( 1}) Z G,JP(A[

ZG,]P(Atl}) NK;

which is equivalent to the exact node equation (4) for the inva-
sion process under neutral drift (Shakarian et al,, 2013). The un-
conditioned fitness model is also exact for all update mechanisms
under neutral drift, but we do not write the equations explicitly
here.

As the population size N increases, the solution to equation
(11) moves further away from the exact fixation probability ob-
tained either by solving the master equation (3) or from the output
of stochastic simulations. To obtain a reasonable approximation to
the fixation probability from a given initial condition we construct
a scaling factor for the constant fitness case by comparing the ra-
tio between the solution of equation (11) on a complete graph to
the exact fixation probability on a complete graph. We choose the
complete graph because the exact fixation probability can be cal-
culated analytically in this case. Whilst we consider the constant
fitness case, it may also be possible to find a suitable scaling factor
in the frequency dependent fitness case, however using a complete
graph may no longer be appropriate because the relative strength
of different strategies in some games is strongly affected by the
average degree of the graph (Ohtsuki et al., 2006).

Example 3.2 (Invasion process). For constant fitness under the dy-
namics of the invasion process, the exact fixation probability for m
initial mutant A individuals on a complete graph is equivalent to
the Moran probability (Lieberman et al., 2005):

Since the fixation probability is known, we now need to solve
equation (11) on the complete graph to derive the ratio between
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the two. In the constant fitness case this can be done analytically,
with the scaling factor for m initial mutants given by

1- L

m

b _ Ll , (12)

t]LToAC(t) r11<_1+ /1_i_171(r2 l))

N
where Aq(t) = N Z (Af }) The derivation of this can be found in

Appendix B.

We can now define two methods for predicting the fixation
probability under any Markovian update mechanism.

o Method 1 (Unconditioned fitness model) Solve equation (11) to
provide an approximation to the dynamics of the evolutionary
process. (MATLAB code for solving the unconditioned fitness
model is provided as supplementary material.)

e Method 2 (Scaled unconditioned fitness model) Solve equation
(11) and then use a scaling factor, the ratio of the exact fixation
probability and the solution to equation (11) for the complete
graph, to provide an approximation to the fixation probability
from a given initial condition.

In Section 4 we investigate the numerical performance of these
two methods. Note that for the purpose of this paper we have
found the scaling factor equation (12) for Method 2 under the in-
vasion process. However, the method can be applied to other up-
date mechanisms, such as death-birth with selection on birth, by
finding an appropriate scaling factor, which can be done by solving
equation (11) (either analytically or numerically) and comparing to
the exact fixation probability on the complete graph. For example,
see Hindersin and Traulsen (2015) for the exact fixation probability
on a complete graph under the DB-B dynamics.

3.3. A contact conditioning approximation model

In Section 3.2 we restricted the conditioning so that we only
require the marginal probabilities of the individual nodes. How-
ever, this removes a significant amount of information from the
dynamics. In the evolutionary process, when considering a re-
placement event the two nodes of most interest are the node se-
lected for birth and the node selected for death. Therefore, here
we follow a similar method but retain conditioning on the states
of these two key nodes. Since we restrict the conditioning to
only the states of the relevant contact, when looking at the term
X(QLAB?I}At]} Y\t ) }) in equation (4) we condition only on the
states of the nodes i and j and obtain

X (S25 | Big AL Xin i) ~ X (41ByALy)
Under the above condition, equation (4) becomes

dP(A )y N
= ~ 22 20 GuPByA X ) X (2i1BiyA,)
1Xvwn

- Z > GiP(AGB X ) X (QilA B (13)

J=1Xw\gijy

To see the effect of this assumption on the rates, consider
x(Qsél|Bf AL, {j)- Here we condition only against node i being in
state B and node j being in state A rather than against the en-
tire system state. Consequently in the fitness equation (6) we have

P(Bii}) =1 and P(Aij}) =1 giving

f;lBii}Aij} = fback +w

N
> Gy

I=1

In equation (13), the chance of selecting node j is now indepen-

dent of the state X“/\{” of the remaining nodes which enables the

equation to be reduced to
dP(Af

Zc P(Biy ALy X (S2541Biy ALy

ZG,]me B ) x (251 B ). (14)
j=1

This gives an approximate equation for individuals in terms of
pairs. We then need to build equations to describe pair-level prob-
abilities. Similar methodologies have been followed to describe
epidemics propagated on networks (Sharkey, 2008; Sharkey et al.,
2015).

