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ABSTRACT 

The purpose of this work is to investigate the efficiency 

of numerical nonlinear solution procedures when applied to the 

static analysis of cable supported structures. Gradient and 

relaxation methods are developed and compared with existing 

nonlinear solutton techniques. In order to obtain a more 

general picture of the performances of the above methods, 

stiffness methods with Newton Raphson iterative schemes have 

also been included in the comparative study. 

Chapter 1 examines the behaviour and characteristics 

of cable supported structures and investigates the analytical 

requirements for static analysis. A state of the art of numerical 

solution techniques used to analyse these structures is 

presented. An extensive review of published work in relation 

to the analysis of single unstiffened cables, dual cables and 

cable networks is also presented. 

Chapter 2 approaches the solution of the structural 

problem through total energy formu'lations. Three basic energy 

formulations are discussed with particular emphasis given to 

the total potential energy formulation. The principles of the 

unconstrained minimization method are considered 

and different search techniques for approximating the minimum 

are discussed. Expressions for the gradient vector of the total 

potential energy are obtained and the tangent stiffness matrix 

is evaluated as the matrix of the second partial derivatives 



of the total potential energy formulation. Different scaling 

techniques are reviewed and the effects of the termination 

criterion used, for different methods of analysis, on the 

final accuracy of the methods is also discussed. 

In Chapter 3 there is an extensive theoretical treatment 

of gradient methods for the nonlinear solution of structural 

problems. Particular emphasis is given to the conjugate 

gradient algorithm and the modifications proposed by various 

investigators since it first appeared in 1952. A number of one 

'.dimensional linear searches are studied which approximate 

the minimum along the p direction and determine the scalar 

parameter a for the next iteration. And extensions of the 

conjugate gradient algorithm for the evaluation of the scalar 

parameter e, as proposed by Sorenson and Polak and Ribiere are 

discussed, Finally, the memory gradient method which employs 

a two dimensional linear search for a simultaneously evaluation 

of a and e is also presented. 

Chapter 4 examines the efficiency of the methods discussed 

in Chapter 3 when applied to the nonlinear solution of a number 

of test problems. The problems are selected to have varying 

numbers of degrees of freedom and the respective stiffness 

matrices to have differing condition numbers in order to 

study the response of the methods for different structural 

characteristics. The Fletcher and Reeves method with Davidon's 

linear search with a cubic equation to approximate the minimum, 

Stanton's algorithm for bracketing the solution and the regula 

falsi-bisection algorithm to approximate the minimum, a 



combined algorithm of Davidon and Stanton's techniques, 

Buchholdt's method, Polak and Ribiere's algorithm, Sorenson's 

version, the memory gradient method and a number of linearized 

conjugate gradient algorithms are developed and their 

convergence characteristics are compared. The effects of scaling 

and reinitialization are also studied. 

In Chapter 5 there is a theoretical investigation of 

relaxation methods and in particular the dynamic relaxation and 

the successive overelaxation methods. A rigorous examination 

of the characteristic properties of dynamic relaxation is 

carried out. The method is treated as a standard eigenvalue 

problem for error vectors and expressions for the iteration 

parameters are developed with respect to the minimum and maximum 

eigenvalue of the current stiffness matrix. A theoretical 

comparison of a number of pure iterative methods is performed 

and relationships between the iteration or scalar parameters 

of the conjugate gradient method, the dynamic relaxation method, 

the jacobi semi-iterative method, and the Tchebycheff methods, 

are established. This suggests that all these methods in fact 

belong to the same family of methods called "three term 

recursion formulae". A combined conjugate gradient and Tchebycheff 

type method is also studied. A method for the automatic 

evaluation of the dynamic relaxation parameters is developed 

by the author which can guarantee convergence for almost any 

arbitrary initial estimate of the minimum and maximum eigenvalues 

of the current stiffness matrix. The concept of using kinetic 

energy damping instead of viscous damping in the dynamic 

relaxation iterative process is also examined. Finally, the 



successive overelaxation method is modified to be applicable to 

the nonlinear analysis of structural problems, and two ongoing 

processes for automatic evaluation of the optimum overelaxation 

parameter w , proposed by Carre and Hageman, are also examined. 

Chapter 6 is devoted to a theoretical and numerical 

investigation of the problem of finding the minimum and maximum 

eigenvalues of a symmetric matrix. The power method, the steepest 

descent method, the conjugate gradient method, and the coordinate 

relaxation method, are among the techniques examined and compared 

in this Chapter. Several other modifications to the initial 

conjugate gradient algorithm are also studied, including the 

modification proposed by Fried for the evaluation of the scalar 

parameters and the one proposed by Geradin. An orthogonalization 

process is also applied to alleviate the dependency of the 

convergence of the method on the initial approximation for the 

final eigenvector. 

I 

In Chapter 7 numerical studies of the relaxation methods 

discussed in Chapter 5 are performed. Alternative forms of the 

dynamic relaxation methods with an "a priori" evaluation of the 

iteration parameters (using one of the methods discussed in 

Chapter 6), with automatic adjustment of the relaxation parameters 

based on the method developed in Chapter 5, and with the incor­

poration of kinetic damping, are applied for different test 

problems. Techniques to avoid the occurrence of instability of 

the method, when the current maximum eigenvalue of the iteration 

matrix becomes greater than the estimated maximum eigenvalue, 



are also developed and comapred. Finally, the efficiency 

of the successive overelaxation method, with both constant 

and adjustable relaxation parameters is examined and compared 

with the efficiency of the dynamic relaxation method. 

In Chapter 8 a review of methods operating through the 

formulation of the overall stiffness matrix is carried out. 

The efficiency of these methods is dependent on both the 

method employed to perform the linear solution when this is 

necessary and the nonlinear technique used to approximate the 

nonlinear equilibrium position in each iteration. A compact 

store elimination scheme, proposed by Jennings, is studied in 

conjunction with the Gaussian elimination procedure. Three 

different classes of nonlinear techniques are discussed together 

with the area in which each one has proved to be more suitable. 

Chapter 9 performs a general comparative study of the 

convergence characteristics of the best methods from each 

classification {gradient, relaxation and stiffness methods}, 

and examines the advantages and disadvantages involved in the 

application of the methods to the nonlinear elastic analysis of 

cable supported structures with members being allowed to slacken. 

The computer time required to obtain a certain degree of accuracy, 

the storage requirements and the cost involved are all examined 

and compared in an effort to select the most suitable method 

for each particular class of problem. 

In Chapter 10 the ultimate load carrying capacity of cable 

structures is studied, with members being allowed to slacken and 



with the inclusion of nonlinear stress-strain relationships. 

Two different solution procedures are employed : the 

stiffness method with or without the compact store elimination 

scheme in conjunction with Newton Raphson iteration, and 

Stanton's conjugate gradient algorithm. The convergence of 

the methods are tested for different values of the termination 

parameter£ and load increments. A continuous stress-strain 

curve as proposed by Jonatowski is used and provision for 

the cable members to reload following a different path is also 

included. Finally, Chapter 11 reviews the general conclusions 

resulting from the experience gained from the theoretical 

and numerical treatment of the methods discussed in this work, 

together with suggestions for further research. 
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CHAPTER 1 

INTRO DUCT ION 

The capacity to transmit forces and moments by tension 

loaded cables is found in animate and inanimate nature. The 

oldest cable nets were built millions of years ago by spiders. 

The history of the development of nets, produced by people, is 

lost in antiquity. Many Etruscan and Roman frescos and mosaics 

show scenes with hunting nets, fishing nets and ship nets. While 

in China at about 65 AD was recorded the use of vine ropes and 

metal chains in suspension structures. 

Nevertheless the few records which are available on net 

structures, in contrast to structures subjected to compression 

and bending, indicate that major achievements were not attained 

unti 1 _recently. 

In bridge building, the single cable let to double and multi­

cable suspension bridges. The first cable suspension bridge was 

built by James Finley in Pennsylvania in 1810. Following the 

example of bridges, roofs were also suspended from cables in the 

last century (Laurent 1837, "Lorient Arsenal", Engineering News 

Record, October 27, 1921). The designs of V. G. Shookhov in Nijny­

Novgorod (Russia) in 1896 are generally regarded as the first 

engineering surface structures in which roof membranes are 

suspported directly on th~ cable systems. Following this there 

was a period of inactivity in the erection of cable network 

structures, and it was not until 1954 that the next significant 

structure of this type was constructed: the Raleigh Arena in North 

Carolina (USA). Since then a great number of cable supported 
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structures have been built all over the world with resulting 

advances in scale, methods of erection and prefabrication, 

jointing and clamping details, and numerical design and analysis 

procedures. 

Although tensile structures built to date show a steady 

increase in scale, they perform more or less conventional functions. 

On the other hand, there are a number of projects, in different 

stages of development, that would utilize a membrane envelope to 

enclose a park, a resort, an office building, or even several city 

blocks. It is in this area of very wide span structures that the 

advantages of tension systems could become most significant. Since 

both the technology and the need for such applications exist, their 

realization is likely to be a matter of time (Varga (294]). 

1.1. The Characteristics of Tension Structures 

The primary characteristic of tension structures, is that the 

main structural elements, transmitting the applied loads to bearing 

structures, consist of high strength flexible cables with the 

ability to sustain only tensile forces. The absence of bending 
I 

moments permits the full utilization of the cross section of the 

cables, with permissible stresses not limited by instability effects. 

Architects and Engineers have a strong interest in utilizing 

suspension systems. This interest results from two factors. The 

first factor is aesthetic; the inherent flexibility of the cables 

permits further opportunities for architectural expression. The 

second factor is economic. The use of high tensile components gives 



-22-

light weight structures capable of covering large areas without 

supporting columns, and with the minimum steel consumption. In 

addition they can be mounted on site very rapidly. 

The analysis of cable suspended structures differs from that 

of ordinary Civil Engineering structures, because they possess the 

unique characteristic, that for a given loading condition, the 

internal forces and the re~ulting geometry necessary to maintain 

equilibrium are interdependent. The usual assumption of 

infinitesimal deformations leads to erroneous results when 

applied to these type of structures. Thus a valid analysis must 

include finite deformations and their effect on internal forces, 

i.e., the equations of equilibrium must be written corresponding 

to the distorted configuration of the structure. This means that 

the principal of superposition looses its validity and that the 

governing equations become nonlinear. 

Buchholdt [50], has introduced an expression for the degrees 

of mechanical freedom for discrete pinjointed assemblies as 

DMF = f - m + p ( 1. l) 

where f is the number of degrees of freedom of the joints, m is 

the number of members and P is the number of linearly independent 

force vectors which can be superimposed without disturbing the 

equilibrium configuration. The assembly is classified as a 

structure when DMF = O, and as a structural mechanism when 

DMF > 0. The advantage of equation (1.1) is that the existence 

of mechanical freedom can be detected by considering the number 

of ways in which an assembly can be prestressed, instead of 

considering its Kinematic properties. Structural mechanisms do 
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not possess an unstrained geometry and it is necessary to relate 

the deflections to a known equilibrium position of the structure. 

The geometry of the known equilibrium position replaces the 

undeformed geometry· of a rigid structure. 

Large displacements in cable systems arise mainly as a result 

of large rotations experienced by the elements of the structure and 

not as a result of high strains. Furthermore, the stress-strain 

curve for cables typically used in modern constructions exhibit 

linear characteristics only up to about 50% of their breaking 

strength, assuming the cables to be prestressed '[290]. Thus a 

rigorous investigation of the behaviour of cable structures must 

include both nonlinear stress-strain relationships and geometric 

nonlinearities; particularly when studying ultimate load carrying 

capacity. In addition to continuous stress-strain nonlinearities, 

discontinuous nonlinearities, such as cable slackening may occur. 

Under these combined nonlinearities numerical search for an equilibrium 

position should strictly be treated as path dependent. 

Another major characteristic of suspension structures, and 

in particular of cable networks, is that the stiffness matrix is 

inherently ill-conditioned. For a stiffness matrix of a linear 

structure, the elements of the ith column Kli' K2i, •••• Kni' 

a~e the nodal forces required to maintain an imposed displacement 

state·of Ui = l with all other displacements zero. For a nonlinear 

cable system the same physical explanation applies to the tangent 

stiffness matrix. For a shallow network structure, as in Figure 1.1, 

the horizontal node forces required to maintain this imposed 

displacement state may be considerably larger than the force applied 

at the same joint and at the same direction as the unit vertical 
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displacement. Thus the absolute value of the terms representing 

the horizontal node forces, KR.- 2,i , KR.-l,i , Kj.2,i , Kj-1,i , 

Kk 2 . ' Kk 1 . ' K 2 ,· ' K 1 . , K . 2 . ' K . l ,· ' may be - , , - , , m- , · m- , , , - , , , - , 
considerably larger than the diagonal term Ki .. This difference ,, 
becomes greater the more flat is the network. Thus, for this 

type of structure, every third equation of the -stiffness matrix, 

will usually have a main diagonal term which is smaller in magnitude 

than the other tenns of the same row. This peculiarity is one of 

the characteristics of poorly conditioned matrices (see Chapter 2, 

Section 2.8). 

Figure 1.1 
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Apart from static behaviour, the analysis of tension systems 

involves a special consideration of two major aspects. The first 

is the initial shape detennination which is directly coupled to 

the prestress distribution, and the second is the dynamic behaviour; 

the light-weight and flexibility of tension structures making them 

particularly sensitive to dynamic loads. 

Some examples of t~nsion systems are shown in Figures 1 .2 

through 1.5. 

1.2. State of the Art 

For the purpose of analysis cable structures may be treated 

either as continuous or as discrete systems. In the first half of 

the "sixties" most of the published work treated the system as 

continuous. For such analyses the cable net is assumed to be 

replaced by an equivalent flexible membrane which takes up the 

shape of the middle surface of the net. The majority of the methods 

in this category are linearized methods which usually include some 

type of iteration correction for the nonlinear terms, although a 

direct treatment of the nonlinear equations has also been attempted. 

In terms of practical structures, however, the 11membrane" 

approach is somewhat limited. Only those cable nets with an 

easily defined mathematical shape can be analysed and irregularities 

in boundary shapes and cable mesh are difficult to allow for. 

Moreover, the 11membrane 11 analogy is an approximation which gets 

progressively worse as the coarseness of the cable grid increases. 
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Simple cable Stiffened cables 

Fig. 1.2 Single cable structures 

Girder 

Truss 

Girder-truss 

Fig. 1.3 Duel cable structures 
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Doubly threaded net Triply threaded net 

Quadraply threaded net Hexagonal grid 

Fig. 1.4 Cable net mesh patterns 

Anti elastic 

(negative curvature) 

Sinclastic 

(positive curvature) 

Fig. 1.5 Three dimensional cable networks 
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For those cases where the net has a fine mesh and can be adequately 

represented by a membrane, considerable computational advantage can 

be gained, since the number of unknowns remains relatively small. 

Less time and storage is needed and the computations are resonably 

free from round-off errors. 

The discrete idealization has the advantage of suiting better 

the true nature of the cable structure, which is inherently discrete. 

This idealization must be regarded as a more accurate method than 

the previous one, because it can be easily applied to structures 

with complex shape and widely different cable properties, can take 

into account arbitrary types of support conditions, and permits an 

accurate treatment of the nonlinear effects. 

The laws of mechanics when applied to the discretized structure 

lead to the formulation of algebraic field equations rather than 

differential equations. These equations can be categorized as either 

force or displacement. The force methods are usually difficult to 

automate for general purpose programs, although when practicable the 

formulation may lead to a system with fewer equations. The displace­

ment method is generally more suited to computer application, and 

particularly to nonlinear analyses where geometric nonlinearities 

are predominant, as indeed is the case with cable supported structures. 

Some mixed formulations have also been used, particularly when the 

effects of flexible boundaries are included. 

A considerable number of authors have investigated the nonlinear 

displacement equations that govern the behaviour of discrete cable 

net structures and have developed different iteration schemes for 

their solutions. One common approach, despite the demands on computer 
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storage, is the stiffness fonnulation of the overall matrix with 

nonlinear terms taken into account by various iterative schemes. 

For minimising the computer storage requirements, sparse matrix 

techniques, bandwidth optimization and frontal methods of solution 

are widely reported. In addition to these, techr.iques for reducing 

the size of the problem by static condensation or substructuring 

are also available. 

Other approaches to the solution of the resultant nonlinear 

equations are the vector or explicit methods which do not require the 

fonnation of an overall stiffness matrix and equilibrium and 

compatibility conditions are treated separately. Most direct energy 

minimization methods and the dynamic rela~ation method belong to 

this category •. This type of approach offers several advantages. 

The effort required to formulate the problem is reduced because 

the energy formulation is simply the scalar sum of the energy 

contribution of the individual elements. The need for the assembled 

stiffness matrix of the structure is eliminated and a substantial 

saving in computer storage is achieved. Also divergence problems 

of finding solutions to nonlinear simultaneous equations may be more 

easily avoided. 

The inelastic response of the cables has also been considered 

with different approximations to the nonlinear stress-strain curve; 

the ultimate carrying capacity of a complete structure being 

predicted using an incremental load procedure. 

Finally, some simplified techniques have also been considered 

for the preliminary stage of analysis. 
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1.3. Review of the literature 

This review of the technical literature includes publications 

on the numerical static solution of single cable, dual cable and 

cable network structures. Stiffened cable structures as used in 

suspension bridge type of construction are not included in the 

review. 

Pugsley [237] first considered the changes in cable geometry 

due to applied load by deriving the differential equations for 

inextensible cables. He also considered the use of flexibility or 

influence coefficients [238] for a single cable by dividing the cable 

into a number of equal segments. Jawerth [150, 151) was the first 

to carry out work of importance in dual cable structures by presenting 

a method of analysis that was valid for three different cable systems 

and the corresponding vertical loads. The resulting equations were 

solved by iteration. Bandel [10] in 1959, presented an analysis for 

orthogonal hyperbolic cable nets using a finite element or a finite 

difference approach and derived a set of linear algebraic equations 

for vertical displacements of the joints. In reference [11], Bandel 

presented a procedure for a single cable under three dimensional 

loading and temperature change by dividing the cable into several 

straight line segments and using an iteration procedure for the 

linearised equations. 

Michales and Birnstiel [196] and Jennings [152] have used a 

force method to analyse the displaced position of a single cable 

subjected to change in vertical loading. The cable is treated as 

straight segments between load points. A method of successive 

approximations is used with the horizontal component of cable tension 
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and a cable shear assumed as force unknowns, while in each iteration 

the resulting geometry is calculated and the initial assumptions 

corrected. An approximate force method was later used by Krishna 

and Sparks [170], to analyse counterstressed cable structures with 

vertical ties. Influence coefficients were derived for each tie 

location, taking into account approximately the nonlinear load 

deflection characteristics but applying superposition of the upper 

and lower systems. 

Schleyer [267, 268] has published several studies on the 

analysis of cable structures treating them as continuous systems. 

The governing partial differential equation was derived with the 

assumptions that the horizontal displacements are small and that 

the cables in each direction lie in two orthogonal vertical planes. 

· Schleyer's method was essentially a linearised approach, and his 

attempt to incorporate the nonlinear effects by means of iterative 

corrections were not entirely successful. 

Zetlin (312, 313] proposed a design procedure for counterstressed 

cable structures that considered only uniformly distributed loading 

and vertical displacements. On the assumption that the cables have 

small sag to span ratios and the loads are normal to the chord of 

the cable, Morales [208] published a method of solution for cabJe 

tensions without the use of cable movements or displacements as 

pa~ameters. Continuous and the discontinuous theories are de~eloped 

by Stein [276] for calculating an orthogonal hyperbolic paraboloid 
• 

net bounded by completely rigid edges; polynomials being used to 

represent the load system. Eras and Elze [96] presented a finite 

element method for determining the vertical deflections of an 

orthogonal net subjected to vertical loads. The linearised equations 

offered only first order convergence and appeared under certain 
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conditions to be subject to problems of non-convergence. Krishna 

[235] used an averaging displacement procedure for the nonlinear 

terms and improved the convergence of the method. 

In 1963 Siev [271] proposed a method for determining the 

displacements of a general net, including the effect of horizontal 

displacements and changes in geometry. An iteration procedure was 

used to solve the linearised nodal equilibrium equations. The same 

procedure was used for two dimensional networks, neglecting 

horizontal displacements [272]. Siev_also suggested incrementing 

the loads when the problem is highly nonlinear. Dean and Ugate [92] 

presented a close form solution for three dimensional nets having 

two, three, or four sets of cables. The method is based on the two 

dimensional analogue of the classical string polygon problem, with 

the assumptions of vertical loading only, and boundaries lying at 

a constant elevation. Buchanan and Akin [44] extended this closed 

form solution procedure, to cable nets with arbitrary boundaries 

using the reflection method. The reflection approach considers any 
I 

arbitrary shape structural net to be a loaded portion of a larger 

net with zero boundary elevations. The simultaneous equations are 

considerably reduced as they are equal to the number of internal 

boundary or loaded points. 

Shore and Bathish_[265] replaced the orthogonal cable network 

by an equivalent thin elastic membrane without shear rigidity. The 

general governing nonlinear partial integral-differential equation 

is derived and its solution is obtained by using a Fourier double 

series. Based on the same approach Gero [124, 125] proposed a closed 

form solution using a simplified method. Kawagushi and Chin [175], 

solved the nonlinear differential integral equations of the membrane 

by finite difference approximation. 
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Johnson and Bratton (162] applied the Newton Raphson approach 

for the analysis of three dimensional networks, and expressions for 

the elemental tangent stiffness matrix were also given. A 

classification and a comparison of different iterative methods, 

based on a stiffness formulation, by means of their convergence 

characteristics was carried out by Poskitt [234]. Correlations 

between theoretical and experimental results were made and a new 

method, valid only for certain type of cable structures was also 

presented. 

Mollman [199], treating the system as discrete, derived 

general nonlinear equations for cable nets in tensor form and 

developed a theorem concerning the uniqueness of the solution. By 

introducing certain approximations, he further developed Schleyer's 

equation for a continuous system. Mollman and Mortensen [200] 

applied a modified Newton Raphsoniteration method for the solution 

of the governing nonlinear equations. The initial stiffness matrix 

was kept constant throughout the iterative procedure and inverted 

only once; tension changes, and hence the geometric stiffness 

contributions being estimated in order to improve convergence. The 

nonlinear terms were treated as residual loads. Comparisons have 

been made with the results obtained from a continuous idealization 

of a special type of cable net. In another publication, Mollman [202] 

derived the nonlinear equilibrium equations for a plane prestressed 

cable structure composed of members of the following three kinds: 

(a) simple tension members, {b) simple compression members and (c) 

flexible shallow cable members. The equations are again linearised 

by using second order terms from each cycle as a load vector in the 

next cycle of iteration. A Choleski triangular decomposition is 

• 
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used for the stiffness matrix. A comprehensive treatment of the 

analysis of cable structures has been given by the same author [205] 

with many extensions to his previous work. A simple formula for 

the ultimate carryigg capacity of certain cable nets is also 

presented. Williams ~02] considered a cable net in the form of a 

surface of revolution with radial and circumferential surface, 

using Mollmom's nonlinear equation. 

Thornton and Birnstiel [282] derived a set of nonline~r 

simultaneous algebraic equations for a general cable network 

using a discrete element ideali~ation. Two solution procedures 

are considered. Firstly the 11method of continuity 11
, in which the 

nonlinear set of simultaneous algebraic equations is transformed 

into a set of nonlinear differential equations that is numerically 

integrated. Secondly the 11 incremental load method 11
, in which the 

loads are applied·incrementally a~d the equations are solved at 

each load level by means of an iterative technique. The second 

method proved more effective in terms of computing time requirements. 

Jensen [158] used a combination of load increments and iteration 

for the governing nonlinear equilibrium equations. 

An approach to the solution of the deformation of prestressed 

cable structures which did not require the formation and storage 

of an overall stiffness matrix was presented by Buchholdt. His 

theory is based on the minimization of the total potential energy. 

In his early papers [46, 47, 48, 49, 50], the descent direction 

towards the minimum is the steepest descent direction. The 

conjugate gradient direction was presented in [53, 54], and a 

numerical comparison of five different descent directions was 

presented in [56]. In all the above cases the step length 

calculations are made from the minimization of the local total 
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potention energy's fourth order polynomial with respect to the 

step length. In 1971 Buchholdt [55] was the first to propose a 

Taylor expansion scheme for the gradient vector and derived 

expressions for the 2nd, 3rd and 4th terms. A numerical solution 

was also presented, but although it was found more stable than the 

Newton Raphson solution, from the computational point of view the 

above process is less attractive. A modified Newton Raphson 

approach with step length control was also developed. 

Bogner [29] removed the assumptions that the prestressed 

forces are sufficient to preclude cable slackening under the applica-
, . 

tion of loads, and presented a general minimization method based on 

the Fletcher and Powell algorithm. He considered a conventional 

truss analysis, allowing the cables to go slack and the truss 

members to buckle. The post-buckled configuration of the structure 

was traced. 

The problem of combined geometric and material nonlinearities 

in cable structures was first considered by Greenberg [129] who 

developed an algebraic expression for a representative stress­

strain curve to simulate cable behaviour. An averaging stiffness 

coefficient approach is used to accelerate convergence. Another 

stress-strain curve was proposed by Jonatowski and Birnstiel [160] 

who used an iterative procedure to evaluate the unstressed lengths 

of the cables. 

Murray [209] and Murray and Willems [210], have presented a 

total potential energy minimization procedure using the Fletcher 

and Reeves conjugate gradient algorithm, and the Fletcher and Powell 

variable metric method, for the elastic and inelastic analysis of 

tension structures. The Ramberg and Osgood [241} stress-strain 

curve and the one proposed by Greenberg were studied and compared. 
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Saafan (253] also considered the effects of nonlinear stress-strain 

properties in cable structures. He proposed a scheme similar to 

that used by Haug and Powell (135], which applied only a fraction 

of the residual loads in each Newton Raphson iteration. 

In the work proposed by Avent [9], a field approach to nonlinear 

analysis of arbitrary net systems is used by formulating a walk­

through technique. Tottenham and Khan [287] have compared a 

continuous approach, derived from first principles by Williams [302], 

and a discrete approach. The error involved in treating a physically 

discrete system as an equivalent continuous system was found to be 

small, particularly for nets with fine~meshes. Buchanan [45] presented 

a continuous approach for a single cable. The governing differential 

equations are solved by a perturbation technique as proposed by Van 

Dyke [293]. 

Dynamic relaxation has also been used for the solution of 

the nonlinear equations of tension structures. Day and Bunce [91] 

used an approximate upper bound for the time increment, while the 

optimum time coefficient was obtained from a trial run. Barnes [13] 

derived an approximate expression for evaluating close bounds to 

the critical time interval. The masses are then adjusted so as to 

give the same critical time in each node. Membrane cladding 

elements are also considered. The same method is also used to cope 

with member slackening and buckling of the membrane cladding [43]. 

A force transfer procedure is utilized for a special type of cable 

structures. In reference [17] comparisons were given using viscous 

and kinetic damping procedures. 
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Mollman [201] and Greenberg [130] have considered the loads 

applied along the cables,' but assumed the cable to take the shape 

of a shallow parabola, thus limiting the application only to cases 

when it is justifiable to assume the loads to be applied uniformly 

and laterally to the cables. Reference [114] examines the difference 

in the forces and displacements obtained assuming the loads are 

applied to the joints rather thanto the cables.Buchholdt and 

McMillan [57] used the conjugate gradient minimization procedure for 

the analysis of vertically and laterally loaded cables. The total 

potential energy was expressed in this case as an eighth order 

polynomial with respect to the step length. An exact analytical 

general solution to the static response of a single cable under 

arbitrary loading has been given by Irvine and Sinclair [147]. 

Explicit expressions for the tension within the cable and the 

displacements are derived as functions of a single independent 

variable, the Lagrangian coordinate, associated with the unstrained 

profile. 

Braga and Care [35] presented a method of analysis taking 

into account the actual loads as applied along the cables. A 

method is described for the distribution of the loading to the 

nodes. The nodal loads then are updated at each iteration 

according to the actual deformation. Burtley and Harvey [64] 

also examined the effect of a uniformly distributed load along 

the cables. Foster and Baufait [109] presented the effect of precast 

panels on the behaviour of cable networks. 

Epstein and Tene [95], presented a method of solution based 

on a general approach for solving nonlinear problems in structural 

mechanics as presented by Budiansky [43]. The method provides 
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exact equilibrium equations valid for arbitrary large strains and 

displacements and makes use of exact kinematic equations and a 

general nonlinear stress-strain relationship approximated by a 

polynomial. The method, however, made large demands on computer 

storage. Argyris [7] developed a modified derivation of the complete 

element stiffness matrix, particularly adopted for the nonlinear 

analysis of prestressed networks. Krishna [173] presented various 

iterative schemes and compared their efficiency with reference to 

their application to cable net problems. 

Kar and Okazaki [166] used a Newton Raphson type of solution 

for highly nonlinear cable net problems. The new iterative 

technique presented, represents an effort to scale down the over­

estimated displacements by the ratio of the largest applied load, 

at any cycle of iteration, to its corresponding equilibrium load, 

calculated on the basis of the linearised solution. The efficiency 

of the method is demonstrated by comparisons with other iterative 

methods. They also suggested that for highly nonlinear cases, 

incrementing the loads may improve the rate of convergence. 

Several investigators have considered the effect of flexible 

boundaries on cable structures. Mollman [206] presented a study on 

this problem using two methods: (a) the displacement method applied 

to the complete structure and (b) a mixed method in which the 

horizontal components of the cable forces and vertical deflections 

in the net are used as unknowns together with displacements of the 

boundary structure. Buchholdt et al [58] applied the conjugate 

gradient method to a similar problem. The inclusion of flexible 

boundaries increased the condition number of equations and a 

scalin~ technique was used to accelerate the convergence. Mixed 

formulations were also used by Kawamata and Magara (177] and 
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Saitoh and Kurek [254]. The basic equations are derived from the 

stationary conditions of the total energy of the function expressed 

in terms of the nodal displacements and the member forces. Asplaud 

[8] described a force method to analyse orthogonal nets. 

Urelius and Fowler [291] examined the varying influence of 

de$ign parameters on the overall behaviour of a cable truss. They 

also compared the accuracy of approximate design equations. previously 

proposed by Zetlin. with that of a stiffners Newton Raphson type 

solution procedure. Sand and Hagiescu [255] examined the influence 

of the characteristics of boundary structures on the forces and 

displacements in counterstressed cable structures. Noesgen [215] and 

Gero [126] studied the behaviour of large cable network structures 

under various combinations of design parameters by modelling them 

to similar networks with fewer cables. Buchholdt [60] also examined 

the same problem. Krishna and Natarajan [172] prese~ted a study of 

the influence of nonlinearity of vertical and lateral deformations 

hyperbolic paraboloid nets. 

A development of the approximate solution given by Schleyer 

[268J and Mo 11 man [201] has been described by Krishna and Agrawal 
'· 

[174]. The method can be applied to a s~ngle cable. cable trusses 

and cable networks of restricted shape. Bhupinder and Bhusham [24] 
proposed a continuum method for anisotropic cable networks. 

Jonatowski [161] presented a numerical procedure for 

determining the deformation response of suspension structures as the 

the loading is increased from the initial state to the ultimate 

carrying capacity of the structure. The nonlinear stress-strain. 

relation of Jonatowski and Birnstiel [160] is used. The cables are 

allowed to go slack and expressions for the stress-strain relation-
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ships are derived as the cable unloads and reloads during the 

application of loading. 

Aizaiwa et al [2,280] first applied the static perturbation 

technique for the solution of the nonlinear equations of cable 

structures. The derivation of the characteristic equations of the 

perturbation method with respect to the load increment parameter x 

is outlined. The load is applied in one increment and no iteration 

correction procedure is performed. A comparison was also carried out 

with the Newton Raphson approach a~d it was suggested that the 

perturbation method should be superior to the Newton Raphson approach 

from the standpoint of computational time. although these conclusions 

were not substantiated with numerical examples. 

Finally Foster and Sandberg [292] discussed the pecularities 

of stiffness matrices arising during the nonlinear solution process 

of cable structures. They investigated cases where in addition to 

large off-diagonal terms, the geometric stiffness approach can 

result in the generation of negative diagonal terms. In those 

cases the Choleski square root method for inverting the stiffness 

matrix cannot be used since it is restricted to symmetric positive 

definite matrices. The second Choleski algorithm, the Grout 

reduction, which is mathematically similar to the Gauss elimination 

method, was recommended. They also found that for relatively small 

problems the Gauss elimination method is more practical and 

accurate, while for larger problems the Grout reduction was more 

advantageous. 
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In this thesis nonlinear methods of analysis have been 

developed and compared for the static solution of cable supported 

structures with varying degrees of freedom. A number of 

conjugate gradient methods, with one and two dimensional linear 

search and linearized algorithms without linear search, have 

been used. Relaxation methods have also been developed and 

compared. The dynamic relaxation method has been used in three 

different forms : with the iteration parameters being evaluated 

"a priori", with automatic adjustment of the iteration 

parameters, and with the incorporation of kinetic energy· 

damping instead of viscous damping. A number of methods, 

for the estimation of the minimum and maximum eigenvalue of 

the stiffness matrix have been also compared and the best 

one has been employed for the 11 a priori" evaluation of the 

dynamic relaxation iteration parameters. 

A.combined dynamic relaxation and conjugate gradient 

algorithm has been developed and t·he efficiency of ·the successive 

overelaxation method with and without automatic evaluation 

of the relaxation parameter has been studied for problems with 

stiffness matrices not possessing property "A". Stiffness 

methods, in conjunction with the Newton Raphson iterative 

algorithm, have also been included in a general comparative 

study for small and large problems. The effects of nonlinear 

stress-strain relationships and slackening of cable members have 

been studied and the efficiencies of two different methods of 

solution, namely the stiffness approach with Newton Raphson 

• 
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iterations and the conjugate gradient algorithm with one 

dimensional linear search, have been compared. 
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CHAPTER 2 

ENERGY SEARCH APPROACH 

2. l. Energy Formulations 

The energy search approach to structural analysis is based 

upon the application of mathematical programming methods to 

appropriate energy functions. The structural analysis problem 

can be envisaged as the search for a stationary point for the 

energy function of the structure. 

There are three commonly used energy formulations of the 

structural analysis problem ; each one being associated with 

a corresponding energy principle. The displacement method is 

related to the principal of the total potential energy, the 

force method is equivalent to the complementary energy approach, 

and the mixed force-displacement formulation to the Reissner 

energy principle. 

(i) The principle of stationary potential energy states 

that of all geometrically admissible sets of displacements 

satisfying the boundary conditions, that which makes the total 

potential energy,~, stationary satisfies the equilibrium 

· conditions and is the actual displacement state x*. It follows 

t~t 

= 0 i = 1 ,2, ••• ,n (2.1) 
X = X* 

where (2.2) 

U = the strain energy in terms of displacements. 



Furthermore, if 

'IT(X*) < 'IT(X) 
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(2.3) 

for any virtual displacement from x*, then the associated 

equilibrium position is stable. The potential energy formulation 

is a minimum principle. 

(ii) The principle of complementary energy states 

that of all force sets Pk that satisfy the equations of equilibrium 

and the boundary conditions, that which makes the complementary 

energy, 'IT* , stationary satisfies the compatability conditions. 

It follows that 

d'IT* I 
~ p = P* 

= 0 k=l,2~ ... ,m (2.4) 

where (2.5) 

V = the strain energy in terms of the member 

loads Pk. 

Furthermore, if 

'IT*(P*) > 'IT(P) (2.6) 

for any virtual displacement from x*, then the associated 

equilibrium position is stable. The complementary energy formulation 

is a maximum principle. 

(iii) The Reissner's principle of stationary energy states 

that among all states of stress and displacement that satisfy 

the equilibrium equations and the force-displacement relations, 
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the actual one makes the Reissner energy, J, stationary. It 

follows that 

aJ 
az. 

l z = z* 
= 0 i = 1,2, .•• , t (2.7) 

Reissner's energy function is formulated in terms of forces 

and displacements and is a stationary principle. 

