IT City Research Online
UNIVEREIST%(]OggLfNDON

City, University of London Institutional Repository

Citation: Yamaguchi, T, Brain, M., Ryder, C., Imai, Y. & Kawamura, Y. (2019). Application
of Abstract Interpretation to the Automotive Electronic Control System. Lecture Notes in
Computer Science (VMCAI 2019: Verification, Model Checking, and Abstract Interpretation),
11388, pp. 425-445. doi: 10.1007/978-3-030-11245-5_20

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/21922/

Link to published version: https://doi.org/10.1007/978-3-030-11245-5_20

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Application of Abstract Interpretation to the
Automotive Electronic Control System

Tomoya Yamaguchi!, Martin Brain?, Chris Ryder3, Yosikazu Imai*, and
Yoshiumi Kawamura®

! Toyota Motor Corporation, 1200, Misuku, Susono, Shizuoka, Japan,
tomoya.yamaguchi@toyota.com,
2 University of Oxford, Wolfson Building, Parks Road, Oxford, United Kingdom,
martin.brain@cs.ox.ac.uk,
3 Diffblue, 10 St. Ebbs Street, Oxford, United Kingdom,
chris.ryder@diffblue.com,
4 Nu-soft, 3-24-2 Shinyokohama, kouhoku, Yokohama, Kanagawa, Japan,
imai@nu-soft. jp,
5 Toyota Motor Corporation, 1200, Misuku, Susono, Shizuoka, Japan,
yoshiumi_kawamura@mail.toyota.co.jp

Abstract. The verification and validation of industrial automotive sys-
tems is increasingly challenging as they become larger and more complex.
Recent automotive Electric Control Units (ECUs) have approximately
one half to one million of lines of code, and a modern automobile can
contain hundreds of controllers. Significant work-hours are needed to un-
derstand and manage systems of this level of complexity. One particular
challenge is understanding the changes to the software across develop-
ment phases and revisions. To this end, we present a code dependency
analysis tool that enhances designer understanding. It combines abstract
interpretation and graph based data analysis to generate visualized de-
pendency graphs on demand to support designer’s understanding of the
code. We demonstrate its value by presenting dependency graph visuals
for an industrial application, and report results showing significant re-
duction of work-hours and enhancement of the ability to understand the
software.

1 Introduction

In recent years, functional requirements for automotive control systems have be-
come far more sophisticated. This necessitated the development of more complex
and larger scale control software, which lead to a significant increase in work-
hours. Fig 1 shows the amount of work-hours for control software development
based on our project management data, which reveals that work hours almost
doubled from 2012 to 2017. Based on this trend, the work-hours are expected to
increase considerably in the near future.

One of the causes of the considerable increase in work-hours is that much
time is spent understanding complex vehicle systems that are composed of many

II

smaller subsystems, which we call unit-systems. The designer’s interests are to
grasp the vehicle system architecture, the unit-system architecture, and the im-
pact of their revisions or extensions at the program level. Therefore, accurate and
comprehensive visualization of abstractions of the software will help to increase
the designer’s understanding and will mitigate the increase in work-hours.

In this paper, we present a tool that provides various view graphs that can
support the designer’s understanding of the system by using a static analysis
technology. Characteristics of our tool include the following: (1) ability to con-
trol the scalability and preciseness based on the designer’s interest, and (2) a
guarantee of soundness (there are no missed dependencies). Traditional code
analysis does not guarantee absolute precision. On the other hand, legacy static
analysis guarantees precision but is not scalable. Thus we developed an abstract
interpretation technology, which is based on static analysis methods, to our tool.
In addition, a graph-based data base is exploited to manage enormous depen-
dency for large scale code.

Specific contributions of the paper are:

— Explaining background on automotive control system software and the corre-
sponding industrial challenges that the support the designer’s understanding
to maintains our product quality under situation of increasing work-hours
trend. (Section 2)

— Algorithmic and implementation innovations needed for scalable and precise
abstract interpretation (Section 3)

— An overview of the C Analysis Tool (CAT) developed (Section 4).

— Results of the application of our tool to the actual control system code (
Section 5).

2 The Challenges of Modern Automotive Software

2.1 Architecture of Automotive Software

Figure 3 shows the software architecture of a modern vehicle. The vehicle system
consists of several unit-systems, like the engine and the transmission, which have
their own ECU; each ECU communicates via a CAN network. The majority
of ECUs are implemented in C. The largest unit-system in the vehicle is the
engine ECU, and we use it as a recurring example. The engine ECU has multiple
features, such as ignition, injection, and variable valve control. Each feature
contains program modules that are divided into functional units, each of which
are collections of several functions. The functions that compose the modules are
allocated to tasks for the Operating System (OS), which manages time driven
and event driven tasks.

A key characteristic of the software is the scale; each ECU has up to half
a million of lines of code (LoC). Several thousand global variables are used for
inter-function communication, which results in module interdependency and a
high level of code complexity. Pointer access is used as little as possible in the
application layer, but many pointer accesses occur at the lower layer, like for

111

Preduct test

-—
v~ TS
25 System design @ \

‘Prototyping | ‘Eva luation ‘

. \

Software Softwars
— design test

omom s s ow

Fig. 1. Magnification of work-hour based Fig. 2. Design development of automotive

on 2012. software development.
Unit-system(ECU) Feature Module Task function OS Task
r{Cale, timing 8 msec task
)
3
w 16 msec task
= -
@ Calc, voltage *{ Crank event task
g]
| |
:
- VWater pump| - "
u]
B e . P B >
CAN network Source directory Source file Function call

Fig. 3. Architecture of automotive control system.

sensor data, or ROM (Read Only Memory)/RAM (Random Access Memory)
access. About five hundred such pointers are used in the lower layer.