Applying the same conditioning to the exact pair level equation
(9) we obtain

dP(B AL )

dt ~ ZGJkP(Bt By Atwg) X (i 1By Alyy)

N
ZGJkP(B[ At Btk )X(QI<_>]|AEJ'}BEI<})
k=

N
+ ) GyP(B{ AL AL X (R4 IBiyAL)

N
— > GaP(A{ By ALy X (24 1AL, Bl (15)
k=1
Similar formulae can be constructed for all possible pairs, writing
pairs in terms of triples. In a similar way, triples can be written
in terms of quads and so on, up to the full system size N which
is then closed. Therefore, when using this method we obtain a hi-
erarchy similar to the BBGKY (Bogoliubov-Born-Green-Kirkwood-
Yvon) hierarchy (Born and Green, 1946; Kirkwood, 1947) in statis-
tical physics. However, here the hierarchy only represents an ap-
proximation to the original dynamics. Solving this system exactly
is no simpler than evaluating equation (3) since evaluating the hi-
erarchy in full is comparable in numerical complexity, so we wish
to find approximation methods to reduce this.

With this hierarchy, we can apply techniques developed in sta-
tistical physics to approximate higher-order terms as functions of
lower-order terms. In particular we can close the system of equa-
tions (14) and (15) at the level of pairs by approximating all triples
in equation (15) in terms of pair-level and individual-level prob-
abilities. Similar techniques have been applied for many stochas-
tic processes including in epidemiology (Keeling and Eames, 2005;
Kiss et al., 2017; Sharkey, 2008; Sharkey et al., 2015) and evolu-
tionary dynamics (Hauert and Szabd, 2005; Ohtsuki et al., 2006;
Szab6 and Fath, 2007) leading to models which can be numerically
evaluated.

To close the system, we require a functional form that can ap-
proximate triple probabilities in terms of individual and pair prob-
abilities. One method is to approximate a triple P(AEI}BE ka}) as
the product of all possible pairs among these nodes divided by the
product of all individuals, i.e.

P(AL,BE YP(B,Chy )P(AT Chy)

P(AL B\ Cl) ~
1B1iiCiig T
PP (Bm)P €y

(16)
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This closure is commonly attributed to Kirkwood (Singer, 2004)
because it is derived from the Kirkwood superposition which ap-
proximates triples in terms of pairs in thermodynamics (Kirkwood,
1935; Kirkwood and Boggs, 1942). This is often applied to nodes
i, j, k that form a 3-cycle in the graph, which we call a ‘closed
triple’, although it can be applied to any triplet of nodes. It
has been shown that this closure maximises the entropy of
these thermodynamic systems (Singer, 2004), and it also ensures
that symmetry is preserved across the triplet. This closure has
commonly been adapted to probabilistic systems, such as the
BBGKY hierarchy (Born and Green, 1946; Kirkwood, 1947) and
epidemic modelling (Keeling, 1999; Sharkey, 2008; Sharkey and
Wilkinson, 2015). However, the Kirkwood closure for probabili-
ties does not define a probability distribution since we can obtain
P(Bf{i}Af[j}) + P(Bii}Bfm) £ P(Bf[i]), which has been observed numer-
ically (Rogers, 2011). In spite of this it has been shown to yield ac-
curate approximations in these probabilistic systems (Rogers, 2011;
Sharkey, 2008; Singer, 2004).

Another closure can be obtained by applying Bayes’ Theorem
and assuming statistical independence across the triple given the
state of the central node, in this case node j. By applying Bayes’
Theorem we have
P(AG B Clig) = P(AGy B{Ciig )P (B, )
which, when we assume statistical independence of nodes i and k
given j, simplifies to

t t t
P(A%;B;) )P (B

1)
! .
P(By;))

t t t ~ t t t t _
P(A};)BL;)Cliy) ~ P(Ay 1B )P (B, Cly) =

(17)

Typically this closure is applied to nodes on a graph where nodes i
and j are connected and nodes j and k are connected but where
there is no connection between nodes i and k, which we call
an ‘open triple’. However, it could be applied to any triplet of
nodes. This closure method is thought to be most accurate on
trees (Kiss et al., 2017; Rogers, 2011; Sharkey et al., 2015), and has
been shown to be exact for such graphs under the SIR epidemic
model (Kiss et al., 2015; Sharkey et al., 2015; Sharkey and Wilkin-
son, 2015).

We can adopt either closure to remove triples and close the sys-
tem. For example, if we are using the Kirkwood closure to approxi-
mate all triples in equation (15) we obtain the system of equations
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where P represents the approximation to the probability distribu-
tion P. However, note that using this closure for all triples will
eventually require equations for every pair of nodes in the system,
whether they are connected or not.

It is also useful to use a combination of the two methods
whereby the Kirkwood closure (16) is used for closed triples,
and (17) is used for open triples (Keeling, 1999; Sharkey, 2008). In
this work we shall use this combined approach to obtain a closed
system. However, we find that unlike in epidemiology, this stan-
dard approach does not produce good results. We therefore also
try using just the Kirkwood closure because this permits explicit
correlations between nodes which are not linked, although as indi-
cated above, this substantially increases computational complexity
because the system of equations will scale with N? rather than the
number of connected individuals in the graph.