First to implement the energy search approach for the 

solution of structural problems was the Case Western University 

group. An exploratory study was carried out in References 

(28. 189]. In References (187 1 188] studies for three dimensional 

structures.that can be represented by straight truss and frame 

members are reported. Schmit et al [262] applied the energy 

approach to plate and shell type of structures, where energy 

search methods based on ·gradient minimization algorithms were 

shown to be computationally competitive with conventional 

stiffness approaches. 

For geometrically nonlinear problems the formulation of 

the total energy is usually simpler if the displacement method 

is used, for materially nonlinear problems if the force method 

is used, and for combined nonlinearities if a mixed method is 

used. In other words, the Reissner's principle should be more 

appropriate for problems with material and geometric nonlinearities. 

But. since it is neither a maximum nor a minimum, an additional 

step is required in order to apply the standard methods of 

optimization: The calculation of the so-called residual function 
n 

R(x) = ~ 
i =1 

(2.8) 



- 46-

which has a minimum of zero at the solution x*. 

In the case of the analysis of cable structures with 

combined nonlinearity, it is felt that since only axial member 

forces need to be considered, the additional complication of 

applying the Reissner's energy principle can not be justified. 

Thus the principle of the minimum potential energy will be 

considered herein. 

2.2. Unconstrained Minimization 

An unconstrained function minimization technique is an 

algorithm for choosing test points x, not obeying any constraint 

requirements, which provides information about the function F(x) 

and the location of its minimum. Minimization techniques are 

divisible into two general classes according to the approach 

taken in the selection of test points. In the first category, 

the nonsequential search, a complete set of test points is chosen 

prior to the initiation of testing. Each trial solution is 

compared with the "best" obtained up to that time and there is 

a strategy for determining what the next trial solution will be. 

One approach is to choose the test points at random according 

to an n-dimensional probability density function [39]. A second 

approach is the so called factorial technique [31] where the 

test points are chosen in a specific geometric pattern. Attempts 

have been made to place the selection of a set of test points on 

a mathematical rather than an intuitive or random basis [179] • 
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The second category, the sequential search, is appropriate 

for continuous and differentiable analytic functions. The 

sequential techniques seek to move from a given point x; a 

distance t along a direction ~i using the recursive relations 

(2.9) 

in such a way that the value of the function Fat the new 

point xi+l is reduced 

Direct search methods are those which do not require the 

explicit evaluation of any partial derivatives of the functions 

and rely only on values of the objective function together with 

information gained from earlier iterations. Gradient methods 

on the other hand are those which select the direction ~i using 

values of the partial derivatives of the objective function 
. 

with respect to the independent variables, as well as values of 

the objective function itself and ·information gained from earlier 

iterations. 

Many of the direct search methods lack convergence proofs 

and are subjected to premature convergence. However in structural 

problems, where derivatives of the objective function are easily 

evaluated, gradient methods have predominantly been used • 

"Gradient" suggests the idea of the direction of fastest improve­

ment towards a solution since the gradient vector points in the 

direction in which the function increases or decreases most, 

rapidly. 
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A third category of unconstrained minimization techniques 

are those which utilize the second derivative of the object 

function. Among these methods, the Newton Raphson procedure 

and the quasi-Newton techniques are most often used. 

Given a function F(x), for which all the first partial 

derivatives ~F • i = 1 •.•• ,n • exist at all points, a aX, 
1 

necessary condition for a minimum to exist is 

aF = ax1 
... = aF = O 

axi 
(2.10) 

A sufficient condition for a point satisfying equations (2.10) 

to be a minimum is that all the second partial derivatives 

2 
a F 
axjaxk (j,k = 1 •••• ,n) exist at this point and that Di> 0 

for i = l 1 21 ••• ,n, where 

2 2 2 
a F a F • • • a F 
~ ax1 ax1ax 2 

ax1axn 

o. = • • • • • • • • • • • (2.11) 1 
a2F a2F • • . • • 
axnax1 

--,-
axn 

i.e. the principal minors of the matrix of second partial 

derivatives must'all be positive [198], 

A convenient model for representing simple functions F(x) 

with only two independent variables, is to represent the function 

graphically using Cartesian co-ordinates in a three dimensional 

space. In this three dimensional model such geometric ideas as 

tangent, gradient, curvature and perpendicularity are easily 
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Response 
surface 

x, 
Fig. 2.1. Isometric representation 

of a response surface 

Fig. 2.3. Unimodal Function 

x2 

Fig, 2,2. Contour representation 
of a response surface 

• 

Fig. 2.4. Bimodal Function 
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visualised. Suppose y = y{x1,x2), then points yi form a 

surface called the "response surface" (this name originated 

from the studies of Biologists and Statisticians for whom the 

criterion y is often the response of a living organism to 

environmental factors x1 and x2). The response surface of 

Fig. 2.1 is termed two dimensional because only two co-ordinates 

are needed to specify a point on it. Figure 2.2 shows another 

way of depicting a response surface, by means of contour lines 

through points of equal values of the function y. Figure 2.3 

shows a unimodal function where there is only one hump in the 

surface to be explored, while Fig. 2.4 shows a bimodal function 

with two optima and a saddle point. 

2.3. Assumptions 

For the nonlinear elastic analysis of cable structures 

the following assumptions have been made: 

a, The cables are straight lines between nodes. 

b. Structural members are of uniform cross section. 

c, The external forces are applied at the points of intersection 

of the cables and do not vary during the process of 

deformation, either in magnitude or in direction. 

d, The system consists of cables or cables and struts with 

no flexural or torsional rigidity. 

e. The cables cannot resist compression. 

f. The elastic extensions of the cables are small compared 

with their length. 
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g. The supports are fixed. 

h. The stress-strain relationship is linear. 

In Chapter 10, where ultimate load studies are carried 

out, assumption h is excluded. 

2.4. The Total Potential Energy 

The total potential energy of any body is given by 

'II' = U + V (2 .12 ) 

where U is the strain energy or potential energy of the internal 

forces, and Vis the potential energy of the external forces 

acting on the body. 

For an arbitrary unstiffened cable system 
m 

u = I u. 
1 Jn 

(2 .13 ) 

where Ujn is the strain energy associated with segment jn and 

m is the total 
N 

V = I 
l 

number of cable segments, while 
NDF 

L Fin xin , (2 .14 ) 

with Fin is the external force at node n in direction i, 

x1n is the displacement of node n in direction i , 

N is the total number of interior nodes in the system, 

NDF is the number of degree~ of freedom 
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The strain energy of a cable segment can be expressed 

in terms of the total stress and total strain as follows : 
vol £ 

ujn = / / ad£ 

L 

= t / a£dX 
0 

with £= e0 + £a, where £0 is the strain before the application 

of the incremental force, P, and £a is the additional strain 

after the application of the incremental force. 

Under the assumption {h), equation (2.15 ) becomes 

= l AE ! 

L 

/ £

2
dx 

0 

L 

= ½ AE /(£0 + ea)
2
dx 

0 
(2 .16 ) 

The first term on the right hand side of equation (2.16) is 

the strain energy present prior to imposition of an additional 

disturbance. The second term depends on the initial stress and 

yields the geometric stiffness. The third term depends on the 

additional strain due to the incremental force P, and is no 

different frcm the conventional small deflection case, yielding 

the elastic stiffness. 



-53-

Under the assumption (f), equation (2.16 ) can be further 

modified as follows 

(2. 18 ) 

= 

where e0 is the extension and L the initial length of member jn 

before the application of the incremental force P, and ea is the 

additional extension (from the initial state) after the 
• application of the load increment. 

2.5. The Gradient Vector 

The gradient vector of the total potential energy is of 

great importance not only to the gradient methods but virtually 

to any iterative nonlinear solution procedure. It represents 

the out of balance forces arising from the difference between 

the applied nodal load and the vector sum of the internal forces 

in the members int~rsecting at the sa~e joint. 

From equation (2.12) the partial derivative of the total 

potential energy with respect to the displacement at the nth 

node in the i direction is 

(2.19) 

with k being the number of segments connected directly to node n. 
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Using the strain energy expression of equation (2.18 ), 

equation (2.19) can be written 

k 
o'IT = ~~o aejn + AE aejn) 

- Fin axin axin T ejn axin 

k .. ae. 
= L(Po + P) --1.!!. - Fin (2. 20) axin 

k ae 
= ~p .::.J.!!. F ... - ,·n . jn oXin 

in which Pjn is the total force in cable segment j-n after 

the application of the load increment, and ejn is the elongation 

of the cable segment from the initial or prestress configuration. 

Note, that for simplicity, the superscript a has been omitted 

from e in expression (2.20) and hereafter. 

The elongation ejn can be expressed as 

2 2 
ejn = [Ljn + h(x) ] - Ljn (2 .21 ) 

in which 
NDF 

h(x) = ~ [(2(Xin - Xij) + (x1n - xij)) (x1n - xij)] 

(2.22) 

where x1n and xin denote respectively the initial co-ordinate 

and the displacement of joint n • 

Differentiating equation (2.21) with respect toxin gives 

l • ah(x) . 0(xin - xij) 
a(xin - xij) axin 

(2.23) 
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From equation (2.22} 

~~i~~ _ xij) = 2(Xin-xij} + 2(xin - xij) (2.24) 

Then substituting equation (2.24} into equation (2.23) 

(2.25) 

and finally substituting the above equation into equation (2.20 ). 

the gradient vector becomes 

(2. 27 ) 

2.6. The Matrix of the Second Partial Derivatives 

Let the gradient vector of the total potential energy 

at joint j, in the i th direction and at a position 6 in 

displacement space be 

-G:ij~A 

with the corresponding gradient vector at position A+ dA 

in displacement space: 
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Expanding the last vector by Taylors theorem we obtain 

(2. 28 ) 

+ • • • 

Since the potential energy of the applied load system 

is linear in x, the change in the gradient vector due to an 

incremental change in the displacement space is given by 

G;ij) A+ dA 
(2. 29 ) 

+ • • • 

Assuming the changes in displacements to be so small that 

their higher powers are negligible, equation (2.29) may be 

written as 

(~ij) A+ dA - (;;ij) A C2. 30 ) 

Since the vector of the left hand side of equation (2.30) 

represents the change in residual force components due to a 

change dxr in displacement space, the matrix of the second 
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partial derivatives of the strain energy can be identified 

as the stiffness matrix of the assembly. 

Differentiating equation (2.20) with respect to the 

displacement vector xr• we have 

= !( a0 
ep jJ. nn a e . a e j n a2 e . ) . ox~" . ~ + p Jn 

,n oxr jn axinaxr 

( 2. 31 ) 

We now want to find expressions for the following terms in 

equation (2.31) 

and 

The first derivative of the elongation ejn is given by 

equation {2.25), which can be written in matrix form as follows 

aejn 
- {Xl + xl) ax1j l 

Ljn+ejn 
aejn 

- (X2 + x2) ax2j 

aejn 
- (X3 + X3) - C ax3j 

= = (2.32) aejn + C 
+ (X1 + x1) 

axln 

aejn 
+ (X2 + X2) ax2n 

aejn 
+ (X3 + X3) ax3n 
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where X
1
• = x. - X .. 

,n lJ 

Differentiating now equation (2.25) with respect to xr 

we obtain the expression 

which gives 

2 
a ejn = 
axraxin 

Equation (2.34) may be written 

2 
a e. 

1 Jn = (Ljn +ein) axraxin 
l 0 0 

0 l 0 

0 0 l 
-1 0 0 

0 - 1 0 

0 0 -1 

I 

-I 

a(x. -x .. ) 
• ,n 1J 

axin 

3(Xin-Xij) 
axin 

(2.33) 

aejn) 
ax. ,n 

{2.34) 

in matrix form as follows 

-1 0 0 

0 -1 0 

-I 

I 

0 

l 
0 

0 

0 -1 

0 0 

1 . 0 

0 1 

-{X1+X1) 
1 

- (Ljn+ejnP -(X2+x2) 
-{X3+x3) 

(X1+x1) 
{X2+x2) 
{X3+x3) 

(2.35} 

And from linear stress-strain relationships 

-(x1+x1) 
-(X2+X2) 
-(X3+X3) 
cx,+x,) 
{X2+X2) 
{X3+X3) 
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{2.36) 

Substituting now equations {2.32), (2.35) and (2.36) 

into equation (2.31) a final expression for the stiffness 

matrix may be obtained : 

-CC Pjn (I-CC )-(I-CC) Tl [ T T J 
CCT + (Ljn+ejn) -(I-CCT) (I-CCT) 

(2. 37) 

The first term of the right hand side of the above expression 

is the elastic stiffness matrix according to linear theory 

and the second term is the geometric stiffness matrix of the 

pin-jointed member jn. 

2.7. Scaling Effects on Iterative Methods 

Consider the system of linear equations 

. Ax = b (2.38) 

the solution of which is given by x = A-1b. The components 

of x are functions of the given components of A and b. Consider 

now the effect on x of small changes of A and b. If certain 

types of small relative changes of the components of A and b 

give rise to relatively large changes of the components of x, 

then the system is said to be ill-conditioned. Ill-conditioning 
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This number may be used as a measure for the ill-conditioning 

of a matrix. In a general way it may be said that the larger 

the condition number, the more ill-conditioned the system of 

equations. 

The characteristic invariants of a space for a linear 

problem are the eigenvalues of the stiffness matrix. These 

are proportional to the square of the principal axes of a 

constant energy ellipsoid in the space. The more the condition 

number approaches the optimum value the more the energy contours 

become spherical. It is clear geometrically that an-dimensional 

sphere is the optimal function space, since one gradient move 

from any point would be adequate to reach the minimum (Figure 2,Sa). 

In general the number p is also a measure of the deviation 

of the function space from optimal. _A large condition number 

means a narrow energy ellipsoid (Figure 2.5b). 

It has been shown by Hestenes and Stiefel [137] that the 

accumulation of round~off errors and the eventual instability 

of the conjugate gradient method, depends on the ellipticity of 

the total potential energy function. The round-off errors cause 

the sequences of vectors pi and gi (ref: Chapter 3) to deviate 

from the orthogonality and A-orthogonality conditions, which in 

turn slow down the convergence. 

An improvement in the efficiency of gradient methods can 

be achieved not by finding better search directions but rather 

by transforming the function space itself, in an effort to 

decrease the condition number. There are two commonly used 

ways of improving the condition number: 
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is therefore an inherent property of the system of linear 

equations and is independent of the method used for· the 

numerical solution. 

Ill-conditioned systems can occur when large off-diagonal 

coefficients exist in the stiffness matrix. This could happen 

when there are large variations in the elastic modulus or other 

constants from element to element or when variables are 

intrinsically different as in ·the case of mixed forces and moments 

or displacements and rotations. An inherent ill-conditioning in 
• 

cable structures has already been discussed in Section 1.1, 

where due to the peculiar tension distribution big differences 

in the diagonal terms may occur; a problem which becomes more 

acute with the flatness of the network. Also more irregular 

grids and more variables lead to ill-conditioning, while finer 

grids and more elements connected to the same node lead to 

better conditioned systems. 

While in the elimination methods, poorly conditioned systems 

can produce round-off errors without affecting the convergence 

of the method, in iterative methods the rounding-off errors 

produced by ill-conditioning can seriously affect convergence. 

For a symmetric positive definite matrix the spectral 

condition number p is defined as the ratio between the largest 

and the smallest eigenvalue of the matrix 

lmax 
Amin 

p = 
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a 

b 

(a) A two dimensional spherical 
contour 

b; 
>.. max = 1 = a 
"min Fig. 2.5. 

(a) Gerschgorin discs for an 
unscaled matrix 

>.. 

Fig. 2,6, 

a 

(b) A two dimensional ellipsoid 

bi. = 
>.. max 

> 1 a >.. 
min 

(b) Gerschgorin discs for a 
scaled matrix 

1 
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{a) To replace the system of equations by another 

system with the same solution but with a coefficient 

matrix A of smaller p-condition number. 

(b) To replace the vector of unknowns x by another 

vector x 

X = W • X (2.39) 

The first technique, as proposed by Rutishauser [94], is used 

in Chapter 6 for the conjugate gradient - Tchebycheff method. In 

practice, finding the optimal matrix w for the second technique 

is difficult [22]. Several authors [180, 304, 98] have 

suggested different scaling matrices w. Evans [98,100] pre­

conditioning scheme has been used successfully by Jennings and 

Malik [157]. It involves the transformation of the original 

system of equation (2.38) into the system 

where 

By= d 

B = (I - wL)-1A(I -wL)-T 

d = (I - wL)-lb 

(I - wL/ x = y 

W = (I - wL)-l 

(2.40) 

(2.41) 

with A= I - L - LT and w being an accelerator factor. The 

disadvantage of the method is that matrix w is not diagonal, and 

when applied to cable structures where the overall stiffness 

matrix is not explicitly formulated and stored, a storage scheme 

should be provided to accommodate the scaling matrix. On the 
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other hand when the scaling matrix is diagonal the computations 

are simplified and only one vector space need to be stored. 

Gerschgorin's bound theorem guarantees that every eigen­

value Ai lies in at least one of the discs centered at aii 

and of radii Ri = ~ 1-1 aijll, with aij being the elements 
l rJ 

of the stiffness matrix. So the circles of Figure 2.6 indicate 

the possible range of Ai' In the unscaled case, the circles 

are not only large but also centered at widely different points. 

It is possible to adjust the Gerschgorin disc, for row i of the 

stiffness matrix, by using either a scaling or a transformation 

operation which modifies the elements in row and column i. 

The scaling technique consists of centering all the discs 

at a centre point of the A· axis_, while the transformation 

technique consists of reducing the radius Ri of the discs to 

fit into predetermined bounds by performing the multiplication 

A*= BABT, where Bis an off-diagonal matrix. 

The following scaling technique has been used widely 

in many structural problems [112,58]; To minimize a positive 

definite quadratic form of the potential energy 

l T T F(x) = "2" X AX - X b (2.42) 

operate in the scaled coordinates 

(2.43) 

where 
T - T A = D AD, b = D b (2.44) 
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= { 01 i#j 
and · d;j 

le~ i = j 

(2.45) 

The effect of this transformation is to center all the Gerschgorin 

discs at the same point, namely l;c2 . The location of this 

point cannot affect the conditioning number since c cancels 

out in the eigenvalue ratio. It has been shown by Fox and Stanton 

[112] that when c = (n) 2, where n is the maximum number of 
-non zero elements in any row, the spectral radius of A is less 

than one. A slightly different approach has been suggested by 

Fried [117] where c.= (N.) 2 and Ni is proportional to the , , . 

norm of the i th row or column. Usually, the number of non zero 

entries in a row or column is much less than the total number 

of degrees of freedom, and there is no considerable difference 

in the norms of different rows. Thus taking ci = l is the best 

workable way of scaling the stiffness matrix. 

For nonlinear problems the shapes of constant energy 
• 

surfaces are not only more complex but could be not even-convex. 

However, Taylors theorem indicates that in the neighbo~rhood 

of a relative minimum of the total potential energy surface, 

having positive definite second variation, the dominant contribution 

to the potential energy is the matrix of second derivatives 

(x)] = 

with elements 

2 

aij{x) = Aij + :xiax 

(2.46) 

(2.47) 

and with W being the total work of the applied loads and u2, 
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u3, u4 being respectively the quadratic, cubic and quartic 

terms of the strain energy. Hence it is possible to define 

scaling for the nonlinear problem as in the linear case. 

Computational experience has shown that scaling based on the 

linear matrix A is as good as scaling based on aij(x} only 

when the variation in diagonal elements is less than one order 

of magnitude. Example l of the single cable is a characteristic 

example where aii(x} is one order of magnitude greater than 

~ii , while in ~ll other test problems aii(x} are not very 

different from Aii' 

.2.8. Termination Criteria 

There are two important questions associated with the 

termination of any iterative procedure. The first is when does 

the iteration cease to improve the solution, and the second is 

how accurate is the calculated solution. 

Theoretically, to satisfy equilibrium, the Euclidean norm 

of the out of balance forces should be zero. Clearly this is 

the formal requirement for a displacement state to be a minimum. 

Using finite arithmetic, the chances of the norm being identically 

zero are non-existent. Therefore, certain tolerances should be 

imposed as upper limits for the length of the gradient. But 

even this criterion cannot be unique for alltypes of problem. The 

speed at which the gradient will tend to zero will depend on the 

type of structure and on the initial loading condition. 
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An appropriate quantity to trace, particularly when using 

minimization methods, is the total potential energy as it 

decreases monotonically. But for many cable problems, several 

successive displacement states may exist which are equal to within 

only 3 - 4 digits and give the same total potential energy to 

6 - 8 digits. In such cases it is impossible to get 5 digits 

accuracy with a termination criterion based entirely on the 

total potential energy. There occasionally are cases when 

the gradient too is not as small as one would like even after the 

energy is converged to the prescribed accuracy. Also, the 

adoption of an energy criterion would require additional arithmetic 

when using relaxation and stiffness methods where the total 

potential energy is not a byproduct of the iteration process. 

The Vector difference criterion 

lxk - xk-1112 

llxk~ 2 

(2.48) 

has been frequently used, but it has the disadvantage that it 

does not give any information as to how accurate the calculated 

solution is. The relative error norm 

llxk - x*lk 

11 x* I~ 
. ~ £ (2.49) 

where x* is the true solution, has also been used [186], but 

its practical use is limited only to cases with a known solution. 

In order to compare effectively all different iterative 

methods used in this work, the need of a uniform readily available 
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and reliable termination criterion was imperative. Since the 

calculation of the gradient vector is part of any iterative non­

linear procedure, and provides all the information required 

for a convergence test of the method, the following termination 

criteria were used throughout this work 

(a) 

( b) 

(c) 

(d) 

RNORM 

QUOT 

= l1Rill2 

= II Ri II 2 
l1Fill2 

RNORM - SC = IIRscill2 

QUOT - SC = 
II Rsci 11

2 
II Fi II 

2 

(2.50) 

(2.51) 

~ £ (2.52) 

~ £ (2.53) 

where R. is the current residual vector, Fi the current load 
1 • 

vector and Rsci is the current scaled residual vector. The value 

of the specified convergence tolerance, or termination parameter e, 

varies with the test problem and the termination criterion used. 

For structures with localised nonlinear behaviour the 

maximum absolute value of the residuals could also be found and 

checked against the norm of the applied loads. 

(2.54) 
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2.9. Test Problems 

CASE STUDY l Ten-member suspension cable 

Figure 2.7 shows a 1-1 in diameter locked coil strand, 

spanning 1000 ft., having a cross-sectional area of 0.85 sq. ins. 

and dead weight of 3.16 lb. per ft. Michales and Birnstiel [196] 

originally presented a solution for the cable displacements 

when an 8.0 kips live load was applied at node 4 in they­

direction. To approximate the weight of the cable, the curved 
• 

initial position was replaced by 10 straight line segments 

with dead load concentrated at the intersections. The cable in 

its initial configuration has a horizontal component of prestress 

of 4.0 kips. However, in order to test the behaviour of the 

applied methods for structural mechanisms, the horizontal 

component of prestress was not taken into account in its initial 

configuration. This represents a more severe test since in 

such a case the initial stiffness matrix is singular and cannot be 

inverted. 

10 •-·-·- ·-·-·-·-·-·-·-·-- -·- -·-·-·-·-· •-·-·-x 
11 

2 3 4 5 6 7 

y t 10@ 100' ~ 1000' 

E.= 19,000 ksi 

A = 0.85 sq. in. 

Fig. 2.7. Ten member suspension cable, example l 
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Joint X(ft) Y(ft) Load (kips) 

1 100.0 36.30 0.332 
2 200.0 64.30 0.325 
3 300.0 84 .18 0.320 
4 400.0 96,05 8,317 

5 500,0 100, 00 0,316 

6 600.0 96,05 0,317 

7 700.0 84. 18 0.320 
8 800.0 64.30 0.325 
9 900.0 36.30 0,332 

10 0.0 0.0 0,0 
11 1000.0 o.o o.o 

Table 2.1. Initial configuration of example 1 

CASE STUDY 2: Two dimensional counterstressed dual cable structure 

The structure shown in Figure 2.8 is symmetrical about 

the centre line and the horizontal line between the supports. 

The node points lie on two parabolic curves, Table 2.2 shows 

the initial configuration. 

w 
w 
'2' 

w w 
w Tiedown Cable 

1 

I 
i. 
' y 

3 

11 12 13 14 
Load Cable 

10@ 30' = 300' 

Fig, 2~8. Counterstressed dual cable structure, example 2 

30' __ x 
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Joint X(ft) Y(ft) 

l 30.0 - 5.4 

2 60.0 - 9.6 

3 90.0 -12. 6 

4 120.0 -14.4 

5 150. 0 -15 .o 

6 180.0 -14 .4 

7 210.0 -12. 6 

8 240.0 - 9.6 

9 270.0 - 5.4 

19 300.0 o.o 

20 0.0 0.0 

Table 2.2 Initial configuration of example 2 

The following properties were assumed for the structure 

Area of spreaders = 2.0 sq. in. 

Area of tiedown cable = 1.62 sq. in. 

Area of load cable = 3.24 sq. in. 

Modulus of elasticity of spreaders = 30,000 Ksi 

Modulus of elasticity of cables = 24 1 000 Ksi 

The structure was analysed for a total uniform load of 50.0 kips 

on the left half of the span. The uniform load was approximated by 

concentrated loads at the upper nodes (W = 10.0 kips). The horizontal 

component of prestress force was 72.0 kips. 
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CASE STUDY 3 Orthogonal hyperbolic paraboloid prestressed net 

This example, shown in Figure 2.9, which was originally 

analysed by Thornton and Birnstiel [282], consists of seven prestressing 

cables in they direction and seven suspension cables in the x 

direction. The cables are all equally spaced and are supported by 

an assumed rigid frame. The following properties were used : 

Area of cables 

Modulus of elasticity 

Horizontal component of prestress 
force 

=l.Osq.in. 

= 24,000 Ksi 

= so.a kips 

The z-coordinates of joints of the net, in its initial position, 

were taken from reference [282] and· are shown in Figure 2 .9. . 

The structure was analysed for a dead load of 1.0 kip in the z 

direction at each node, plus a live load of 14.0 kips in the z 

direction at node 7. 

CASE STUDY 4 Three dimensional counterstressed dual cable structure 

This structure shown in Figure 2.10 was also originally 

analysed by Thornton and Birnstiel [282]. The following values 

were used 

Area of cables .: 2.0 sq. in • 

Area of hangers = 0.5 sq. in. 

Modulus of elasticity = 24,000 Ksi 

Horizontal component of prestress 
= 100 kips 

force 
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Fig. 2.9 Hyperbolic-paraboloid prestresset net, example 3. 
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19,20 

33,34 21,22 

X 

Rl5~ 

29,30 25,26 

2 1,28 
i 
i 
ty 

Load cable 

10 1 

6 
7' 22' 

10 I j2 

Tie-down ! 
cable t 

z 

Fig. 2.10 Three dimensional dual cable structure, example 4 
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The structure was analysed for a vertical load of 50.0 kips 

applied at joint 5. 

CASE STUDY 5 Large prestressed net 

This example is similar in form to the Raleigh Arena 

and was first analysed by Murray [209]. As shown in Figure 2.11 , 

the orthogonal net is bounded by two intersecting rigid parabolic 

arches, each rising 30 ft. from the intersection points to the 

vertex, In each direction the maximum horizontal cable span is 

200 ft and the cable spacing is 10 ft. The resulting net has 76 

support points and 265 interior nodes. The horizontal component of 

prestress force, for the prestress cables (y direction) is taken 

as 100.0 kips and f6r the suspension cables (x direction) is taken 

as 40.0 kips. 

The following galvanized bridge strands were selected 

for the full net: all prestressing cables are li in. diameter, 

the first four suspension cables from the arch intersection are 

li in, in diameter, the next suspension cable is 21 in,. in diameter 

and all remaining suspension cables are 2i in. in diameter, Two 

load cases were considered : (a) a load of 5,7 kips in the z 

direction at each node and (b) a load of 54.3 kips in the z 

direction at node 135, in addition to the 5.7 kips load at each node, 

Although for these load conditions only half of the structure need 

be analysed, the methods were applied to the full structure to test 

them more fully. 
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20,63 

19 .42 
• 

18.40 16.38 14.25 

8,82 

16.85 15 .18 13 20 

18.53 8.27 17.52 16.32 14.73 12.82 10.64 8.25 5.67 

18.08 7.81 17.09 15.94 14.40 12.55 10.42 8.06 5.53 

5.86 

17.77 7.53 16.83 15.71 14.21 12.38 10.28 7.95 5.45 .79 

17,67 7.44 16.75 15,64 14.14 12.33 10.24 7.92 5,42 ,77 X '----.L---'---.._ _ __... ________ __.. __ ,.J.... __ ~..;,._-J-,_._ 

Fig. 2.12 Initial vertical coordinates for example 5 
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CASE STUDY 6 Three storey frame 

Although this example is not a cable structure, it was 

included in this study in order to assess the performance of 

numerical methods of nonlinear analysis for a structure with only 

slight nonlinearity. All the members of the frame have a cross 

sectional area of 1.5 sq. in •• with the modulus of elasticity being 

0.5 Ksi. The structure as shown in Figure 2.13 ·was analysed 

for a horizontal load of 0.02 kips at node 6. · 

Fig. 2.13 Three storey frame, example 6 
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CHAPTER 3 

GRADIENT METHODS 

The expanding use of the finite element method in most 

branc_h.es of structural engineering and other fields of continuum 

mechancis has given rise to the problem of solving the large 

algebraic equation systems produced by the discretization 

-procedure. Although elimination methods have been extensively 

used for the computer solution of large sparse nets of linear 

simultaneous equations they suffer from the disadvantage that 

the overall stiffness matrix must be stored in an ordered form 

which leads to considerable book-keeping as well as to excessive 

storage requirements due to th~ "fill-in" that occurs during 

the decompositon of the matrix. Most of the gradient iterative 

procedures are, on the contrary, much more efficient with respect 

to computer storage requirements since only the storage of 

several N-dimensional vectors is needed. 

One of the oldest and best known gradient methods is 

the method of steepest descent, proposed by Coushy [74] in 

1847. In this method the direction ~i of equation (2.9) becomes 

the negative gradient. The method has several disadvantages 

which make it impractical for many problems. The rate of 

convergence depends strongly on the graph of the function. The 

inefficiency of the method for solving large problems is 
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characterised geometrically by a zig-zag behaviour caused 

by the eccentricity of the function contours. A number of schemes 

have been proposed to overcome the zig-zag difficulty [30, 

102, 104]. The main reason for the slow convergence is the 

fact that each iterative cycle is calculated independently of 

the others and so no information from previous iterations is 

stored that may accelerate the convergence. 

The most effective gradient techniques are based on the 

idea of conjugate directions. Two of the most powerful 

conjugate direction methods are the conjugate gradient method 

and the variable metric method. 

The conjugate gradient method for the solution of a 

system of linear algebraic equations was developed independently 

by Hestenes [137] and by Stiefel [137] with the cooperation 

of J. B. Rosser, G. Forsythe and L. Paige. A more thorough 

presentation of the method along with the conjugate direction 

method and related iterative methods was given by Hestenes [138]. 

Fletcher and Reeves [108] first ~roadened the area of application 

of the cdnjugate gradient method to nonlinear problems by 

taking the potential energy as a non-quadratic function to be 

minimized, and later Daniel [82] gave a more general development. 

The variable metric method was developed by Davidon [86] 

and modified by Fletcher and Powell [107]. The method starts 

with an initial approximation of the inverse stiffness matrix 

H
0

, and an iterative procedure is established in such a way 

that as the displacement vector reaches the solution, H; becomes 
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the inverse of the stiffness matrix. The method is a very 

powerful gradient method but has the disadvantage of 

requiring storage space for half the matrix Hand time for 

its manipulation which, for large problems, become excessive. 

3.2. The Conjugate Gradient Algorithm 

Denoting by K the global matrix of the discretized 

continuum, by x the vector of nodal unknowns and by F the 

vector of the applied loads, the total energy of a linear 

system could be written 

1 T 
E = "2" x Kx - xF ( 3. l ) 

assuming that K is positive definite and symmetric entails 

that the energy E possesses a minimum at the point where the 

residua 1 vector 

aE 
ax = r ; Kx-F (3.2) 

vanishes. 

The essence of the conjugate gradient method consists 

of obtaining a new vector xi+l along a direction Pi at a 

di s ta nc e a i , i.e. 

{3.3) 

The direction pi is pointing to the centre of the energy 

contour cut by the plane spanned by gi and P;.1, where the 

latter is tangent to the contour. Thus as pi-l is tangent to 
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the contour and Pi points to its centre then 

T 
Pi K Pi-1 = 0 

and 

pi = -ri+l + Sipi 

(3.4) 

(3.5) 

The scalars is determined by substituting equation (3.5) 

into equation (3.4) resulting in 
T 

ri+lK P; 
. T Si = (3.6) 

Pi K Pi 

The scalar a is fixed by the condition that at the centre 

of the energy contour, E possesses a minimum with respect to 

a • Thus 

E(x. + a.p) = 0 
1 1 

{3. 7) 

and 

(3.8) 

Other equivalent expressions for a and Smay also be formed 

T 
1r112 Pi ro 

(3.9) Ct• = = 1 T T 
P; Kp; Pi. KP; 

and T 2 ri+l K r1 lri+l I (3.10) S; = = 
I r; 1

2 T 
pi K P; 

I 
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With these formulae the CG algorithm becomes·: 

X = 0 
abi tra ry 

r = 0 
r(x

0
} 

p = 
0 - r 0 

ai = lril2 
(3.11} 

T 
P; K Pi 

Xi+l = Xi + aipi 

ri+l = r. + a. K P; 1 l 

2 
ei = lri+ll 

2 

• 
I ri l 

P i+l = - r. 1 + ei pi 1+ 

This process is guaranteed, apart from rounding-off errors, 

to locate the minimum of any quadratic function of N arguments 

in at most N iterations. For general" functions which are not 

quadratic the process is iterative rather than N-step, and a 
' 

test fpr convergence is required. In such cases, as the 

iterate approaches the minimum the function is more closely 

quadratic and so convergence is more nearly assured. Furthermore, 

even in regions remote from the minimum, the conjugate gradient 

methods, by taking account of the curvature of the function, 

are best able to deal with complex situations such as the presence 
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of a long curving valley. The oscillatory behaviour character­

istic of methods such as steepest descent is thereby avoided, 

In nonlinear problems a closed form solution for the 

scalar a is not available and a one dimensional linear search 

along the direction pi should be applied. The residual vector 

is replaced by the gradient vector. g(x) and the corresponding 

recursive expression for the gradient is not valid any more. 

Other conjugate gradient methods use a two-directional search 

where the values of ai and 6i are determined from the 

minimization of f(a 1, 6i), However, quasi-linear problems, 

that is, problems in which K depends on x, can be efficiently 

solved with algorithm (3.11) by calculating r anew each cycle 

and changing in each loop K so as to reflect its dependence on 

x. 

3.3. The Single Variable Search 

The single variable search or linear search is the problem 

of finding the smallest positive root of the directional derivative 

PT g(xi + tpi) for prescribed xi and Pi' and thus the minimum 

of f(x. + tp.) considered as a function of the scalar t. 
1 1 

In nonlinear applications of the conjugate gradient method 

the step-length algorithm is a factor that strongly affects the 

efficiency of the method. In any practical application the time 
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spent evaluating the function and the gradient may well 

dominate the time for the whole minimization process. The 

required computer time depends not only on the total number of 

iterations, but on the number of cycles in each iteration 

required for the linear search as well. 

The most common routine of the linear search methods is 

first to evaluate an interval (ta,tb) known to contain the 

minimum of the function f(ti) along the direction pi' and then 

to apply an iterative procedure to approximate the minimum • . • 

3.3.1. Methods for Bracketing the Solution 

The object of these methods is to find an initial interval 

(O,h) where 

(3.12) 

Then the minimum is bounded inside this interval since the 

value of the derivative of the function with respect to hat 

h = 0 is always non-positive. 