2.2 Development Process

Figure 2 shows the automotive software development process for the Electronic
Control Unit (ECU). Our process uses a version of the typical V-model design
process. Since complex physical phenomena, such as the vehicle dynamics, are
the target of the control algorithms, prototypes of the physical components are
used to develop system software. The prototype development tends to be incre-
mental, focused on components, while re-using, and extending legacy systems.
The system design involves iterative development of the prototype, along with
evaluation, while validating operation of the control system in actual usage en-
vironments. Due to the use of iterative prototypes and corresponding control
algorithms, a spiral-up type process is incorporated into the system design pro-
cess on the left side of the V-model.

Our development process involves various testing activities that are applied
on the right side of V-model. Those tests include evaluation of the software

v

on actual vehicles, engine test beds, HILS (Hardware-in-the-Loop-Simulation),
and SILS (Simulation-in-the-Loop-Simulation). Those tests are more intense (de-
manding, in terms of system performance) and exhaustive than the evaluation
at the system design phase and are employed to achieve and maintain quality
up to the final product test phase.

A main source of inefficiency in our process is the rework involved to return
to an earlier phase of the development process, in the left side of V-model, from
a test process, in the right side of V-model. The most costly rework occurs
when returning to the system design phase from the system test phase, due to
the many development and testing steps that have already been performed to
reach the testing phase. Thus making well defined system designs is important
to reduce the amount of rework. In that sense, misunderstanding the system
design is one of the significant causes of the rework. Accordingly, a good review
process, founded on a firm understanding of the implementation, is required to
help limit the amount of rework.

The designer will benefit from the following, either for a new development or
for extending an existing system design.

1. Understanding the software architecture: It is important to decide which
module or function should be revised beforehand. In that sense, the developer
needs to understand the entirety of the program architecture on every level,
such as the function, the module, the sub-system, and the system levels.

2. Impact analysis of the revised variables or the calibration parameters: The
designer is interested in what kind of influence their own design revision has
to the system. The impact analysis is necessary in the Design Review Based
on Failure Mode (DRBFM) [1] to prevent the revision leading to unexpected
behaviors when revising variables or re-calibration of parameters.

The review process is basically done in manual or semi-manual manner, such
as reading a natural language of the specification or using the grep command in
for C code. When considering the module or function level graph, this process
can be sufficient, since the scale is small. However, if the system level graph is
considered, the manual process becomes a development bottleneck, because the
system scale is large, and the corresponding system graph is created manually.

2.3 Technical Issue and Approach

In order to automate the software architecture analysis and impact analysis,
we present a method based on static analysis. The required functionality and
challenges are as follows.

Dependency Analysis To understand the ECU program architecture, we need
to generate the “unit-system dependency graph” by using exhaustive de-
pendency analysis in the reviewing phase. This is like a map for software
architecture, which aids in understanding the software. The software di-
rectory composition, shown in Fig. 3, is not sufficient because it does not
contain essential program information like function calls or global variable

OO~TDUTE W

Program 1. Code example for struc-

t/union.
Program 2. Code example for closed
struct st { loop.
int mil;
int m2;
}; 1 extern int g_inl;
2 extern int g_in2;
extern int g_in; 3 int g_x1;
struct st g_st; 4 int g_x2;
int g_outl, g_out2, g_out3; 5
6 void main(void) {
void main(void){ 7 if (g_in1)
if (g_in == 1) 8 g_x2 = 0;
g_st.ml ++; 9
10 g_x1 = g_x2;
if (g_in == 2) 11
g_st.m2 ++; 12 if (g_in2)
13 g_x2 = g_x1;
g_outl = g_st.ml; 14 3
g_out2 = g_st.m2;
g_out3 = g_st.ml + g_st.m2;

reads/writes; program (Control and Data) dependencies are needed to make
a more helpful graph [2]. Particular challenges are;

1. The analysis must scale to a half million lines of code and handle several
thousand global variable.

2. At some levels of detail we require precise handling of nested struct and
union variables. These often contain flags indicates important conditions,
like whether the engine is idling or whether the engine is in a fuel-cut
mode. Program 1 shows an example. It has struct st on L1 and the
members are accessed in main function several times.

3. It is necessary to consider the software as a closed-loop system. In that
case, the entry function is called repeatedly in the embedded controller;
therefore, it is necessary to consider the previous status of global vari-
ables. Program 2 shows an example. When main on L6 is called repeat-
edly for the closed-loop system, 2nd call of .10 depends 1st call of 113
in specific case. We call this capability the periodic option, which is an
option for our data dependency analysis.

Pointer Resolution The dependency analysis must be able to handle both

data and function pointers. Pointer analysis is challenging in general, but
this functionality is a key requirement for static analysis tools and means
that purely syntactic approaches to dependency analysis will not work. False
negatives for pointer analysis are not allowed, because it results in missing
important cases. We require flow, loop, array, and struct/union awareness.
Program 3 is an example demonstrating the variable pointer use-case. It has
array on L2-4, and loop on L10, furthermore pointer accesses on L7 and
L8. Program 4 demonstrates the function pointer use-case. It has function
pointer on L20, and arrow access by using function pointer “p” on L21.

A designer can typically resolve a pointer manually within 15 minutes. Usu-
ally, the designer manually resolves only what they deem interesting, which
usually exists at the module level. However, if the vehicle or system graph

VI

Program 3. Code example for pointer.