With the contact conditioning model we define two different
methods to approximate the evolutionary dynamics.

e Method 3 (Open and closed triples) Solve equation (14) to-
gether with equations for pairs by using two different clo-
sures for different types of triples. First consider a triple
P(Af Bt Z[ ) Ze{A, B}, where there is no link between nodes

i and I< We call this an open triple, and can approximate it as
t t t t
(A Bl P B Z)
; .
P(By;))

P(AL B ZL) ~

If there exists a link between nodes i and k we call this a closed
triple, and approximate this using the Kirkwood closure,

P(AL, B P(BL, Z8 P(AL, Z8y))
P(Aj)P (Bij})P (kaﬂ

t t t ~
P(A By jyZi) ~

Using this method it is only necessary to use pairs which have
a link between them in the graph, and so it scales with Nd,
where d is the average degree of the graph.

Method 4 (Kirkwood closure only) Solve equation (14) together
with equations for pairs by using the Kirkwood closure for all
triples. That is, we approximate any triple P(AEI.}Bf[].}ZEk}), Ze{A,
B} as

t pt t t t 7t
pat gt 7ty ~ - PBu P B2 PRy Zy)
e P(AG)P(B(; )P (Zyy)

This method requires the use of every pair of nodes in the sys-
tem, not just those which are directly connected, and so scales
with N2, (MATLAB code for solving the contact conditioning
model is provided as supplementary material.)

4. Results

4.1. A comparison of the different methods: fixation probabilities for
constant fitness

Here we investigate the fixation probability of a single initial A
individual placed in a given node on the graph under the dynamics
of the invasion process. Fig. 1 compares Method 1 (unconditioned
fitness model) under the invasion process against stochastic simu-
lation on a four-node star graph. On such small graphs, Method 1
appears to provide a reasonable approximation to the expected dy-
namics and to the fixation probability. However, for such small
populations exact solutions are easy to obtain, and hence we want
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(a) Initial mutant on leaf node

(b) Initial mutant on centre node
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Fig. 1. Comparison of the marginal probabilities for each node on the graph being a mutant A plotted against time as given by Method 1 (solid lines) versus stochastic
simulation of the discrete-time system (circles), when applied to the invasion process on a 4-node star graph. We consider (a) dynamics initiated with a single A individual
on a leaf node and (b) dynamics initiated with a single A individual on the central node. Each line represents the marginal probability of a certain node in the graph being
occupied by an A individual, the corresponding colours between solid lines and circles represent the same node on the graph. The stochastic process is simulated 10,000
times from the same initial condition until fixation of either the mutant or resident strategy. The probabilities represent, for a given node at a given time, the proportion of
simulations for which that node is a mutant. Method 1 is numerically integrated to approximate the probability of each node being a mutant at a given time. This is the
constant fitness case where A individuals have fitness 1.2 and B individuals have fitness 1. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

Table 1

The fixation probability starting from a single mutant A individual placed on a specific node on single realisa-
tions of random graphs. To evaluate the fixation probability using the approximate methods, we solved them
until a steady state was reached and calculated the average probability of a node being a mutant (the methods
do not always give exactly the same value for each node). We compare this to the fixation probability as calcu-
lated by the proportion of 10,000 stochastic simulations in which the type A individuals fixated. Constant fitness
is assumed, where A individuals have fitness 1.2 and B individuals have fitness 1. All graphs were generated to

have an average degree of 5.