. T 
f'(O) = Pi gi ~ 0 (3.13) 

If inequality (3.12) is not satisfied, then f'(h) is examined 

at the points 2h, 4h, ta, tb, where tb is the first of these 

values at which either f'(h) is non-negative or f(h) has not 

decreased. 
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a. Davidon's scheme 

This approach was proposed by Davidon {86] and later 

was modified by Fletcher and Reeves [108]. On the supposition 

that there is available an estimate."est~ of the value f(x) 

at the unconstrained minimum and that the function is quadratic 

in the neighbourhood of the minimum. then 

and 

f'(O) = f(t}t- f(O) 

t = est - f(O) 
f I (O) 

(3.13) 

(3.14) 

Davidon has taken twice this length h = 2t. to obtain a first 

estimate for the step length. In fact the unconstrained minimum 

. will generally not lie on the direction of Pi• and so h will 

tend to be larger. Fletcher and Powell [107] suggested the 

alternative expression 

h = (pi)·i (3.15) 

if ( P/ )-i < 2t (3.16) 

b. Stanton's Method 

This method for generating the first step size h. in each 

new direction. was proposed by Stanton [262] and was applied 

in the nonlinear finite element analysis of plates. The step 

size is given by 
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(3.17) 

where llx, 11 · = m~x Jxj I • is the infinite norm of the current 
, 00 J 

vector, and Ci is a parameter dependent on the history of all 

i-1 linear searches previously performed. 

(3.18) 

where r is the number of increments required to bracket the root 

in the previous iteration and S is the number of decrements 

required to ensure 

I g ( ta ) I > O • O 1 I g ( tb) I (3.19) 

The value of Sis increased by 1, if the search results in 

t 1 <ta+ o. 1 (tb - ta), at iteration i. Within a few iterations 

the value of Ci is adopted to the space and the bracketing 

of the root t; is assured with a minimum effort. 

3.3.2. Methods for Approximating the Minimum 

The most commonly used methods in structural analysis 

for approximating a ~racketed minimum along a line are 

a. Davidon's method 

b. A regula falsi-bisection algorithm 

c. Fibonacci search 

Other method~ currently used in other fields of optimization 

can be found in References [32, 219, 301]. 
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a. Davidon's method 

In this method a cubic curve is fitted in the interval 

(ta,tb) and the minimum is approximated by the lowest point of 

the cubic curve 

te = tb - f'(ta) + w - z • (tb-ta) (3.20) 
f'{tb) - f'(ta) + 2w 

where 

z 

w 

= 3 f(ta) · f(tb) + f'(ta) + f'(tb) 
tb - ta 

= ! (z
2 

- f'(ta).f'(tb))i 

{3.21) 

{3.22) 

A real value is guaranteed by the problem and the sign of w is 

chosen so that te lies in the interval (ta,tb), If both values 

of te lie in the interval, the one closer to ta is chosen. If 

neither of f(ta) or f(tb) is less than f(te) then te is accepted 

.as an estimate oft;. Otherwise depending on whether f'(te) is 

positive or negative, the interpolation is repeated over the 

subinterval (ta,te) or (te,tb) respectively. 

b. Regula Falsi-Bisection Algorithm 

The most common difficulty encountered in Davidon's 

method is in satisfying the condition 
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f I ( t;) (3.23) 

Geometrically this is the cosine of the "angle" between p. and 
l 

g(xi + ti llj). In other words e is a convergence criterion for 

accepting teas a zero for the directional derivative f'(t). 

Using Davidon's scheme it will be difficult to find a good 

approximation when the directional derivative crosses zero with 

a steep slope. 

This method which was first used by Stanton [262] is 

a combination of the regula-falsi and the bisection techniques. 

In the bisection algorithm the new approximation is 

ti = ( ta + tb) 
2 

and ( i) 

(ii) 

if f{ta). f{ti) < O 

if f {ta) • f ( t; ) l 0 

• 

(3.24) 

ti replaces ta 

ti replaces tb 

In the rule of false position (regula-falsi) the standard 

secant formula is adopted 

ti = ta - f' (ta) • ( ta - tb) 
f' (ta) - f' (tb) 

{3.25) 

The estimates chosen for the next iteration are ti and whichever 

of ta, tb give a function value of opposite sign to f(ti)• 

The combination of these two procedures gives the following 

algorithm shown diagramatically in Figure 3.1. 
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1. te = ta - f ' ( ta ) ( ta -tb ) 
f ' ( ta ) - f ' ( tb) 

2. ( i ) if f' ( te) • f' (ta) < O 

(ii) if f'(te),f'(ta) > O 

3, te = ! ( ta + tb) 

4. Step 2 repeated 

ta -+ te 

tb-+ tb 

ta -+ ta 

tb-+ te 

(3.26) 

Fig, 3,1 Regula falsi-bisection linear search algorithm 

t 
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The use of step 3 insures against slow convergence from the 

regula falsi algorithm, steps 2 and 4 ensure that the inter• 

polation points always to a bracketed root. The flat part of 

the curve corresponds to a region in which the quadratic term 

in the function f dominates. Ast becomes larger the higher 

order terms dominate, causing the angle of the curve to become 

steeper. It is this behaviour that necessitates step 3. The 

method is assumed to converge when two successive approximations 

fort are less than a prescribed value. 

c. Fibonacci Search 

This method was found by Kiefer [178] in 1953. But although 

this discovery is relatively recent, it has theoretical connections 
. 

to the work of Fibonacci, a thirteenth century mathematician 

whose name has been given to the technique. The basic idea of 

this method is to perform a sequence of two point searches to 

reduce the uncertainty interval, and to place the search points 
K K t1, t2, with K·= 0,1, ••• , in such a way that, if, for example, 

0 (ta,t~) is the first reduced uncertainty interval, then t1 
is used as one of the next search points i that is, we set 

tJ = t~, and so on •. The problem is to select the sequence 

K K 
(t1, t 2) in such a way that the decrease in the length of the 

uncertainty interval is maximal. 

K K 
The optimal choice of the t 1, t 2 is as follows 
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Let 

be the Fibonacci sequence and N > 0 the maximum number of 

two-point searches which are to be performed ; then we use the 

points 

tK+l K K K 
1 = (TN-l-K / TN+l-K) (tb - ta ) + ta 

K = 0,1, ••• ,N-2 

(3. 27} 

Here to = ta, to = tb • and a b 

tK+l K tK+l _ t K+l • if f{t~+l) K+l = ta , - 2 < f ( t2. ) , a b 

t~+1 = tf+l tK+l K Ki-1 K+ 1 
' b = tb • if f(t1 ) ~ f(t2 ) 

For K = N-1 (3.27) has to be modified, and if £ > O is the 

maximum round-off error in the evaluation off, set 

N l N-1 N-1 
t, = '2' (ta + tb ) - £ 

(3.29) 
N 1 N-1 N-1 

tz = '2' ( ta + tb ) + £ 

If the minimum is required to an accuracy o, then N must 

be chosen so that 

(t~ - t~) 
TN ~ 0 - £ (3.30) 

(3.28) 
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3,4, Buchholdt's Method 

On the assumptions that the law of elastic behaviour is 

linear and in confonnity with the elastic limits,that the loads 

are applied at the joints, and that the elongations are 

negligible compared with the initial lengths, ·suchholdt et al 

[48] have shown that the total potential energy of a pin-jointed 

assembly, free of bending and torsional elements, can be expressed 

as a fourth order polynomial in the step length t, of the fonn 

(3.31) 

The step length that minimizes• along the conjugate direction 

Pi is given by the smallest positive root of the cubic equation 

d~ 3 2 at = 4C1t + 3C2t + 2C3t + c4 = 0 (3.32) 

The solution of equation (3,32) can be found either analytically 

or iteratively using Newton's method. 

To evaluate the constants c1, c2, c3, c4, c5, we consider 

a link m which is attached to joints j and n. If the initial 

strain energy due to pretension P~ ' 0 is Um , then 

(3.33) 

is the strain energy of the link with an elongation em, The 

total potential energy is 
m 

. ~. 0 1 2 
i.+l = (U~ + Pm em+ "2' EA em) 
, m= . 

(3,34) 
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Let Lm be the initial prestressed length of link jn, then 
NDF 

2 ~ 2 
(Lm + em) = ~ ( (Xin - x1j) + (xin - xij) ) (3.35) 

1=1 

where X;j (i = 1,2,3) denotes the inital coordinate of joint j. 

Ignoring the second order of smallness equation {3.35) may be 

written 

_em = ~ (2 (X;n - X;j)(X;n - xij)+(X;n·X;j)
2

) /2Lm (3.36) 

Writing for brevity 

x. = x.n - x.j , 1 , 

P. = p. .; P;j 1 . ,n 

the expression for em now becomes 

'in = 2~· [2xicxlk) + t pjkl)+ (xjkl+ t pjk))T(xjkl+t pjk))] 

m ( 3. 37) 

Substituting equation (3.37) into equation (3.36) we get 

(3.38) 

where 

£
2 

= XT(k) p(k) + x T(k). p(k) 
i . i i i (3.39) 
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and finally substituting equation (3.38) into equation (3.34) 

we obtain 
~ 2 3 c1 =LEAe3 /2Lm 

c2 =LEAe2e3 / L; 

~(& 2 3 c3 = L L_ e3 + EA (e2 + e1e3) / 2 Lm) (3.40) 
m 

3.5. Extensions of the CG Algorithm 

3.5. l. Polak and Ribieire Algorithm 

This version of the conjugate gradient algorithm was 

described by Polak and Ribiere [231] and Poljak [232} • The 

method originated from an expression proposed by Daniel [83] 

for the scalar e 

(3.41) 

where J(xi+l) is the Jacobian matrix at the point xi+l. 

In order to overcome the difficulty of obtaining the 

Jacobian in each iteration, Polak and Ribieve expressed the 
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gradient in Taylor series 
I 

- g ·+1 = -g. + t .J. p. 
1 1 1 1 1 (3.42) 

where 

(3.43) 

This development leads to the expression for S; 

9T+1 gi giJ1 J~ pi a. = --- ----- or 
1 1!9;112 pTJipi· 

(3.44) 

(3.45) 

3.5.2. Sorenson's Version 

Another modification of the Fletcher and Reeves algorithm 

was proposed by Sorenson [274]. In this version the scalar 

parameter S; is evaluated as 
T 

a; = 
Y; 9i+l 

(3.46) T 
Yi 'Yi 

where 

Yi = 9;+1 - 9; 

and al = 
1192ll

2 

119111 2 
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The expression of equation (3.46) is a product of the orthogon­

ality condition of vectors P;+ 1 and Yi. Takahashi [279] 

proposed another expression for a which comes from the orthogon­

a 1 i ty condtion 

3.6. The Memory Gradient Method 

Miele and Cantrell [197] introduced a modification of the 

CG algorithm which performs a two directional search for the 

determination of the scalars a and s. The algorithm, which 

they called the memory gradient method, can be stated as follows 

{3.47) 

in which the scalars a and a are chosen at each step so as to 
• 

yield the greatest decrease in the function. 

The first variation of the function, to first order terms, 

is given by 

of(xi) (3.48) 

with 

The greatest decrease in the value of the function is achieved 

if the first variation (3.48) is minimized. Here, we limit 

the analysis to those variations ox1 which satisfy the constraint 
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(3.49) 

where Kand s are prescribed. 

Standard methods of the theory of maxima and minima show 

that the fundamental function of this problem is the scalar 

function 
T 1 · T f = g (x;)ox; + ( /2a) {ox; - sox1_1) (ox; - sox1_1) (3.50) 

where 1!2 a is a constant Lagrange multiplier. The optimum 

system of variations must be such that 

G(oxi) = o (3.51) 

where G is the. gradient of the function f with respect to the 
l n scalar variables ox, ... , ox • Equation (3.51) in the light 

of (3.50) gives the relation 

In the case of a= O, equation {3.52) reduces to 

ox = -ag,(x) 
1 

which is ~he steepest descent method, and for 

a = 
a gT g i-1 i-1 i-1 

equation {3.52) becomes the CG method. 

(3.52) 

{3.53) 

(3.54) 

Equation {3.50) can be also written in the form 

f(ox1) = f(x - ag(x) + sox;_1) = F(a,S) (3.55) 

The greatest decrease in the function F(a,S) occurs if the parameters 

a and a satisfy the following necessary conditions: 
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(3.56) 

The main task of the method is to find the optimum values 

of the parameters a and s , that is, those whi-ch satisfy equation 

(3.56). This search is fully discussed in Reference [67]. 

Let ea = a - a0 and oS = s - s0 be the 

corrections to a and s , starting from arbitrary values a , s . 
0 0 

Then it is shown in [67] that the following corrections must 

be employed. 

oa = - µ{D1;o3) sign (D4;o3), oS = - µ(D2/D3) sign (D4;o3) 

( 3. 57) 

where 

D1 = FaFss - Fsfos 

D2 = Fsfoa - Fafos 

FaaFSS 
2 

D3 = - F aS 

D4 = Fa 
2 

Fss - 2FaFSfoS 

and where Fa, Fe, Faa, Fas, Fas 

that is, at the point x0 defined by 

(3.58) 

2 
+ Fs Faa 

are computed at a
0

, s
0

, 

(3.59) 

andµ lies in the interval O ~ µ ~ 1. 

The partial derivatives appearing in equations (3.58) 

can be computed from the expressions 

(3.60) 
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0 
Fas = oxi-l H(x )oxi-l 

Since the matrix H, which is the matrix of the second partial 

derivatives of F, is not explicitly available, a difference 

scheme is used to approximate equations (3.60) 

foa = 

(3.61) 

Fae = (g (x0 + e2 oxi_1) - g(x0 
- e2ox1_1)) T. ox1_112e2 

with e1 = e/ llg(xi) II • 

where e is a small number: 

(3.62) 

The search starts with a0 = s0 = O, µ = 1. Then 

oa • 013 are computed from equations (3.57) and then the function 

Fis evaluated at the new points a = a0 + oa • 13 = 13
0 

+ 013. 

If F(a,13)> F(a
0

,13 0 ) thenµ is divided by 2 and new values for 

a,13 are computed until F(a,S) < F(a0 ,a
0

). At this stage the 

final values for a,13 become the nominal values for the next 

search step, and the procedure is repeated until a desired 

degree of accuracy on a,S is obtained, The starting value 

for ox is assumed to be zero. When the function is quadratic 

th~ convergence of the method has the same characteristics 

as the original conjugate gradient algorithm. 
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3.7. The Inversion of a Matrix by the CG Method 

When applying the conjugate gradient method to a 

linear system Ax= b, of N equations whose matrix A is 

symmetric and positive definite, N orthogonal vectors 

(g
0

, 91• , , • , gN-l) and N A-orthogonal vectors 

(p
0

, Pi• ••• , pN_1) are established after N iterations. The 

sequence p is linearly independent and forms a basis. 

From the A-orthogonality condition : 

> 0 i = j 

piApj { 
= 0 i # j 

(3.63) 

one can have after N;t iterations, the sequence of vectors 

pi forming a matrix P(NxNit) and satisfying the relation 

T P AP = D , {

= 0 i 'f j 

Dij 
= p .Ap. i = j , J 

(3.64) 

As the sequence p is linearly independent, P is non-singular 

and both sides of equation (3.64) can be inverted yielding the 

.following formula for A-l : 

A-1 = {N-1 
i=O 

T P·P· , , 
T 

P; Ap. 
. , (3.65) 

Although the above formula is strictly correct only for N 

vectors, we regard it as purely iterative so that when convergence 
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is achieved in less than N iterations the inverse can be 

very compactly stored in a non-square matrix P(NxNit) 

where Nit is the number of executed iterations. 
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CHAPTER 4 

NUMERICAL STUDIES ON CONJUGATE GRADIENT METHODS 

In this chapter, the relative efficiency of a number of 

conjugate gradient algorithms has been compared for the non­

linear analysis of cable structures. The total execution 

time required to obtain a certain degree of convergence is 

taken as the basis for the comparison, and not the total 

number of iterations, since the computer time required to 

perform one iteration differs from method to method. For this 

reason all the computer programs have been constructed in the 

same pattern in order to produce comparable results •. All 

computational work has been carried out on the CDC 7600 computer. 

Table 4.1 shows the methods used in this chapter and their 

abbreviated names. The letters "SC~fter the abbreviated name 

of a method means a scaled version of the method, while the 

symbol "Rn"means that a reinitialization process has been 

applied to the method with n being the number of reini~ializations 

for each load increment. 

4.1. Fletcher and Reeves method (CGFR) 

Fletcher and Reeves [108] first modified the linear 

search proposed by Davidon [86] and applied it to the conjugate 
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ABBREVIATED DESCRIPTION OF THE METHOD 
NAME 

The linear CG algorithm with the residuals 
CGFRIN and the stiffness matrix being modified 

after each iteration 

CGFRIP The same method as above with the product 
kpi being obtained as the product kxi 

A Newton-Raphson method, with linear CGFRIL solutions obtained from the CG algorithm 

A N~wton-Raphson method, with a conjugate 
CGFRIK gradient inversion of the stiffness matrix 

(Section 3.7) 

CGFR Davidon's linear search as modified by 
Fletcher and Reeves and Davidon's 
cubic curve 

CGST Stanton's linear search and the regula 
falsi-bisection algorithm 

CGSR A combined Stanton-Davidon linear search 

CGMEM Memory gradient method 

CGBUC Buchholdt's method 

Stanton's linear serach with Polak and CGSTPR Rib1ere's algorithm for a1 

Stanton's linear search with Sorenson's CGSTSR algorithm for ai 

Table 4.1 Conjugate gradient computer programs 
used in Chapter 4 
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gradient method. The expression proposed for the evaluation 

of the step length (Eq. 3.14), requires an estimate of the 

total potential energy at the unconstrained minimum. Such 

an estimate is not generally known for structural problems. 

To cope with this difficulty the estimated value at the global 

minimum was replaced by the value of the total potential 

energy at the local minimum along the direction p of the 

previous iteration. Equation 3.14 is now slightly altered 

in order to give positive values for the step length 

f;{0) - fi_1(0) 
t = 

f ~ (0) 
{ 4, 1) 

With this alteration, equations (3.14) and (3.15) for 

· bracketing the root were not efficient, and as a result very 

much computer time was wasted, inside each iteration, until 

the root was finally bracketed. For this reason the tentative 

step was taken from 10 up to 100 times of that given by 

equation ( 4. l). 

When the method was applied to example 1, 10 times the 

initial estimate produced the fastest convergence, while greater 

values tended to produce negative values for z, from equation 

(3.21), which meant that the computed minimum value for the 

total potential energy lay outside the bracketed interval (ta,tb)• 

In example 3, on the other hand, the best results were 

obtained with h = 100.t • 
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4.2. Stanton's method (CGST) 

Stanton [262] suggested a method for bracketing the 

minimum potential energy along the direction pi' and used 

this method together with the regula falsi-bisection algorithm 

for the nonlinear analysis of plates. In fact, the bracketing 

algorithm produced such accurate results that one iteration 

with the regula falsi-bisection algorithm was enough to 

locate a workable minimum for the next iteration. 

Table 4.2 and Figure 4.1 show the response of the method, 

when reinitializations are used, for the suspension cable 

and the hyperbolic paraboloid test problems. With reinitialization, 

the return to the gradient direction takes place after N 

iterations, with N being the total number of degrees of freedom. 

A reduction of up to 80% on the total number of iterations 

can be achieved by changing the direction p tog after N 

iterations. But as Figure 4.1 shows the response of the technique 

to these two examples is different. The reason for this is 

that the hyperbolic paraboloid proble~ has a condition number 

of 1508, while the free suspended cable has a condition 

number of 60056. In other words, as example 1 is an 111-

conditoned problem, it seems that N iterations for resetting 

the direction are not enough to alleviate the zig-zag behaviour 

of p directions, after the introduction of the new direction. 

In these cases a larger number N' > N should produce better 

results. 
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EXAMPLE Nrein Nit EXAMPLE N rein Nit 
0 l 008 0 1058 

CASE STUDY l l 894 CASE STUDY 2 l 226 

p = 60056 
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2 
3 
4 
5 

616 
625 
638 
640 p = 1508 

RN0RM criterion 
{ e= 0. l E-07} 

2 218 
3 212 
4 212 
5 212 

· Table 4.2 The effect of reinitialization on 
the convergence of the CGST method 

'-------~-----,c:aa~s;-e study 1 
(unscaled) 

~------- case study 3 
----- ------ - - -- - ------- • -- - (uiisca led) 

·-·-·-·-·-·-·-·-·-·-·-·--·-·-·-·-·-·-·-·-·ca.se_study 3(scaled) 

l 2 .3 4 

Fig 4.1 Graphical representation of the reinitialization 
effects for the CGST method 

5 
Nrein 
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The implementation of the complete regula falsi­

bisection algorithm for the linear search could sometimes 

be time consuming in trying to find an accurate approximation 

of the root inside the interval (ta• tb). In fact, for most 

cases, equation (3.25) gives a very good approximation to the 

minimum root, and a more accurate one has virtually no effect 

on the overall convergence. This was justified when the 

method was scaled and applied to example 2. In this case the 

scaled values for tb increased by more than 1000 times and 

the iteration process of the regula falsi-bisection algorithm 

was abandoned in order to make the method converge in 

reasonable time. Otherwise too much time was consumed in 

the effort to achieve convergence to the correct value tin 

each interval (ta• tb). 

Table 4,3 shows the effect of scaling on examples 2, 3 

and 4. The improvement on the total exectution time is less 

. 

EXAMPLE METHOD N1t TIME{sec) 

CASE STUDY 2 CGST 881 2,067 
CGST-SC 381 1,136 

CASE STUDY 3 CGST 1058 5,668 
CGST-SC 90 0.605 

CASE STUDY 4 CGST-Rl 219 0,863 
{Members are not CGST-SC-Rl 158 0,763 a 11 owed to go 
slack) 
CASE STUDY 4 CGST-Rl l 967 6.974 
{Members are 
a 11 owed to go CGST-SC-Rl 221 1.040 
slack) 

Table 4.3. Effect of scaling in CGST method 

than the improvement on the total number of iterations in all 
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cases. This is due to the additonal number of operations 

required in each iteration for scaling operations. 

The effect of scaling depends on the type of structure 

and degree of iil-conditioning as well as the degree of non­

linearity of the problem •. For examples 2 and 3 the condition 

numbers before and after scaling are as follows 

EXAMPLE 2 PuNSC = 12740 PuNSC = 7861 

EXAMPLE 3 Psc = · 1508 Psc = 55 

For highly nonlinear problems. where there is a great 

difference in the diagonal terms of the stiffness matrix 

before and after the application of loads. an updated process 

must be introduced for the stiffness diagonals. Otherwise 

the original diagonal terms which are used for scaling, may 

differ considerably from the current values and have little 

effect in reducing the condition number of the stiffness'matrix. 

This happened in case study 1 where there is a 10-fold increase 

of the stiffness matrix after the application of the load. 

The effect of reinitialization in effectively scaled 

systems is less successful than in unscaled systems. This is 

shown in Figure 4.1 for the scaled hyperbolic paraboloid, 

where convergence is achieved in almost N iterations. 

Two other methods, Polak-Ribiere's algorithm and Sorenson's 

algorithm with Stanton's linear search. have been studied and 

compared with the ordinary conjugate gradient method. Table 4.4 
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indicates that the modification introduced by Polak and Ribieve 

for the evaluation of the parameter a. gives marginal improvement 

on the convergence of the method, while the modification proposed 

by Sorenson has a bad effect on the convergence, 

METHOD Nit TIME (sec) 

CGST-SC 84 0.595 

CGSTPR-SC 72 0,535 

CGSTSR-SC 143 1.046 

Table 4.4 Studies of example 3 

Table 4.5 shows the performance of the CGST and CGSTPR algorithms 

for the large prestressed net of example 5. 

Termination O.lE-00 O.lE-02 O,lE-04 0,lE-06 Parameter 
Method Nit TIME Nit TIME Nit TIME Nit TIME 

CGST-SC-R4 170 5,243 433 13.265 634 19.396 851 26.016 

CGSTPR-SC-R4 181 6.025 375 12.407 566 18,690 755 24.908 

Table 4.5 Convergence of Stanton's algorithm for 
example 5 with QUOT-SC termination criterion 

4.3. Other CG Algorithms 

A combination of Stanton's linear search and Fletcher 

and Reeves' method was proposed, To eliminate the inaccuracy 

involving equation (3.14) in es~imating the value of the total 

potential energy and the unconstrained minimum, Stanton's 
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bracketing technique was introduced, while the minimum in 

the interval (ta,tb) was approximated by Davidon's cubic 

curve. Davidon's fitting curve calculates the minimum in a 

more direct way, avoiding many iterative steps, as was 

experienced in the regula falsi-bisection algorithm, particularly 

for scaled applications of the method. 

In the memory gradient method, different values of the 

parameter tin equations (3.62), ranging from 1.0 to O.lE-06, 

w~re tried in order to monitor how t affects the convergence 

of the method. It was found that the value oft has almost 

no effect on the convergence rate of the memory gradient method. 

However, the required degree of convergence of the parameters 

a and a, during the two dimensional search, could have a paramount 

effect on the overall convergence of the method. Figure 4.2 

shows the number of iterations required for convergence in 

case study 1, for different values of the tolerance in the 

1 inear search. 

0 .lE 01 

0 .SE 00 

0 .1 E 00 

f O .1 E-03 
(IJ -0 
I-

0 .lE-07 

1000 a:JOO 
Nit 

Fig. 4.2 Convergence of the memory method with respect to 
the value of the tolerance coefficient in the two 
dimensional search, case study 1 
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In Buchholdt's method the solution of the third order 

equation with respect to the step length t (eq. 3.32), was 

carried out both analytically and iteratively using Newton's 

method. The results obtained from these two solutions of the 

cubic equation were identical with respect to the final 

computed values. the number of iterations, and the required 

time. 

Four other modifications of the conjugate gradient 

algorithm, without linear search, were applied. The CGFRIN 

method is the linear conjugate gra4ient algorithm, but with 

the residuals being calculated from equations (2.26,2.27) and 

updating the elemental contributions to the overall stiffness 

matrix at each iteration. The overall stiffness matrix is 

not assembled, since the required product Kp is performed at 

the elemental level and assembly is carried out only on the 

resulting vector. 

The CGFRIP method does not update the stiffness matrix 

or perform the multiplication of the stiffness matrix with· 

the vector p explicitly. Instead, the product Kp is 

obtained in the same way as the -product Kx is obtained for the 

evaluation of the residuals 

K x. - F , (4.2) 

The product Kp could be obtained from equation (4.2) by 

replacing the values of x; by the values of P; and neglecting 

the load vector. 
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The CGFRIL method is an exact linear application of the 

conjugate gradient method, After the convergence of the method 

to a residual load vector. the out of balance forces are 

calculated and the whole process is repeated until the norm 

of the residual loads converge to a specific tolerance. A 

modification of this approach is the CGFRIK method. where 

the linear solution is obtained by inverting the overall stiffness 

matrix in the way described in Section 3,7. Again there is 

no need to store the inverse stiffness matrix since the 

contributions to the product A1.F from every iteration can 

be computed independently. 

The Fibonacci linear search was not included in this 

comparative study. because Murray [209] has already compared 

it with Davidon's linear search and has found the latter 

superior. Another powerful gradient method, the Fletcher and 

Powell variable metric method, has not been included here. 

The reason is that it has been shown [209] that although the 

method is very efficient for small cable problems. it becomes 

time consuming when applied to large systems with the additional 

disadvantage of requiring excessive computer storage. 

4,4, Comparative Study 

Table 4,6, shows the convergence achieved from different 

conjugate gradient methods when applied to example 1. It is 

clear from this table that the CGFRIN method, without linear 

search, is not efficient for the single cable problem which is 

highly nonlinear. From the methods with linear 



METHOD 

Mode 

1 

2 

3 

4 
5 

6 

7 

8 
9 
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METHOD N;t 

CGFRIN 495 

CGMEM 115 

CGBUC 510 

CGSR 380 

CGST 321 

CGFR 372 

TIME (sec) 

1.428 

0.628 

0.603 

0.475 

0.417 

0.535 

RNORM 
criterion 
(t= 0,013) 

Table 4.6 Studies of example 1 

CGBUC (t= 0.013) CGMEM (t= O.lE-on CGST(e= O. lE-07) 

X(ft) Y(ft) X(ft) Y(ft) X{ft} y (ft} 

1.67182 -4.51880 1. 67246 -4.-52056 1.67247 -4. 52056 
1. 37778 -3.01083 1.37581 -3.00356 1.37581 -3.00356 

-0.31507 4.64347 -0.31428 4.63620 -0.31428 4.63626 
-2.82102 18.49347 -2.82121 18.49513 -2.82120 18.49515 
-3.72436 -o .31120 -3,72382 -o. 30505 · -3.72382 -0.30505 

-4.86456 -12.71990 -4.86553 -12. 72376 -4.86553 -12.72374 

-5.65333 -1 a83940 -5,65376 .., la84064 -5.65376 -18,84067 
-5~49830 -la72180 -5.49874 .. la72333 -5.49874 i-18.72333 
-3.81410 -12.44180 -3 .81103 •12.42774 -3 .81105 ~12.42775 

Table 4.7 Final displacements of example 1 

, 



-115-

. 
search, Stanton's algorithm is marginally quicker, while the 

convergence obtained from the memory gradient method is much 

in line with the convergence obtained from the other methods. 

The final displacements of example 1, without initial 

prestressing force, are shown in Table 4.7. The results from 

the CGMEM and CGST methods having the same termination parameter 

are identical, while those obtained by the CGBUC method are 

only slightly different despite the big difference in the 

termination parameter. The CGBUC method on the other hand could 

not produce better convergence than RN0RM = 0.013. 

Table 4.8 and figure 4.3 show the convergence rates of 

six different conjugate gradient methods for the counterstressed 

dual cable structure of example 2, when the 11 QU0T 11 termination 

criterion is applied for all cases. It can be seen that the 

memory gradient method has an extremely slow rate of convergence, 

in contrast to the CGFRIN method without linear search which is 

extremely fast in the first stages. The CGST method produced 

the smallest residual norm, while Buchholdt's method could not 

improve beyond e = 0;lE-02. 

Table 4.9 and figure 4.4 show the convergence rates 

of nine different combinations of the conjugate gradient 

algorithm for the hyperbolic paraboloid structure of example 3. 

Again the memory gradient method proved extremely slow for this 

problem. Buchholdt's method produced the fastest convergence up 

toe= 0. lE-02 and then stopped improving with further iterations. 



Termination O. lE-00 0 .1 E-01 0.1 E-02 0 .1 E-03 
Parameter £ 

No. METHOD Nit TIME. Nit TIME Nit TIME Nit TIME 

1 CGFRIN 5 0.080 115 0.162 557 0.778 - -

2 CGMEM 1349 4.473 5655 18.750 - - - -

3 CGFR 103 0.243 186 0.397 271 0.552 414 0.815 

4 CGSR 249 0.479 379 .o. 725 526 1.004 685 1.305 
'' 

. 
5 CGBUC 99 0.196 159 0.314 271 0.536 - -

6 CGST 92 0.18 173 0.345 285 0.557 368 0.72 . 

Table 4.8 Studies of example 2 

O. lE-04 O.lE-05 

Nit TIME Nit TIME 

- - - -

- - . - -

636 1.336 - -

- - - -

- - - -

442 0.864 525 1.027 

0 .1 E-06 

Nit TIME 

- -

- -

- -

- -

- -

618 1.209 

I __, 
__, 
O'I 
I 
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Termination 
Parameter £ O.lE-00 O.lE-01 O.lE-02 0. lE-03 

METHOD Nit TIME Nit TIME Nit TIME Ni 1 TIME 

1 CGFRIN 35 0.515 - 65 0.954 100 1.466 255 3.733 

2 CGFRIP . 292 1 .171 527 2.111 7298 29 .188 - -

3 CGFRIL 243 2.190 - - - - 309 2.786 

4 CGFRIK - - - - - - - -

5 CGMEM 602 5.242 3977 34.646 - - - -

6 CGBUC 37 0.194 59 0.308 90 0.470 - -

7 CGFR 51 0.266 77 0.383 126 0.603 201 1.047 

8 CGSR 50 0.251 75 0.366 98 0.474 131 0.625 

9 CGST 180 0.778 308 1.320 430 1.854 556 2.397 

Table 4.9 • Studies of example 3 

0.1 E-04 O.lE-05 

Nit TIME Nit TIME 

- - - -

- - - -

- - - -

319 6.495 - -

- - - -

- - - -

240 1.251 423 2.45 

175 0.889 - -

683 2.940 809 3.4E 

0.1 E-06 

Nit TIME 

- -

- -

367 3.587 

- -

- -

- -

765 4.696 

- -

935 4.032 

I __, 
__, 
0) 
I 
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The combination of Stanton's and Davidon's algorithms worked 

very efficiently up to£= O.lE-04, while Stanton's and Fletcher 

and Reeves' methods reached the final termination criterion, 

with the latter method being considerably faster than the 

second. Another interesting point is that the CGFRIN without 

linear search gave very workable results which were better 

than the CGST method in the first stages. 

The final displacements of example 3, using the CGBUC, 

CGFRIN and CGST methods, are shown in Table 4.10. The results 

again vary insignificantly between·the methods despite 

the difference in the final termination parameter. 

Table 4,11 and figure 4.5 show the convergence rates 

of the Buchholdt and Stanton methods when scaling and reinitial­

ization processes are applied, It can be seen that when the 

scaled termination criterion "QUOT-SC" is used the two methods 

almost coincide up to£= O.lE-03 and from then on CGBUC ceases 

improving, But when the unscaled true termination criterion is 

used Buchholdt 1 s method stops at£= O.lE-1. while Stanton 1 s 

method converges up to the final value of£ with almost the 

same rate of convergence as befcire. ·we can also see that the 

reinitialization process has a negligible effect on the CGST.-SC 

method and a marginal effect on the CGBUC-SC method, 

Table 4.13 shows that reinitialization every (N + l) 

steps for the CGFRIP method, when applied to example 3, did not 

improve the rate of convergence. The zig-zag behaviour of p 



METHOD 

node 

1 
3 

4 

7 
8 

13 
14 
15 

19 
20 

21 
23 

. 24 

25 

CGBUC (£ = O.lE-02} CGFRIN (£ = O.lE-04} CGST (£ = O.lE-07) 

X(ft) Y(ft) Z(ft) X(ft) Y(ft) Z(ft) X(ft) Y(ft) Z(ft) 

0.00000 -0.0222.6 0.37720 0 .00000 -0.02224 0.37714 0.00000 -0 .02224 0.37715 

0.00000 -0.06530 1.27218 0.00000 -0.06527 1.27194 . 0.00000 -0.06527 1.27195 

0.01455 -0.02921 0.73465 0.01456 -0.02921 0.73480 0.01456 -0.02921 0.73478 

0.00000 -0.08823 3.71902 0.00000 -0.08817 3.71972 0.00000 -0.08818 3.71972 

-0.01337 -0.04250 1. 73505 -0.01335 -0.04251 1. 73570 · -0.01335 -0.04251 1.73570 

0.00000 0.00891 · 1.72688 0.00000 0.00896 1.72772 0 .00000 0.00896 1. 72772 

0.01696 -0.01133 1 .26586 0.01696 -0.0113"3 1.26641 0.01696 -0 .01133 1.26641 

0.01576 -0.00190 0.74058 0.01577· -0 .• 00189 0.74087 0.01577 -0.00189 0.74087 

0.00000 0.02032 1.01835 0.00000 0.02037 1.01936 0.00000 0.0204 1.01935 

0.01685 0.00536 0.82975 0.01687 0.00538 0.83063 0.01687 0.00538 0.83062 

0.01854 0.00684 0.46540 0.01855 0.00685 0.4658 0.01855 0.00685 0.46580 

0.00000 0.01963 0.60678 0.00000 0.01967 0.60745 0.00000 0.0020 0.60744 

0.00926 · 0.00930 0.41979 0.00926 0.00933 OA2017 0.00926 0.00933 0.42002 

0.00000 0.01023 0.25478 0.00000 0.01022. 0.25482 0.00000 0.01022 0.25482 

Table 4.10. Example 3. Final displacements 

I ...... 
~ ...... 