1 #define ARRAY_SIZE 4
2 comnst int cAarray[ARRAY_SIZE] = { 10, 20, 30, 40};
3 int gArrayl [ARRAY_SIZE];
é int gArray2[ARRAY_SIZE];
6 void main(){
7 const int* p0 = cAarray;
8 int* pl = gArrayl;
9
10 for (int i=0; i<ARRAY_SIZE; i++){
11 *pl = cAarray[il;
12 gArray2[i] = *pO;
13 pO++;
14 pl++;
15 ¥
16}
Program 4. Code example for function pointer.
1 struct st {
2 int (*req) (char, char *);
3 ;
4
5 int f1(char, char *);
6 int £2(char, char *);
7 const struct st fptbll[]l={
8 { f1 },
9 { f2 3,
10 3}
11

12 int gl(char, voidx);
13 int g2(char, voidx);
14 int (* const fptbl2[]) (char, void *) = {

15 gl,

16 g2,

17 ¥

18

19 void func(int id, int len, char* buf){
20 const struct st *p = &fptbli[id];

21 p->req(len, buf);

22}

is considered in an initial phase of development, all pointers should be re-
solved to clarify all dependency. In this case, the work hours are estimated
at about 125 h (=15 min * 500 pointers). This is an unreasonable amount
of work-hours to spend resolving pointers.

The embedded ECU does not have un-resolvable pointers because it is a
safety critical system and does not use dynamic memory allocation. Even
considering pointers in loop statements, there are no unbounded loops be-
cause the number of loops are based on constant values, like the number of
banks, cylinders, and the look-up table size.

Program Slicing We attempt to apply program slicing [3] to the “unit-system

dependency graph” for the impact analysis. This is similar to a path-planning
problem. Often the generated graphs are too large to understand. To address
that, we expect a kind of extraction functionality that allows the designer to
focus on their interests. Program slicing is a kind of forward and backward
analysis on dependency. Our expected use-case is impact analysis from the

VII

revised variables or the calibration parameters to understand the influence
of their revisions. The challenging aspect is to handle enormous dependency
from a half million lines of code and on-demand access for forward and
backward analysis.

As many of these challenges require understanding parts of the semantics
of the program, purely syntactic approaches to the dependency graph are not
sufficient. To this end, we use abstract interpretation, which can produce scal-
able and precise results and further guarantee soundness regarding pointer and
dependency analysis. To support the enormous information management on the
slicing requirements, we use a non-relational database. In the next section, we
describe the key technique: abstract interpretation.

3 Abstract Interpretation

Abstract Interpretation [4] is a mathematical framework for designing, develop-
ing and understanding static analysis techniques [5]. It provides general results,
based on order theory, that guarantee soundness and termination of an analysis
given a few basic properties of the data structures and functions used. These
allow the development of a new analysis to be reduced to developing one data
structure and two (optionally three) functions:

Domain A domain is a mathematical object that represents a set of possible
program states. The conventional approach to implementing abstract inter-
pretation analyses to create a data-structure for the domain. Commonly this
is a non-relational domain, a map from variable to an abstract representation
of their possible values (for example intervals, or sets of dependencies).

Transform A function that takes the domain representing the state before
an instruction and generates the domain representing the possible program
states after. This is the abstract version of executing one step of the pro-
gram. The transform function covering all possibilities (in this case, tracking
all dependencies) is one of the key criteria for a sound analysis. Obviously
the details of transformation will depend on the domain, for example, if
the domain uses intervals then the transform function will perform interval
arithmetic.

Merge A function that takes two domains and combines them into one that
includes things represented by either (but may contain more). In the case
of intervals, this would be merging the two intervals. Merge is the over-
approximate version of a union and allows control-flow paths to be merged,
a key criteria for termination.

Widen A key result in abstract interpretation is that the fixed-point of an
(over-)approximation is an (over-)approximation of a fixed-point. So just by
iterating the analysis, loops can be handled in a correct and terminating
manner. Depending on the domain, direct iteration can take too long, so
a widening function is often used to accelerate the process. In the case of
intervals this might be setting the upper or lower bounds to their max.

VIII

3.1 Variable-Sensitivity Domain

As this project needs to compute dependencies for each variable individually and
does not need to track the relationships between them, it is sufficient to use a
non-relational domain. This means that we can represent the state of a program
a given location using one map which stores an object for each variable. Doing
so allows us a uniform and simple way of handling one of the requirements —
a variable level of sensitivity in the analysis depending on whether it is being
analyses at feature, module or task function level.

By implementing a common object interface, we can use dynamic dispatch
to control the objects, and thus the precision, used to track arrays, pointers,
structs, unions and combinations of them. When the program is analysed at the
large scale, we can smash arrays, tracking one dependency set per arrays, and
switch seamlessly to per-element dependencies at smaller scales. Similarly, we
can switch from just dependencies to tracking constant value or intervals for
each variable as well to increase precision for more detailed analyses.

Although this approach is less general than conventional approaches using
separate value, array and pointer analyses and reduced products or open combi-
nations [14], it scales better and handles large, complex, global data-structures
(for example, pointers to arrays that are members of structs) in a clean and
simple manner. It also simplifies various implementation and algorithmic im-
provements discussed below.

3.2 Copy-on-Write Data Structures

As we need to generate dependencies for every location in the program and
keep these in memory to handle periodic analysis as described above, memory
is a significant concern. If we are to store 1,000,000 domains (one per line of
code), each tracking up to 10,000 variables (not counting per-element analysis of
arrays), then every byte required by a dependency set will need 10 GB of RAM.

Here the “one big map” approach of the variable sensitivity domain is of great
use. Although we have to store domains for every program location, the majority
of them are largely similar to the domains at preceding locations. By using a
custom copy-on-write map data-structure, we only have to store the difference
between two domains, which makes the memory consumption tractable. The
authors believe a similar approach is implemented in Astrée [15] although the
details are not public. This also gives a fast way of iterating across the differences
between two domains.