Graph Fixation probability
Method 1 Method 2 Method 3  Method 4  Simulation

20 node Erd6és-Réyni-initial degree 10 ~ 0.0193 0.0604 1.0000 0.0654 0.0784
20 node Erdés-Réyni-initial degree 2 0.1055 0.3301 1.0000 0.2874 0.3098
20 node Erd6s-Réyni-initial degree 5 0.0424 0.1326 1.0000 0.1343 0.1575
20 node scale-free-initial degree 10 0.0190 0.0594 1.0000 0.0681 0.0783
20 node scale-free-initial degree 2 0.0945 0.2956 1.0000 0.3004 0.3153
20 node scale-free-initial degree 5 0.0475 0.1486 1.0000 0.1490 0.1606
20 node k-regular 0.0547 0.1711 1.0000 0.1516 0.1722
35 node Erd6s-Réyni-initial degree 10  0.0126 0.0671 1.0000 0.0782 0.0940
35 node Erdos-Réyni-initial degree 2 0.0628 0.3346 1.0000 0.3255 0.3191
35 node Erdés-Réyni-initial degree 5 0.0315 0.1679 1.0000 0.1572 0.1730
35 node scale-free-initial degree 10 0.0089 0.0474 1.0000 0.0844 0.0724
35 node scale-free-initial degree 2 0.0444 0.2366 1.0000 0.4743 0.2929
35 node scale-free-initial degree 5 0.0223 0.1188 1.0000 0.1950 0.1546
35 node k-regular 0.0313 0.1668 1.0000 0.1631 0.1750
50 node Erdés-Réyni-initial degree 10  0.0083 0.0630 1.0000 0.0787 0.0820
50 node Erd6s-Réyni-initial degree 2 0.0332 0.2521 1.0000 0.4175 0.3060
50 node Erd6s-Réyni-initial degree 5 0.0272 0.2065 1.0000 0.2275 0.2120
50 node scale-free-initial degree 10 0.0056 0.0425 1.0000 0.0872 0.0660
50 node scale-free-initial degree 2 0.0307 0.2331 1.0000 0.3912 0.2840
50 node scale-free-initial degree 5 0.0154 0.1169 1.0000 0.1868 0.1530
50 node k-regular 0.0219 0.1667 1.0000 0.1533 0.1640

to test larger population sizes. When the population size is in-
creased, this method fails to accurately predict the fixation prob-
ability, appearing to tend towards zero with increasing population
size (for example, see Table 1, where it can be seen that increas-
ing the size from 20 to 35 to 50 moves the solution closer to zero
on random graphs). To account for this, we use Method 2 (scaled
unconditioned fitness model).

Method 2 represents a scaling of the approximation from
Method 1 where the scaling is derived analytically from the fix-
ation probability for a complete graph. Consequently, it makes
sense to only consider the approximation of the fixation proba-
bility rather than the whole time series. Predictions of the fixa-
tion probability of a single A individual when placed on various
graphs using the different approximation methods are shown in

Tables 1 and 2. We first observe that the accuracy of the method
does not significantly differ for different population sizes, so this
overcomes the issue with Method 1. For both the Erdds-Rényi
(Erd6s and Rényi, 1960) and scale-free random graphs, we start the
process in three different initial conditions; a high-degree initial
node, a low-degree initial node and an average degree initial node.
This is because under the dynamics of the invasion process, a low
degree node is known to act as an amplifier of selection and a high
degree node is known to act as a suppressor (Antal et al., 2006;
Shakarian et al., 2013), and so we potentially expect different per-
formance of the methods when initiated from nodes of different
degree. In the k-regular random graph, since all nodes have equal
degree, we only consider results for one initial node. In addition
to the random graphs (Table 2), we also investigate a star graph,



54 C.E. Overton, M. Broom and C. Hadjichrysanthou et al./Journal of Theoretical Biology 468 (2019) 45-59

Table 2

The fixation probability starting from a single mutant A individual placed on a specific node on the example graphs.
To evaluate the fixation probability using the approximate methods, we solved them until a steady state was reached
and calculated the average probability of a node being a mutant (the methods do not always give exactly the same
value for each node). We compare this to the fixation probability as calculated by the proportion of 10,000 stochastic
simulations in which the type A individuals fixated. Constant fitness is assumed, where A individuals have fitness 1.2

and B individuals have fitness 1.

Graph Fixation probability
Method 1 Method 2 Method 3  Method 4  Simulation

20 node star-initial degree 1 0.0574 0.1796 1.0000 0.3801 0.2895
20 node star-initial degree 19 0.0030 0.0094 1.0000 0.0217 0.0184
25 node square lattice-initial degree 2 0.0662 0.2546 1.0000 0.1532 0.2388
25 node square lattice-initial degree 4 0.0332 0.1277 1.0000 0.0780 0.1444
34 node Zachary’s karate club-initial degree 2 0.0482 0.2498 1.0000 0.4285 0.3160
34 node Zachary’s karate club-initial degree 16  0.0061 0.0314 1.0000 0.0461 0.0450
36 node star-initial degree 1 0.0322 0.1717 1.0000 1.0000 0.2971
36 node star-initial degree 35 0.0009 0.0051 1.0000 0.0209 0.0090
36 node square lattice-initial degree 2 0.0483 0.2646 1.0000 0.1363 0.2462
36 node square lattice-initial degree 4 0.0242 0.1326 1.0000 0.0689 0.1385
49 node star-initial degree 1 0.0224 0.1697 1.0000 1.0000 0.3070
49 node star-initial degree 48 0.0005 0.0035 1.0000 0.0260 0.0059
49 node square lattice-initial degree 2 0.0367 0.2734 1.0000 0.1241 0.2494
49 node square lattice-initial degree 4 0.0184 0.1369 1.0000 0.0609 0.1477