I 



Termination 0.1 E-00 O. lE-01 O.lE-02 O. lE-03 Parameter e: 

METHOD Nit TIME Nit TIME Nit TIME Nit TIME· 

1 CGBUC-SC 5 0.040 13 0.104 25 o. 201 34 0.272 
QUOT-SC 

2 CGST-sc· 5 0.039 15 0.117 28 0.218 36 0.280 
QUOT-SC 

3 CGBUC-SC 14 0.095 307 1.860 - - - -
QUOT 

4 CGST-SC 19 0.128 32 0.208 40 0.257 47 0.301 
QUOT 

5 CGBUC-SC-R3 14 0.095 90 0.553 - - - -
QUOT 

6 CGST-SC-R3 19 0.127 32 0.208 40 0.257 47 0.301 
QUOT 

Table 4.11. Studies of Example 3 . 

O.lE-04 O.lE-05 

Nit TIME Nit TIME 

- - - - -

45 0.351 52 0.406 

- - - -

58 0.368 69 0.436 

- - - -

58 0.369 69 0.437 

O.lE-06 

Nit TIME 

- -

66 o. 515 

- -

78 0.492 

- -

77 0.486 

I __, 
N 
N 
I 
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CGST (RNORM ~O.lE-07) CGBUC (energy criterion) 

Node X(ft) Y(ft) X(ft) Y(ft) 

1 0.23972 1.6334 0.2398 1.6350 
2 0.34445 2.54673 0.3445 2.5486 
3 0.35334 2.73181 0.3534 2.7343 
4 0.30659 2.18763 0.3066 2.1910 
5 0.24498 0.91711 0.2449 0.9207 
6 0.23247 -0.42154 0.2323 -0.4180 
7 0.25872 -1.17735 o. 2385 -1 .1738 
8 0.26617 -1 .3540 0.2659 -1 .3514 
9 0.19825 -0.95792 0 .1981 -0.9570 

10 -0.29627 1.61924 -0.2965 1.6206 
11 -0.39836 2.52976 -0.3986 2.5322 
12 -0.37904 2.71777 -0.3793 2.7211 
13 -0.31317 2.17708 -0.3134 2.1815 
14 -0.27630 0.91038 -0.2764 0.9142 
15 -0.29428 -0.42668 -0.2943 -0.4237 
16 -0.31057 -1.18405 -0.3105 -1.1810 
17 -0.28988 -1.36223 -0.2898 -1.3601 
18 -0.1976 -0.96530 -o .1976 -0.9645 

• 

Table 4,12 Final displacements, example 2 

~ 0 1 
Every 
(N+l)it 

,0-2 292 295 372 

,o-3 527 483 1356 

,o-4 7298 7291 7942 

Table 4.13. Studies on the CGFRIP method, example 3 
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direction remained unaffected after one reinitialization, while 

reinitialization after every N+ 1 steps produced negative 

results. 

4.5. Conclusions 

The main objective of this chapter has been to find the 

most reliable and efficient conjugate gradient method for the 

nonlinear analysis of ·cable structures. As was expected, the 

methods with a ste~ length evaluated from a linear search 

procedure proved more efficient than the linearised conjugate 

gradient methods. Only the memory gradient method with a 

two dimensional linear search gave inferior results to the 

linearised methods for problems with a relatively large number. 

of degrees of freedom. When applied to small problems the 

method was competitive with the other methods and could prove 

even better when applied to optimization problems with only 

a few variables [67]. However, when the memory method was 

applied to the special eigenvalue problem (see Chapter 6}, 

where the function is homogenous and the two dimensional search 

can be performed analytically rather ·than iteratively, the 

efficiency of the method was greatly improved. 

The linear version of the conjugate gradient algorithm 

combined with a Newton Raphson iteration technique gave better 

results than the linearised methods. The current stiffness 

matrix is inverted on an elemental basis without the need to form 

and handle the overall stiffnessmatrix as in the stiffness 
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approach (see Chapter 8). This method is very straightforward, 

very easy to program. and combines the advantages of the 

conjugate gradient algorithm and the Newton Raphson approach. 

The second linear conjugate gradient method (CGFRIK) 

combined with the Newton Raphson approach, gave inferior results 

to the CGFRIL. One explanation could be that the inversion 

process generally destroys the sparsity of the matrix and 

the number of operations is increased. This method could be 

helpful when the inverse of a matrix is explicitly required • 

. In this case the inverse can be compactly stored in the non 

square matrix P(N,Nit)• where Nit is the number of executed 

iterations [115]. 

Of the two remaining linearized methods, the CGFRIN gave 

the more consistent results. In this method the residuals 

are updated in each iteration using equations (2.26, 2.27) 

instead of the recursive relationship of algorithm (3.11). 

The element stiffness matrices are also updated in each 

iteration such as to reflect their dependence on x. The method 

produced acceptable results for problems with moderate non­

linearity but when applied to more nonlinear problems the 

convergence rate worsened and sometimes the method failed to 

. converge. The CGFRIP method does not perform the multiplication 

K.p explicitly as in the CGFRIN method. Instead, the product 

K.p is obtained in the same way as the product Kx for the 

evaluation of the residuals. But although the required time 

per iteration was reduced by a factor of 4, the overall computer 
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time was increased. This happened because the approximation 

involved in the calculation of the product Kp deteriorated 

the conjugate gradient directions and worsened the zig-zag 

phenomenon. For this reason the reinitialization process 

after (N + 1) iterations did not improve convergence. A more 

positive effect from the reinitialization could have been 

produced if the reinitializations had taken place after more 

than(N + 1) iterations. 

The initial scaling and reinitialization techniques 

improved the convergence of the linearized methods, but not 

to the same extent as in the methods with a linear search 

a 1 gorithm. 

The nonlinear conjugate gradient algorithms, with step 

length algorithms produced almost similar results with the . 
exception, of course. of the memory gradient method. The 

Fletcher and Reeves algorithm, with the bracketing formula 

based on an estimate of the value o~ the total potential energy 

at the minimum, and with Davidon's cubic curve for evaluating 

the minimum along the search line, gave very competitive results 

for bigger values of the termination parameter e: • But as e: 

became smaller the rate of convergence deteriorated and the 

method ceased to become competitive. This phenomenon could 

be explained by the approximation involved in evaluating the 

minimum from the cubic curve (eq. 3.21). 

The combination of Stanton's bracketing algorithm and 

Davidon's cubic curve. gave the best results in example 3 
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and the worst results in example 2. It seems that the same 

approximations involved in evaluating the local minimum from 

the cubic curve, affected the convergence of the method in 

the same way as in the CGFR method for small values of the 

termination parameter E. 

Buchholdt's method proved a very powerful method. It 

is very easy to program and to implement and has the more 

simple and straightforward evaluation of the step length. 

The total potential enr~y is•approximated by a fourth order 
• 

polynomial with respect to the step length. The required 

minimum along the p direction is located from the solution of 

a third order equation produced from the differentiation of 

the total potential energy expression with respect to the 

step length. The method has also its limitations in that 

although there are significant computational advantages in 

the use of a 4th order polynomial expression for the total 

potential energy, higher order polynomials may have to be 

derived for different structural systems. 

Another disadvantage of Buchholdt's method is its 

inability to converge to small values of the termination 

parameter E. It is this lack of "well-behaviour" of the me"thod 

that makes the termination, based on the residual norm 

difficult to obtain for small values of the termination 

parameter E • The reason for .this inability of the method 

to converge to small t, it is believed, lies in the approximations 

involved in the evaluation of the parameters Ci of the 
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fourth order total potential energy polynomial. 

Stanton's algorithm for bracketing the solution and 

the consequent application of the regula fals1-bisection 

algorithm in the CGST method gave the most consistent results 

of all the conjugate gradient algorithms employed in this 

work. · The bracketing formula proved very efficient in all 

the applications of the method and the regula falsi-bisection 

algorithm needed only a few iterations to approximate the 

minimum. up to a workable accuracy. along the search line. 

Sometimes. however. accuracy in the evaluation of the step 

length could badly affect the convergence of the method 

(Fig. 4,4). The method has an excellent "well-behaviour" and 

produced always the same accuracy with the second order Newton 

Raphson method. It has also been applied to other type of 

structural problems with very successful results [262] • 
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CHAPTER 5 

RELAXATION METHODS 

5.1. Dynamic Relaxation 

5.1 .1. Historical Development 

The method was originally conceived when Day [88] 

noticed the similarity between the equations of tidal flow he 

had previously stu.died with Otter (~~] with the equations of 

damped elastic vibration. The technique of replacing the 

equations of continuity with the constitutive equations of 

elasticity, replacing the equation of fluid motion with the 

equations of motion, and then carrying out a step-by-step 

int'egration of the damped elastic oscillations of a structure was 

called "dynamic relaxation". 

The method is based on the fact that a system undergoing 
., 

damped vibration,excited by a constant force, ultimately comes to 

rest in the displaced position of static equilibrium of the system 

under the action of the force. The static solution of structural 

problems was then regarded as the limiting equilibrium condition 

of damped structural vibrations. 

Newmark [212] had previously commented on the possibility 

of detennining the static behaviour of a structure through a 

damped dynamic procedure. Later Chaundhury et al [75] and 

Hussay [224] proposed a damped Newmark method for the static 



-131-

solution, but the implicit integration scheme of Newmark 's 

method put the technique at a disadvantage compared with the 

explicit central difference formulation for dynamic relaxdtion 

[185] • 

The application of dynamic relaxation in the early years 

of its introduction was almost exclusively associated with 

the finite difference formulation in space of both the equations 

of motion and the constitutive relationships. It is in this 

form that the technique has been applied to the static analysis 

of a variety of engineering problems together with the 

implementation of interlacing nets to specify the stress and 

displacement variables. 

Otter [222] applied the method for the stress analysis 

of a pressure vessel and Otter, Cassel and Hobbs [223] for the 

. analysis of a cylindrical arch dam, using cylindrical polar 

coordinates. Rushton [248] studied the plane stress problem 

of tensile loading of a flat plate containing grooves. The 

small deflection bending analysis of thin plates was examined 

by Day [89] and Rushton [247] , while Cassel et al [69] and 

Peters [229] studied the application of dynamic relaxation to 

the analysis of cylindrical shells using full shell equations. 

Nonlinear material effects were first included by Holland 

{140] , who examined local stresses in prestressed concrete 

following a curvilinear stress-strain path up to cracking. 

Stamenkovic [275] examined a similar problem in a column-slab 

intersection. The large deflection of plates under transverse 



-132-

loading has been analysed by Rushton· [249. 251] • Cassel and 

Hobbs [71] • and Tuma and Ga 11 etly [288] ; whi 1 e the combination 

of material and geometric nonlinearities has been examined by 

Rushton and Hook [252] • An incremental load procedure has 

been used by Lowe and Flint [183] to investigate the collapse 

behaviour of a single span composite bridge. Basu and Dawson 

[20] analysed rectangular isotropic and orthotropic plates 

with significant shear deformations. 

Finite element spatial idealizations of dynamic 

relaxation have been less widely used. The first to use this 

method for the solution of linear simultaneous equations arising 

from the finite element idealization of plates were Lynch, 

Kesley and Saxe [185] •. Brew and Bratton [38] used dynamic 

relaxation for the analysis of plane frames subject to large 

deflections, elastic instability and plast1city. Their formulation 

employed the explicit. nature of the method by omitting the 

fonnulation of the overall stiffness matrix. Bunce and Brown [63] 
' 

also applied the method to the finite deflection analysis of 

plane frames. 

The first application to tension structures with geomet­

rically nonlinear behaviour was published by Day and Bunce [91] • 

Barnes Il2.13J applied the method to the analysis of large 

cable networks. He also extended dynamic relaxation to the form­

finding of networks, membrane and pneumatic structures [14,16] • 

In the field of optimization of the form of triangulated space 

structures the method has also been applied successfully by 
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Barnes [18] for the design of structures subject to a dominant 

loading, and further developed by Topping [285] to deal with 

multiple loading and deflection constraints. 

It is of interest to note that dynamic relaxation has 

also been applied to the solution of some transient problems ; 

i.e. a transient 3-dimensional thermal stress analysis [213] , 

the response of a beam to a moving load [298] , the dynamic 

analysis of tension structures [15,315] and a 3-dimensional 

application to rock mechanics [79] • 

5.1.2. Formulation of the Iterative Procedure 

The following discussion applies to the solution of a 

system of linear equations which results from the application 

of the stiffness method of structural analysis. The system 

of equations for which a solution is sought is given by 

Kx = F 

with the solution 

-1 x* = K F 

(5.1) 

(5.2) 

In order to achieve this solution by the method of dynamic 

relaxation, equation (5.1) is transformed into an equation of 

motion by introducing point masses and viscous damping forces 

at the nodes 

Mx + Cx + Kx = F (5.3) 

where Mand Care the mass damping diagonal matrices 

respectively and the dots indicate differentiation with respect 
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to time. 

Equation (5.3) is .then integrated for displacement 

response under the load F, until the system achieves a steady 

state equilibrium. Equation (5.3) may now be written using 

centred finite differences in time as 

+ [
•k+i ,k-2] k 

C x +x +Kx =F 
2 

where superscripts indicate time stations and his the time 

step. From equation (5.4) the recurrence equation for the 

velocities may be expressed as _, _, 

(5.4) 

;/+¼ = [t M+}: ] [tM- ½c}ik-¼ + [tM + {c ]lf-Kxk] (5.5) 
Since equation (5.3) does not have to represent the true 

dynamic behaviour of the structural system, but•is-merely a 

means to arrive at the steady state response of the static 

solution, the selection of the parameters involving mass, damping 

and time step is in principle arbitrary. Both mass and 

damping.matrices are assumed to be proportional to the main 

diagonal terms of K 

M = pO and C = cD (5.6) 

with D being the diagonal matrix of the main diagonal terms 

of K. 

Using equation (5.6), equation (5,5) becomes 
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•· 

. k+l 
X 2 = 

t
2 eh] -- 7 x k-i 

2 + £b. 
p 

(5.7) 

Using the standard central finite difference form for the 

relationship between displacements and velocities, the equation 

for x k+ 1 becomes 

k+ 1 k h • k+i X = X + X (5.8) 

Equations (5,7) and (5.8) represent the iterative process 

for the finite element formulation in space of dynamic 

relaxation. Starting with an initial approximation of zero for 

the displacements and assuming that the velocities at the start 

of the iteration obey the relationship 

(5.9) 

calculate the new velocities from equation (5.7) and subsequently 

from equation (5.8) the new displacements. This iterative 

process is carried out until both the velocities and the 

residuals 

R = F - Kxk (5.10) 

reach acceptably small values. 

5.1,3, Asymptotic convergence of Dynamic Relaxation 

The subsequent analysis is due to Lynch et al [185] 
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who transformed the iterative process into a standard eigen­

value problem for error vectors and examined quantitatively 

the convergence of the method. 

Any basic iterative method can be expressed as 

(5.11) 

where His the characteristic matrix of the iterative method. 

Subtracting the true solution given by equation (5.2) from 

equation (5.11) we obtain the relationship between successive 

error vectors • 

k+l M £k £ = (5.12) 

where 

£k = X k - x* 

M = (I - H o-1K) 

x* is the true solution vector 

Convergence for the purpose of this discussion will refer 

to the rate at which the error vector decays with each iterative 

step. If the parameter A gives this rate, then 

k+l 
A e:k (5.13) £ = 

and substituting equation (5.13) into equation (5.12) gives 

[ AI - M ]e: = 0 (5.14) 

If Mis N x N, there are N eigenvalues Ai and N associated 

eigenvectors that ·control the way in which the error vector 
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converges to zero. In the complete process only the error 

mode with the largest modulus Ai need be considered since 

this dictates the asymptotic rate of convergence. 

Turning now to dynamic relaxation, after substituting 

equation (5.7) into equation (5.8), the expression for xk+l 

becomes 

with 
2h

2 
2 - .£!! 

p p 
(5.16) a = t y = 

2 + E.!!. 2 + E.!!. 
p p 

Subtracting the true solution given by equation {5.2) from 

equation (5.15), gives 

k+ l k k k-1 B k 
e: - t = ae: - at - Y £ 

where 

which can also be written as 

£ k+-1 = [ SI -

with 

S = a + l 

yB] e: k -
k+l 

at 

Equation (5.13) can also be written as 

{5.17) 

{5.18) 

(5.19) 
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Substituting these relations into equation (5.18), the eigen­

value problem in terms of the error vector can be stated as 

e: = 0 (5.20) 

If >-;s denotes the N eigenvalues of B given by 

(5.21) 

then from equations (5.20) and (5.21) comes the following 

rel a tio'n · 

Therefore the roots of equation (5.22) will be 

(a -2..,,>-s\ {a) Complex conjugate if \---; < a 

( a -2 y>.B) = a (b) · Two equal. roots if \ 

(c) Two unequal roots if ( ~ : yA ~ > a 

(5.22) 

With complex conjugate roots the modulus >-oR is 

independent of >. 8 and is given by 

= fa = 
2 _ eh 

p 

2 + eh 
p 

(5.23) 



The roots will be real when 

2 2 
C h 
--z­

p 
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(5.24) 

While for the two unequal roots the modulus of the larger root 

is given by 

2 2] 
+ C p ~ (5, 25) 

Figures 5.1 and 5.2 show graphically the relation of 

the largest modulus of ADR to eh/ for constant values of 
. p 

h2 h2 
A B - ' and to A B -

p p 

eh for constant values of respectively. 
p 

5.1.4. Evaluation of the Optimum Iteration Parameters 

The optimum parameters are those which give the best 

asymptotic convergence or the minimum IAoRI' Figure 5.3 
2 

shows that for a given value of the parameter ABh /P the 

minimum ~oRI is obtained when the roots of equation(S.22) 

are real and equal. Therefore the value of eh~ that gives 

two equal roots is considered analogous to critical damping. 
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2 
>. ,b_ 

--------, B P 

complex 

real 

real equal 

eh -p 

Fig. 5.3. Graphical representation of the critical damping 

Figure 5.2 shows that the two equal roots are symmetrical 

about the ordinate where .. >. 8h2
/P is equal to 2.0, and also 

.that they are associated with the lowest and highest eigenvalues 
. h2 

of B. So the optimum parameter / is chosen in order to 
p 

make the two parameters >. 8 max h
2

~ and >. 8 min h
2

~ symmetrical 

about the ordinate 2.0. This is achieved by the expression, 
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(hp
2

) = 
.opt 

4.0 (5.26) 

Then using equation (5.26), equation (5.24) will give the 

optimum parameter ch;P as 

= 
4/ >-s max - >-s min 

>-s max + >..B min 
(5.27) 

This strategy will guarantee that all error modes are decaying 

• at exactly the same rate, 

The optimum convergence achie~able in the dynamic 

relaxation iteration can be expressed by substituting the 

optimum value of chip given by equation (5.27) into equation 

(5.23) 

I >-oRl opt = 

where p = 

Ip - 1 
Ip+ 1 

, is the condition number of B. 

5.1,5. Stability of Dynamic Relaxation 

(5.28) 

Instability in any iterative method will occur when the 

~argest modulus >..i of equation (5.14) is greater than one. 

In this case the magnitude of at least one error mode is being 

increased each cycle. The number of cycles required for 

manifestation of an instability in the process, will depend on 

how many other nodes have moduli greater than one and the initial 

magnitudes of those error modes. 
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From Figure 5.1 one can see that whatever the value of 

the parameter chip the modulus of ADR is always less than 

one. Referring to Figure 5.2, instability will occur when 

the parameter h
2

~ is chosen so that ABmax h
2

~ > 4.0. 

To avoid instability ABmin must always be an upper bound of 

the eigenvalues of the current or tangent modified stiffness 

matrix B = □- 1 K. This will ensure that the actual maximum 

eigenvalue times h2
/ will in fact be less than 4.0 for 
p 

stability, and that the associated root, although now complex, 

will be very close i~ magnitude xo the optimum of two equal 

real roots. 

Another way to avoid instability would be to reduce the 

time increment by using a percentage of the original h, or to 

use a larger coefficient p. In such cases again the product 
h2 

of the maximum eigenvalue times ~ will be less than 4.0. 

The estimation of the minimum eigenvalue does not affect 

the stability of the method (Figure 5.2.). For reasons of 

convergence only it is desirable that Amin should be smaller 

than the actual one. Again by referring to Figure 5.2. it can 

be seen that, from the point of view of convergence, this adjust­

ment makes the associated root of the iterative procedure· 

complex but close in magnitude to the optimal two equal roots. 
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5.2. Methods with Three Term Recursion Formulae 

S. Framkel [114] was probably the first to propose a 

recursion formula for relaxation which makes use of the 

predecessors of xk. He called this method "second order 

Richardson process". 

The general form of a 3-term recursion formulae is 

given by 

xk+l = xk + 6\ 
(5.29} 

6Xk = l 
(- Rk + 6X k- l) , k = 0,1,2, ••• - ek-1 qk 

with ek-1 = 0 for k = O 

and R k+ l = Kx k+ l - F (5.30} 

The q·k and ek-l are the relaxation coefficients - they 

are characteristic of the method. 

A flow diagram is given in Figure 5.4 which is valid for 

all the 3-term recursion formulae methods. 
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j,--..-1 STOP I ---------
Check for end 

Fig. 5.4. Flow-diagram for general three term iterative method 

The residuals can be computed either from equation (5.30) or, 

in linear cases, recursively by 

(5.31) 

tiRk 

frankel 's method uses the following values for the 

parameters q and e 
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a + b 
2 , e_1 = O fork= O 

(5.32) 

q = (ra+ 16') 2, e , = (ra- 16")2 
k 2 k- 2 

fork> 0 

where a,b are upper and lower bounds of the eigenvalues of 

matrix K. 

Flanders and Shortley [106] proposed the fo 11 owing 

choice for the parameters q and e 

qo 
a + b 

e_1 = o fork= 0 = 2 ' 

qk_ b - a coshqk+l )w] b - a \+l = 4 = 4 T cash kw} 

for k > O 

\-1 = b - a cash k-1 w b - a ~ = 4 4 cos kw tk 

where 

cash w b + a = b - a 

and 

\ = Tk (f(O)) (5.34) 

with Tk denoting the Tchebycheff polynomial of the first kind 

of degree k, and 

f (z) = b + a 
b - a 

z 
- 2 6 - a 

Equations (5.33) for large k can be written as 

(5.35) 

(5.33) 
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2 
= (lb+ la) 

2 

1 im q k 2 , 
K 

1 im e k = cla 2 lb ) 
K 

(5.36) 

Young [311] optimized a semi-iterative method given 

by Varga [294] in terms of the minimum and maximum eigenvalues 

of the iteration matrix based on the use of Tchebycheff 

polynomials. If the iterative method is given by 

x = Gxk + K k+l (5.37) 

with K = (I - G)K-lF 

then 

where 

with 

xk+l = wk+l [ wo(Gxk+K) + (1 - wo)xk] + (1 - wk+l)xk-1 

(5.38) 

= 2 
WO 2 - M(G) - m(G) (5.39) 

(ill = 1 

.: 2/ 
w2 

2z2 
- 1 

(5.40) 

1 -1 
wk+l = ( 1 - 41 wk) K = 2,3 ••• 

z = 2 - M{G} - m{G} 
M(G) - m{G) 

and M(G) being the maximum eigenvalue and m(G) the minimum 

eigenvalue of G. Young called this method Jacobi semi-iterative 

method. 
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In the sequel, the methods listed under this Chapter 

will, for obvious reasons, be called Tchebycheff methods. 

5.3. Relation Between Dynamic Relaxation and Tchebycheff 

Methods 

The general 3-term recursion formula given by equations 

(5.29) can be also written as 

or 

or 

Rk. (ek-1 \ 
_xk+l - xk-1 = - - + - + 1/ (xk - xk·l) (5.41) 

qk qk. 

The recursive equation (5.7) for dynamic relaxation can be 

written in terms of increments of displacements as 

= .(, - 7) 
( l + eh) 

p 

. 2 
h 

(1 + E.b.) 
p 

{5.42) 

Substituting equations (5.26) and (5.27) into equation (5.42) 

1 2/ab 4 - (a+b) ~a+6} D-1R-ti\ = tix l - or 
+ 2/a"b k· + 2/ab k 

1 1 (a+b) (a+b) 



2 
= (/a - lb) t.X 

2 k-1 
(/a+ lb) 

-150-

4 
(/a + /6)2 

(5.43) 

The unscaled version of equation (5.43), with M = p I and 

C = cI instead of equations (5.6) can be written as follows 

2 
= (la - lb) 

2 
(la + lb) 

4 
t.Xk-1 - 2 

(la+ lb) 
(5.44) 

with a and b this time being bounds to the maximum and minimum 

eigenvalue of K. 

A comparison of-equations (5.41) and (5.44), shows that 

dynamic relaxation is a 3-term recursive formula with 

= 4 
2 ( ra + lb) 

= (la- lb) 
(la + lb) 

= ( /a + lb) 2 
_ (la ._ 16)2 

qk 2 and ek-1 - 2 

2 

or 

(5.45) 

which are exactly the values for the iteration parameters of 

Frankel's method. 

Following the same procedure, the relationships between 

the parameters of the 3-term recursive formulae and Jacobi semi­
iterative method are as follows: 

...!.. = and ek-l · + l or 
qk wk+l wo qk = wk+l 

l 
and ek-l . = {5.46) 
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With the iteration matrix being equal to I - K 

M(G) = 1 - b and m(G) = 1 - a 

and subsequently 

2 w = o a + b and a + b 
z = a - b 

(5.47} 

(5.48) 

5.4. Relation Between Conjugate Gradient and Tchebycheff 

Methods 

The recursive relationships of the conjugate gradient 

method can be written as 

(5.49) 

Combining equations (5.50) and {5.49) we obtain 
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Equation (5.51) has the same form as the general 3-term 

recursive formula of equation (5.41) with the following 

correspondence between the iteration parameters 

ek-1 
and ek 1 = -

- qk-1 
(5.52) 

From the development of the last two sections we 

can draw the conclusion that dynamic relaxation. Frankel 1 s 

method, Tchebycheff method and conjugate gradient method may 

all be regarded as belonging to the same category of iterative 

methods, namely the 11 3-term recursive formulae". 

5.5. The Residual Polynomial 

For any of the methods discussed in Section (5.4) we have 

k 

xk+ l = xk + I: ck . Rj 
j=O ,J 

( k = 0 • l , 2 , ••• ) ( 5 • 53 ) 

with ck• k I 0. By multiplication with K we obtain 
k 

Rk+l = Rk + L ck,j K Rj {k = 0.1.2 •••• ) (5.54) 
j=O 

Equation (5.54) can also be written [94] as 

(5.55) 
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Where the Sk{A) are polynomials of degree Kand they are 

called the residual polynomials of the iterative method. The 

Sk{A) obey the recursion formula 
k 

sk+l(A) = Sk{A) + A~ ck J. Sj(A) 
J=O • 

(5.56) 

with 

and Rk(O) = 1 for all k. 

The most important property of the residual polynomials 

• is that t~ey allow estimates for the length of the error vector 

of the k-th approximant 
-1 xk - K F 

which are otherwise difficult to obtain. For this purpose we 

consider the spectral decomposition of the error vector of x
0 

N 
X - K-lF ~ o = L cjuj 

j=l 
(5.57) 

where uj are eigenvectors to the N eigenvalues A(j = 1,2, ••• ,N) 

of the matrix K. Then 

-1 xk - K F = 

(5.58) 

which may be expressed as follows : After k steps of an iterative 

method with residual polynomials Sk(A), the contribution of 

any eigenvalue to the error vector is reduced to the Sk(Aj) -

fold of its original value. Therefore, in order to obtain 

optimal convergence, and if an interval a~ A~ b with 
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a> 0 containing all eigenvalues is known, then the best 

procedure would be to choose S such that Sk(A) ~Oas fast 

as possible for all A1 S in (a,b). 

5.6. The Conjugate Gradient - Tchebycheff Method 

Considering the original linear system 

Kx+b = 0 (5.59) 

being multiplied by B = K-l [I - S(K)], where S(A) is a 

polynomial with S(O) = 1. Then the original system (5.59) 

is transformed into 

K*x + e = o (5.60) 

where 

K* = I - S {K} 

e = K-l [I - S{K)] b 

Let us now proceed to the solution of equation ~.60) 

starting with an initial approximation t
0

, and compute the 

residuals first 

(5.61) 

But the matrix K* is not explicitly known and neither is the 

product· K*t
0

• In order to evaluate the residual Po we solve 

the original system (5.59) with another iterative method called 

the inner method, starting with x
0 

= t
0 

,then 
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(5,62) 

and according to equation (5.55) 

Rm= Sm(K) R0 

= Sm(K) (Kto + b) (5.62) 

where Sm(K) is the mth residual polynomial of the inner 

method, so that 

Hence 

(5,63) 

= K~ +e =p 0 0 
{5.64) 

Therefore after m-steps of the inner method for the 

solution of Kx+b = 0 with the initial approximant x
0 

= t
0

, 

the residual of the modified system {5.60) is given by 

(5,65) 

Furthermore, we have to compute for every step of the 

outer method, which operates into the modified system (5.60), 

the coefficients qk and ek according to the iterative method 

used and the new residuals. 

In the linear case the residuals can be computed by 
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(5.66} 

where 

and the new approximant by 

(5.67) 

Equation (5.66) requires the product Kpk which 

again is not explicitly available. This may be done by 

solving the system Kx + pk = O with the inner method. 

beginning with the inital approximant x
0 

= O. Doing so, we 

get 

Therefore, combining equations (5.68) and (5.69) 

= K*p k 

The residual polynomial Sm(A) generated by the inner 

method as well as the integer m, must be strictly the same 

for the computation of p
0 

and all Kpk. Therefore methods 

like the conjugate gradient for which the coefficients qk and 
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ek depend on the choice of the initial vector x
0

, can not 

be used as inner methods. Furthermore, the matrix 

K* = I -S(K) must be positive definite, which means that 

sp .. ) < l for all A= Ai, For the Tchebycheff methods 

this condition is automatically fulfilled, provided bis 

an upper bound for the eigenvalues of Kand also a> O. 

The above limitations are sufficient to define the 

choice of the inner and outer methods as follows 

Conjugate gradient method as outer method 

a Tchebycheff method as inner method 

Figure 5.5 (after Engeli et al [94] ) shows the range 

of the eigenvalues before and after the transformation using 

the method of Flanders and Shortley as inner method. 

Eigenvalues of K 

a 

Fig. 5.5. Spectral transformation for the conjugate 
gradient - Tchebycheff method 

b 
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In nonlinear cases equation (5,66) for the evaluation 

of the residuals is no longer valid. For this reason the 

whole process for the evaluation of p
0 

must be repeated after 

each iteration of the outer method, in order to have estimates 

for the residuals pi, The flow diagram of the conjugate 

gradient - Tchebyscheff method is shown in Figure 5,6, 

5.7. Assessment of the Dynamic Relaxation Parameters 

The majority of dynamic relaxation parameters were 

performed in the unscaled version of equation {5.7) 

where 

X k+i = 

eh Q = W; 

~l - Q/2~ 1 + Q/2 
· k-i X h Rk 

(1 + Q/2) (5,71) 

The stability of the method was ensured when the time increment 

was less than a certain critical value. For finite difference 

idealizations Otter, Cassel and Hobbs [223] used a stability 

criterion proposed by Forsythe and Wasow {316] • 

(5.72) 

where d denotes the faster velocity of either the pressure or 

shear wave, and Ax11 ••• Axn are the mesh lengths in the 

coordinate directions. 
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Evaluation of K*pk 

X = 0 
0 

m iterations with the 
inner method in the system 
Kx + Pk = 0 

Evaluation of q ,e _1 

tk+l = tk + 6;k-l 
6;k-l = .J.. (-pk+pk-1 6tk-1) 

.___ __ i=i+ 1 -------l Check for end STOP 

Fig. 5.6 Flow diagram for the conjugate gradient 
Tchebycheff method 
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Barnes [13] has introduced bounds for the time 

increment, using finite element idealizations, as follows 

~ 
h crit ~ / S:­

Si 
{5.73} 

where Si is the direct stiffness (or leading diagonal 

component} relative only to adjacent nodes. 

Cassel and Hobbs [71] proposed another expression for 

the critical time increment derived from the direct comparison 

of dynamic relaxation with Frankel's method 

2 
h ~ 

4Mi 
a + b 

4M. 
1 

°G 
(5.74) 

where bG is an upper bound of the sum(a + b), usually taken 

from the Gershgorin bound theorem. 

The evaluation of critical damping has always produced 

some difficulties because it involves the evaluation of the 

minimum eigenvalue or the fundamental frequency of the structure 

which is not easily obtainable. The critical damping can be 

expressed as 

K crit = a + b 

whi eh for a < < b can be written as 

K crit = 4~ _ 4 f mi n 
- f max 

(5.75) 

where f min and f max are the minimum and maximum frequencies 

of the structure r_espectively. 



-161-

An alternative expression for the critical time increment 

is 

h crit = l 

w f max 

which makes the critical damping parameter 

K crit =· 4 wf min h crit (5.76} 

proportional to the fundamental frequency times the critical 

time increment. This expression agrees with the optimum 

value of K based on the dynamic heuristic of critically 
• 

damping the fundamental mode (Rushton [247] }. The structure 

then is allowed to vibrate in a trial run with zero damping 

until a periodic response of the deflections or the total 

kinetic energy is observed which yields the fundamental frequency. 

This procedure has the disadvantage of the uncertainty 

involved in knowing" a priori "the required running time 

with zero damping in order to develop a periodic response. 

Sometimes the number of iterations for the trial run needed to 

develop a periodic response exceeded the number of iterations 

required for the solution itself [71] • 

To avoid trial runs Lynch, K~lsey and Saxe [185] 

proposed an ongoing alteration of the iteration parameters. 

Starting with a rough estimate for the damping parameter, when 

a check on the curvatures of the deflection vector norms for 

each coordinate direction indicated that the process was 

overdamped, a change in parameter was made •. Similarly changes 

were made each time an alteration in the sign of a displacement 
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norm indicated underdamped behaviour. The amount of adjust-
h2 eh ments to be made in the parameters / and / , 

p p 

once the need for it has been determined, was largely dictated 

by how accurate the estimate of the minimum eigenvalue was 

considered to be. 

The process proposed by Lynch et al was used for linear 

plane stress problems and conclusions were uncertain to the 

extent that large adjustments could take the parameters 

beyond'their optimum values and give inferior convergence to 

that of analyses using constant parameters in the correct 

region. 

5.8. 11 A Priori II Evaluation of Dynamic Relaxation Parameters 

For the evaluation of the required bounds to the minimum 
• and maximum eigenvalues of the iteration matrix one of the 

methods to be discussed in Chapter 6 could very easily be 

emp1ored. When the iteration matrix is the stiffness matrix 

K then the application of special eigenvalue methods 1s stra1ght­

forward. But in the case which the scaled version of the 

dynamic relaxation, given by equation (5.7) 1s used, then 

a modification should be made to the iteration matrix B. 