3.3 Three-Way Merge

Conventional abstract interpretation is context-insensitive, so each call to a func-
tion will merge the calling state with the starting state of the function. For
programs with fixed and tight scoping rules, this is not necessarily a problem.
However when handling a large number of global variables it causes an interest-
ing problem.

IX

Program 5. The need for three way merging

1 int gState;

2

3 void func (void) {

4 // Does mot modify gState
5

6

7 void task(void) {

8 gState = INIT;

9 func () ;

10

11 // Other functionality
12

13 gState = FINAL;

14 func () ;

15 %

Consider the program in Program 5. The first call to func will correctly track
the dependencies and the constant value of gState. The second call to func
will merge in its value of gState which causes a problem on function return
: even though the function does not alter gState its value and dependencies
will be set to the merge of all possible calling locations. In the case of low-level
utility functions this can cause very significant loss of precision, particularly
when unwinding loops.

To avoid this problem without the cost of performing full context-sensitive
analysis, we use the dependencies and modification information implicitly stored
in the copy-on-write data structures. On function return, rather than just merg-
ing the state at the end of the callee into the caller, we identify each of the
variables (array elements, struct fields, etc. depending on the sensitivity) that
has changed between the start and end of the callee and merge only those into
the caller state, resulting in a three-way merge.

4 C Analysis Tool

Figure 4 shows the C Analysis Tool (CAT) architecture. The CAT basically con-
sists of three components. The CPROVER [7] component compiles ECU code
and executes the abstract interpretation and finally outputs the instruction level
of dependency. The Orient-DB [8] component is a non-relational database and
deals with the enormous dependency information and analyzes forward and back-
ward analysis based on the dependency on demand to implement the slicing.
The visualization component converts instruction-level of dependency to a more
user-friendly level. The visualization back-ends can be accessed via a Java-API,
and the user can operate it from their own environment or an Integrated De-
velopment Environment (IDE) like MATLAB ®), Eclispe ®, Visual Studio ®),
Windows ®CMD and so on. Those components are explained in detail in fol-
lowing sections.

Eclipse " Windows
(Java) Visual Studio o,

fore Tome T fo

[C-Code Analysis API (Java)

MATLAB

FrontEnd

Orient-DB

T OPROVER e strac Unwound (@) Dependence | ™ | (5) Backward
Codes = compilr ode oreter [~ Code Abstract dependence &forward
©) o o Interpreter Analysis

GraphMI

BackEnd

n
< CPROVER(GH) > Orient-DB(ava) >< Visualization Gava) >

Fig. 4. C Analysis Tool architecture.

4.1 CPROVER

CPROVER [7] is an open-source C++ framework for building C, C++ and Java
analysis and verification tools. It provides components for compilation, program
transformation and analysis, abstract interpretation, symbolic execution and
SMT solving. For instance, C Bounded Model Checker (CBMC) [9] is a well-
known bounded model checker and is implemented using CPROVER.

goto-cc CPROVER has a compiler goto-cc which supports gcc [10] equivalent
compiler options. This means goto-cc can compile C-code by just changing
the command gcc to goto-cc in a make-file, which has a high advantage in
industrial application. The goto-cc produces a “goto-program”, which is a kind
of intermediate representation (see Fig. 5). In our CAT tool, the goto-cc is used
in CPROVER compiler ((1) in Fig. 4).

goto-analyzer is the abstract interpreter from CPROVER. It operates on goto-
programs and thus is language independent. The goto-analyzer supports three
types of abstract domain, which are the constant domain, the variable sensitivity
domain, and the dependency domain.

Constant Domain ((2) in Fig. 4): Finds unwinding-bounds for the loops, then
it unwinds the original code. The command is goto-analyzer --constant

Variable Domain ((3) in Fig. 4): Simplifies and removes the data and function
pointers with array and struct/union awareness. The command is goto-analyzer
--variable --structs --arrays

Dependency Domain ((4) in Fig. 4): Extracts the instruction level depen-
dency from the pointer-resolved goto-program. It supports typical control
dependency and data dependency with array and struct/union awareness.
In addition, it supports the recurrent data dependency, which is an embed-
ded specific option. Typically, the embedded controller calls a task repeatedly

XI

Example code goto-program
void funcivoid) { type code/guard target
ul*ult_p;
ulult x DECL unsignad char *ult_p;
uz uit:y; DECL unsigned charult_x;
bitstr stt_s: DECL unsigned shortintu2t_y;
- DECL struct bitstrstt_s;
ult_x=ulg_x; ASSIGN ult_x = ulg_y;
uZt_y=u2gy; ASSIGN u2t_y=u2g_y,
stt_s=stg_s; ASSIGN stt_s=stg_s;
ult_p=&ulg_a[0); ASSIGN ult_p = &ulg a[(signed longint)0];
GOTO Hisignedintjulg_j==0)
if ulg_j==0){ ASSIGN ult_x=ult_x+1;
ASSIGN u2t_y = {unsignad shortintiulg_a[(signedlongint}o);
ASSIGN stt_s.bLl=(unsignedchar: Li{unsigned char)l;
ASSIGN ult_p=ult_p=+1l;
ult_p ++ GOTO GOTO 2
} GOTO lWisignedintiulg j==1}
alsca if(ulg j==1){ ASSIGN u2t_y = {unsigned shertintiulg_a[isignedlangintiulg j;
u2t_y=ulg_alulg jl ASSIGN stt_s.bLl=(unsignedchar: Li{unsignad char}o;
stt_s.bl=0; ASSIGN stt_s.b34 ={unsigned char : 2}{unsigned char}2;
stt_s.bi-l- =2 ASSIGN stt_s.b34 ={unsigned char : 2}{{unsigned charjstt_sb33+
[ASSIGN ulg x=ult_x;
: ASSIGN U2g y=u2ty;
ulg x=ult_; ASSIGN stg_s =stt_s;
u2g_y=uzt_y; ASSIGN *ult_p = (unsigned char)stt_s.b1;
stg_s =stt_s: ASSIGN ult_p=ult p+1l;
*ult_p=stt_sbl; ASSIGN *ult_p = (unsigned char)stt_s.bh34;
ult_p++