a square lattice and Zacharys karate club (Zachary, 1977), which
is an example of a real-world network consisting of 34 individu-
als and average degree of 4.6. On these graphs we initiate the dy-
namics from a high degree and low degree node. We observe that
Method 2 performs best on the k-regular random graph and that
generally it performs very well on any graph that does not strongly
amplify or suppress the average fixation probability compared to
the Moran probability, such as the Erdés-Réyni random graph and
the square lattice. However on graphs which amplify (or suppress)
average fixation probability, such as the scale-free random graph,
the approximation becomes less accurate. On the star graph, which
significantly amplifies the fixation probability, the approximation is
very far from the true value. This is unsurprising because Method
2 is constructed to give the exact fixation probability on complete
graphs. For Zachary’s karate club, Method 2 provides a reasonable
approximation, but does not capture the strong amplifying effect
of the low degree node.

In order to improve upon the accuracy of Method 2 we devel-
oped the contact conditioning model to retain more information
from the system. The contact conditioning model yields a hierar-
chy which offers no useful reduction in computational complex-
ity, compared to the master equation (4). Therefore we developed
Method 3 (open and closed triples approximation), analogous to
closures used in epidemiology. However, through numerical evalu-
ation we found that this only yields good approximations for sim-
ple graphs, such as line graphs and complete graphs for which we
have exact analytic results in any case. On other graphs, the fixa-
tion probability approximation is equal to 1 (Tables 1 and 2) for an
advantageous mutant of type A, and so this method is not particu-
larly informative.

While the specific reason for this convergence to 1 (or 0 if
the mutant is disadvantageous) is unclear, it seems likely that it
is associated with graph-wide correlations caused by having two
absorbing states. To address this we developed Method 4 (Kirk-
wood closure only). Through testing multiple graphs we observe
(Tables 1 and 2) that the best results are obtained on Erdos-Réyni
and regular random graphs, with some accuracy lost on scale-free
random graphs. We observe that on the 20 node star graph, in-
accuracies result in a significantly amplified approximation when
initiated on the low degree leaf nodes, and for the 35 and 50 node
star graphs the approximations initiated on the leaf node are close
to 1. This is potentially due to the time to convergence on large
stars being very long, which allows these inaccuracies to com-

pound so that the system converges to this uninformative solution.
This failure does not occur on these stars if we reduce the fitness
advantage, suggesting that as the size of the star becomes very
large the method will only work under weak selection. On ran-
dom graphs, which do not significantly amplify fixation, this issue
is also observed, but only when the fitness advantage of one type
is sufficiently high. This issue starts when the fitness advantage is
at about 50%, below which the solution converges to intermedi-
ate values on all random graphs tested. In addition to testing the
star graph as an example of an extreme structure, we also tested
a square lattice of various sizes, on which we find that Method
4 significantly underestimates the fixation probability. The square
lattice is considered as an extreme scenario for this method be-
cause it contains many short cycles of order four, for which the
correlations are not explicitly captured by the Kirkwood closure,
which describes triples. Presenting the star graph and square lat-
tice therefore illustrate the cases where this method is expected
to perform least well. Testing Zachary’s karate club (Zachary, 1977)
illustrates how this method might perform on a real world net-
work. On this graph we find that Method 4 provides a reasonable
approximation to the fixation probabilities (Table 2).

We also observed, as shown in Tables 1 and 2, that Method 4
performs most accurately when initiated on a node with average
to high degree. In addition to approximating the fixation probabil-
ity, Method 4 can be used to approximate the dynamics across the
whole time series, and in particular provides a very accurate ap-
proximation to the initial dynamics for all graphs tested (see Fig. 2
for results on two 20 node graphs as an illustration). This accu-
racy holds even for the large star graphs when initiated on the leaf
node, for which the final approximation was close to 1.

4.2. The Hawk-Dove game with the contact conditioning model

So far, we have considered the constant fitness case. Here we
briefly consider the effectiveness of Method 4 when applied to
the Hawk-Dove game under the dynamics of the invasion process.
Method 2 relies on finding a suitable scaling factor, whilst Methods
1 and 3 were both observed in Section 4.1 to yield non informa-
tive results on the type of graphs we test here and so we do not
investigate these methods in this context.