As all the methods to be discussed in Chapter 6 operate 

much more easily and efficiently in symmetric matrices, we 

transform the non-symmetric iteration matrix B = o·1K to a 
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symmetric one by multiplying the original equation (5.3) by 

which after substituting the values of Mand C from 

equations (5.6) we obtain 

( 5. 77) 

{5.78) 

If in the above equation we replace vector x by another 

vector x 1 such as 

x' D2x x' 02x and x• ¼·· = = = D X • 

then equation {5.78) becomes 

.. .. 
+ o-i K o-i o-¼ F p X I + ex' x' = or 

.. . o-i {5.78) p X I + ex' + K'x' = F 

Equation (5.78) is equivalent to equation {5.7) but the 

iteration matrix Bis symmetric and given by 

B = K1 = o-i K o-i (5.79) 

However, as an alternative to an "a priori" evaluation 

of the iteration parameters of dynamic relaxation, an ongoing 

process has been developed by the author in the next section, 

which proved to be very efficient for the nonlinear problems 

that have been investigated in this work. 
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5.9. Automatic Adjustment of the Dynamic Relaxation 

Parameters 

In nonlinear structures and in particular in cable 

structures the need for an ongoing process for the adjustment 

of the parameters of dynamic relaxation becomes of paramount 

importance. The initial estimated values for the minimum 

and maximum eigenvalues from one of the methods to be 

described in Chapter 6 are no longer valid as the iteration 

process continues up to the final configuration of the 

structure. Large changes in the eigenvalues of the stiffness 

matrix could lead either to very slow convergence or more 

frequently particularly for cable structures, to divergence 

of the method. 

In the majority of problems concerning the analysis 

of cable structures the maximum eigenvalue becomes greater 

as the structure deforms under the application of the external 

loads. This is a characteristic of stiffening systems. When 

the maximum eigenvalue becomes greater than the estimated 

bound then instability occurs. 

An upper bound for the maximum eigenvalue may be 

determined from the Gershgorin theorem, which states that 
N 

~ max 
i 

j!;- I Kf j I (5.80) 

where K . are the elements of the stiffness matrix. This . iJ 
evaluation can be performed very easily at any stage of the 

iteration process. 
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Therefore, starting with an initial value for AB max 

from equation (5.80), a new estimation is obtained either by 

reapplying equation (5.80) with the current values of the 

stiffness components Kij' or by increasing the previous 

value of AB max by a certain amount, according to the 

degree of nonlinearity of the structure, when a check on 

the curvatures of the deflection vector norm or the velocity 

norm indicate an oscillatory behaviour. 

After establishing AB max, and if the iteration 
2 

parameters h /P and c\:i are so chosen that the ).DR 

associated with ).B min is real and given by equation (5.25) 

then this value of ).DR is the dominant eigenvalue of the 

iteration process and can be estimated as follows 

( 5 , 12 ) wh i c h i s 

may be written as 
• 

xk+l - x* = M(xk - x*) (5.81) 

or similarly 

xk - x* = M(xk-l - x*) (5.82) 

Equation 

where x* is the exact solution,vector. Subtracting equation 

(5,82) from equation (5.81) gives 

k+l k k-1 
X - x* = M(x - X ) (5.83) 

The above equation represents the same eigenvalue 
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problem as that given by equation (5.13) , with the 

difference that it is in terms of successive correction 

vectors rather than error vectors. A series of approximations 

to the dominant eigenvalue ADR can be obtained by calculating 

the quotient 

AOR = 
!xk+l_ xk! 

lxk - xk-1 I 
(5.84) 

When the quantity given by equation (5.81) has converged 

to a relative constant value, it means that the dominant 

eigenvalue is the minimum eigenvalue and is given by the 

solution of equation (5.22) with respect to A8, 
2 

A -A B+a 
DR DR A = B (5.85) 
AOR y 

The above estimate of AB min can then be used in 

equations (5.26) and (5.27) to evaluate the optimum iterations 

parameters. 

When the initial estimate of AB minis greater than the 

actual minimum eigenvalue, then the.dominant eigenvalue given 

by equation (5.84) will correspond to a real root of equatio~ 

(5.22) and subsequently will give a real value of the estimated 

minimum eigenvalue of equation (5.85). If, however, the 

initial estimate of AB minis much less than the actual 

minimum eigenvalue then the dominant eigenvalue will correspond 

to a complex conjugate root of equation (5.22) and subsequently 
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equation (5.85) will produce a complex root for AB min. 

This situation can be very easily avoided by increasing the 

initial estimate by a certain factor when a complex root for 

AB minis detected. This procedure is repeated until a real 

root for the estimated minimum eigenvalue is calculated from 

equation (5.85). 

Two very important parameters to watch in any iterative 

method are the current convergence rate and the optimum 

convergence rate. Enge 1i et a 1 [94] introduced 

the convergence quotient for the Tchebycheff methods as 

-w lb - la e = 
lb + la 

(5.86) 

which is the same expression given by Lynch et al [185] 

for the asymptotic convergence of dynamic relaxation, given 

by equation (5.23), as 

I A I -/ 1 - c h/ p DR - 1 + ch/p (5.87) 

The optimum convergence rate is given by the value of 

the parameter w 

(5.88} 

On the other hand the expression - tn (AoR} , with 

ADR given by equation (5.84), is a measure of the current 

convergence rate of the method. Thus, the value 
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(5.89) 

is an estimate of the ratio of current to optimal convergence 

rates. 

If during the iteration process the value of Qk becomes 

greater than one. this means that the current convergence 

rate is greater than the optimal. This automatically suggests 

that an instability process has started to develop in the 

method. In such cases the iterations are continued without 

changing the iteration parameters to those with the possibility 

of inducing an instability effect in the method. A flow 

diagram of the whole process discussed in this Section is 

shown in Figure 5.7. 

6.10. The Use of Kinetic Damping 

Cundall [80] examining the application of explicit 

integration methods to problems in geomechanics. suggested 

that the kinetic energy of the structure be constantly 

monitored. and that when an energy peak is detected all the 
. 

current velocities to be set to zero. For a system oscillating 

in one mode. this state of stress would be the static equilibrium 

position. which coincides with a peak of the total kinetic 

energy curve. However. for practical problems with many degrees 

of freedom. the process must be repeated through further peaks, 
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eliminating the kinetic energy for all the modes, until the 

required degree of accuracy is obtained. 

Using this method the viscous damping coefficient of 

equation (5.3} is neglected and the original equation of 

motion becomes 

Mx + Kx = F (5.90} 

Integrating equation (5.90} in the same way as equation 

(6.3} we get 

• k+i • k-i + h 0-lRk X = X (5.91) 
p 

and 

xk+l 2 
0-1 Rk = xk + .b._ (5.92) 

p 

Following the same process as in Section 5.1.4. , the 

optimum value for h2
/ is 

p 

2 

(1;-) = 
opt · 

4.0 
>-Bmin + >-smax 

(5.93} 

4.0 = °G 
Here again, the sum of AB min and AB maxis replaced by 

the Gershgorin bound bG. 

When the time increment is kept constant throughout 

the iteration process, an energy peak could be detected at 

each successive time step, and in this case the structure 
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is oscillating about the equilibrium state with a constant 

frequency. To overcome this difficulty, the time step is 

reduced to half of its current value every time an energy 

peak is detected until the iteration process returns to its 

normal. convergence. Once this has been achieved the time 

increment is reset to its original value. 

A flow chart of the method is shown in Figure 5.8. 

5.11. Successive Overelaxation 

Varga [294] lists the three basic iterative methods 

as the point Jacobi, Gauss-Seidel and successive overelaxation • 

. A general form of the basic iterative method is 

xk+l - xk = H [ C - Bxk.] 

with the following notation 

point Jacobi 

Gauss-Seidel 

Successive overelaxation 

where 

B = o·1K 

C = o-1F 

and w is a relaxation parameter 

H = 1 

H = (I + L)-l 

-1 H = w(I + wL) 

(5.94) 

Equation (5.94) may be alternatively expressed in the 

following form 
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Fig. 5.8. Flow short for the dynamic relaxation with kinetic damping 
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xk+l = HC + (I -HB) xk or 

(5.95) 

with matrix M being the characteristic matrix of the iterative 

method. 

The asymptotic convergence of the above methods may be 

obtained in the same way as in dynamic relaxation. The 

comparison of the asymptotic rate of convergence between the 

methods is valid only when the system of equations have a 

coefficient matrix which possesses the property "A" or is 

tridiagonal, b~cause only under this assumption it is possible 

to obtain explicitly the asymptotic convergence for the successive 

overelaxation method. 

' 
IAPJI ~ ~1 = IADR I= p+ l p 

2 I I (fr:l). I >-Gsl = (f+i°) >-soR .= -Ip+ 1 

Table 5.1 Asymptotic convergence rates for 
four iterative methods 
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Table 5.1 shows that successive overelaxation is twice 

as fast as dynamic relaxation and that the same relationship 

exists between Guass-Seidel and point Jacobi methods. 

The original linear system of equations Kx = F can 

be also expressed as 

(5.96) 

Using the above expression, for the case of the successive 

overelaxation method, equation (5.94) can be expressed as : 

k+l k · k+l k k 
K; ixi = K .. x. + w - L K .. x. -~ Kijxj +fi-kijx,. 

[ 

i-1 N J 
,, 1 j=l 1J J j=i+l 

· ( 5. 97) 

Equation (5.97) is slightly modified in order to be 

applied to the nonlinear analysis of cable structures. If we 

add and subtract from the right hand side the sum 

j-1 

L K .. x.k 
j= l 1J J 

then equation (5.97) becomes 

k+ 1 k t i:J k+ 1 k ~ k k K; ixi = Ki ix + w - 2__ Kij (xj -xj ) - 4- K;jXj +f; ·K11X; 
_J=l j=1+l 

X k+l = X,k + -r}:E-
i 1 "-'., 

.11 [ 
i-l k+ 1 k k] 

- ~ K;j (xj - xj ) + R 
j=l 

(5.98) 
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where Rk is the current residual Rk = F - Kxk. 

Equation (5.98) reduces to the Gauss-Seidel iteration 

method when w = 1. 

5.12. The Successive Overelaxation Parameter 

Unfortunately, there is no algebraic expression available 

for the optimum parameter {wept) when the iteration matrix 

does not possess the property "A". For this specia 1 case 

Young [310] proposed an expression which Lynch et al [185] 

also produced using a standard eigenvalue analysis. It can 

be shown that when 

2 (5.99) 

where 

'-pJ = l - '-s 

all the eigenvalues of the successive overelaxation method have 

the same modulus. The optimum convergence rate is then given 

by 

l'-soRI 
. . 

= wept - 1 = 1 _/1 -). 
2
PJ max 

l +/ 1 + >.
2
pJ max 

=(rp:., J2 
\ii;-+1 / 

(5.100) 

Equation (5.99) automatically imposes a limitation to the 
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parameter IApJ I of being less than one, which in turn requires 

that 

(5.101) 

If w <wopt. then ASOR is a real eigenvalue of the 

iteration matrix 

M = [D - wL]-l [(l - w)D + wU] (5.102) 

where K = D - L - U 

and satisfies the relationship [310]: 

2 2 2 
ApJ max = (ASOR max + w - 1) / {w ASOR max) (5.103) 

Schwarz (257] has shown that for gener·a 1 cases with 

matrices not possessing property 11A11 and for linear analyses, 

successive overelaxation·always converges provided the 

relaxation parameter is given by 

0 < w < 2 

5.13. Automatic Adjustment of the SOR Parameter 

In what follows it was assumed that K is a consistently 

ordered 2-cycl1c matrix. Hageman and Parching [132] have 

suggested the following algorithm. 

If 6k = xk - xk-l and ek = xk - l denote the 

difference and the error vectors respectively, then for linear K 
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( 5 .104} 

(5.105) 

(5.106) 

Moreover, if w <wept. the power iterative eigenvalue 

process (5.104) is convergent so that 

1 im 
k-+- co • 

ll 5k+lll. __ 
~ P ( M) 

ll 5 11 

where p(M) is the spectral radius of M. 

Thus for w < wopt it is natural to consider 

4 II 6 - II 

(5.107) 

( 5. l 08) 

as an approximation to p(M). Then using equations (5.99) 

and (5.103), estimates for 

value for w, are given by 

2 
ApJ max and wN• the new 

. k 2 2 k 
ApJ max = ( q + w - 1) / (w q) (5. 109) 

and 

2 

l + /, - 'i"p~ max 

(5.110) 

The optimum convergence rate in this case is - in 

( w - 1) and the current convergence rate is - in (qk). 
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Here again. as in the case of dynamic relaxation the updating 

of w takes place when qk converges to a relatively constant 

value and the quotient 

k k 
Q = - .2.n(q} / - .e.n(w - l} (5.111) 

is less than one. 

Carre [68] has proposed another algorithm for the 

evaluation of the optimum parame_ter. The strategy he employs 

is given below: 

(a) Do l iteration using w = l .O 

(b} Do 12 iterations using w = 1.375 At the end of 

these 12 iterations compute a new Wt say Wet using 

equations (6.109) and (6.110). 

(c} Do 12 iterations using w = we - (2 - we)/ 4.0. 

At the end of 12 iterations compute a new we using 

again equations (6. 109} and (6.110). Let t.wc be 

the arithmetic difference between this we and the 

previous one. If t.wc / (2 -.we) ~ 0.05 1 go to step 

(d) and if t.wc/(2 - we) > .0.05 repeat step (c}. 

(d} Do subsequent SOR iterations with w = we· 

5.14. Application of the Successive Overelaxation Method to 

Cable Structures 

As we can see fro~ equation (5.38} the successive over-
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relaxation method is not an un-coupled iterative method as 

are the Tchebycheff and conjugate gradient methods. 

Members of the stiffness matrix exist in the right hand side 

of the equation and this creates some difficulties in non-. 

linear applications of the method. In structures with large 

nonlinearities the stiffness matrix is recalculated after a 

certain number of iterations and new stiffness coefficients 

are introduced in equation (5.98). On the other hand, there 

is no need to store the overall stiffness matrix. Since only 

the product of members of the matrix and the displacement 

vector is needed, the overall stiffness isstored in four or 

six rows depending on the number of degrees of freedom. 

Then a special number is assigned to each stiffness coefficient, 

corresponding to each node of the structure, and each time a 

multiplication of a stiffness coefficient with a displacement 

is needed the correct coefficient is allocated using this 

reference number. 

In the next Chapter a number of iterative methods for 

the solution of the minimum and maximum eigenvalues of the stiff­

ness matrix have been developed and comapred. The purpose 

of this study is to select an efficient method, with the 

minimum execution time and using the minimum computer storage, 

to produce reasonable estimates for. the extreme eigenvalues 

of the stiffness matrices of cable structures. These estimates 

can then be used for an "a priori" evaluation of the dynamic 

relaxation parameters. 
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CHAPTER 6 

THE SPECIAL EIGENVALUE PROBLEM 

6.1. Introduction 

The special eigenvalue problem consists in determining . 
one or a few eigenvalues of a matrix A and the eigenvectors 

belonging to them, in contrast to the complete eigenvalue 

problem where all the eigenvalues are required. The special 

eigenvalue problem arises in quantum mechanics or stress 

analysis, where some values of A are required for which 

Ax = AX (6.1) 

has no trivial solutions. In stress analysis problems 

particularly, bounds for the eigenvalues are needed not only 

in the Tchebycheff methods but also in stability and vibration 

problems. 

Methods like Jacobi, Givens and Householder are 

suitable for the complete eigenvalue problem while all methods 

for solving the special eigenvalue problem are pure iterative 

methods. For large sparse matrices it is preferable from the 

point of view of computational effort and storage requirements 

to apply the iterative methods, rather than the transformation 

methods, when only several eigenvalues are required, 

Iterative methods can be divided into two categories. 
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Those in the first category are based on the assumption 

that there exists a basis of N-eigenvectors which spans the 

N-dimensional space. Starting with a certain vector, 

generally arbitrary, an infinite sequence of vectors is 

constructed such that, in this process, one eigenvector 

predominates more and more and converges directionally to the 

individual eigenvector. 

Methods of the second category are based on the external 

properties of eigenvalues and are applicable only to symmetric 

matrices. Methods based on this idea give a sequence of 

vectors which best realise the maximum or minimum of the Rayleigh 

quotient 
xTAx 

=Tx f(x) (6.2) 

which is equal to an eigenvalue when x is the corresponding 

eigenvector. From the first category the power method and 

from the second category the methods 'of steepest descent, 

conjugate gradient and coordinate relaxation are examined 

and compared in this Chapter. 

Combinations of the above methods with other iterative 

algorithms have been used in the past for solving the special 

eigenvalue problem. Engeli et al [94] used a combination 

of the Tchebycheff or gradient method and the QD-algortthm. 

Mollman [205] used a matrix iteration method for the calculation 

of the maximum eigenvalue. For the calculation of the 

minimum eigenvalue he used the same procedure but for the 
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reciprocal matrix A-l. The maximum eigenvalue in this case 

corresponds to the reciprocal of the minimum eigenvalue of A. 

He also developed a simple approximate formulae for the 

minimum and maximum eigenvalues for certain types of matrices. 

Recently, in several studies [214, 246, 258] the co­

ordinate relaxation method has been generalized by analogy 

with the successive overelaxation method, and in [257] a 

theoretical treatment of the analogy between the asymptotic 

convergence of these two methods has been developed, But 

optimum convergence can only be achieved when the matrix A 

has property 11A11
• 

6.2. The Power Method 

This method is the simplest iterative process for 

solving the special eigenvalue prob~em. It is also described 

as the direct iteration method by Fox [111] and as the 

intensification method by Allen [3] 

On the assumption that the element~ of the matrices 

under consideration are real, there exists a basis of eigen­

vectors xi belonging to the eigenvalues Ai arrayed in order 

of decreasing moduli, where IA1 I > IA 21 but some 

of the rest may be equal to each other. An arbitrary vector 

Y0 can then be written in terms of eigenvectors as 

(6.3) 
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with at least a1 ~ O. Then for any matrix A, having only 

linear elementary divisors and not necessarily being symmetric 

we have 

{6.4) 

{6.5) 

Combining equations {6.5) and {6.4) we obtain 

k k k 
yik = alxilAl + a2xi2A2 + •• ~ + anxinAn {6.6) 

The coefficient for Alk in at least one of the components 

is not equal to zero, since a1 ; Oby assumption and the 

vector x1 is not zero. Then omitting the first index 

{6.7) 

with the coefficients not depending on the index k and c1 ~ O. 

We shall consider the ratio of the components of two 

adjacent iterations 

c A k+l 
1 1 = 



-184-

= "1 
1 + b d k+l + b d k~l + ••. + bndnk+l 

2 2 3 3 

where b.= c./c1 l l 

(6.8) 

Fork sufficiently large, equation (6.8) can be simplified, 

by deleting higher order terms, to the following expression 

(6.9) 

The rate of convergence of the process is determined 

by the magnitude of the ratio lx 2lllx,I and may be slow 

if this ratio is close to one. If there is a number of indepen­

dent eigenvectors corresponding to the dominant eigenvalue 

the rate of convergence in this case is determined by the 

magnitude of the ratio l~r+ll/ lx,I where 

The choice of the inital vector y
0 

could affect 

convergence when the resulting coefficient a1 is equal to 

zero or very close to zero. In this case the predominant 

element will be one depending on x2(if _a 2 r 0) but then, 

after several iterations and due to rounding-off errors, the 

element depending on >. 1 shows up. 

6.2.1. Improving the Convergence of the Power Method 

The eigenvalues u1 of the matrix B = A - pI are 
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connected with the eigenvalues µi of the matrix A by the 

relationship 

(6.10) 

If p is chosen appropriately, convergence to an eigenvector 

may be accelerated by applying the power method to the matrix 

B. Such a variation of the power method is called the power 

method with translation. 

From Figure 6.1 we can see that, by choosing the value 

of p appropriately, either Al - p or An - p can be the 

dominant eigenvalue. For convergence to x1 the optimum value 

of p is 2 (A2 + An)• while the optimum choice of p 

d -p n-

Fig. 6.1. One dimensional plot of the eigenvalues before 
and after the shift of the origin. 
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for convergence to xn is p = !(Al + An_1). Of course 

these considerations have only theoretical value since the 

eigenvalues are not known "a priori". The convergence could 

be very slow even if the optimum values for p were chosen in 

cases where lAn-l - Anl < < IA 1 - Anl or 

Another improvement on the convergence of the power 

method can be achieved by using ·the scalar product 

(6.11) 

where 

to approximate the largest eigenvalue. 

The use of the scalar product can reduce the number of 

iterative steps necessary to determine Al by almost half. 

In the case of A being symmetric, z0 = y0 and Al is given by 

(6.12) 



-187-

6.3. The Method of Steepest Descent 

The problem of finding the algebraically largest Al 

or the algebraically smallest An• is connected with the 

problem of maximizing or minimizing the Rayleigh quotient 

X TAX 

Tx f(x) = 

with the readily evaluated derivative 

g(x) = 2(Ax - f(x).x) / xTx 

(6.13) 

(6.14) 

The method of steepest descent looks in the direction 

of the gradient 9; for finding a better approximation xi+l 

to the previous local minimum xi• which minimizes the function 

in this direction. Let 

xi+l = xi + a 1 gi (6.15) 

be the expression for the new approximation. Substituting 

the value of xi+l in equation (6.13). and after some algebra 

we find that 

2 where t 
0 = 

T 
gi 9; 

x.Tx. 
l l 

The change of{x1) is given by 

(6.16) 

(6.17) 
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where S = f(x.) - f(g.) 0 , , 

After equating the derivative of of(xi) with respect 

to the step length ai to zero we obtain the quadratic 

equation 

2 2 
ai to+ ai s0-1 = 0 

with the two roots 

-So + (So2 + 4to2 )i 
al = 

2 t
0 

-So - (So2 + 4to2 ) i 

{6.18) 

(6.19) 

corresponding respectively to the search for the maximal and 

minimal f(x). 

6.4. The Method of Conjugate Gradients 

The conjugate gradient method for the evaluation of 

eigenvalues was first used by Hestenes and Karush [136] and 

later has been applied with or without modifications by 

many investigators I J4,113,116,120,121 ,123] . In this 

·method the next approximation to the eigenvector xi+l is 

sought along the vector P; such that 

{6.20) 

with ai being•fixed by the condition that f(xi+l) attains a 

minimum or a maximum along P;• The search direction P; itself 
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is generated .recursively by 

Pi = 9i + Si-1 P;-1 
g. T g. 

with S. l = 1 1 
,- T 

9;-1 9;-1 

(6.21) 

The best approximation of the Rayleigh quotient along 

P; is realized by the roots of ai that satisfy the equation 

af(xi+ aipi) 

3a; 
= 0 (6.22) 

An explicit formula can be generated by substituting the values 

of x1 and P; obtained from equations (6.20) and (6.21) into 

equation (6.22). After some algebra the resulting quadratic 

equation with respect to a has the form 

2 
a (abd - c) + aad + 1 = 0 ( 6', 23) 

with tne two roots 

al = -2 I (ad + /K) (6.24a) 
2 2 

~=ad - 4(abd-c) 

a2 = 2 / (_-ad + ~) (6.24b) 

where T T 
a = P; Pi b = pi X; 

T 9i 9; T 
Xi X; 

(6 .• 25) 
T T T 

C = P; P; d = pi Ap; - X ;AX; 
T Pl P· xl xi X; X; 1 
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corresponding respectively to the search for the minimal 

(a1) and the maximal (a2) f(x). 

The conjugate gradient algorithm for the minimum 

or maximum eigenvalue of a symmetric matrix A is as follows 

T x
0 

A x
0 Start: x

0 
, f(x

0
) = T 

XO XO 

Iterate 

with 

a. = , -2(-+ d r:-) + a .. + ,t:.,,• , , 

f(xi+l) 

i+l = 9;+1 + S; P; 

T P; X; 
, bi= T X, x. gi 9; - 1 1 

T p. P· 1 1 

T xi Ax; 

T X, X• , 1 

, 6 = 

and x
0 

being an arbitrary initial approximation to the required 

eigenvector. 
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6.5. Optimization of the Conjugate Gradient Algorithm 

6.5.1. Fried's Method 

A different evaluation of ai can be derived from 

the condition that f(x} is minimized not only with respect 

to ai but also with respect to ei. This in fact is the 

basic idea of the memory gradient method previously discussed 

in Chapter 3. This time an explicit expression can be obtained 

from the minimization of the Rayleigh quotient with respect 

to • ai. 

Minimum Eigenvalue 

Substituting a1 from equation (5.24a} into 

T 2 

\Sf(xi} 
gi 9; aidi ai + 2a 

= 2 x.Tx. l + 2biai+ cial 1 1 

gives 
T ai 

df(x) gi 9i 
= 1 + 61ai T 

X; Xi 

The best change in the function with respect to 

·obtained from 

which 1 eads to 
2 

a
1
, - a, b~ = 0 , 1 

(6. 27} 

(6.28} 

ei is 

(6.29} 

(6.30} 



where ( ) ' = a 
as; 
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According to equation (6.24a}, a1 can be written 

a1 = -2/F , F. = a.d. + rt;; 
1 1 1 1 

and equation (5.30} is reduced to 

F' - 2b' = 0 
i i 

(6.31) 

The expression for the parameter F can be simplified, after 

neglecting c;, into 

2 2 ! Fi = a.d. + (a, d. - 4aib.d,) 
1 1 1 1 1 1 

(6.32) 

Expanding the square root in the above equation and retaining 

only the first order terms, Fis further simplified to 

F, = 2(ai d,-bi) , , . (6.33) 

Now equation (6.31) becomes 

a . ' d • + a . d • ' - 2 b'. -= O 
1 1 1 1 1 

(6.34) 

Substituting the values for ai' d1, bi from equations (6.25), 

and taking the derivatives with respect to ai, equation (6.34) 

yields the following value for the scalar parameter ei. 

Neglecting the term (xi+l - xi}Txi equation (6.35} reduces to 

(6.36) 
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By neglecting some additional first order terms, the 

above equation can be degenerated into the equation 

g.T g. 
8 - , , (6.37) 
1-1 - T 

9,-1 gi-1 

Maximum Eigenvalue 

Substituting_ a 2 from equation (6.24b) into equation (6.30) 

results in 

F' + 2b' = 0 • 
(6.38) 

and the corresponding equation (6.34) for the case of the 

maximum eigenvalue is 

(6.39) 

which unfortunately does not give an explicit expression for 

8i-l as in equation· (6.35). But after neglecting some terms 

8i-l can be approximated by equation (6.36), 

6.5.2, Geradin's Method 

·This algorithm relies upon the generation of a set of 

H-conjugate gradients. with H rep~esenting the Hessian matrix 

of the local second order derivatives of the function. 

Quadratic convergence is guaranteed in the neighbourhood of the 

eigensolution 1 by analogy to the conjugate gradient method 

when applied to quadratic functions. The importance of this 

method is that the H-conjugate directions can be computed 

without physically building up the H matrix. 
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The value of 6i is evaluated from the orthogonality 

condition 
T 

Pi+l H Pi= 0 

with 2 

H = a f 
axiaxj 

(6.40) 

(6.41) 

From equations (6.40) and (6.41) it follows that the orthogon-

alization parameter is given by 
T 

9i+l H Pi 
6i = 

P~ H P; 

(6.42) 

By referring to its definition, the local Hessian matrix 

can be written as 

H - __ 2 __ 
- T 

xi+l xi+l 

T T 
A - fi+l - xi+l 9i+l - 9;+l xi+l (6.43) 

Substituting the expression for the Hessian matrix into 

equation (6.42) and taking into account that 

aa; 
T 

= gi+l pi= 0 

the orthogonalization parameter reduces to 

T 
gi+l 

B; = 

6.6. Convergence and Initial Approximation 

(6.44) 

(6.45) 

The problem of minimizing the Rayleigh quotient is 

somewhat of an exception to that of a function with a well 
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defined minimum in that the Rayleigh quotient has no unique 

minimum point. Owing to the homogeneous form of the Rayleigh 

quotient, its value remains constant at all points lying in 

any given line in N-dimensional space passing through the origin. 

Hence there is one redundant degree of freedom, which causes 

the Hessian matrix to be singular in the neighbourhood of an 

eigenvector, and so the minimization algorithm cannot utilize 

to the full the property of the quadratic convergence. 

In order to overcome this uncertainty which surrounds the 

function around the minimum Bradbury and Fletcher [34] reduced 

the number of variables by one so as to remove the redundant 

degree of freedom. The vectors xi are restrained to lie on a 

convex surface containing the origin, typically the 11 unit­

sphere11 of any vector norm of x .• Obvious possibilities would 
l 

include the Euclidean (L 2) norm with unit sphere xT~ = 1, 

the sum (L1) norm (Ilxil = 1), and the maximum (L~) norm 

(m~x lxil = 1). The simplest way of doing the transformation 
1 

is to use the maximum norm where the convex surface becomes 

an intersection of planes producing a hypercube having 2N faces 

with variables directly related to the elements of xi. 

Posing the problem in this way, it becomes important that 

a good starting value is found in order to avoid wasting un­

necessary time in trying to find the appropriate face of the 

hypercube upon which to minimize the function. A convenient 

initial starting point is one of the unit vectors e1• Then 

the Rayleigh quotient at ei is given by 



f(ei) = 

T 
ei Aei 

T e. e. 
1 1 
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= a .. 
11 

(6.46) 

where aii is the i-th diagonal element of A. The gradient 

vector is given by 

g(ei) = 2(ai - f(e;)) (6.47) 

where ai is the i-th column vector of A. Hence the ei which 

is chosen as a starting point is that which corresponds to the 
. 

minimum or maximum (depending on the search for the minimum 

or maximum eigenvalue) of the diagonal elements aii" If 

it happens that the minimum element a;; is the same for more 

than one i. then ei is chosen as that for which the modulus of 

the gradient is largest to ensure that with the first step 

the minimization procedure makes the fastest descent towards 

the minimum. When matrix A is diagonally scaled with aii = 1 

then the maximum gradient is the criterion for choosing ei. 

Using this method proposed by Bradbury and Fletcher. the 

elements of xi are examined at each iteration and normalized 

by the appropriate scalar which reduces the element of largest 

absolute value to unity. However, Geradin's procedure avoids 

this artificial normalization because of the explicit implemen­

tation of the Hessian matrix with the conjugate directions 

building up without referring to the length of the vectors xi. 

The product Axi+l can be calculated recursively. instead 

of carrying out the multiplication at each iteration. from 

the relationship 
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(6.48) 

It is advisable however to compute this directly every so 

often so as to prevent the domination of rounding-off errors, 

particularly with ill-conditioned problems. 

6.7. Gershgorin Theorem 

Gershgorin in his original paper in 1931, proved that 

all eigenvalues of a matrix A were less in modulus than any 

norm of the same matrix. Estimates using the first and second 

norms are especially convenient, since they are simply 

expressed by the matrix elements. 

Let A= (aij) be a matrix with arbitrary complex elements, 

then all the eigenvalues of this matrix are located in a region 

D which is the union of the circles 

Ix - ai i I ~ Ri ( i = 1, • • • , N) (6.49) 

where N 
R. = I la 1jl l 

j=l 
jFi 

or 
I A I ~ I ai i I + R. , (6.50) 

N 
~ L 1aij I 

i=l 
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6.8. Coordinate Relaxation 

The coordinate relaxation was proposed by Faddeev and 

Faddeeva [101] and recently has been used by many authors 

[25, 141, 163, 258, 263 ] • 

In this method, which is also called the method of 

alternative directions, the search direction w is taken 

successfively as the different base vectors em, with m = l , ••• N. 

The new estimate xi+l is now given by 

xi+l = X; + ai wi • 

with wi = (0, 0, ..• l, O)T 

(6.51) 

The optimum value for a will be obtained, as in the 

case of the gradient methods, by minimizing the Rayleigh 

quotient with respect to a. This procedure yields the 

same quadratic equation as before 

2 
aa + ba + c = 0 {6.52) 

where 
a = (x Tw)(wTAw) - (w Tw) {xTAw) / {xTx) 

b = (wTAw) (wTw) • f(x) (6.53) 

C = (wTAw) - (xTw) f(x) 

As w is one of the base vectors em• equations {5.53) become 
T a= {amm xm - dm) / (x x) 

where 

b = a - f (x) mm 

c = d - f(x)x m m 

(6.54) 
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anm is the m-th diagonal term of A 

xm is the m-th term of the vector x 

dm is the m-th term of the vector Ax 

Jhe Rayleigh quotient is found recursively from 

fi+l = fi + {b.a + 2c) a/ {xTx)i+l 

with (xTx)i+l = (xTx)i + (2xm + a) a 

6.9. Numerical Studies 

(6.55) 

(6.56) 

For the purpose of this study the computer programs 

shown in Table 6.1 were developed. Their efficiency in 

calculating the minimum and maximum eigenvalues of the stiffness 

matrices of examples 2 and 3 was studied and compared. The 

matrices were initially scaled. The letter "B" after the 

abbreviated name· of a method means that the Bradbury and Fletcher 

orthogonalization process is applied in each iteration of the 

method. The following difference error termination criterion 

has been used throughout this section 

(6.57) 
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Abbreviated Explanation name 

EIGP Power method 

EIGSD Steepest descent method 

Fried's method with equation 
EIGFRl (6.36) for the evaluation of s 

Fried's method with equation 
EIGFR2 {6.35) for the evaluation of 

EIGCG Conjugate gradient algorithm 

EIGGER Geradin's algorithm 

. 
EIGCR Coordinate relaxation method 

Table 6.1 Computer programs for the special 
eigenvalue problem 

8 

Table 6.2 and Figure 6.2 show the number of iterations 

and the total execution time requir~d for the evaluation of the 

minimum eigenvalue of example 2. The steepest descent method 

was applied with a relaxation coefficient y = 0.6, while 

the power method was applied without translation. From Figure 

6.2 we can see that the EIGCG and EIGGER methods gave almost 

identical results. They converged very quickly up to the value 

of the termination parameter t = O.lE-03 and then they 

produced slower convergence. The EIGFR2 with the Bradbury 



Termination O. lE-00 O.lE-01 O.lE-02 O. lE-03 O. lE-04 
Parameter £ 

Number Method Nit TIME Nit TIME Nit TIME Nit TIME Nit TilME 

1 EIGSD 5 0.012 26 0.06 33 0.074 43 0.097 557 1.257 
(13 = 0.6) 

2 EIGCR . 20 0.030 36 - 0.055 48 0.0}4 62 0.095 4367 6.707 

3 EIGFRl 4 0.005 67 0.09 95 0.127 123 0.165 13455 17.99 

4 EIGFR2 · 6 0.014 6 0.014 28 0.07 104 0.256 · 151 0.372 

5 EIGFR2B 6 0.010 13 0.022 58 0.096 96 0.159 109 0.180 

6 EIGCG 10 0.016 11 0.017 13 0.020 17 0.026 165 0.254 

7 EIGCGB 2 0.016 3 0.024 4 0.032 693 5.492 1302 9.995 
. 

8 EIGGER 10 0.017 12 0.020 17 0.029 19 0.023 146 0.251 

Table 6.2 Numerical studies for the minimum eigenvalue of example 2 

O. lE-05 

Nit TIME 

764 1.725 

14876 22.850 

17784 23.78 

247 0.608 

120 0.199 

191 0.297 

1372 10.32 

156 0.268 

O. lE-06 

Nit TIME 

1070 2.416 

16854 25.88 

~ 

)2032 29.50 

526 1.296 

144 0.239 

205 0.319 

1442 11.429 

177 0.305 

I 
N 
0 ..... 
I 



Termination O.lE-00 O. lE-01 O. lE-02 O. lE-03 O.lE-04 Parameter £ 

Number Method Nit TIME Nit TIME Nit TIME Nit TIME Nit TIME 

1 EIGP 5 0.006 9 0.01 17 0.02 36 0.06 55 0.070 

2 EIGSD 5 0.012 7 0.016 13 0.029 17 0.038 21 0.047 
(a= o.6) 

3 EIGCR 2 0.003 4 0.006 8 0.012 19 0.029 54 0.083 

4 EIGFRl 4 0.007 6 0.01 13 0.02 23 0.038 32 0.052 

5 EIGFRlB 2 0.003 6 0.01 8 0.013 27 0.045 45 0.075 

6 EIGCG 4 0.006 6 0.093 9 0.014 12 0.019 ·14 0.022 

7 EIGCGB 2 0.016 3 0.024 4 0.032 5 0.040 6 0.048 

8 EIGGER 2 0.003 8 0.014 10 0.017 13 0.022 15 0.026 

Table 6.3 Numerical studies for the maximum eigenvalue of example 2 

O. lE-05 

Nit TIME 

74 0.094 

27 0.061 

86 0.132 

42 0.07 

63 0.10 

16 0.025 

135 1.077 

18 0.030 

O.lE-06 

Nit TIME 

96 0.122 

33 0.075 

118 0.181 

55 0.09 

81 0.134 

23 0.036 

136 1.078 

25 0.043 

N 
0 
N 
I 
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and Fletcher orthogonalization technique produced better 

convergence after the value of£= O.lE-04. 