*ult_p =stt_s.b34;

}

Fig. 5. Goto-program.

and considers the status of the previous control step as necessary. The com-
mand is goto-analyzer --dependence-graph-vs
--structs --arrays --periodic-task

The CAT exploits the constant and variable sensitivity domains to handle
loops and pointers and the dependency abstract interpreter for extracting pro-
gram dependency. Finally, that outputs the dependency at the instruction-level
to Orient-DB.

4.2 Orient-DB

The Orient-DB [8][11] handles the dependency information that comes from a
half million lines of code and CPROVER’s abstract interpreter (goto-analyzer).
The sum of the control and data dependencies is approximately relations 445,000
from a half million lines of code. In general, applying a database is reasonable
to handle such an enormous amount of information. One feature is that we ap-
ply the oriented graph based database “Orient-DB”. This is because the code
dependency is considered as a directed graph. Each instruction can be consid-
ered a “vertex”, and each dependency can be considered an “edge”. From that
perspective, the impact analysis can be implemented as a backward and forward
analysis from any slicing criterion.

Figure 6 shows the data structure that is stored in Orient-DB. The vertices
represent the instruction, the function, the global variable, and the local variable.

XII

Diractory
contain [Edge]
Directory [Vertex] o File [Vertex]

—— |

— name — name
File contain [Edge] File contain [Edge]
Contain [Edge] Read [Edgel
- , D Global
Function[Vertex] | Call[Edge] Instruction [Vertex] | wiritg [Edgel | variable [Vertex]
- — name Ll
- nams Data — name
- file
- file f \ de pendence - file
. - function .
= line ~line [Edgel = line
= type C 1 - typs
- type ontrol
Control [Edge] / ' de pendence - value
'y [Edge]
Write [Edge] Read [Edge]
¥

Local variable [Vertex]
same as Global variable

Contain [Edge]

Fig. 6. Orient-DB data architecture.

Those are based on the C-code intermediate format from the goto-program. In
addition, the file directory and the file are included to support the directory
and file-level merging in the visualization layer. The edges represent the call,
the control that expresses the instruction ordering, variable read, and write as
in a typical program data dictionary. In addition to that, the data and control
dependency that come from the dependency abstract interpreter are registered.

The Orient-DB supports the edge based backward and forward analysis. CAT
exploits that for Backward and Forward Analysis ((5) in Fig. 4).

4.3 Visualization

The visualization component relates Visualization ((6) in Fig. 4). The Orient-
DB can extract the vertices that correspond to instructions from the goto-
program with any Orient-DB commands. It is easy to imagine that such an
instruction-level graph may be difficult to understand. In practice, it is more
detail than required to understand the software architecture for most cases.
The designers need to understand the system-level, but they mainly focus
on a particular module they are developing. Thus, the graph vertex that relates
the module they are developing should be provided in detail; like the module or
function-level, other vertices should be abstract like the sub-system or system-
level. In that sense, this component is allowed to violate the CPROVER, and
Orient-DB’s data-structure (Fig. 6) and generates the visualized graph so that
it is easy to understand. In this layer, vertices can be merged or expanded to and
level, like function, file, and folder-level, using a manual command. In accordance
with the vertex merging, the edges that include the control, data dependency and
the function call are merged as an edge automatically (See Fig. 7). The output

XIII

Expand

DirA

=

Fig. 7. Example of visualization process.

graph format is GraphM]1 [12]. yEd Graph Editor [13] is used as a viewer, and
the Graph layout is used independently from the CAT to show the result. This
component is also implemented in Java.

5 Experiment of CAT with Automotive Unit-System

We evaluate the CAT’s unit-system dependency graph generation and the impact
analysis with actual code. We choose the engine ECU that is the largest scale in
the vehicle system and has a half million of LoC. All experiments were run on
a workstation computer with Intel® Xeon® CPU E5-2690, 2.9GHz, 8 cores, 2
processor, and 256GB RAM on OS Ubunutu 16.04.

5.1 Result of Analysis for small examples

This section explains the result of CPROVER goto-analyzer in Sec.4.1.

Dependency Analysis The result of dependency analysis goto-analyzer
--dependence-graph-vs of Program 1 is shown in Fig. 8, which indicates the
data dependency has offset of struct member.

The result of dependency analysis of Program 2 is also shown in Fig. 9,
which indicates the control, data, and periodic dependency (shown as “later” on
edge from L13 to L10 node) are extracted correctly. Above results indicate the
requirements those are mentioned in Sec. 2.3 are satisfied. All those dependencies
are exported in JSON format and stored to Orient-DB.