The Hawk-Dove game (Maynard Smith, 1982; Maynard Smith
and Price, 1973) represents a simple model of how animals com-
pete over food, territory and other resources. Animals interact over
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(a) Erd6s-Rényi

0.8

0.6

Probability of being a mutant

0 50 100 150
Time

(b) Scale-Free

2000 50 100 150 200
Time

Fig. 2. Comparison of the early dynamics of the marginal probabilities for each node on the graph being a mutant A plotted against time as given by Method 4 (solid
lines) versus stochastic simulation (dashed lines), when applied to the invasion process on (a) an Erdés-Réyni random graph with 20 nodes and average degree of 4 and
(b) a scale-free graph with 20 nodes and average degree 4, both initiated with a single A individual in a chosen node. Each line represents the marginal probability of a
certain node in the graph being occupied by an A individual, the corresponding colours between the solid lines and dashed lines represent the same node on the graphs.
The discrete-time stochastic process was simulated 10,000 times from the same initial condition, from which we obtained the probability for each node being a mutant at
a given time as the proportion of simulations for which that node is a mutant. Method 4 was numerically integrated to approximate the probability of each node being a
mutant at a given time. We use a dashed line with interpolation between integer time points for the discrete-time system to enable easier comparison of the dynamics. The
game considered is the constant fitness case where the A individuals have fitness 1.2 and the B individuals have fitness 1. (For interpretation of the references to colour in

this figure legend, the reader is referred to the web version of this article.)

a resource with either an aggressive or non-aggressive strategy,
which we call the Hawk and Dove strategies, respectively. We let
the resource yield a payoff V which both players try to obtain.
When two Hawks interact, they fight over the resource with one
taking the payoff V, and the other accruing a cost C from the fight,
and therefore the average payoff received by a Hawk interacting
with a Hawk is (V —C)/2. When a Hawk meets a Dove, the Dove
retreats without a fight receiving a payoff 0, allowing the Hawk
to take the whole resource, receiving payoff V. If two Doves meet,
they either share the resource, or each takes the whole reward
without a fight with probability 1/2, so that the average payoff
received by a Dove from this interaction is V/2. Therefore, in this
game the payoff matrix is given by

H D

HfV-0y/2 V.

D 0 V/2

Fig. 3 illustrates results from this game on a scale-free graph,
an Erd6s-Réyni random graph, a k-regular random graph and a
square lattice. We consider two cases; firstly where the fight cost
is low using parameters fp,r =2, w=1, V=1 and C=1.5, and
secondly where the fight cost is high using parameters fy, = 2,
w=1, V=1 and C=4. In each case we compare the results of
Method 4 to stochastic simulation, initiated with a population con-
sisting of half Hawks and half Doves to minimise the chance of
early extinction events. We observe that when the cost is low the
approximation is reasonable, with all 3 random graphs providing a
good approximation, and some accuracy lost on the square lattice.
However, as we increase the cost, C, we observe that the approx-
imation does not perform well. This is because the contact con-
ditioning assumption seems to amplify the strength of the Hawk
strategy, with the rate at which an individual becomes a Hawk un-
der this assumption being greater than it will be in the exact case.

5. Discussion

Evolutionary graph theory (Lieberman et al., 2005) was intro-
duced as a way of adding spatial structure to the stochastic evo-
lutionary dynamics considered by Moran (1958). Analytic results
on these stochastic dynamics focused on idealised cases of simple
graphs (Antal et al.,, 2006; Broom et al., 2010). In order to study
arbitrary graphs, methods usually follow certain restrictions, such

as focusing on the evolutionary process under weak selection or
infinitely large populations (Allen et al., 2017; Ohtsuki et al., 2006;
Zhong et al., 2013). Alternatively, individual-based stochastic simu-
lations give very accurate results but are limited by computational
time (Barbosa et al., 2010; Maciejewski et al., 2014).

The focus of this work has been the attempt to develop a
general method that can approximate the stochastic dynamics
on a wide range of graphs by adapting methods from statisti-
cal physics and epidemiology. In doing this, we have provided a
derivation of existing (homogenised) pair-approximation models
from the master equation (Hadjichrysanthou et al., 2012; Hauert
and Szabé, 2005; Morita, 2008; Pena et al., 2009; Szab6 and Fath,
2007) (Section 3.1). Additionally, we also derived an individual-
level model which has the neutral drift model (Shakarian et al.,
2013) as a special case (Section 3.2).

We start with a representation of the stochastic evolutionary
process using a master equation (Hindersin et al., 2016), from
which we develop exact equations describing individual node
probabilities. We then apply ideas for approximating the master
equation based around developing hierarchies of moment equa-
tions. Such methods were originally developed in physics (Born
and Green, 1946; Kirkwood, 1947) and later used in epidemiology
and ecology (Hauert and Szabd, 2005; Keeling, 1999; Pellis et al.,
2015; Sharkey et al., 2015; Sharkey and Wilkinson, 2015). The key
idea behind these techniques is to write deterministic differential
equations to describe how the probabilities of the states of indi-
viduals and pairs change over time.

We find that a major difference between evolutionary graph
theory and other areas in which these methods have been applied
is that here, event probabilities depend on the states of all indi-
viduals in the population. As a result, we do not obtain a pre-
cise BBGKY-like hierarchy, which relies on neighbouring particle-
particle interactions. Another difference is that in evolutionary dy-
namics, we have two absorbing states, which potentially leads to
system-wide correlations that cannot be captured on a local level.
It is worth noting that some alternative nearest-neighbour inter-
action evolutionary models, which may yield such a hierarchy di-
rectly, have also been considered (Traulsen et al., 2005); however,
in this paper we have restricted our attention to the classic evolu-
tionary graph theory dynamics.