Figure 6.3 demonstrates that the simple conjugate 

gradient method is the fastest method for the evaluation of the 

maximum eigenvalue of the scaled stiffness matrix of example 2. 

Geradin's algorithm gave very close results to EIGCG, while 

the Bradbury and Fletcher orthogonalization algorithm, as applied 

to EIGCG method, produced the slowest convergence rate. In 

Table 6.4 and Figure 6.4, the convergence rates of the methods 

are demonstrated for the evaluation of the minimum eigenvalue, 

while in Table 6.5 and Figure 6.5 the same studies are performed 

for the maximum eigenvalue of the scaled stiffness matrix of 

example 3. 

In all the above examples the initial estimate of the 

vector x was taken as x~ = 1 .O, i = 1, ••• , N. Different 
0 ' 0 starting values, ranging from x1 = 10 up to xi = 10,000, were 

tried in order to study the degree of dependence of the 

convergence rates, as well as the accuracy of the final results, 

on the initial starting value. All methods, except EIGFRl, remained 

unaffected by these changes of the initial vector. The EIGFRl 

produced slower convergence only for the ,minimum eigenvalue 

of example 2 and also converged to a different minimum from 

the true one. 

Table 6.6 shows the improvement in the convergence rate 

of the steepest descent method when a relaxation parameter is 



Termination 
O.lE-01 O.lE-02 O. lE-03 Parameter £ O. lE-00 · O. lE-04 

Number Method Nit TIME Nit TIME Nit TIME Nit TIME Nit TIME 

1 EIGSD 5 0.042 16 0.136 34 0.289 47 0.399 53 0.450 
(8 = 0.6) 

2 EIGCR 5 0.027 18 0.096 28 0.149 39 0.208 52 0.277 

3 EIGFRl 5 0.028 25 0.142 55 0.400 90 0.505 125 0.701 

4 EIGFR2 6 0.033 15 0.085 19 0.107 23 0.130 26 0 .147 

5 EIGFR28 8 0.053 14 0.093 16 0.106 23 0.152 27 0.176 

6 EIGCG 7 0.039 15 0.084 18 0.101 23 0.129 26 0 .146 

7 EIGCGB 7 0.046 13 0.086 15 0.099 22 0.145 26 0.171 

8 EIGGER 7 0.039 15 0.084 18 0.101 23 0.129 26 0.146 

Table 6.4 Numerical studies for the minimum eigenvalue of example 3 

O.lE-05 

Nit TIME 

70 0.594 

65 0.347 

161 0.903 

29 0.162 

30 0.197 

30 0.168 

31 0.204 

32 0.179 

0. lE-06 

Nit TIME 

94 0.798 

1820 9.707 

203 1.138 

61 0.349 

34 0.224 

67 0.376 

33 0.217 

63 0.352 

I 
N 
0 
u, 
I 



Termination 0.1 E--00 O. lE--01 O. lE-02 O. lE-03 O. lE-04 Parameter £ 

~umber Method Nit TIME Nit TIME Nit TIME Nit TIME Nit TIME 

1 EIGP 5 0.014 8 0.038 15 0.072 23 0.110 31 0.149 

2 EIGSD 4 0.035 7 0.061 11 0.096 15 0.131 20 0.174 
( a = o.6) 

3 EIGCR 3 0.016 4 0.021 5 0.027 17 0.091 38 0.203 

4 E IGFRl 3 0.018 6 0.034 10 0.056 14 0.079 19 0 .107 

5 EIGFRlB 2 0.019 4 0.038 8 0.075 14 0.132 20 0.241 -

6 EIGCG 3 0.017 5 0.028 7 0.039 8 0.045 11 0.062 

7 EIGCGB 2 0.013 3 0.018 5 0.033 11 0.068 13 0.086 

8 EIGGER 2 0.011 7 0.039 9 0.050 10 0.056 12 0.067 

Table 6.5 Numerical Studies for the maximum eigenvalue of example 3 

O. lE-05 

Nit TIME 

40 0.192 

24 0.201 

60 0.320 

23 0 .151 

26 0.245 

12 0.067 

14 0.092 

13 0.073 

0.1 E-06 

Nit TIME 

52 0.250 

981 8.538 

512 2.730 

981 6.451 

335 3 .151 

32 0.179 

33 0.217 

33 0.185 

I 
N 
0 
m 
I 
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used each time a new approximation to the final eigenvector 

is calculated. Tables 6.7 and 6.8 show the convergence of 

the methods to the true minimum eigenvalues of examples 2 and 

3. The number of iterations required to achieve convergence 

up to 2, 4 and 6 significant decimal digits to the true 

values are demonstrated. 

Finally, Table 6.9 indicates the difference in the 

convergence rates achieved when the simplified residual 

r i = . Ax - f (x). x (6.57) 

is used, instead of the gradient vector given by equation 

6.14. We can see that this simplification has no effect on 

the steepest descent method, but has significantly reduced 

the convergence of the conjugate gradient algorithms. 

6.10. Conclusions 

• 

The power method, as applied in this study, without 

shifting, produced very satisfactory results for the evaluation 

of the maximum eigenvalue. For the-evaluation of the minimum 

eigenvalue however, the value of the shifting parameter p should 

be properly chosen so as to make the minimum eigenvalue the 

dominant one. And since there is no formula for an 11 a priori" 

evaluation of the proper shifting parameter, a slight misjudgment 

in the value of p could produce another eigenvalue! 

The method of coordinate relaxation or alternating 
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Termination 0. lE-00 D. l E-01 O. lE-m O. lE-03 O.lE-04 D. lE-05 D. lE-06 Parameter £ 

A min a= 1.0 5 68 96 124 13460 - -

♦ a = o .6 5 26 33 43 557 764 1070 

A min a = 1.0 6 26 58 94 130 168 211 

~ a= o.6 5 16 34 47 53 110· 94 

Table 6.6. ElGSD with and·without relaxation parameter 

Method n = 2 n = 4 n = 6 Final eigenvalue q q q 

EIGSD 557 1.070 10509 0.27362566E-03 

EIGCR 14876 16854 20806 0.27362565E-03 

EIGFR1 13455 22032 34749 0.27362566E-03 

EIGFR2B 96 120 170 0.27362565E-03 

EIGCG 165 191 248 0.27362565E-03 

EIGGER 146 156 177 0.27362565E-03 

EIGFR2 104 247 1092 0.27362565E-03 

EIGCGB 1302 1372 1480 0.27362565E-03 

Table 6.7 Convergence study for the minimum eigenvalue of 
example 2 · 
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Method n = 2 n = 4 n = 6 Final 
q q q Eigenvalue 

E IGSD 34 473 2751 0.51127477E-Ol 

E IGCR 28 11108 - 0. 51129449E-Ol 

EI GFRl 55 - - 0.51164060E-Ol 

EIGFR2 15 61 128 0.51127473E-Ol 

EIGFR2B 14 - - 0.51201473E-Ol 
' . 

EIGCG 13 - - 0 • 512014 7 3 E - 0 l 

EIGCGB 15 67 67 0.5112747 3E-01 

EIGGER 15 63 100 0.5112747 3E-Ol 

Table 6.8 Convergence study for the minimum eigenvalue 
of example 3 

Termination ).lE-00 O.lE-0 O.lE-O; 0. 1 E-0: O. lE-Ql 0 .1 E-OE 0 .1 E-OE Parameter -0 ri 5 68 
0 ,..: 96 124 13460 - -
V') 
C, - II 

LiJ en gi 5 68 96 124 13460 - --
C, 

r. 10 11 13 19 255 279 314 
u 

, 
C, -LIJ gi 10 11 13 . 17 165 191 205 

0:: r. 6 17 22 45 333 395 461 LIJ , 
C, 
C, - 10 12 17 19 146 156 177 IJJ g. , 

Table 6.9 Convergence to the minimum eigenvalue of example 2 
for different gradient vectors 
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directions produced better results in the evaluation of the 

maximum eigenvalue than for the minimum eigenvalue. While in 

all cases the convergence rate was inferior to that of the 

conjugate gradient method. 

From the gradient methods, the method of steepest descent, 

as was expected, produced the slower convergence. Despite the 

significant improvement in the convergence when the proper 

relaxation coefficient is used, the total execution time could 

be up to 50 times more than the required time for convergence 

of the conjugate gradient method. 

The modifications proposed by Fried in the evaluation 

of the scalar parameters, did not produce the expected 

results. The implementation of the expression for a given 

·by equation (6.35) gave better results than the simplified 

expression given by equation (6.36), but in both cases the 

final convergence obtained was slower than that obtained by 

the simple conjugate gradient algorithm. The use of the Bradbury 

and Fletcher orthogonalization process improved only the 

convergence of the EIGFR2 method, and did not produce at all 

competitive results when applied to·the EIGCG. 

The method proposed by Geradin and the simple conjugate 

gradient algorithm gave almost identical results. Both methods 

proved to be the fastest in the evaluation of the minimum and 

maximum eigenvalues of the stiffness matrices for the examples 

considered in this work. The convergence characteristics of 

the methods remained unaffected by the value of the first 
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approximation of the eigenvector x. The evaluation of the 

minimum eigenvalue proved more time consuming than the evaluation 

of the maximum eigenvalue. The reason for this is that the 

ratio An-l /Anis much closer to unity than the ratio 

A2/ Al• 

Finally, the main conclusion from the work carried out 

in this Chapter is that when the minimum and maximum eigenvalues 

of a stiffness matrix are required, the simple conjugate gradient 

algorithm, and the modified algorithm proposed by Geradin, 

give the most consistent and accurate results in the minimum 

execution time. These methods could be very easily incorporated 

in the "a priori" evaluation of the iteration parameters for 

the Tchebycheff method. The additional storage requirements 

are negligible while the additional execution time remains 

around 10% of the total execution time (see Chapter 7). 
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CHAPTER 7 

NUMERICAL STUDIES ON RELAXATION METHODS 

In this Chapter, as in Chapter 4, comparisons have been 

made of the relative efficiencies of the relaxation methods 

discussed in Chapter 5 as applied to nonlinear analysis of cable 

structures. All computer programs have been written with 

similar processes to allow effective comparisons to be made on 

the basis of the total execution time required to obtain 

convergence, Here again the number of iterations are not a 

reliable measure for comparison since the execution time for each 

iteration varies from method to method. 

All computational work has been carried out on the 

CDC 7600 computer. Table 7.1 shows the methods used in this 

Chapter and their abbreviated names~ 

7.1. Dynamic Relaxation Method 

The method of dynamic relaxation as developed in Chapter 

5 was applied to stiffening structures. The minimum and maximum 

eigenvalues·of the matrix B have been calculated by applying 

Geradin's algorithm as discussed in Chapter 6. The procedure 

for obtaining the extreme eigenvalues in this way needs almost 

no extra storage since it is separate from the main dynamic 

relaxation algorithm and the same space vectors can be utilized 

twice. 
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Abbreviated Description of the method name 

DRGR DR with Geradin's algorithm for finding the 
extreme eigenvalues 

DRGRFS DR with Flanders and Shortley parameters 
and Geradin's algorithm for the extreme 
eigenvalues 

DRGRYN 
DR with Young's parameters and Geradin's 
algorithm for the extreme eigenvalues 

~ 
"C 
0 
.c: 
+,) DR with automatic adjustment of the ~ DRAUT E iteration parameters 
C 
0 .,... 
+,) 
m DR with the use of kinetic damping and X 
m DRKR a residual criterion to avoid divergence ,.... 
~ 
~ 

u .,... 
E DR with kinetic damping and a velocity m 
C DRKV ~ criterion to avoid divergence 

CGTCH 
A combined conjugate gradient algorithm 
and the DRAUT method 

SORNL SOR with the stiffness matrix being reset 
in each iteration 

C 
0 .,... 
+,) 

SOR with the stiffness matrix being constant m SORES X 
~ and resetting only the residuals ,.... 
~ 
~ 
~~ 
>""O SOR with Carre algorithm for the parameter 00 SORESC .c: 
~ wand resetting only the residuals >~ 
-e 
~ 
~ 
~ SOR with Hageman algorithm for the u SORESH parameter u 
~ wand resetting only the residuals 

V') 

Table 7.1 Relaxation methods used in Chapter 7 
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After obtaining the minimum and maximum eigenvalues, the 

iteration parameters of damping, mass and time step may be 

evaluated from equations (5.26) and (5.27). From these equations 

we can see that one of the three dynamic relaxation parameters 

is superfluous, since there are only two equations and three 

unknown parameters to be determined. To overcome this inter­

dependence the time step h was chosen to be unity and then the 

other two parameters are evaluated from 

Popt = ¼ ( As min +. As maxl (7 .1} 

(7,2) 

The method was first applied to the three storey frame 

of example 6, Although this problem is not a cable structure, 

the application of dynamic relaxation for the nonlinear solution 

of this structure was very helpful for understanding the behaviour 

of the method when applied to stiffening structures with small 

nonlinearities. The values of the minimum and maximum eigenvalues 

of the scaled stiffness matrix of exa~ple 6, before and after 

the application of the horizontal load at node 6, are shown in 

Table 7.2 • 

When the iteration parameters were evaluated from the 

minimum and maximum eigenvalues of the original stiffness matrix 

before the application of the load, an oscillatory behaviour of 

the structure about its equilibrium form was observed, without 

any sign of convergence to the static solution. The method was 
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then applied for the linear solution and reached the specified 

Minimum Maximum Condition 
eiqenvalue eigenvalue number 

Initial 0.10772E-Ol 2.195794 204 configuration 

Fina 1 0. l l 679E-Ol 2.21229 190 configuration 

• 
Table 7,2. Eigenvalue analysis of example 6 

convergence in 131 iterations. This indicated that the increase 

in the maximum eigenvalue from 2.195794 to 2.21229 after the 

application of the load, which was not taken into account in the 

evaluation of the iteration parameters,produced this non­

convergence effect. A bigger increase in the maximum eigenvalue 

would have caused the method to diverge. 

There are two ways to cope with. an increasing maximum 

eigenvalue during the application of the loads. The first is 

to recompute the maximum eigenvalue when the convergence of the 

method deteriorates,using the current values of the elemental 

stiffness matrices. The second is to modify "a priori" the 

relaxation parameters to allow for an increase of the maximum 

eigenvalue as the iteration process continues, The scale of 

. this modification depends on the degree of nonlinearity of the 

problem. 
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The first approach could be time consuming since the whole 

process of calculating the maximum eigenvalue must be repeated 

each time the convergence rate deteriorates. The second process, 

on the other hand, is more straight forward, since an increase 

in the iteration parameter p or a reduced value for the time 

step h, could alleviate the effects of the stiffening behaviour 

of the structure, 

For an increase of 20% in the initial value of the 

parameter p, in example 6, the dynamic relaxation method 

converged in 166 iterations, while a 70% increase in the value 

of p resulted in convergence at 510 iterations. 

Example 2, of the counterstressed dual cable structure was 

also studied. Two load cases were considered 

Load case 11A II 

Load ease 11B 11 

w = ·10.0 kips 

w = 50.0 kips 

Table 7.6 shows the eigenvalue analysis of the scaled 

stiffness matrix of this example. It is very interesting to see 

how the condition matrix is reduced with increased loading. 

After calculating the minimum and maximum eigenvalues 

of the unstiffened matrix and applying dy_nami c relaxation with 

iteration parameters obtained from the initial estimates of 

the extreme eigenvalues, the method produced a very slow convergence. 

But with.a slight increase in the value of the parameter p (see 

Table 7.7}, the method converged rapidly. This 1% increase in 

the value of p was enough to ensure that the actual maximum eigenvalue, 
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METHOD DRGR DRGRFS DRGRYN 

Number of 166 156 156 i tera ti ons 

Time 0.182 0.180 0 .179 (sec) 

Table 7.3. Studies of example 6 

Nodes x(ft) y(ft) 

l 0.20863 0 .1333 
2 0.20889 0 .1334 

3 0.63210 0.21359 
4 0.6296 -0.21307 
5 1.14767 0.23747 
6 1. 17154 -0.24253 

Table 7.4 Linear displacements of example 6 

Nodes x(ft) y(ft 
1 0.212108 0.11846 
2 0 .18981 -0.1313 

3 0.61971 0 .15602 
4 0.57633 -0.2373 
5 1.0974 0.12122 
6 1.07172 -0.3118 

Table 7.5 Final displacements of example 6 

p=l.20*Po 

RNORM criterion 
(t= O.lE-07) 
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Minimum Maximum Condition 
Eigenvalue Eigenvalue Number 

Initial 
configuration 0.27363E-03 2.15050 7860 

' 

After loading 
condition "A" 0.5791E-03 2.16674 3741 (w = 10 kips) 

After loading 0.11887E-02 2.25858 1900 condition 11 811 

(w = 50 kips) 

Table 7.6 Eigenvalue analysis of example 2 

Values of p = 1.0p p= 1 .Olp i'.:>= 1 .05p p= 1 .lOp p= 1 .2p
0 "p" 

Number of after 1402 1427 1730 2543 i tera ti on, 5400 no 
converg-
IOnt"P 

Table 7.7 Studies of example 2 with DRGR. Load case 11 A" 

~h 1.00 0.985 0.98 0.95 0.90 0.85 

O. lE-03 - 879 885 918 1354 1725 

O.lE-07 - - - 5425 2395 3130 

Table 7.8 Studies of example 2 with DRGR. Load case "A" 

RNORM 
criterion 
(e=O. lE-07' . ' 

RNORM 
criterion 
(e=O. lE-0~ 
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2 

after the application of the loads, times h ~ , will in fact 

be less than 4.0 for stability. Table 7.7 also indicates that 

as we increase the value of p the convergence deteriorates 

since we are moving away from the current minimum and maximum 

eigenvalues. 

Table 7.8 shows the effect on the convergence obtained, 

not by increasing the value of pas before, but by decreasing 

the value of the time increment h. A decrease in the time step 

will again ensure that the actual current maximum eigenvalue 
2 

times h /p will be less than 4.0. Time steps close to unity 

produced better convergence, for bigger valuesof the termination 

parame~er e, than time steps less than one, but failed to 

converge for values of the termination parameter around 0.lE-07. 

The value of h = 0.90, although slower in the beginning, gave 

in the end the best convergence results. 

Comparing the two Tables 7.7 and 7.8 we can draw the 

conclusion that, from the point of view of convergence, it is 

better to increase the value of the density parameter p than to 

decrease the time step. When the structure was subjected to the 

load case"B~ a bigger increase in the value of the parameter p was 

necessary to eliminate the effect of the increase of the maximum 

eigenvalue during the application of loads. As Table 7.9 indicates, 

the best result was obtained when the original value of p was 

increased by 14%. 

The conjugate gradient algorithn,for the evaluation of the 
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minimum and maximum eigenvalues of example 2, required only 30 

iterations for both eigenvalues to converge to a termination parameter 

£ = O.lE-03, and the whole process was performed in 0.162 seconds 

which is about 10% of the total execution time. The required 

time for the evaluation of the extreme eigenvalues can be further 

reduced by introducing a six vector representation of the overall 

stiffness matrix, similar to the one used for the successive 

overelaxation method. Then as the overall matrix coefficients 

are readily available there will be no need to recalculate the 

elemental stiffness matrices in each conjugate gradient 

iteration. 

In Table 7.10 there is a comparison of dynamic relaxation 

with iteration coefficients given by Frankel's method and also by 

the Flanders and Shortley method. The two methods gave almost 

the same results, with the Flanders and Shortley method converging 

in a fewer number of iterations, while Frankel's method was 

sl_ightly better in terms of the total execution time. This 

suggests that using constant iteration parameters throughout the 

iteration process required a greater number of iterations but 

less computer time due to less arithmetic. The use of Young's 

iteration parameters gave exactly the same results as those of 

Flanders and Shortley which indicates that the algorithm given by 

Young for the iteration parameters is the same as that of Flanders 

and Shortley but with different notation. 

When the dynamic relaxation, with an "a priori" evaluation 

of the iteration parameters, was applied to the singie cable of 

example 1, the iterative procedure diverged for a great number 

of combinations of the parameters hand p. As Table 7.11 indicates, 
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Value of 1.0p
0 1 .01 Po l • 20p

0 
1.30p

0 
l .40p

0 
II II p 

Number of Divergence Divergence 5488 5355 5262 iteration 

Value of 1.42 l .46 1.50 l.60 2.0 
- t"I -

Number of 3620 5375 3933 3530 2120 iteration~ 

Table 7.9 Studies of example 2. Load case 1B1 

Minimum Maximum Condition 
Eigenvalue Eigenvalue Number 

Initial 
configura t- 0.6158E-04 3.937957 64000 
ion 
After the 
appl icatior1 0.29026E-03 17.43234 60000 
of loads 

Table 7.11 Eigenvalue analysis of example 1 with pretension 

RNORM 
criterion 

( e=O. 1 E-07) ' 

Termination O.lE-00 0. lE-02 O.lE-04 O.lE-06 0 .1 E--08 Parameter 

Method Nit TIME Nit TIME Nit TIME Nit TIME Nit TIME 

DRGR 269 0.249 840 0.771 1398 1.282 1956 1792 2529 2316 

DRGRFS 258 0.412 828 0.955 1387 1.488 1945 2021 2509 2559 
. 

Table 7.10 Studies of example 2. Load case•~ 
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there is a big increase in the maximum eigenvalue for this 

problem, namely from 3.937957 to 17.4323, before and after the 

application of the load respectively. Only a very small time 

step or a big increase in p will safeguard convergence for this 

problem. But under these conditions the convergence of the method 

would be very slow. The same difficulty of nonconvergence 

was encountered when the method was applied to the hyperbolic 

paraboloid of example 3. 

7.2. Automatic Adjustment of Dynamic Relaxation Parameters 

The automatic adjustment method for the dynamic relaxation 

parameters, as developed in Section 5.9 was applied to various 

structures. In order to calculate the iteration parameters the 

minimum and maximum eigenvalues of the matrix B should first be 

defined, In the majority of the applications the method was 

applied in its scaled form with B = o-i K o-i. When no scaling 

transformations were used, the letters 11 UNSC 11 follow the abbreviated 

name of the method. 

Table 7.12 shows the required number of iterations for 

convergence, with different values of the estimated minimum 

eigenvalue, when the estimated maximum eigenvalue remained constant. 

We can see that even after a one hundred-fold increase in the 

value of the estimated minimum eigenvalue, compared with the 

actual one, the convergence of the method did not seem to be 
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'-min 0.02 0.05 0.1 0.2 0.4 

Nit 183 210 164 145 145 

Table 7.12 Studies of example 6 with DRAUT 

Nit Amin Amax q£ 

127 1.0 2.22 0 .01 

144 0.02 2.22 0.01 

128 0.02 2.22 0~0001 

123 0.02 1.80 0 .01 

121 0 .1 1.80 0 .001 

119 0 .1 2.40 0.001 

98 0 .1 2.22 0.001 

128 0.001 2.22 0.001 

Table 7.13 Studies of example 6 with DRAUT 

0.6 1.0 

143 203 

'-max = 2.22 
RNORM criterion 
(e = 0.lE-07) 

• 

RNORM criterion 
(e = 0.lE-07) 
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affected. 

The value of q in Table 7.13 is the difference between 
£ 

two successive values of the asymptotic convergence rate 

(eq. 5.84) required in order to proceed with another evaluation 

of the iteration parameters. It is apparent from Table 7.13, 

that for example 61 despite the different combinations in the 

values of qe, Amax and Amin• the number of iterati~ns required 

for convergence was little affected. The method can handle not 

only arbitrary estimations of the minimum eigenvalue but also 
. . 

incorrect estimations of the maximum eigenvalue. One very easily 

obtained starting value for A is given by the Gershgorin 
. ~x 

bound theorem. An over-estimated value for Amax will safeguard 

against divergence but will slow down the convergence rate, while 

an underesttmation of Amax will soon lead to instability of 

the method. 

In stiffening structures, as indeed are the magority of cable 

structures, even if a bound for the maximum eigenvalue is obtained 

from the Gershgorin theorem, the true current maximum eigenvalue 

may often become greater than the estimated bound. In such cases 

the method will start to oscillate around the equilibrium state and 

eventually this ·will lead to divergence of the method. When such 

an oscillatory behaviour is detected, the estimation for Amax is 

updated to prevent divergence of the method. The updating process 

may be done either by repeating the algorithm for obtaining a new 

bound from the Gershgorin theorem, or by increasing the existing 

value by a certain factor. 
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Nit Amin 

759 o. 1 

609 0. 1 

711 0 .01 

801 10.0 

729 o. 1 

Amax 

2.8736 

2.8736 

2.8736 

2.8736 

1.0 

q£ 

0.0001 

0.00001 

0 .00001 

0.00001 

0.00001 

RNORM criterion 
(e= O.lE-05) 

Table 7 .14 Studies of example 2 with DRAUT. Load case 11 A11 

Nit Amin 

888 o. 10 

941 10 .o 

530 0.10 

688 o. 10 

511 o. 10 

533 0.10 

592 0 .10 

569 0.10 

654 0 .10 

560 0. 1 

>-max 

2.8736 

2.8736 

2.60 

2.60 

2.60 

1.80 

1.70 

1. 50 

. 
1.20 

1 .o 

q£ 

0.0001 

0.0001 

0.001 

0.0001 

0.00001 

0.00001 

0.00001 

0.00001 

0.00001 

0.00001 

RNORM criterion 
(e= 0. lE-05} 

Table 7.15 Studies of example 2 with DRAUT. Load case "B 11 
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Tables 7.14 and 7.15 show the dependence of the convergence 

on different combinations of Amin , Amax and qE for the 

counterstressed dual cable structure of example 2. The number 

of iterations required for convergence fluctuated only moderately, 

even for the extreme combinations of the above parameters. In 

load case 11 A11 the difference in the final number of iterations was 

20% when initial and terminal values of the iteration parameter 

AB mi~ differed by 1000%. Variations in convergence rates for 

different initial estimates of Amax were also small. 

The estimated minimum eigenvalue during the course of the 

iterative process is not always an approxinationto the actual 

current minimum eigenvalue. This difference sometimes could be 

quite substantial without affecting the convergence rate to the 

same degree. This cou1d be explained by the fact that the process 

used ensures that the estimated minimum eigenvalue combined with 

the estimated maximum eigenvalue will produce a better pair of 

iteration parameters p and c, than the current actual minimum 

eigenvalue and the estimated maximum one. 

Smaller initial estimates for Amax• as can be seen from 

Table 7.15, produced better convergence. This happened because 

smaller values for Amax create underdamped behaviour which 

accelerates the convergence in the early stages. The value of 

the parameter q also does not seem to have any profound effect 
€ 

on the convergence of the method. 

In the studies carried out in this Chapter the oscillating 
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behaviour of the iterative process, that develops when the 

actual current eigenvalue becomes greater than the estimated 

one, was detected by monitoring the norm of the residuals in 

each iteration. 

7.3. Kinetic Damping 

In this version of the dynamic relaxation method, there 

is no need to evaluate the minimum eigenvalue of the stiffness 

matrix. Only an upper bound for the summation of the minimum 

and ma~imum eigenvalue is required to obtain the iteration 

parameters. The Gershgorin bound again provides a good approxim­

ation for this sum, since the minimum eigenvalue is always very 

small compared with the value of the maximum eigenvalue and will 

usually be less than the amount by which >-max obtained from the 

Gershgorin theorem is overestimated. 

,Two versions of the method were studied, which differ 

only in the way in which the oscillatory behaviour is detected 

when the estimated >. becomes smaller than the actual one. · max 
The DRKV method uses a velocity criterion and the DRKR method 

uses a residual criterion. The parameter pk controls the 

difference by which two successive velocity vector nonns are 

allowed to differ. When this tolerance is exceeded, the parameter 

GER which is the sum of>. and >.m,·n 1s increased by a factor m. max · 
In the DRKR method, on the other hand, GER is increased when 



Nit GER NUNCE 

1045 2.80 1 

1039 2.60 5 

1148 2.40 5 

Hvergence 2.40 1 

993 2 .15 5 

913 2 .15 10 

1031 2 .15 10 

:iivergence 2.15 10 

1284 2. l 5 10 

968 2.6 5 

1031 2.40 5 

1076 2.40 10 

982 2 .15 5 

1077 2 .15 5 
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Pk 

-
0.01 

0.01 

0. 1 

0.01 

0.01 

0.001 

o. 1 

0.0001 

m 

-
1.05 

1.05 

1.10 

1.05 

1.10 

1.05 

1 .10 

l .OS 

1.10 

1., 0 

1.10 

1.10 

1.05 

n 

2,0 

2.0 

2,0 

2.0 

2.0 

RNORM 
criterion 
(e= 0.1 E-07) 

NUNCE controls the number of iterations to check for instability 
qe is for the V difference criterion 
n is for the RNORM criterion 
m is the multiplication parameter for (Amax+ Amin) 
GER = >. + >. • max m1n 

Table 7.16 Studies of example 2 with ORKV and DRKR. 
Load case 11 A11 
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the current norm of the residuals is greater than the norm 

of the residuals at the start of the iterations times a safety 

parameter n. 

Table 7.16 shows the convergence achieved by these two 

methods as applied to load case 11A11of example 2. When the value 

of Pk is comparatively large then instability can occur, but 

otherwise the final number of iterations remains approximately 

the same. The parameter NUNCE controls the number of iterations 

for which the criterion for increasing the value of GER is not 

opera~ional. As we can see from Table 7.16, for this particular 

example, this parameter does not affect significantly the 

behaviour of the method. 

From Table 7.17 it is interesting to see how the value of 

the parameter NUNCE can affect the convergence of the method 

for problems with greater nonlinearities such as example 2 with 
11 II 

load case B. For NUNCE = 5 and pk = 0.01 the method diverged, 

and.only when pk was reduced to 0.001 did the method converge. 

The selection of these parameters proved to be very sensitive in 

the dynamic relaxation method with kinetic damping for problems 

with increased nonlinearities. Example l is a characteristic 

problem with strong nonlinearities and T~ble 7.18 indicates that 

these control parameters needed even more careful selection to 

ensure convergence of the method. 

7.4. The Conjugate Gradient -Tchebycheff Method 

As explained in Section 5.6, where the theory of the method 



Nit GER NUNCE 

1008 2.60 l 

1019 2.40 1 

842 2.15 1 

divergenc~ 2 .15 5 

divergenc~ 2 .15 5 

853 2 .15 5 

850 2 .15 5 

826 2.40 10 

849 2.40 10 

907 2.40 20 
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Pk n 

0.01 

0.01 

0.01 

0.01 

0 .1 

0.001 

0:0001 

2.0 

3.0 

2.0 

m 

1.05 

1.05 

1.10 

1.05 

1.10 

1.10 

1.10 

1.10 

1.10 

1.10 

RN0RM 
criterion 
( e: = 0. l E-07) 

Table 7.17 Studies of example 2 with DRKV and DRKR. Load case 11 811 

Nit GER NUNCE Pk n m 

1619 4.50 2 10,0 1.20 

1977 4,50 2 · 5.0 1.10 

ki i vergencie 4,50 3 5,0 1.10 

1573 4.50 3 . 10.0 1.20 

di vergenc, ~ 4.50 1 0.001 1.10 
ver~ slow con ergen. 4.50 5 0.001 1.30 
,.. ,a 

1706 4.50 5 0.05 1.20 

1595 4, 50 5 0.01 1.20 

Table 7.18 Studies of example 1 with DRKV and DRKR 

RN0RM 
criterion 
(t= 0,lE-07} 
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was outlined, dynamic relaxation was chosen as inner method, 

the conjugate gradient algorithm as outer method. In the 

applications of the method in-this Chapter a smoothing 

process was also applied. The purpose of the smoothing process 

is to eliminate the contributions of the eigenvalues to the 

error vector which are greater than the estimated minimum eigen­

value used during the smoothing process. Theoretically this 

implies that when the method is applied to linear problems, 

a Tchebycheff relaxation, with initial estimates Asm' Amax 

for the minimum and maximum eigenvalues, will eliminate after a. 

number of iterations all the contributions to the error vector 

of the eigenvalues Ai > Asm· In other words only the remaining 

contributions of the eigenvalues Ai< Asm are essential. 

If the eigenvalues A of the matrix K are then transformed 

into the eigenvalues u of the matrix K* by means of the inner 

method, the new system K*x + s = O has as many contributions 

from the eigenvalues as the old system Kx+b = O, which can be 

eliminated with n* conjugate gradient steps of the outer method ; 

n* being the remaining number of eigenvalues. 

In Table 7.19 the following notations are used 

NSMOOT 

MIT 

number of DR iterations carried out for smoothing 

number of steps of the inner method 

maximum eigenvalue used for smoothing and for the 

main iteration process 

Asm :. minimum eigenvalue used for smoothing · 

Amin : minimum eigenvalue for the inner method 



NSMOOT MIT .Amax 1sm .Amin NUH 

- 300 GER 10.0 0.98 4 

- 100 II 0.1 0.1 

- 50 II 0.1 0.1 

100 50 II 1.0 0.1 

200 50 II O. l 0.01 

200 50 II o. 1 0.1 43 

200 100 II 0.01 0.01 22 

200 50 II 1.0 0.1 31 

200 40 II 1.0 o. 1 

200 25 II 1.0 0.1 

400 50 II 1.0 0 .1 43 

Table 7.19 Studies of example 2 with CGTCH. Load case "A" 

Nit 

2400 

4500 

4600 

3300 

4700 

TIME ( sec) 

l. 726 

very slow 
convergence 

divergence 

divergence 
very slow 
convergence 

3.767 

3.827 

2.762 
very slow 
convergence 
very slow 
convergence 

3.939 

GER = 0.1297E+05 

RNORM-SC 
criterion 
(£= O.lE-05) 

I 
N 
w 
w 
I 
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NUH number of steps for the outer method 

Nit total number of DR iterations 

GER the value for Amax obtained from the Gershgorin 

theorem and for· the unscaled stiffness method. 

7.5. Successive Overelaxation Method 

Four different versions of the successive overelaxation 

method were studied in this Section. The SORNL, which resets 

the elemental matrices in each iteration. The SORES, which resets 

only the residuals in each iteration, with the stiffness matrix 

being held constant during the iterations. The SORESC, which 

incorporates the Carre algorithm for an automatic adjustment of 

the relaxation parameter w. and rese~s only the residuals as 

SORES. And, finally, the SORESH, which incorporates an algorithm 

proposed by Hageman for the calculation of the relaxation 

parameter during the course of the iterations. 

Figures 7.1, 7.2 and 7.3 show the convergence rate of 

SORNL and SORES for different values of the parameter w. One 

characteristic aspect of all four examples is that convergence 

deteriorates abruptly as soon as the relaxation parameter w becomes 

slightly larger than a critical optimum value. From Figure 7.3 

it can also be seen that although the number of iterations are 

almost the same for the two methods, t~e required time is almost 

double for the SORNL method. 
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RNORM 
criterion 
(e= O. lE-07) 

~----L ---- 6.611 (sec) 

0.8 1.0 1.1 1.2 1.3 1.4 

Fig. 7.1 Convergence of SORNL with different relaxation 
parameters w (example 1) 

QUOT 
·criterion 
(e= O.lE-07) 

----2.267(sec 

1.50 1.60 1.70 1.80 1.90 w 

Fig. 7.2 Convergence of SORES with different relaxation 
parameter w (example 2, load case "A") 
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Fig. 7.3. Convergence of SORNL and SORES with different relaxation parameters 
w (example 2. Load case "B") 
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7.6. Comparative Study 

Table 7.21 shows the convergence of three versions of the 

dynamic relaxation method as applied to the three storey frame 

of example 6. From this Table we can see that although the 

minimum and maximum eigenvalue remained almost unchanged, the 

method based on an initial estimate of these parameters produced 

slower convergence than the method based on automatic adjustment 

of the iteration parameters. The third method which incorporates 

the concept of kinetic damping produced slower results than the 

DRAUT method. 