Pointer Resolution The first step of pointer resolution using CAT is unwind-
ing the loops. Program 6 shows the result of loop resolving goto-analyzer
--constant of program 3 in Sec. 2.3 by using the constant abstract interpreter.
The for loop on L10 in Program 3 is unwound and converted to if statements.
Program 7 shows the result of pointer resolving goto-analyzer --variable
--structs --arrays of Program 6. This result shows the abstract interpreter
can resolve complex pointer accesses that include loop and array access.
Program 8 also shows the result of function pointer resolving of program 4.
Actually because of implementation difficulties, it is solved by using a heuristic

XIV

10: void main(void)

| 14: if (giin==2) |

[7o

| 15: gstm2 ++

| 11 if (gin==1)

lTrue

| 12: gstml ++

“gst”,

—

Control
dependence
Data
dependence

g st”,
offset: m2

7: struct st g st

offset: m1

18: g out2 = g stm2;

17: goutl = g stml;

19: g out3 = g stm2 + g stm2;

gst”,

offset: m1, m2

Fig. 8. Dependence result of Program 1

Control
dependence
Data
dependence

6: void main(void)

10: g x1 = g x2;

Fig.9. Dependence result of Pro-

gram 2

Program 6. Unwound code of Program 3.

1 const signed int cAarray[41]={ 10, 20, 30, 40 };
2 signed int gArray1[41];

i signed int gArray2[41];

5 void main(){

6 const signed int *pO=cAarray;

7 signed int *pl=gArrayl;

8 signed int i=0;

9 if (1(i >= 4)){

10 *pl = cAarray[(signed long int)il;

11 gArray2[(signed long int)i] = *pO;

12 p0 = pO + 11;

13 pl = p1 + 11;

14 i=1i+ 1;

15 if (1(1 >= 4)){

16 *pl = clAarray[(signed long int)il;
17 gArray2[(signed long int)i] = #*p0;
18 p0 = p0 + 11;

19 pl = p1 + 11;

20 i=1i+ 1;

21 if (1 (1 >= 4)){

22 *pl = cAarray[(signed long int)il;
23 ghrray2[(signed long int)i] = #*pO0;
24 pO = p0O + 11;

25 pl = p1 + 11;

26 i =1+ 1;

27 if (1(i >= 4)){

28 *pl = cAarray[(signed long int)il;
29 ghrray2[(signed long int)i] = *pO;
30 pO = p0O + 11;

31 pl = p1 + 11;

32 i=1+1;

33 __CPROVER_assume (! (i < 4));

34 }

35 ¥

36 }

37 }

38 }

method goto-instrument --remove-function-pointers. The function pointer
access p—>req(len, buf) on L21 in Program 4 should be function f1 or £2.
However, this heuristic method solves as all possible function; £1, £2, g1, or g2
in over-abstract (See L20-L50 in Program 8.). Potentially the abstract interpreter
can reduce the set of possibilities and it is one direction of future development.

XV

Program 7. Pointer resolved code of Program 3.

1 const signed int cAarray[41]={ 10, 20, 30, 40 };
2 signed int gArrayil[41];

Z signed int gArray2[41];

5 void main(){

6 const signed int *pO=cAarray;
7 signed int *pl=gArrayl;

8 signed int i=0;

9 gArray1[01] = 10;

10 gArray2[01] = 10;

11 p0 = &chAarray[11];

12 pl = &gArray1[11];

13 i=1;

14 gArray1[11] = 20;

15 gArray2[11] = 20;

16 p0 = &chAarray[21];

17 pl = &gArrayl[21];

18 i = 2;

19 gArray1[21] = 30;

20 gArray2[21] = 30;

21 pO = &charray([31];

22 pl = &gArrayl[31];

23 i = 3;

24 gArray1[31] = 40;

25 gArray2[31] = 40;

26 p0 = &charray[41];

27 pl = &gArrayl[41];

28 i = 4;

29 __CPROVER_assume ((_Bool)1);
30}

5.2 Visualization for Automotive Unit-System

Figure 10 shows the engine unit-system dependency graph, where the red-line
shows the extracted result of program slicing. The slicing criteria is an important
variable for the engine control software and for the back-forward control and
data-dependency analysis. The top segment of this figure shows the feature layer.
The middle segment shows the module graph. The bottom segment shows the
function and global variable graph. This figure shows the unit-system level, the
feature level, and the module level hierarchically and with the designer preferred
abstraction. The result shows that the program slicing gives the information the
designer should focus on.

The time and memory consumption was evaluated while generating Fig. 10.
First, the CAT compiling CPROVER compiler ((1) in Fig. 4) takes about 24
minutes. The abstract interpreters, the constant abstract interpretation ((2) in
Fig. 4), the variable abstract interpreter ((3) in Fig. 4), and Dependency Abstract
Interpreter ((4) in Fig. 4), which are for the dependency analysis, take about
7 hours and consumes a maximum of 198 GB memory. Forward and backward
analysis (((5) in Fig. 4)) and Visualization ((6) in Fig. 4) take up to a few
minutes.

In total, the CAT takes about 8 hours while consuming up to 198 GB RAM. It
is done fully automatically and means the CAT can reduce work-hours dramati-
cally compare with manual or semi-manual manner. Furthermore, it is practically
impossible to extract such exhaustive dependency information manually.

XVI

Program 8. Pointer resolved code of program 4..

1 struct st;

2 signed int f1(char, char *);

3 signed int f2(char, char x*);

4 void func(signed int id, signed int len, char *buf) ;
5 signed int gl(char, void *);

? signed int g2(char, void *);

8 struct st{

9 signed int (*req) (char, char *);

10 3;

11

12 comst struct st fptbl1[21];

13 comnst struct st fptbl1[21]={ { .req=f1 }, { .req=f2 } };
14 signed int (* const fptbl2[21]) (char, void *);

15 signed int (* comnst fptbl2[21]) (char, void *)={ gi, g2 };

17 void func(signed int id, signed int len, char xbuf){

18 const struct st *p=&fptbll[(signed long int)idl;
19 p->req;

20 if (! (p->req == £2))

21 {

22 if (p->req == (signed int (%) (char, char *))gl)
23 goto __CPROVER_DUMP_L2;
24