In spite of these differences, some progress could be made to-
wards approximating evolutionary dynamics. The first step was to
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Fig. 3. Comparison of the expected number of individuals playing the Hawk strategy in a Hawk-Dove game plotted against time as given by Method 4 versus stochastic
simulation, when played on (a) a scale-free graph (b) an Erdés-Réyni graph (c) a k-regular random graph and (d) a 7 by 7 square lattice. Except for the square lattice, each
graph has 50 nodes and an average degree of approximately 4. The solid lines represent the solution of Method 4 and the circles represent stochastic simulations of the
discrete-time system, evaluated every 1000 time steps, in the case where C = 1.5. The dashed lines represent the solution of Method 4 and the crosses represent stochastic
simulations of the discrete-time system, evaluated every 1000 time steps, in the case where C = 4. To generate the stochastic simulation results the discrete-time stochastic
process was simulated 10,000 times from the same well mixed initial condition until fixation was reached. By taking the average number of Hawks at each time step we
determined the expected number of Hawks at a given time. Method 4 is numerically integrated to give the probability of each node being a Hawk at a given time, from

which we obtained the expected number of Hawks by summing over all nodes.

write down equations for the rate of change of the state proba-
bilities for individual nodes (Theorem 2.1). This led to equations
which required conditioning against the probability of the state
of the entire system, and therefore required the development of
methods to simplify this. Motivated by an objective of deriving ho-
mogenised pair-approximation models used in the literature, our
first approach was to modify the replacement rate by removing
the normalisation by the total fitness (Section 3.1). This has the
effect of altering the speed at which events occur but does not al-
ter the final fixation probability. The resulting system of equations
describes individual and pair probabilities in terms of the prob-
ability of their entire neighbourhoods. This could provide a basis
to accurately approximate the fixation probability by finding ap-
propriate moment closures to express the neighbourhoods as func-
tions of individual and pair probabilities. However, this is difficult
to implement and the number of equations increases exponentially
with the maximum degree of the graph, making it infeasible in
general without further approximation. By making further assump-
tions about the graph such that all individuals and pairs of a given
type are identical and interchangeable, we were able to derive the
homogenised pair approximation models (Hadjichrysanthou et al.,
2012; Morita, 2008), which have been shown to give interesting
results for various evolutionary games.

To obtain an approximation which is numerically feasible in
general, we first ignored any conditioning, similar to a model
in Szab6 and Fath (2007) which uses this assumption to con-
struct a population level approximation. The resulting model equa-
tion (11) was found to work well for small graphs and contains the
exact neutral drift model (Shakarian et al., 2013) as a special case.
However, as population size increases, the predictions for the fix-

ation probability of a single mutant individual were observed to
tend to zero. By solving this system for the fixation probability
on a complete graph, we obtained a scaling factor which enabled
this model to give a reasonable prediction of fixation probability
from a given initial condition with a single mutant individual on
any graph. Due to the construction of this method, it will perform
best on graphs which yield average fixation probability close to the
Moran probability.

To generate a more accurate model and one which does not
require an artificial scaling factor, we investigated models with
some level of conditioning (Section 3.3). Conditioning against a sin-
gle node results in the same level of complexity as conditioning
against pairs of nodes and so we elected to produce results for the
latter. In this case, we conditioned against the pair of nodes di-
rectly involved in the replacement event. However, in order to use
this model on large graphs, we require the use of moment closure
approximations. We found that the standard method used in other
areas with different closures for open and closed triples (Keeling,
1999; Sharkey, 2008) was not effective here because while it pro-
vides very good results on simple structures, on most graphs it
predicts fixation probabilities of either zero or one. It seems likely
that this is caused by neglecting important graph-wide correlations
across open triples associated with the two absorbing states of the
system.

By using the Kirkwood closure method for all triples, including
open ones, we obtained a method which provides informative pre-
dictions on the majority of graphs tested. We investigated square
lattices and star-type graphs, as these are two extreme population
structures which we use as worst case scenarios. The lattice is ex-
treme as moment closure methods do not perform well on such
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graphs. The star is extreme because this type of graph significantly
amplifies fixation probability, which seems to amplify the accumu-
lated error in the approximation methods. For all three types of
random graph considered, and Zachary’s karate club, this method
provides a reasonable approximation to the fixation probability.
When the degree of the initial mutant node is not low the approx-
imation can be very accurate. However, if we initiate on a low de-
gree node, the method performs less well, potentially due to such
nodes amplifying the fixation probability in the invasion process,
again leading to inaccuracies in the solution being amplified. De-
spite potential inaccuracies in the fixation probability approxima-
tion, we observe that this method is particularly accurate for the
early-time behaviour of these systems for any graph, and there-
fore can give interesting insights into this behaviour. The method is
computationally feasible for reasonably large N, however, the com-
putational complexity scales with N? rather than with N which is
more typical for epidemic models. Nevertheless, this still repre-
sents a significant reduction over the master equation which scales
with 2N,