In Table 7.22 and Figure 7.4 there is a study of the 

convergence rates· of all the methods discussed in this Chapter 

when applied to the counterstressed dual cable structure of 

example 2. The DRAUT method gave the best results while the 

two kinetic damping methods produced almost the same convergence 

rate. The dynamic relaxation method without adjustment of the 

parameters gave similar results to the kinetic damping methods. 

The convergence of the conjugate gradient - Tchebycheff method, 

after the termination parameter e reached O.lE-02, ceased improving. 

The successive overelaxation methods with Carre and Hageman 

automatic adjustment algorithms for the relaxation parameter w, 

produced similar results, with the SORESC being better in the 

first stages. Both methods used an initial estimate for the rel­

axation parameter of w = 1.0. The SORES and SORNL methods are 

presented with their best convergence rate, attained after 

trial runs with different relaxation parameters (Figures 7.2 and 
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Load case 11 A11 Load case 11 811 

Node x(ft) y(ft) x(ft) 

0.2397 1 .63401 0.439126 
0.34445 2.54673 0.66100 
0.35334 2.73182 0.70366 
0.30659 2.18763 0.606863 
0.24498 0.917106 0.41298 
0.232473 -0.42154 0.302996 
0.25872 -1.17735 0.327158 
0.266174 -1.35397 0.36329 
0. 198245 -0.95792 0.29278 

-0.296272 1.61923 -0.83604 
-0.39836 2.52976 -1.10475 
-0.379036 2.71777 -1.01949 
-0.313168 2.17708 -0.805840 
-0.276256 0.91038 -0.69037 
-0.294284 -0.42668 -0.70810 
-0.31057 -1.18405 -0.69480 

-0.28988 -1.3622 -0.60319 
•0.19761 -0.96529 -0.38682 

Table 7.20 Final displacements of example 2 

METHOD Nit TIME ( sec) 

DRGR 166 0.182 

DRAUT 98 0.129 

DRKV 180 0.190 

Table 7.21 Comparative study of example 6 

y(ft) 

4 .15053 
6.62475 
7.39906 
6.47541 
3.87625 

1.0010 
-0.80661 

-1.56638 
-1.2912 

4.06646 
6. 52831 
7.32034 
6.41824 
3.8443 
0.98336 

-0.827187 

-1.59060 
-1.3125 

RNORM criterion 
(t = O. lE-07) 



Tennination 0.1E-0O 0.1E-0l O.lE-02 0.lE-03 O. lE-04 0. lE-05 0.1 E-06 Parameter 
Number Method Nit TIME Nit TIME Nit TIME Nit TIME Nit TIME Nit TIME Nit TIME 

1 DRGR 152 0. 140 317 0.276 472 0.405 634 0.540 792 0.675 950 0.81 1108 0.945 

2 DRAUT 140 0.129 195 0.175 321 0.280 368 0.32 495 0.425 539 0.463 672 0.573 

3 DRAUT-UNSC 135 0.115 266 0.219 471 0.384 574 0.467 681 0.558 754 0.615 913 0.742 

4 DRKR 155 0.135 380 0.316 477 0.396 632 0.524 781 0.644 935 0.770 1081 0.889 

5 DRKR-UNSC 73 0.168 144 0.324 247 0.526 320 0.671 434 0.895 504 1.035 597 1.217 
. 

6 DRKV 259 0.272 334 0.345 446 0.451 561 0.558 684 0.676 791 0.775 868 0.848 

7 CGTCH 600 0.413 700 0.496 1000 0.825 12900 10.589 - - - - - -
8 SORNL 413 1.273 627 1.931 839 2.588 1052 3.242 1265 3.902 1478 4.560 1691 5.216 

9 SORES 419 0.651 636 0.994 853 1.331 1069 l.66~ 1286 1.987 1503 2.346 1719 2.682 

10 SORESC 411 0.643 617 0.964 821 1.282 1026 1.60: 1230 1.92 1435 2.240 1639 2.558 

11 SORESH 368 0.575 536 0.837 692 1.081 916 1.429 1228 1.915 1528 2.382 1828 2.848 

Table 7.22 Comparative study of example 2. Load case "A" (QUOT criterion) 
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7.3). It can be seen that the re-evaluation of the stiffness 

matrix in SORNL, although not affecting the final number of 

iterations, increased considerably the execution time. One 

interesting aspect is that the automatic adjustment methods 

for the evaluation of the parameter w gave better results than 

those given when the relaxation parameter remained constant 

at its optimum value. 

Table 7.23 and Figure 7.5 show the convergence rates 

obtained when the methods were applied to the hyperbolic 

paraboloid of example 3. Again the dynamic relaxation with 

automatic adjustment of the parameters, produced the best conver­

gence. The DRKV with the velocity criterion gave better results· 

than the DRKR with the residual criterion. This is something 

that was exp~cted, since a change in the velocity norm is more 

fodicative of instability than a change in the residual norm. 

The DRGR and SORNL gave very slow convergence, while the SORES 

type methods, with fixed and automatic adjustment for the relaxation 

parameter w, diverged. This means that the initial values for 

the coefficients of the stiffness matrix which were used throughout. 

the iterations, should be updated at regular intervals to cope 

with the changing configuration of the structure. 

7.7. Conclusions 

The successive overelaxation method has rarely been applied 

to the nonlinear analysis of structures with finite element 



Tennination 0.lE-00 0.lE-01 0.lE-02 0. lE-03 0.1 E-04 
Paramater 

Number Method Nit TIME Nit TIME Nit TIME Nit TIME Nit TIME 

1 DRAUT 20' 0.069 40 0.111 56 0.144 71 0.175 84 0.203 

2 DRKR 56 0.161 101 0.265 148 0.372 194 0.476 229 0.559 

-

3 DRKR-UNSC 73 0.188 144 0.360 247 0.585 320 0.746 434 0.994 

' 

4 DRKV 36 0.126 59 D.186 85 0.253 102 0.298: 130 0.368 

5 CGTCH - - .. - - .. .. - .. -

Table 7.23 Comparative study of example 3 (QU0T criterion) 

0.lE-05 

Nit TIME 

96 0.228 

276 0.663 

504 1 .151 

153 0.427 

- -

0. lE-06 

Nit TIME 

107 0.251 

309 0.740 

597 1.352 

175 0.484 

500 0.903 
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N 
~ 
N 
I 
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idealizations. The reason is that unless the coefficient matrix 

has certain properties, there is no available explicit formula 

for the optimum value of the relaxation parameter w • By using 

the ongoing processes, proposed for linear cases and with 

matrices with property 11 A11
, by Carre and Hageman some of the 

disadvantages of the method have been overcome, Although it can 

not be claimed that the relaxation parameter produced by these 

two algorithms will lead always to a convergent method, at least 

when a solution can be obtained, the convergence of the method 
. 

with these two ongoing processes is better than the optimum 

convergence of the method with constant relaxation parameter 

wept' 

The convergence rates of the successive overelaxation 

methods on the other hand, remained much slower than the 

convergence rates obtained by the dynamic relaxation methods. 

This means that the theoretical convergence rates of Table 5.1 

are strictly applicable only to tridiagonal matrices and do not, 

represent the behaviour of the methods for general matrices. 

Another disadvantage of the successive overelaxation method 

is the need to form the (6 x 6) diagonal submatrices of the 

overall stiffness matrix and then provide a suitable storage 

scheme, 

The combination of the conjugate gradient and Tchebycheff 

methods did not produce the expected results, The method, for 

small values of the parameter MIT (number os steps for the inner 

method) suddenly diverged after a constant number of iterations 
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for all cases. Also divergence occurred when no smoothing 

process was used. The method seems to have these difficulties 

because the only way to apply it to nonlinear systems is to 

employ a linear evaluation for the step length in the conjugate 

gradient method. Any attempt to apply a nonlinear step length 

algorithm will involve enormous computational work. The 

method still can be useful for extremely ill-conditioned problems 

as could be the case with cable structures supported by flexible 

boundaries. 

The dynamic relaxation method with an "a priori" 

evaluation of the minimum and maximum eigenvalues gave very 

competitive results when applied to structures with moderate 

nonlinearity. But when applied to structures with significant 

nonlinearities, the iteration parameters have to be altered to 

avoid• i nstabi 1i ty and this reduces the convergence rate of the 

method. The method employed for the evaluation of the minimum 

and maximum eigenvalues produced very fast and accurate estimates 

without the need of any additional storage. The time required 

for the 11a priori 11 evaluation of the extreme eigenvalues was 

about 10% of the whole execution time· for the problems studied 

in this Chapter. 

The concept of kinetic damping simplifies the method to 

the evaluation only of a bound for the maximum eigenvalue. This 

estimate could be obtained using the Gershgorin bound theorem. 

The method thus has the advantage that it can be applied very 

easily, with only one parameter to be checked against the 

possibility of divergence when the method is applied to 
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stiffening systems. Of the two criteria used to check oscillatory 

behaviour during the iteration process. the velocity criterion 

gave more stable and faster results. Even in the extreme non­

linear case of the single cable of example 1. the velocity criterion 
' 

incorporated very reliably the changes in the current maximum 

eigenvalue during the application of the loading. 

The method which produced the best results in· terms of 

number of iterations and total execution time, was the dynamic 

relaxation with automatic adjustment of the iteration parameters. 

The maximum eigenvalue is obtained from Gershgorin theorem, while 

a first estimate of the minimum eigenvalue can be any positive 

number less than the estimated maximum eigenvalue. After a 

few iterations a new estimate of the minimum eigenvalue is 

obtained, not necessarily a close approximation to the true 

minimum eigenvalue, which in conjunction with the maximum eigen­

value produces the best rate of convergence. This process will 

allow for any change of the current minimum eigenvalue during 

the application of the loads, while a stability criterion similar 

to those used in the kinetic damping applications, will safeguard 

against any change of the current maximum eigenvalue capable 

of inducing divergence of the iterative process, 

On the basis of the results obtained so far and ·the 

experience gained from the computational studies carried out 

in this work, dynamic relaxation with automatic adjustment of 

the relaxation parameters gave the most stable and rapid results 

of all the relaxation methods discussed in this Chapter. The 
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method did not fail to converge with almost any possible 

combination of the iteration parameters. In the opinion of the 

author this method could be very effective for the analysis 

of nonlinear structures. 
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CHAPTER 8 

STIFFNESS METHODS 

8,1. Linear Equation Systems 

8.1.1. Introduction 

The majority of problems in structural analysis require, at 

some stage, the solution of a set of linear equations. In linear 

structural analysis programs. 20% to 50% of the total execution • 

time may be required to solve the set of linear equations, 

depending on the size of the problem and the amount of· peripheral 

processing involved, However, in nonlinear static or dynamic 

problems, with the need for partial or complete reanalysis for 

each load increment or iteration inside the load increment or 

time step, up to 80% of the total execution time may be spent 

in the solution of equations. Consequently, an efficient equation 

solving routine will reduce considerably the computer storage 

requirements and the total execution time required for the 

convergence to a nonlinear solution. 

The analysis of structures can be represented by the solution 

of sets of simultaneous equations with either forces or displacements 

as unknowns. The latter method, known as the "stiffness approach", 

is more easily adapted to computer analysis and has, therefore, 

been accepted by most writers of structural problems. 

The stiffness method of structural analysis is represented 



in matrix form by 

Kx = F 
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.. (8. 1) 

in which F and x are the applied load vector and the displacement 

vector and K is the stiffness matrix of the structure. For 

cable problems the stiffness matrix is, in most cases, 

sparse, banded and symmetric. If K is not symmetric, it can 

be made so by multiplying both sides of equation (8.1) by the 

transpose of K. 

Two main direct methods of solution best incorporate the 

properties of the stiffnes~ matrix, namely the Gaussian approach 

and the Choleski approach. According to the theorem of Klynyev 

and Kokovkin-Scherback [168], no method using rational operations 

for a dense matrix of coefficients can make fewer operations 

than Gauss elimination. Therefore, most effort has been directed 

toward recogn·i sing the distribution of the non-zero elements 

of the coefficient matrix and taking advantage of that distribution 

to reduce the number of calculations. 

Banded solutions are very efficient when the zero elements 

inside the bandwidth are kept to a minimum. This can be achieved 

if nodal points are numbered such that the maximum nodal point 

difference within any one element is kept as small as possible. 

Ideally suited for such a numbering are unbranched or chain structures, 

such as continuous beam or folded plate structures and also 

building frames, bridge structures and some cable structures. 
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For most regular shaped structures, the optimum numbering 

of nodal points is straightforward. For complex structures, 

however, the problem of minimizing the bandwidth usually becomes 

very difficult. Programs have been developed, especially for 

this purpose, which automatically renumber the nodes in order 

to minimize as much as possible the bandwidth of the stiffness 

matrix [244,303]. These reordering programs themselves consume 

considerable computer time and their use should be restricted 

to very large equation systems. 

All band solutions have in common ·that zero coefficients 

below non-zero elements in the overall stiffness matrix will 

become non-zero during the elimination process, thus coupling 

eventually all degrees of freedom within the wave front while 

it travels along the longitudinal axis of the structure. Therefore, 
. . 

banded solutions will often not represent the optimum solution 

with regard to the required number of operations. However, the 

ease of assembling process, input-output handling, and the 

very simple book-keeping process, make these techniques very 

popular. 

When a matrix is not effectively banded and has a large 

proportion of zero elements, then by storing only the non-zero 

elements,machine store and time may be reduced significantly. 

Sparse matrix routines are necessarily more complex than standard 

matrix routines, but once developed provide a useful tool for 

the computer analysis of structures. Problems of large size 
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can be accommodated within the main store of a computer without 

recourse to submatrix techniques or magnetic tapes. They also 

allow full flexibility as regards joints and member numbering. 

The use of sparse matrix routines as opposed to standard matrix 

routines was found [155] to be more economical in computing cost 

for all but the smallest structural frames. 

There are numerous other computational techniques for 

the solution of linear equations. Among the most effective are 

the "partitioning methods", the static condensation and the 

substructuring methods, the "frontal solutions", the "skyline 

method" and the Grout reduction. It is not the purpose of this 

work to discuss these methods, further details can be found 

in References [81, 145, 192, 194, 195] • 

A compact storage scheme, which has been developed by 

Jennings [153], and a half banded method, have been used in this 

study to provide an alternative comparison to the gradient and 

relaxation methods already discussed. 

8.1.2. Jenning's Compact Storage Scheme for the Solution of 

Symmetric Linear Simultaneous Equations 

This method is a direct solution method using a non-standard 

form of storage for the matrix of left-hand side coefficient~. 

The method is as versatile as a sparse matrix storage scheme in 

dealing ~ith arbitrary patterns of non-zero elements, while at 
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the same time retaining most of the ·simplicity inherent in the 

method of direct solution when using a diagonal band storage 

scheme. 

The storage scheme adopted for matrix Kisto store the 

elements below the leading diagonal in sequence by rows, but 

with all elements preceeding the first non-zero element in each 

row left out. This sequence is stored in a one dimensional array 

called the main sequenc~. In addition an address sequence is 

used to locate the position of the leading diagonal elements 

within the main sequence. It will be noted that, when solved 

by elimination and back substitution without row or column inter­

change, all the buildup of non-zero elements will occur within 

the elements stored in the main sequence. 

The reduction process 1s best illustrated by considering 

a set of four simultaneous equations. After the first two 

equations have been reduced so that their leading diagonal co­

efficients are unity, the equations appear as follows : 

1 ** ** ** ** 
Kl2 K13 K14 f1 

** **· ** 
1 K23 K24 f2 (8.2) 

K32 K33 K34 f3 

K42 K43 K44 f4 

The third equation is then reduced by making 
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* K31 = K31 

* * ** K32 = K32 - K31 K12 

* * ** * ** K33 = K33 - ~31K13 - K32K23 (8.3) 

and then putting 

* * = K34 / K33 (8.4) 
• 

• 

* * = f3 I K33 

The sequence of arithmetic operations can be summarised 

by the flow diagram shown in Figure 8.1. The column number of 

the first element in row i has been designated ri, and r is 

the greatest of r. and r., where rj is the column number of the 
1 J 

first element in row j. A set of temporary stores are used 

which are designated c. The maximum number of elements in the c 

array equals the largest number of elements stored for any row of 

matrix K. The back substitution process is illustrated by the 

flow diagram of Figure 8.2. 

Figure 8.3 shows diagramatically the elements stored for the 

elimination and compact store elimination schemes. The elimination 

of a row, say DE, is performed by the simple elimination method 

by referring to the elements within the triangle EFJ, while for 

the compact store elimination, by referring only to the elements 
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Seti to 1 

Set j to ri 

j-1 
Form cj = Kij - L ckKjk 

K=r 

i < N 
i = i+l 

Reduction 
finished 

Fig. 8.1 Reduction process of the compact store 
elimination scheme 

i = N 
from reduction 

r--------1 K = r i 

K < i 

i > 1 

K < i 

K = K + 1 

K = i 

i = i - 1 

i = 1 

K = i ----------- -7 
I 
I 
I 
I 
I 
I 
I 
I ___________ J 

Back substitution 
finished 

Fig. 8.2 Back substitution of the compact store 
elimination scheme 
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of the triangle EOG. 

semi-band width 

------4.----------------, 

Fig. 8.3. Storage layout for the elimination 
and compact store elimination schemes 

8.2. Non Linear Equation Systems 

8.2.1. Introduction 

Nonlinear behaviour in structural systems is usually 

classified into one of the following three categories -

(a) geometric nonlinearity, which arises from nonlinear terms 
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in the kinematic equations, (b) material nonlinearity, which 

arises from nonlinearities in the constitutive equations, and 

(c) combined geometric and material nonlinearity. Computationally, 

the mathematical techniques that can be used successfully to 

treat one type of nonlinearity are, with modifications, generally 

applicable to other types of nonlinearity. With the exception, 

perhaps, in problems of stability or of cyclic loading of inelastic 

elements. 

The direct stiffness method of structural analysis was 

first extended to the analysis of geometrically nonlinear problems 

by Turner, Dill I Martin and Melosh [289] • In that paper, the 

problem of large deflections but small strains, is analysed as 

a sequence of linear problems, using an incremental analysis 

procedure. Geometric stiffness matrices are derived for pin­

jointed bar and triangular plane stress elements. This approach 

was further elaborated by Argyris [5] • 

Since then a great number of investigators have studied 

and developed nonlinear solution techniques. Comprehensive 

reviews of such solution techniques have been discussed in 

References [191, 218, 284] • 

A method of classifying the various techniques concerns 

the manner in which the force unbalance is treated. A set of 

displacements which exactly satisfies the equations of equilibrium 

will give rise to no force unbalance. The force unbalance vector 

is a measure of the deviation from a true state of equilibrium and 

is analytically defined as 

r = -Kx + F (8.2) 



where 
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K = the global stiffness matrix 

x = nodal displacement vector 

F = generalized force vector 

If the load is applied incrementally, then the total load 

at any point may be represented as a function of a load parameter, 

p, and a normalized load vector P; thus,the generalized force 

vector is written 

F = p.P (8.3) 

As the load is incremented, only the value of the load 

parameter changes. Hence the displacements may also be interpreted 

as being a function of the load parameter, Differentiation of 

equation (8.2) with respect to the load parameter p, yields 

. . 
r = -Kx + P (8.4) 

where the dot indicates differentiation with respect top. 

The second derivative of the force unbalance may be 

obtained from equation (8.4) as 
.. .. 
r = -K X (8.5) 

. . 

The use of equations (8.2), (8.3) and (8.4), provides an effective 

basis for classifying the solution techniques employed in non-

li near analyses. 

The first class of solution procedures seek to exactly 

satisfy the equations of equilibrium and are, therefore, of the 

·class r = O. These techniques generally seek the equilibrium 

displacement state at each load level by iterating until a 

specified level of accuracy is attained. Successive approximations, 
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Newton Raphson techniques and direct minimization of the total 

potential energy, comprise the most popular methods in this class. 

The second class of solution procedures seek to minimize 

the force unbalance by requiring a zero value for the path 

derivative of the force unbalance. This class is characterized 

by the expression r = o. The incremental stiffness procedure 

and the static perturbation method are typical procedures of 

this class. These techniques have the tendency to "drift" from 

the exact equilibrium path (see Figures 8.13 and 8.14). This 

"drifting" tendency, resulting from errors propagated from 

successive steps, has created the third class of solution 

procedures which improve the incremental procedures. 

Self-correcting solution procedures seek to correct the 

deviation from the equilibrium in each load increment. First and 

second order procedures representing combinations of equations 

(8.4) and (8.5) have been developed and employed. 

The most popular solution procedures for the nonlinear 

analysis of cable structures, where geometric nonlinearities 

are predominant, have been of the class r = o. At each load step 

these techniques generally require an initial estimate of the 

displacement vector, which usually is the linear solution vector, 

and then seek through an iterative process to satisfy the equations 

of equilibrium. Incremental stiffness methods have been applied 

less frequencly in the analysis of cable structures, while the 

perturbation method has been applied only once by Aizawa, Tanaka 
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and Tsubota [2] • Second and third classes of solution procedure 

are better suited to material nonlinearities and general path 

dependent problems. 

8.2.2. Newton Raphson Type Methods 

The Newton Raphson method is one of the most popular 

methods of solution in nonlinear analysis. The wide applicability 

of the method is evidenced by the inclusion of this technique 

in virtually all numerical analysis text books. 

For an appropriate displacement vector x and the applied 

load vector F, the unbalance in nodal force corresponding to the 

i-th co-ordinate may be written 

{8.6) 

A Taylor's series expression of the force unbalance about 

the point x yields the following expression for the force unbalance 

at an adjacent displacement state {x + 6x). 

azi{x) 2 
r; { x + t.x) = r i ( x) + -- . t.x j + O [ { ax) ] { 8 • 7) 

axj 

The conventional Newton Raphson procedure retains only·the 

fi'rst two terms in the Taylor expansion. In addition it is assumed 

that the unbalance in the nodal forces corresponding to the 

displacement {x + 6x) is zero. These assumptions reduce equation 

(8.7) to the following 
·ari(x) 

axj xj = ri{x) {8.8) 

The partial derivatives in equation {8.8) may be obtained by 
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differentiating the force unbalance defined in equation (8.6). 

For each degree of freedom a relation may be obtained in the 

form 

(8.9) 

which in matrix notation may be written as 

K~ (tix)n+l = r(x)n (8.10) 

where KL is the linear or tangent stiffness matrix, and n is 

the number of executed iterations. 

The tangent stiffness matrix is composed of two parts : 

(8 .11) 

in which KE is the same as that obtained in the classical theory 

for linear elastic struct~res and KG is the geometric stiffness 

matrix. The stiffness matri~ kE is associated with the 

deformations of an element and kG is associated with the changes 

. in geometry of the element with the element considered as a 

rigid body. 

Equation (8.10) is then solved to determine an improved 

displacement vector 

(8.12) 

Diagramatically, the procedure is illustrated in Figures (8.4a) 

and (8.4b), for a stiffening and a softening single degree of 

freedom system. 
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(b) 

Fig. 8.4. Newton Raphson approach for stiffening 
and softening type of structures 

This procedure is one of the most highly utilized techniques 

in geometrically nonlinear structural analysis ; on the other 

hand, the·results obtained with this method in plasticity analyses 

have been less successful. The most sJgnificant drawback associated 

with the Newton Raphson method is the large amount of computational 

effort required to compute and invert (or solve) at each cycle the 

coefficient matrix. 

For this reason when dealing with structures which are not 

highly nonlinear a "modified Newton Raphson" method is employed. 

In this method the stiffness matrix is formed and inverted only 

once. Equation (8.10) now becomes 
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The above process for stiffening and softening systems 

respectively is represented in Figures (8.Sa) and (8.5b) 

(a) 

(8.13) 

(b) 

Fig. 8.5. Modified Newton Raphson approach for 
stiffening and softening type of structures 

It can be seen from Figure a.Sb, that for geometrically 

softening systems, the process should always converge. For 

stiffening systems, however, if the initial out of balance force 

is too large and the structure is highly nonlinear, the method may 

diverge, as shown in Figure 8.6. 

Mollman and Mortensen [ 200] found that for prestressed 

networks the modifed Newton Raphson method, which they called 
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11 simplified Newton Raphson 1
'. converged for small applied loads but 

diverged when the loads became larger. To overcome this 

difficulty, they suggested the use of a modified geometric 

stiffness in conjunction with an amended expression for the 

residua 1 forces. 

. F~-------,..-~ 
F'-r2 

F-r1 i-----7":,...., 

F-r3 

Fig. 8.6. Fig. 8.7. 

In total displacement form, the modified Newton Raphson 

process is illustrated in Figure 8.7, where ri stands for the 

absolute value of the residual force at the i-th iteration. 
' Krishna [173Jfound that an improved convergence could be obtained 

by using the iteration formula : 

xn+l_ = Ko-1[ F+}(rn+rn-l)] (8.14) 
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However, when the applied loads are large in comparison to the 

prestress, the results may become only slowly convergent and 

render the method uneconomical. 

In an effort to combine the advantages of the Newton 

Raphson and the modified Newton Raphson, a combined approach may 

be used, as shown diagramatically in Figure 8.8. In this method 

the coefficient matrix is held constant and is updated after 

several iterations each time. 

Another form of total displacerrentiterative procedure, 

applied to cable and truss structures by Baron and Venkatesan 

[ 19], is the secant stiffness method, in which the following 

iterative scheme is used for obtaining the solution : 

n n+l 
F = K S X 

where Kn is the secant stiffness method given by s 
Kn n 

s = KL + KNL 

(8.15) 

(8.16) 

and KL is the linear matrix given by equation (8.11) and KNL is 

a nonlinear function ·of the displacements. This iterative scheme 

is illustrated in Figure 8.9. 

Xl x2 
Fig. 8.8 

I 
I 
I 
I 
I 
I 
I 
I 
l 

I I 
I I 
I I 
l I 
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For highly nonlinear cable net problems the equilibrium load 

based on a linearised solution may be so different from the 

applied load that convergence may be very slow. For this reason 

new iterative techniques based on the Newton Raphson method 

have been proposed in an effort to scale down the overestimated 

displacements. Kar and Okazaki [166] have modified the linearized 

displacem_ents by the ratio of the largest applied load in any 

cycle of iteration, to its corresponding equilibrium load calculated 

on the basis of the linearised solution. The use of the largest 

applied load is based on the assumption that it has the greatest 

overall effect on the behaviour of the net (see Figure 8.10 which 

represents the load displacement curve of a joint with the largest 

applied load). The linearised equations (line 08) yield 

displacement x1 corresponding to the applied load F. Displacement 

xl is now multiplied by the ratio of F to "f1 and x1 is scaled 

down to x1 , which is smaller than the correct displacement. The 

equilibrium load is now F2 , and the residual load F. The 
• 

next iteration is continued with the initial estimate being x1 . 

--------1---------

B 

F 

AX' 

o ______ _.__ ____ --l.,_ __ _,i.. ___ _ 

,· 

Fig. 8.10 
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8.2.3. Incremental Stiffness Procedure 

In the incremental stiffness procedure the load is 

applied as a sequence of sufficiently small increments so that 

the structure can be assumed to respond linearly within each 

increment. In this manner the incremental technique solves a 

sequence of linear problems wherein the stiffness properties are 

recomputed for each load increment. The incremental technique 

therefore seeks, without iteration, to march the load deflection 

path. 

The development of the recurrence relations for the 

incremental stiffness method begins with the assumption that the 

first derivative of the force unbalance with respect to the 

generalized load parameter p is zero. This assumption allows 

equation (8.4) to be written at the start of the (m+l)-th load 

increment as 

K x = p m 
{8.17) 

The recursive relations rely upon the use of Euler forward 

difference approximation of the displacement derivative x. 

(8.18) 

Direct substitution of equation (8.18) into equation (8.17) 

yields the recursion relations applicable in the incremental 

stiffness method : 

K 6xn+l = ~p.P = 6F (8.19) 



-267-

Improved results, at the expense of additional computation, 

can be obtained by taking the tangent stiffness not at the beginning 

but near the mid-point of each increment, corresponding to a 

second order Runga-Kutta procedure [129] • Bergan and Soreide 

[27] suggested a method for automatic computation of the size of 

the load increment which uses large increments in linear regions 

but smaller increments with increasing nonlinearity. 

To avoid the "drifting" tendency of the incremental stiffness 

procedure (Figure 8.13), self-correcting procedures have been 

used. The simplest self-correcting method is to add the current 

force residuals to the next load increment. This corresponds to 

one cycle of Newton Raphson iteration, followed by a simple 

Euler increment in which the gradient is used as for the Newton 

Raphson iteration. Improved accuracy is obtained by carrying 

out several iterations for each level of loading. The tangent 

stiffness may either be held constant during iterations within 

each load step or may be reset at each iteration ; the latter 

corresponding with the Newton-Raphson procedure. A flow diagram 

for an incremental Newton Raphson method is shown in Figure 8.11 • 

8.2.4. The Perturbation Method 

The perturbation method is another solution procedure of 

the c~ass f = O which is currently receiving considerable attention. 

The metho_d bears its name from the fact that its purpose is 

to determine the response of the systems under the constraint 



START 

Apply the load 
F1 = t.F 

Form tangent stiffness 
matrix KL= KE+ KG 
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Evaluate the residual or 
out of balance forces ri+l 

No 

Solve equation 
K1 ( t.x} = r i + 1 

Yes 

No 

Evaluate the new 
load 
F +l = F + t.F 

Evaluate the 
residuals ri+l 

Fig. 8.11 Flow chart for the incremental Newton Raphson method 
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of equilibrium, when one of the parameters of the system is 

mathematically perturbed from a known value. 

Defining X; (i = 1,2, ••• N) to be the generalized 

displacement coordinates and A to be the single generalized 

loading parameter, which we assume to be independent of the 

displacements, the r-th algebraic equation may then be written 

• (8.20) 

where Krj' Krjk• ••• , are the constant coefficients of the 

linear, quadratic ••• • terms respectively, in the r-th equation. 

A 

A 

Fig. 8,12 Perturbation axis 

Assuming now that at some set of values x1• F*, equations 

of type (8.20) are completely satisfied, we may write 
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X; = Xi + X; • A= A*+ A 

and equation (8.20) becomes 

Qr [ Xi + X; • A* + ).] = 0 or 

These equations. because of the conditions at x; andF*, 

reduce to 

). F = 0 r 

Equation (8.24) may also be written as follows 

where 

K;jk.t= Krjk.e. 

F* = F r r 

(8.21) 

(8.22) 

(8.23) 

(8.24) 
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Introducing a continuous parameters, which defines progress 

along the equilibrium path xi• A, obtained from the satsifaction 

of equations (8.24), we write the co-ordinates in parametric 

fonn as fol lows 

x. = x.(s) 
J J t 

, 

A = A(S) 

>.(O} = 0 

Accordingly, equation (8.25) is written as 

(8.26) 

(8 .27) 

Expansion of expressions (8.26) into Taylor series gives 

• l••. 2 l· .. 3 
xj(s} = xj(O) + xj(O)s + "2" xj(O) s + 0 x j(O)s + ••• {a) 

(8.28) 

A(S) = A(O) + ~{O)s + {{(o)s2 + ¾.i.(O)s
3 

+ ••• (b) 

Introducing the expressions (8.28) into equation (8.27), and 

then equating the coefficients for the terms of s of each order 

to zero, the following equations are obtained 

K; j x j ( O) + F~ ~ { o) = O {a) 

K;j xj(O) + K*rjk(2xj{O)xk{O)). + F*'i (0) = 0 (b) 

(8.29) 
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Equations (8.29) constitute the basic equations of the 

perturbation method. As parameters can be selected as either 

a displacement or a _load. If A is selected as parameters, then 

from equation (8.29a) the displacement vector x1 is obtained 

and after substituting these values in equation (8.29b), using 

the same inverse matrix, xi is obtained. From the same process, 
... 
xi is successively obtained, and so on. Introduction of these 

values into equation (8.28a) and addition of the increments to 

the present value of X~, provides a new point on the equilibrium , 
path. 

The higher order terms which exist in the equations of the 

perturbation method, make the technique well suited for studying 

stability problems and for tracing the postbuckled path for snap­

through buckling problems the perturbation method is very 

advantageous since, by using a displacement parameter as an 

independent variable with one equilibrium point along the path 

corresponding to each displacement state, there is no need for 

interchanging the role of dependent and independent variables 

as is necessary in the Newton Raphson method. 

The perturbation method on the other hand, when applied to 

highly nonlinear problems, has the tendency to "drift" from the 

true equilibrium path (see Figure 8.14). The drifting is the 

result of accumulation of errors at succeeding load steps and 

both the size of the load step and the number of terms retained 

in the Taylor's series influence the amount of drifting. 
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To overcome this drawback correcting procedures have been 

proposed which are implemented after a certain number of increments 

of the independent variable. 

I 
I 
I 
I 
I 
I 
I 

"4 

error 

Fig. 8.13 Incremental stiffness 
procedure 

Fig. 8.14 Perturbation 
method 

error 
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CHAPTER 9 

COMPARATIVE STUDY 

For the purpose of this study two stiffness method 

computer programs have been written, in addition to the programs 

developed in Chapters 4 and 7. Both stiffness programs utilize 

the Newton Raphson iteration method to approach the nonlinear 

solution and the Gauss elimination method to invert the tangent 

stiffness matrix in each iteration. The only difference between 

them is the way in which the overall stiffness matrix is stored. 

The first method, with the abbreviated description NTRA, stores 

the stiffness matrix in a semi-bandwi~th form, while the second 

method, with the abbreviated description NTRAJE, uses the single 

array compact store technique proposed by Jennings [153]. To 

avoid unnecessary repetitions only the methods with the best conver­

gence rates from the gradient and relaxation techniques have been 

included in this Chapter. 

9.1. Example l Suspension Cable 

This example, with no initial prestress, has a singular 

stiffness matrix in its unstressed configuration. In order to 

solvethis problem with the stiffness method, which requires the 

solution of the stiffness equations in each Newton Raphson 

iteration, it was assumed that one node was fixed during the first 
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solution stage. In this way the singularity was removed and 

subsequently the node was released after the first iteration. 

The rate of convergence, for this particular problem, was not 

affected by the choice of the fixed node. 

From Table 9.1 it is apparent that the stiffness method 

with Newton Raphson iterations is a very effective technique 

for this problem. The semi-bandwidth of the stiffness matrix is 

only 4 and the required time for the Gauss elimination was kept 

to a minimum. The total number of Newton Raphson iterations 

required to reduce the residual norm below the value of £=0.lE-07 

was 15, which reflects a highly nonlinear problem. 

Of the explicit methods, the conjugate gradient method 

with Stanton's linear search and dynamic relaxation with kinetic 

damping gave similar results, while the Fletcher and Reeves 

method produced better convergence. 

Table 9.2 shows the final displacements obtained fro~ three 

different solution techniques, namely the stiffness method, the 

conjugate gradient method and the dynamic relaxation method. The 

results up to six decimal digits are identical. 

9.~. Example 2 Counterstressed Dual Cable 

This is also a problem with very small bandwidth and the 

overall stiffness matrix has a minimum number of zero elements 

inside the bandwidth. This structure of the stiffness matrix 
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Method CGST-R2 CGFR-R2 

TIME 0.541 0.325 (sec) 

DRKV NTRA 

0.757 0.035 RNORM 
criterion 
(e = O.lE-07) 

Table 9.1 Comparison of the results of example 1 

. 
Node X(ft) Y(ft) 

1 1 .672465 · -4 .520561 

2 1 .375813 -3 .003561 

3 -0.314281 4.636210 

4 -2.821189 18.495134 

5 -3. 723775 -0 .305051 

6 -4.865523 ~ 2. 723695 
. 

7 _c; fi537Fi3 ~ R A4n,:;fi7 . 