25 if (p->req ==

26 goto __CPROVER_DUMP_L3;
27

28 if (p->req == (signed int (%) (char, char *))g2)
29 goto __CPROVER_DUMP_L4;
30 }

31

32 f2((char)len, buf);

33 goto __CPROVER_DUMP_L5;

34

35 __CPROVER_DUMP_L2:

36 ;

37 gl((char)len, (void x)buf);
38 goto __CPROVER_DUMP_L5;

39

40 __CPROVER_DUMP_L3:

41 ;

42 f1((char)len, buf);

43 goto __CPROVER_DUMP_L5;

44

45 __CPROVER_DUMP_L4:

46 H

47 g2((char)len, (void *)buf);
48

49 __CPROVER_DUMP_L5:

50 ;

51 }

5.3 Examination of Preciseness and Scalability

In this section, we discuss the exhaustiveness of the abstract interpreter and the
Orient-DB. Table 3 shows the scalability of the abstract interpretation. It shows
the calculation time and memory consumption from several levels: task, module,
and function. Every entry is the largest function in each levels. The related
preciseness combinations are shown in Table 1. Each LoC refers to the scale
of the code. The LoC is estimated from the goto-program, which completely
resolves the loop and the context. Figure 11 shows the memory consumption
Fig. 12 shows the trends of time and for each abstract interpreter.

This result illustrates the possibility that the abstract interpreter can coor-
dinate the scalability and the preciseness according to the designers PC spec.
One of contributions of CAT is the decrease in work-hours for pointer-resolving,

XVII

Unit-system %raph — O Feature Dir
1 7%‘ = Dependence Feature graph———————— 3 Module Dir

Result of =P Dependence

Program Slicing \ Result of

HH\ T = Program Slicing

el
§

Module graph i [Function
QO Global Var

=p Dependence
Result of
- Program Slicing

Slicing

—
-
T—
[E—
]
:—>
j—

— . criteria
—
—
—
[—
—
=l
Jiq

Fig. 10. Engine unit-system dependence graph.

which is expected to take about 125 hours to resolve five hundred pointers man-
ually (Sec. 2.3). As row “Unit #1-4” and column “Variable Time” shows, the
variable abstract interpreter resolves the pointers from the largest unit entry in
around 50 minutes. Actually we need to solve several unit entries, even though
it can resolve in about 2 hours.

The program slicing is implemented using Orient-DB’s backward and forward
analysis on the oriented graph. There are 200 thousand instructions treated as
vertices, 410 thousand control/data dependencies, which are treated as edges.
We have not compared any data bases; however table 2 shows Orient-DB can
extract 5,949 instructions from 8 slicing criteria on a half million items related to
dependency in 1,349 msec. The search speed is extremely fast and well satisfied
our use-case.

XVIII

200,000

150,000 ~

—Constant

—Variable

Dependence

Membry [MB]

100,000

T

50,000

A

}AVJ

0 T

TG AP R SRV
b AT P ’b"" Ay o,‘ o)q,s ,{9"3‘

Fig. 11. Memory consumptlon.

Table 1. Combination of preciseness options.

01:26:24

E —Constant
01:12:00 {ﬁ —Variable [
£ Dependence
00:57:36
£
00:43:12 - D\
00:28:48 //
00:14:24 /\\J
LoC -~ LoC
— 00:00:00 ™Y TTT——T—T—

o & O o O)
S T A N N S v

) /\. \’u\ 5 b?" ot

<,7\ ');'1,\ éq\

Fig.12. Time consumptlon.

Table 2. Evaluation of Orient-DB.

Precisness|Flow|Context|Loop|Recurrent # Extracted
Z1 7 # Criterion| instructions |Time [ms]
42 7 7 1 146 68
43 7 7 2 419 146
#4 7 7 7 3 536 188
e v ~ > 12 3,562 1,065
46 7 v v v 88 5,949 1,349
The total num. of instr. is 200k.
Table 3. Evaluation of abstract interpretation.
Entry |Pre.| LoC Constant Variable Dependence
Memory [MB]| Time |[Memory| Time [Memory| Time
Module|#1 | 4,715 540 00:00:04| 12,015 |00:04:45| 14,395 |00:04:42
#2 | 5,766 558 00:00:04| 26,460 |0:0:5:45| 22,849 |00:05:02
#3 7,182 8,843 [00:03:49| 10,137 |00:03:19
#4 | 8,779 3,158 [00:01:07| 6,280 [00:01:30
#5 | 14,364 19,740 [00:07:10
#6 | 17,558 11,975 |00:02:50
Feature|#1 | 35,090 2,528 00:00:13| 33,756 |00:15:02| 49,033 |00:18:12
#2 | 34,874 3,222 00:00:23| 89,819 [00:21:51| 92,351 |00:27:39
#3 | 43,285 17,664 [00:07:41| 44,260 |00:15:34
#4 | 50,072 15,770 [00:06:46| 55,348 |00:17:10
#5 | 86,570 88,239 [00:32:28
#6 (100,144 109,197 {00:38:56
Unit [#1 |115,126 10,200 00:00:50| 64,753 [00:53:01| 96,699 |00:47:14
#2 1123,881 16,390 00:02:06| 154,118 |00:49:36| out of memory
#3 132,663 48,008 [00:40:41] 99,864 [00:39:33
#4 (155,178 153,872 00:46:15| out of memory
#5 265,326 198,149]01:16:06
#6 (310,356 out of memory

XIX

5.4 Discussion of Preciseness and Scalability

As demonstrated above, CAT can provide the unit-system dependency graph
(See Fig. 10). In this section, we discuss the CAT’s components; CPROVER,
Orient-DB, and Visualization.