The novelty of this work is the adaption of well-established
techniques from other fields to the study of evolutionary dynam-
ics at the level of individual nodes. The contribution is two-fold.
Firstly we have obtained insight into existing models by deriving
them from the master equation. Secondly, the advantage of look-
ing at node-level quantities rather than a homogenised model is
that we gain the ability to compare dynamics from different ini-
tial conditions on the same graph, which is not present in many
other approximation methods. Furthermore, the initial dynamics of
Method 4 are very accurate (Fig. 2), allowing us to see how the
probability of each node being a mutant flows through the pop-
ulation. Although we chose to work in continuous time here and
examples study the invasion process, similar methods could be fol-
lowed directly in discrete-time and the methods are applicable to
any Markovian update rule.
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Appendix A. Proof of Theorem 2.1

Proof. By total probability rules we have that

P(AL X

dP(Ay) _ [xg o V\m)] dP(Afy Xy i)

- =) , (A1)
d d dt

Xv\(i)

where Xy,(;, is the state of the nodes in the system not including i.
Consider a set state Xy;; of the remaining nodes The rate of
change in the full system state probability P(At 1}) is given by

dP(At 1}) t t yt

— dr ZP(A i})X(A{i}YV\{l _)A XV\ )
Yovi
+P(B )X(B 1}Xv\ —>A X \{i})

-2 P (Atnx\?\{i})x (A Xin

Yot

i = AYovm)

—P(Af )X(A \(i) Bii}X&\{i}), (A.2)
where )((At V\{l} — B{ }X ) is the rate at which the system
moves from state AL XC to state Bt Xt

(AN [UMANUN
Consider the terms which involve changing the state of the in-

dividual in node i in equation (A.2), by expanding the rate into the
sum of separate event rates we obtain

P(B{ X7 i) X (B{; x‘g\ b = AlXi )

= P(B{;Xi i )ZG,, X (82531 BiyXin ) L
j=1

t )
<X
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j=1

where 15 e is an indicator function on the event BE}.} being
(AN

part the event Xt\{} That is, the state of node j in the state X is
type B. The y (2 |At l}) term is the rate at which the indi-

_]~>l

vidual in node j replaces the individual in node i, given that the

system is in state AEI}X“,\ as defined in Definition 2.1. Rearrang-

ing these and substltutmg into equation (A.2) gives

P P(B,X QL[ XL )1
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By substituting this into equation (A.1) we obtain

dP(At t t t t
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Clearly the last two sums cancel, so we can simplify this to

t N
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as required. O

Appendix B. Derivation of the scaling factor equation (12)

Proof. Consider a system with rate of change given by

dp At N
( ) ZGl]P(A[ )X(Q]HI ZGUP(At )X(Q]%l)
j=1 j=1
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Since we are interested in the complete graph, we have that G;; =
1 for j#1i, and G;; = 0. Let Ac denote the average probability that a
node is of type A on the complete graph at time t. That is

1 S
Ac(t) = NZP(AEj}) =5
j=1

Since we are considering constant fitness we have

ﬁ(Agj})(r—1)+1 :ﬁ(Ag”)(r—l)H

X)) = 5 ML
Py =1)+1 +e-1

which gives us

ds _ AP X (PUA) PG PG (-1 + 1)
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Writing G = zﬁjﬂ (ﬁ(AL.}) - P(Agi}))ﬁ(Ag i), and H
Y (P(AL;)) — P(AL)) we have
dS (—-1)G+H
dt — N+ (r—1)S’
Clearly H = 0, so we obtain
as  (-1G
dt N+ (@ -1)S
Note that i (P(AL;) — P(A)))? = Y P(A{;))* + P(A})? —
2P(Aij})P(Aii}) = 2G, so that
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Considering the last term on the right hand side we have
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Thus,
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since G(0) = (N — m)m. Therefore we have
ds _ (r—1)(N- m)me=2
dt — N+ (r-1)S

= NS+ %52 = —%(r— 1)(N - m)me=% +C.

At t =0 we have S = Zﬁ(AE”) = m, which gives
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and so we can solve to obtain
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Only the positive root makes sense, so we obtain
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Supplementary material
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Supplementary MATLAB code associated with this article can be
found, in the online version, at doi:10.1016/j.jtbi.2019.02.009.
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