CPROVER mainly provides the abstract interpreter, which is one of two key
technical items. The abstract interpreter solves the pointer and the dependency
at the instruction level. Table 3 shows the possibility of coordinating the scal-
ability and the preciseness; however, the scalability still remains an issue. The
abstract interpreter consumes up to 198 GB of memory, furthermore, Unit #1,
#4, and #6 are out of memory. Actually, Unit #5 satisfies our visualization use-
case (the context sensitivity or more precise analysis is not needed.). In general,
that is too heavy to perform on a standard desktop PC, but the performance
requirement can be overcome by sharing the Orient-DB repository via a network
as the host. In this case, the computing demand on the local PC is not as high.

From this experience, not only the large program scale (half million LoC)
but also the many (several thousands of) global variable impacts the scalability.
There are two main reasons for this. First, the domain information for each
global variable cannot be released because they are “global” variables. Second,
every global variable domain (status) needs to be stored for each instruction.
This means the memory consumption is a multiplication of the number of global
variables and LoC, approximately. The embedded controller cannot avoid using
the global variable, and we typically cannot expect to decrease the LoC. The
only way is to lessen the domain scale and update the domain objects.

The essential advantages of abstract interpretation are the soundness and the
ability to trade off the preciseness with the computation time. The ideal usage
is applying the abstract interpreter in a hierarchical fashion; meaning, in the
early phase, use a less precise (scalable) abstract interpreter to simplify (erase
dead code, simplify pointers), then in the later phase, gradually apply a precise
(less scalable) abstract interpreter to the simplified code. The CAT exploits the
abstract interpreter in this way; however, our design of data structures for the
Orient-DB (Fig. 6) deals with the most precise instruction-level of the informa-
tion and does not consider intermediate information like unwound-bounds and
pointer simplifying. More sophisticated data-structures that can deal with the
history of the result from the abstract interpreter are needed to better exploit
the abstract interpreter.

In the visualization component, the on-demand access that is supported by
the Orient-DB realizes a user preferred level for the graph (Fig. 7) to provide
the enormous dependency information from a half million lines of code. On the
other hand, the graph placement is a further issue related to the large size of
the graph. The yEd Graph Editor is used in this paper separately from CAT
and the default placement setting is used, but the preference for the placement
depends on the domain. We need to consider those settings for each domain to
deploy CAT. The yEd allows user specific placement settings. We expect it can
implement this by using the yEd API.

XX

5.5 Future Work

Authors think the CAT tool achieved a trial level, even though still there remain
improvement items. The biggest advantage of the CAT is that is capable to
extracting the exhausting dependence analysis which includes pointer analysis
with just one night. We have already presented a demo to designers. They are
also interested in the capabilities of scalability and, the result of program slicing;
even though it is the function level graph, the slicer extracts well because of the
statement level of dependence analysis is done in behind. (See bottom of Fig. 10,
the slicer does not extract all of input edges at func_6.)

We are planning trial with 3 domains; Vehicle Control, Engine and Fuel Cell
domain. The vehicle control domain is rapidly increasing the work-hours due to
applying Automated Driving Technology. The engine still remains the largest
scale of controller in automotive. The fuel cell system is also complex system
which involves FC stack, Battery, and Electric motor. We expect the around
8,000 hours’ reduction of work-hours per an ECU development when the CAT
is deployed.

6 Conclusion

In this paper, we focus on the enhancement of control software development
processes in the early development phases. The technical difficulty relates to
the management of up to half a million lines of code per ECU. We applied an
advanced static analysis method, abstract interpretation, to address function
pointers and variable pointers and to extract an instruction-level of dependency.
We systematize this process in the CAT tool, which uses CPROVER and Orient-
DB. The CAT tool can handle a half million lines of code, resolve 500 pointers,
and extract a half million dependencies within 8 hours. CAT provides system
graphs to understand software architecture on demand. CAT is a flexible and
sophisticated tool for reviewing code in early development phases.

References

1. Haughey, Bill. Design Review Based on Failure Modes (DRBFM) and Design Review
Based on Test Results (DRBTR) Process Guidebook. SAE International, 2012.

2. Ron Cytron, et al. An efficient method of computing static single assignment form.
In: Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages. ACM, 1989. p. 25-35.

3. Mark Weiser. ” Program slicing.” Proceedings of the 5th international conference on
Software engineering. IEEE Press, 1981.

4. Patrick Cousot and Radhia Cousot, Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In:
Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of pro-
gramming languages. ACM, 1977. p. 238-252.

5. Vijay D’Silva, Daniel Kroening and Georg Weissenbacher, A survey of automated
techniques for formal software verification. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 2008, 27.7: 1165-1178.

®

10.
11.
12.
13.
14.

15.

XXI

Alfred V. Aho, Compilers: principles, techniques and tools (for Anna University),
2/e. Pearson Education India, 2003.
http://www.cprover.org/cbmce/
https://orientdb.com/
Daniel Kroening and Michael Tautschnig. CBMC bounded model checker. In: Tools
and Algorithms for the Construction and Analysis of Systems. Springer Berlin Hei-
delberg, 2014. p. 389-391.
https://gce.gnu.org/
Claudio Tesoriero, Getting Started with OrientDB. Packt Publishing Ltd, 2013.
http://graphml.graphdrawing.org/
https://www.yworks.com/products/yed?
Sandrine Blazy, David Biihler and Boris Yakobowski, Structuring Abstract Inter-
preters Through State and Value Abstractions, VMCAT'17, 2017. p. 112-130.
Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jéréme Feret, Laurent
Mauborgne, Antoine Miné, David Monniaux and Xavier Rival, A Static Analyzer
for Large Safety-Critical Software, PLDI03, 2003. p. 196-207.