8 -5.498690 ~8. 723332 

g -3.811004 ~ 2 .427658 

Table 9.2 Final displacements of example 1 

' 

RNORM 
criterion 
( e = 0 • 1 E-0 7) 
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helps the banded elimination method to converge faster than 

the compact elimination method. The additional computational 

work to avoid the zero elements makes the compact store elimination 

slower (Table 9.3). 

The dynamic relaxation method with automatic adjustment of 

the iteration parameters produced the fastest convergence rate 

of all the explicit methods. The conjugate gradient Stanton 

algorithm and dynamic relaxation with kinetic damping gave 

similar results. The final displacements were again identical 
• • 

up to six decimal digits for all the methods when the termination 

criterion for the residual norm was£= O.lE-07. 

Method CGST-SC-R3 DRAUT DRKR NTRA NTRAJE 

TIME 0.905 0.105 0.145 
{sec) 

0.725 0.960 

Table 9.3 Comparison of the results of example 2 

9.3. Example 3 Orthogonal Hyperbolic Paraboloid Prestressed 
Net 

This example has a minimum semi-bandwidth of 20, and a 

relatively small number of zero elements inside the bandwidth. 

RNORM 
criterion 
(£=0.lE-07) 
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From Table 9.4 it can be seen that the compact store elimination 

method, by utilizing a better storage during the elimination 

process, converged one and a half times faster than the semi­

bandwidth elimination; both methods requiring 8 iterations for 

the residual nonn to converge to the prescribed accuracy of 

e = O.lE-07. 

For this problem the dynamic relaxation method with automatic 

adjustment of the iteration parameters gave very close results 

to the NTRAJE method and better convergence than the NTRA method. 
' 

The use of kinetic damping in dynamic relaxation, produced 

better results than the conjugate gradient method, but is still 

very much slower than 'the DRAUT method. Again there was no 

difference in the final displacements given by any of the methods 

and, as Table 9.5 indicates, there were only moderate differences 

between the utilization of the initial and current 

length of members in the evaluation of the direction cosines. 

9.4. Example 4 Three Dimensional Counterstressed Dual Cable 

Structure 

Two· separate cases have been considered for this example. 

The first with members are not allowed to go slack; while in 

the second they are allowed to slacken. This is done in order 

to test the perfonnance of the methods as the problem 



Node 

1 

3 

4 

7 
-

8 

13 
~ 

14 

15 

19 
~ 

20 

21 
~ 

23 
~ 

24 

25 

Method CGST-SC DRAUT 

TIME 0.527 0.385 (sec) 
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DRKV NTRA 

0.705 0.439 

NTRAJE 

0,285 

RNORM 
criterion 
(£= O.lE-07: 

Table 9.4 Comparison of the results of example 3 

X(ft) 

0.00000 

0.00000 

0.01456 

0.00000 

-0.01335 

0.00000 

0.01696 

0.01577 

0.00000 

0.01687 

0.01855 

0.00000 

0.09264 

0.06000 

(L) (L + e) 

Y(ft) Z{ft) X{ft) Y(ft) Z{ft) 

-0.02224 0.37715 0.00000 -0.02221 0.37663 

-0.06527 1.27195 0.00000 -0.06517 1.27006 

-0.02921 0.73478 0.01453 -0.02917 0,73361 

-0.08818 3.71970 0.00000 -0 .08811 3.71562 

-0.04251 . 1.73570 -0.01335 -0.04247 1,73318 

0.00896 l. 72772 0.00000 0.00891 1.725056 

-0.01133 1.26641 0.01693 -0.011317 1 .264236 

-0.00189 0.74087 0.01574 -0.00189 0.73960 

0.02042 1.01935 0.00000 0.02031 1 .017685 

0.00538 0.83062 0.01684 0.00536 0.829270 

0.00685 0.46580 0.01852 0.00684 0.465067 

0.00204 0.60744 0.00000 0.00196 0.606579 

0.00933 0.42002 0.09250 0.00929 0.419562 

0 .01021 0.25482 0.00000 0.01022 0.254537 

Table 9.5 Final displacements of example 3 with the 
use of initial and current lengths of the 
members 
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becomes path-dependent. 

The two idealizations are realized as follows : In the 

first case, if the tension force of a member becomes compression 

during the application of the loading, the member behaves like 

· a strut with the same elastic properties as the cables. While 

in the second case, when a member goes into compression, it 

ceases to exist structurally and makes no contribution to the 

overall stiffness matrix until, and if, the compression force 

becomes tension again in the course of the loading. 

This example has a minimum semi-bandwidth of 45 and a 

considerable number of zero elements inside the bandwidth. 

Table 9.6 shows the required execution time for convergence 

of the methods when the members are not allowed to go slack. 

The difference between the NTRAJE and NTRA methods indicates how 

powerful the compact store elimination 'technique can be when 

zero elements exist inside the bandwidth of a stiffness matrix. 

The scaled conjugate gradient Stanton algorithm with reinitialization 

was slightly better than the DRAUT and NTRA methods. Table 

9.7 shows that the final' displacements computed from the use 

of initial and current lengths of members are coincident up to 

3 decimal digits. 

Table 9.7 shows the convergence characteristics of four 

explicit methods when members are allowed to go slack. The 

dynamic relaxation with automatic adjustment of the iteration 

parameters produced the best convergence rate up to a value of 
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Node 

1 

2 

3 

4 

5 

6 

7 

8 

13 

14 

15 

-281-

Method CGST-SC-R3 DRAUT NTRA NTRAJE 

TIME 
0.795 (sec) 0.828 0.801 0.268 

. Table 9.6 Comparison of the results of example 4 when 
members are not allowed to go slack 

(L) (L + e) 

X(ft) Y(ft) Z(ft) X(ft) Y(ft) 

0.164736 o.o 0.475925 0.164766 o.o 

~0.032838 o.o 0.461649 -0.032977 o.o 

0.115575 o:o -0.347401 0.115673 o.o 
-0.045448 a.a -0.348642 -0.045610 o.o 

0.404194 0.0 4.766360 0 .403711 o.o 

-0.309451 o .. o 4.723101 -0.309165 o.o 

0.092036 -0.026263 -0.236304 0.092087 -0.026310 

-0.019702 0.0277931 -0.236950 -0.019806 0.027854 

0.087448 0.027540 0.452892 0.087487 0.027600 

-0.022280 -0.024580 0.451256 -0.022384 -0.024621 

0.063114 -0.036705 0.072992 0.063137 -0.036700 

RNORM 
criterion 
{e = O.lE-07) 

Z(ft) 

0.474025 

0.459742 

-0.34920 

-0.350443 

4.759345 

4.716172 

-0.237732 

-0.23838 

0.453229 

0.451589 

0.072472 

16 0.054805 0.024074 0.072747 0.054264 0.024132 0.072227 

Table 9.7a Final displacements of example 4 without slackening 
of the members 
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the tennination parameter & = O.SE-04. Beyond this value of 

the termination parameter, the scaled conjugate gradient algorithm, 

with reinitialization and with Stanton's algorithm for the evaluation 

of the step length and Polak-Ribieve's algorithm for ai, produced 

better results. It is once again very interesting to see how 

the reinitialization process can dramatically affect the convergence 

of the conjugate gradient method as indicated by the methods 1 and 

2 of Table 9.7. Figure 9.1 shows a plot of the required time 

versus the value of the termination parameter for the methods used 

. in Tab 1 e 9. 7. 

Figures 9.2 and 9.3 show plots of the displacements of 

node 5 versus the number of iterations of the conjugate gradient 

and the dynamic relaxation methods as they converge towards the 

final equilibrium position. In the CGST method the convergence 

to the final displacements, in the first few iterations, is very 

rapid. Then the displacement curve intersects the equilibrium 

line several times before the final convergence. The pattern 

of the DRAUT displacement curves is different. The convergence 

in the beginning is very slow ~ue to the initially arbitrary 

chosen value for the minimum eigenvalue. After several iterations 

the minimum eigenvalue is adjusted, th~ iteration parameters are 

automatically optimized and the slope of the curves become steeper. 

Several intersections with the equiljbrium line are also witnessed 

with the DRAUT method. 

The difference between these two methods is that the curves 
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0 .1 E-00 O.lE-02 O.lE-03 O. lE-04 

Nit TIME Nit TIME Nit TIME Nit 

3741 13. 230 13208 46. 713 - - -

111 0.413 235 0.873 351 1. 289 446 

52 0.256 113 0.517 141 0.640 189 

73 0.118 280 0.395 499 0.702 701 

Table 9.7 Convergence studies of example 5, when 
members are allowed to go slack 
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of the dynamic relaxation are generally smoother than those of the 

conjugate gradient method. Also the curve patterns of the DRAUT 

are controllable with properly chosen iteration parameters. A 

reduced ·value for the damping parameter will result in an under­

damped behaviour with many maximum and minimum points of the 

displacement curves, while an increased value for the damping 

parameter will result in overdamped behaviour, with almost no 

int~rsection with the equilibrium line until final convergence 

is achieved. This is an advantage of. the dynamic relaxation method 

when there is a possibility of a structure changing its shape 

by jumping into a displacement state different than its true 

final equilibrium position. Theoretically only the overdamped 

dynamic relaiation can guarantee convergence in such cases of 

path dependency, unless an incremental load procedure is used. 

However, in this example, although path dependent, the conjugate 

gradient method converged with no difficulty to the correct 

solution in one load increment. 

Table 9.8 shows the final displacements when the stiffness 

method with one load increment (ND= 1) and ten load increments 

(ND= 10) is used. The results are identical but the difference 

in execution time is enonnous. The reason why, for this particular 

example, one load increment gave the correct results lies in the 

fact that the overestimated displacements from the first Newton 

Raphson iteration did not produce any change in the shape of the 

structure that could affect the final equilibrium position. But 

even if there is a danger of the overestimated displacements affec­

ting the final convergence, relaxation parameters can be 
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ND= 1 ND= 10 

x(ft) y(ft) z(ft) x(ft) y(ft) z(ft) 

0.185309 0.000000 0.388612 0.185309 0.000000 0.388612 

-0.050104 0,000000 0.369847 -0.050104 0.000000 0.369847 

0.130813 0,000000 -0.446669 0.130813 0.000000 -0.446669 

-0.059434 0.000000 -0.448668 -0.059434 -0 .000000 -0.448668 

0.434223 0.000000 5.076456 0.434223 0.000000 5.076456 

-0.190508 0.000000 2.674305 -0.190508 0.000000 2.674305 

0.103382 -0.030160 -0.313677 0.103382 -0.030160 -0.313677 

-0.028544 0.033033 -0.314759 -0.028544 0.033033 -0.314759 

0.099290 0.034502 0.518698 0.099290 0.034502 0.518698 

-0.033738 -0.029887 0.516515 -0.033738 -0.029887 0.516515 

0.069450 -0.002975 0.058943 0.069450 -0.002975 0.058943 

0.000734 0.001981 0.058599 0.000734 0.001981 0.058599 

0.853 4,938 

RNORM criterion (e = O.lE-07) 

Table 9.8 Final displacements of example 4, when members are 
allowed to go slack 

CGSTPR-SC-R: DRAUT NTRA (ND=l) NTRA (ND= 5) NTRAJE(ND=l) NTRAJE(ND=5) 

0.951 1.170 0,783 2.806 0.286 

RNORM criterion (e = O.lE-07) 

Table 9.9 Comparative study of example 4, when members 
are allowed to go slack 

1.029 
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introduced to improve the convergence behaviour of the Newton 

Raphson method,. Such a modified Newton Raphson method has been 

proposed by Krishna [173]. 

9,5, Example 5 Large Prestressed Net 

A study of a large net, similar in fonn to the Raleigh 

Arena of Raleigh, North Carolina, USA, was undertaken to gain 

computational experience with full scale structures. The 

whole net has 795 degrees of freedom and a minimum semi-bandwidth 

of 57. 

In this case the required time for convergence and the 

computer cost of the methods were compared, For the particular 

CDC7700 computer used at the University of London (FTN compiler), 

the computer cost is calculated from the following fonnula : 

Cost Units= r6n". [ 5 x Jobtime + s~~ + ,W- +{-%a-+~+ 10] 

where SCM 

LCM 

IQ 

RMS 

small core memory 

large core memory 

input-output 

rotating mass storage 

Table 9.10, shows the required execution time and cost. 

of the methods for the analysis of the structure subject to a 

uniform vertical loadi.ng of 5.7 kips at each node. In ter.ms of 

time and cost the NTRAJE_method is superior to all other methods. 



Method 

Jobtime 
(sec) 

Cost Units 
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CGSTPR-SC-R4 DRAUT NTRA NTRAJE 

23.198 62.565 24.894 6.039 

3.398 7.874 5.210 1.344 

Table 9.10 Comparison of the results of example 5 

Node Load ease" A" Load ease" B" 

z (ft) z (ft) 

2 0.026794 0.022331 
7 0.145567 0.139752 

16 0~22422 0.218434 
28 • 0.240625 0.238113 
42 0 .163309 0.165789 
58 0.130001 0.145559 
76 0.132967 0 .175635 
95 0.11562 · · 0.209897 

114 0.149361 0.332285 
133 0.158639 0.444077 
124 0.436706 0.324995 
125 0.723866 0.530664 
126 0.871011 0.620545 
127 . 0.888021 0.630362 
128 0.806744 0.514549 
129 0.662937 0.391268 
130 0.475930 0.258729 
131 0.310584 0 .189179 
132 0 .192953 0 .227784 

Table 9.11 Final vertical displacements at selected nodal 
points of example 5 

QUOT 
criterion 
(e= O. lE-07) 
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The conjugate gradient method produced much better results than 

the dynamic relaxation and the NTRP methods. The dynamic 

relaxation method ~ould have produced better results if the 

criterion for adjusting the minimum eigenvalue had been selected 

more efficiently. For the purpose of this study, the large core 

memory of the computer was utilized for both stiffness methods 

in order to accommodate the storage requirements of the overall 

stiffness matrix. 

Table 9.11 shows the final vertical displacements at 

selected nodal points for two load cases. Again the results 

obtained were coincident up to the sixth decimal digit for 

all the methods applied, The "QUOT" termination ·criterion was 

less thane= O.lE-07. 

9.6. Conclusions 

When there are no storage limitations. the Newton Raphson 

method in conjunction with the Gauss elimination method can 

provide a very powerful technique to cope with almost any 

degree of nonlinearity in cable structures. The compact store 

elimination method as proposed by Jennings can work very efficiently 

even in small problems with a moderate number of zero elements 

inside the bandwidth of the overall stiffness method, Only in 

the ·extreme case of the single cable of example 1, where there 

are no zero elements inside the bandwidth, did the semi-bandwidth 

elimination method give b~tter results. In some cases, as in 

example 5, the difference could be up to five times in favour of 
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the compact store elimination scheme. There is also no doubt 

that the results obtained from the Newton Raphson method could 

be further improved by the use of accelerating parameters. 

The dynamic relaxation with automatic adjustment of the 

iteration parameters, as was developed in Chapter 5, proved a very 

successful method, particularly for the hyperbolic paraboloid of 

exmaple 3, where it almost reached the convergence rate obtained 

by the NTRAJE method. In the other examples, except in the large 

net, the results obtained from the three explicit methods, 

namely CGST, DRAUT and DRKV, were very similar to each other. 

In the study of the path dependent problem of example 4, 

when members are allowed to go slack, dynamic relaxation proved 

more stable as far as the fluctuations of the displacements around 

the equilibrium line were concerned, but gave less favourable 

results in terms of total execution time than the scaled conjugate 

gradient method with reinitialization. The Newton Raphson method 

gave the correct results even when the load of 50.0 kips at node 

5 was applied in one increment. The possibility of members going 

slack was checked in e~h Newton Raphson iteration and the geometry 

of the structure was modified accordfogly. The application of the 

load ·in increments did not accelerate the convergence, 

In path dependent problems, as in example 4 when members 

may slack during the application of the loading there is always 

a danger when applying a non-incremental Newton Raphson method, 

that the structure may jump into another configuration and . 

produce erroneous results. When the load is not applied in 
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increments, only the dynamic relaxation method with an 

effective combination of the iteration parameters can guarantee 

convergence to the correct solution. 

The study of the large net revealed that, provided there 

are enough storage facilities available in the computer, the 

compact store elimination scheme is the quickest method, though 

the conjugate gradient method, as applied in this Chapter, 

proved a very competitive technique. 

The real advantage of the explicit methods, as applied 

to the elastic analysis of cable structures, is that they can 

produce an effective alternative to the stiffness Newton Raphson 

methods when there are limitations in the core store available. 

The use of discs or magnetic tapes, which is another 

alternative when direct access store is not available, has 

however not been considered in this study. And an interesting 

comparison would be to test the efficiency of the stiffness 

methods when auxiliary storage facilities are used. 
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CHAPTER 10 

ULTIMATE LOAD ANALYSIS 

10,l. Introduction 

The majority of publications which deal with the analysis 

of cable structures have considered the effects of finite 

deformations but have not studied the ultimate load capacity of . 
• 

these structures, Only the papers presented by Greenberg [129]. 

Jonatowski and Birnstiel [160], Murray and Willems [210] and 

Saafan [253] • have included both the material and geometric 

nonlinearities. And it was only recently that a complete inelastic 

analysis, with different stress-strain curves during loading and 

unloading of the members, was carried out by Jonatowski [161] 

However, the inclusion of the nonlinear stress-strain relationships 

in studying the behaviour of cable structures is fully justified 

by the fact that only up to about 50% of their breaking strength 

do the cables exhibit linear stress-strain characteristics. 

Another form of material nonlinearity, which may or may 

not be connected with nonlinear stress-strain relationships is the 

"slackening" of the cables. A common assumption in the analysis 

of tension structures, particularly in the early publications. 

has been that the structure is initially prestressed sufficiently 

to ·preclude any change in configuration under the appl icaticn of 

loads [271. 92, 46] • Algorithms based on this assumption are 

limited to rather special cases and, in fact, can produce 
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erroneous results since no means is provided to determine whether 

the selected prestress is adequate. 

In the following study, the problem of studying the inelastic 

response of a cable structure is path-dependent and incremental 

load analysis in conjunction with total potential energy 

minimization techniques and Newton Raphson stiffness procedures 

hav~ been used. The defonnation response of the structure is traced 

as the loading is increased from the initial state to the ultimate 

carrying capacity. The criterion adopted to determine ultimate 

load carrying capacity is the breaking strength of a cable element 

rather than excessive deflections which may make an actual 

structure unusable. 

10.2. Mathematical Formulation 

The cables used for unstiffened cable supported structures 

are usually either wire rope or wire strand. Wire strand is 

an arrangement of wires laid helically about a center wire to 

produce a symmetrical section. Wire rope consists of many 

strands laid helically around a core composed of a strand or 

another wire rope. 

The elongation of wire rope or wire strand depends on the 

combination of two effects : the Strength of the steel itself, 

and the "construction looseness". The first effect may be 

elastic or inelastic, while the second is always nonelastic. Only 

the elastic strength is fully recoverable. The "constructional 
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looseness 11 depends upon the size of the -strand, the equipment 

used in the manufacturing process and the arrangement of the 

wires. 

Ramberg and Osgood [241] suggested the representation of 

complete stress-strain curves by a single expression using three 

parameters 

a 
E = t +CD n 

(10.1) 

in which n and Bare constants determined for the particular 

material, Eis the slope of the initial portion of the curve 

and t and a are unit strain and unit stress respectively. Since, 

in the displacement method of analysis, the strains are first 

calculated and then from the stress-strain relationships the 

stresses, equation (10.1) must be solved for stresses in terms 

of strains. This can not be done analytically and Newton's 

iterative method should be employed. 

Greenberg [129] proposed an alternative expression for 

the stress-strain curve. 

a 

0 E 

Fig. 10.1 Greenberg's stress-strain curve 
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O' = 
0 

e = 
0 

] 

J 
-1] 

0 ult -

eul t -

(10.2) 

(10.3) 

(10.4) 

ae 

ee 

Finally Jonatowski and Birnstiel [160] proposed a 

stress-strain relationship given by the expression : 

a = Ee {10.5) 

in which Bis a constant equal to or slightly greater than the 

ultimate stress, ault• of the material, and n is a constant 

defining the shape of the stress-strain relationship. Based on 

equation (10.5), the tensile force in a member may be computed 

from 

p = EA(L - Lo) 

g Lo 
(10.6) 
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where n] \ 
(10.7) 

The term L
0 

in equations (10.6) and (10.7} is the unstrained 

length of the cable member, which is not the same as the initial 

length, and Lis the current length. Assuming that the initial 

configuration of the structure is known, the unstrained length 

is given by 

[1 + 
E(L - L0 ) 

[
0 

B 

(10.8) 

in which P
0 

is the initial prestress in the member and L0 is 

the length of the member in its initial configuration. Equation 

(10.8) is nonlinear and a Newton's iterative procedure has been 

used to determine I. A good starting value may be obtained 
• 0 

from the expression 

L = 
0 

Lo 

1 + Po 
u: 

(10.9} 

Equation (10.5) must be used only when the cable members 

are being stressed by increasing tensile loads because of the 

presence of the quantity g which results from the nonlinear stress­

strain relationship. If, however, the member is unloaded then 

the unit stress is given by 

a = Ee - I E e - <J J a a {10.10} 

where ea and aa are the unit strain and unit stress at the 

start of unloading. 
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It should be noted that cables cannot resist compressive forces, 

If, therefore, during the analysis the cable member force, P, 

becomes negative, it will be assumed that the member ceases to 

exist structurally, and if.during the subsequent loading the 

member strain£ satisfies 

£ ~ £ - a /E a a (10.11) 

then the member is restored. Figure (10.2) shows diagramatically 

the loading and unloading paths, with the following stress-

a 

F 

e: Ca oc = a - T 

0 -------'--------~--------c e: 
a 

Fig. 10.2 Jonatowski's stress strain curve 

strain expressions 

(a) 0B portion : a = e:E {10.12) 
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E£ 
(b) BF portion (J = 

[1 +1¥ I" ] 1tn 
(10.13) 

(c) CD portion (J = Ee - ( E £a - £a) (10.14) 

For the purpose of the subsequent s~udies the Jonatowski 

and Birnstiel expression for the stress-strain relationship is 

used with provision for the members to follow a different stress­

strain curve when unloading. The constants n and B assumed 

for the numerical studies carried out in this Chapter are listed 

in Table 10.1. 

Materia 1 E(Ksi) n B en(in/in) an(Ksi) 

Structura 1 21500 2.7 214 0.032 210.7 
rope 

Structura 1 30000 1.7 226 0.062 222.4 strand 

Table 10.l Cable material properties 

10.3. Non Linear Solution Techniques for Ultimate Load Analysis 

Two different solution procedures have been developed and 

compared for the study of the ultimate load analysis of cable 

structures. The conjugate gradient method with Stanton's linear 
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search and the Newton Raphson method in conjunction with the semi­

bandwidth elimination and compact storage elimination schemes. 

Figure 10.3 shows the flow charts for these two methods. 

10.4. Numerical Studies 

The numerical procedure described in the previous Section 

has been used to study the deformation response of the structures 

of examples 3 and 4. Throughout this Section several symbols 

have been used with the following notation: 

ND: is the load increment at the joint with the maximum 

load 

Ee: means that the slope of the stress-strain curve 

remains unchanged inside the load increment 

Ev: means that the stress-strain slope is changing in 

each Newton Raphson or conjugate gradient iteration 

inside the load increment 

e : is the termination parameter for the residual norm 

at each load increment 

The ultimate load condition is quoted as the maximum nodal load 

at the load increment prior to detection of a ruptured cable. 

10.4.1. Example 3 : Hyperbolic Paraboloid 

For the purpose of this inelastic analysis it was assumed 
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that the cables are structural ropes with material properties 

shown in Figure 10.1. The area of cables and the horizontal 

component of prestress force have been also modified from the 

structure originally analysed with elastic behaviour, as follows 

Area of cables = 0.479 sq. in. 

Horizontal component of prestress = 40.0 Kips 

An increasing vertical load, P, is applied at joint 7 and 

. vertical loads of 0.lP at all other joints. 

Table 10.2 shows the vertical displacements at joint 7 for 

every 10 Kips increase of the load P, as well as the ultimate 

load obtained with different values of the parameter ND and 

different combinationsof the parameters Ee and Ev. The predicted 

ultimate load for the two cases with ND= 0.l is the same, but 

. there is a difference when ND= 10. The displacements obtained 

when a constant slope {Ee) in each load increment is used, are 

underestimated and this results in a late rupture of the first 

member of the structure, thus giving a higher ultimate load, The 

ultimate carrying capacity with ND= 10 and Ev is on the safe side, 

while there is little difference in the ultimate load obtained 

using ND values of 1 .o and 0.l. The first cables to rupture were 

6-7 and 7-8. 

Table 10.3 shows the required execution time before rupture 

of a member occurs, for different combinations of the parameters 

and stiffness methods. The use of a small value fore can affect 
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Vertical ND = 0. 1 ND= l ND = l 0 
load at 
node 7 EC Ev E E E 

V C V 

10 4.24199 4.26175 4.25286 3.95760 4.26517 

20 7.75548 7.75477 7.73335 7.31354 7.75094 

30 10.74736 10.72126 10.71655 10.04310 10.74604 

40 13.39360 13.39989 13.38683 12.50944 13.41409 

50 15. 78863 15. 7877 15.8135Q 14.80250 15 .83482 
. 

60 18.02118 18.09396 18,05416 16,95630 18.07294 

70 20.13936 20.14513 20.22246 18.99241 20.24374 

80 22.16867 22.21968 22.26165 20,97225 22.2886 

Ultimate 
load at 81.9 81. 9 82.0 90.0 80,0 node 7 

Table 10.2 Vertical displacements in feet at joint 7 of example 3 
(stiffness method) 

NTRAJE NTRAJE NTRAJE NTRA NTRAJE NTRAJE NTRAJE 

e=O.lE-01 e=O. lE-01 e=O .1 E-01 e=O.lE-04 e=O .1 E-01 e=O.lE-01 e=O .1 E-04 e=O.lE-01 
. 

Ev,Nd=lO Ec ,ND=l 0 Ev ,ND=l 0 Ev,ND=lO .. v,ND=l :v ,Nd=l :v ,Nd=l c ,Nd=O, 1 

' 3.161 0.935 1. 578 12.525 10.323 5,634 57.008 30.045 

Table 10.3 Final execution time in seconds for example 3 

I 

NTRAJE 

e=O. lE-0 

Ev ,Nd=O .1 

30.706 . 
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Vertical CGST CGST-SC 1 oad at CGST-SC CGST-SC-R3 CGST-SC-R3 
node 7 

e = 0. 1 E-01 e =O. lE-01 e =0.1 E-01 e =O. lE-01 e =0.lE-04 

EC EC Ev Ev Ey 

10 3.99615 3.99541 4.26509 4.26509 4,26515 

20 7.31418 7,64274 7.75391 7.75391 7.75417 

30 10.02916 10.04113 10.75963 10.76116 10.76127 

40 12.49789 12.50649 13.44270 13.44515 3.44626 

50 14.78469 14.79839 15.88006 15.88018 5.88362 

60 16.94306 16.95352 18.13569 18.138453 8.13888 

70 18.98062 18.99105 20.25835 20.25921 20.25991 

80 20.92444 20.93327 22.29379 22.30235 .~o. 29985 

Ultimate 
load at 
node 7 90.0 90.0 80.0 80,0 30,0 

Final 
time 7,737 3,732 2,302 2 .153 6,882 
(sec) 

Table 10.4 Studies of example 3 with the conjugate gradient 
method (ND= 10) 
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Vertical ND = 0 .1 ND= 1 ND = 10 load at 
node 7 

Ev Ev Ev 

10 4.26310 4.26474 4.26509 

20 7.73356 7.76507 7.75417 

30 10.73923 10.77001 10.761'27 

40 13.40564 13.45280 13,44626 

50 15.78951 15.88759 15.88362 

60 18.05616 18 .134·56 18.13888 

70 20.14055 20.25537 20.25991 . 
• 80 22.20136 22.29536 22.29985 

Ultimate 
load at 81.9 81.0 80,0 
node 7 

Final time 62.902 9 .185 6,882 

Table 10.5 Studies of example 3 with CGST 
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significantly the execution time but improves only marginally 

the computed displacements. Table 10.4 shows the displacements. 

the ultimate load and the execution time obtained with different 

combinations of the conjugate gradient method, when ND= 10 

while in Table 10.5 the same study is performed with different 

values of the parameter ND. The calculated displacements are 

different. when the method is applied with scaling or reinitializ­

ation, from those obtained with the unscaled version. These 

discrepancies underline the path dependency of the problem with 

the different paths of scaled or reinitialized and unscaled 

displacements leading to different equilibrium positions. 

Tables 10.6 and 10.7 show the final displacements at the 

ultimate loading capacity of the structure for the conjugate 

gradient and Newton Raphson methods when different load increments 

are used. While in Figure 10.4 plots are shown of the load P 

versus the displacements at nodes 7 and 8. 

10.4.2. Example 4 Three Dimensional Counterstressed Dual 

Cable Structure 

This example was also modified for studying its ultimate 

carrying capacity. The main cables were assumed to be structural 

strands with a cross-sectional area of 0.614 sq. in., and the 

vertical ties were structural ropes with a cross-sectional area 

of 0.479 sq. in. The material properties for the cables and 

ties are listed in Table 10.1. The following vertical loads 

were applied to the structure : Pat joints. 0.875P at joint 9, 
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NO= 10 ND = 1.0 
Node 

x(ft) y(ft) z(ft) x(ft) y(ft) z(ft) x(ft) 

l 0.00000 -0.42306 3.62564 0.00000 -0.43372 3.69734 0.00000 

2 -0.26768 -0.02745 6.67736 -0.27118 -0.02190 6.80378 -0.26830 

3 0.00000 -0.57817 10.51443 0.00000 -0.58667 10.72100 0.00000 
5 -0.04441 o. 13751 6.63159 -0.04661 0.14394 6.73472 -0.05054 

6 -0.01066 0.19733 13.67535 -0.025838 0.20841 13.88799 -0 .03775 

7 0.00000 0.36035 22.28860 0.00000 0.37823 22.65543 0.00000 

10 -0.04982 0.00027 3.39802 -0.04824 0.00028 3.45310 -0.04884 
11 -0.23653 0.04338 8.12140 -0.23834 0.04477 8.25662 -0.23797 

12 -0.26126 0.16911 12.61955 -0.26560 0.17434 12.84025 -0.26454 

13 0.00000 0.81501 15.47902 0.00000 0.83642 15.76132 0.00000 

17 -0.32554 -0.00352 5.33017 -0.33140 -0.05718 5.42406 -0.32931 

18 -0.31356 o. 18438 9.38308 -0.32048 0.18696 9.55689 -0.31823 

19 0.00000 0.78303 11.14103 0.00000 0.80122 11.35238 0.00000 

22 -0.21783 0.15366 4.91892 -0.22394 0.15553 5.01221 -0.22224 

23 0.00000 0.63518 6.87346 0.00000 0.64979 7.00483 0.00000 

25 0.00000 0.36210 2.88360 0.00000 0.37098 2.93664 0.00000 

Table 10.6 Final displacements of example 3 with NTRAJE 

ND = 0.1 

y(ft) 

-0.43088 

-0.02334 

-0.58457 
0.14219 

0.20525 

0.37348 

0.00028 

0.04436 

0.17267 

0.83088 

-0.00514 

0.18612 

0.79651 

0.15496 

0.64600 

0.36867 

z(ft) 

3.67836 

6.76968 

10.66486 
6.70696 

13.82913 

22.55793 

3.43914 

8.22117 

12.78121 

15.68519 

5.39920 

9.51015 
11.29530 

4.98706 

6.96955 

2.92299 

I 
w 

•C> 
'-'> 

I 



Node ND= 10 NO = l 

x(ft) y(ft) z(ft) x(ft) y(ft) 
1 0.00000 -0.48421 4.01692 0.00000 -0.43133 

2 -0.27241 0.06767 7.37222 -0.26264 -0.02412 

3 0.00000 -0.63004 11.65692 0.00000 -0.58556 
5 -0.05566 0.17307 7.16803 -0.05417 0.14119 

6 -0.07869 0.25771 14.80210 -0.05263 0.20118 

7 0.00000 0.43780 24.28967 0.00000 0.36167 

10 -0.03599 0.00034 3.67330 -0.04877 0.00026 
11 -0.23942 0.05109 8.82245 -0.23575 0.04364 

12 -0.28082 0.19785 13.78716 -0.26205 0.16849 

13 0.00000 0.90651 16.98877 0.00000 0.81742 

17 -0.34296 -0.01492 5.81684 -0.324321 -0.00510 
18 -0.34209 0.19920 10.29730 -0.31413 o. 18341 

19 0.00000 0.85990 12.26146 0.00000 0.78444 

22 -0.25014 0.16362 5.41355 -0.22056 0.15396 

23 0.00000 0.69848 7.56273 0.00000 0.63672 

25 0.00000 0.40157 3.14885 0.00000 0.36312 

Table 10.7 Final displacements of example 3 with CGST-SC 

ND= O.l (NTRAJE) 

z(ft) x(ft) y(ft) 

3.66425 0.00000 -0.43088 

6.75178 ·-0.26830 -0.02334 

10.64857 0.00000 -0.58457 
6.69154 -0.05054 0.14219 

13.78314 -0 .03775 0.20525 

22.50597 0.00000 0.37348 

3 .43382 - -0.04884 0.00028 
8.20474 -0.23797 0.04436 

12.75460 -0.26454 - 0 .17267 

15.64655 0.00000 0.83088 

5.38971 -0.32931 -0.00514 
9.48691 -0.31823 0.18612 

11.26977 0.00000 0.79651 

4.97545 -0.22224 0.15496 

6.95071 0.00000 0.64600 

2.91223 0.00000 0.36867 

z(ft) 

3.67836 

6.76968 

10.66486 
6.70696 

13.82913 

22.55793 

3.43914 
8.29117 

12.78121 

15.68519 

5.39920 
9.51015 

11.29530 

4.98706 

6.Q'1955 

2.92299 

I 
w ..... 
0 

I 
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0.750P at joint 17, 0.625P at joint 11, a.SOOP at joint 3, 

0.375P at joint 7, 0.250P at joint 15, 0.125P at joint 13. 

Table 10.8 shows the vertical displacements and the ultimate 

load at node 5 for different combinations of the stiffness 

method. Table 10.9 gives the required execution time, before a 

ruptured member appears, for different combinations of th·e 

parameters and Newton Raphson methods. Once again the use of 

constant values for the modulus of elasticity throughout each load 

increment overestimated the ultimate carrying capacity of the 

structure. 

Tables 10. 10 and 10.11 give the vertical displacements and 

the ultimate load at node 5, as well as the total execution 

time for different combinations of the conjugate gradient method. 

Tables 10.12 and 10.13 show the final. displacement at selected 

nodal points for the conjugate gradient and Newton Raphson 

methods at the ultimate carrying capacity of the structure. One 

can see how different can be the final values of the displacements 

for different values of the load increments. 

In Tables 10.14 and 10.15 are presented the loading histories 

of the members that have gone slack during the application of the 

laoding, given respectively by the Newton Raphson and conjugate 

gradient methods. I~ both cases the member that first ruptured 

was 5-23. The conjugate gradient method predicted slightly 

better the correct performance of the members when the lead P was 

increased 1 kip at a time. 
' 
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Load at 
node 5 
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Load at 
node 5 
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ND = 0. l ND = 1.0 ND= 10 

EC Ev EC Ev Ev 

2.41252 2.41472 2.39098 2.43682 2.59929 

5.60118 5.62262 5.54152 5.65589 5.20629 

8. 98219 9 .02511 8.85622 9.03039 9 .18704 

. 
12.36196 12.40020 12.15370 12.43782 12.56704 

15.96439 15.99864 15.60599 16.03201 16.1351 

19.90857 19.94751 19 .30661 21 .02599 20.0377 

64. 1 63.9 70.0 64.0 60.0 

Table 10.8 Vertical displacements, in feet, at joint 5, 
of example 4 (stiffness method} 

NTRA NTRAJE NTRA NTRAJE NTRA NTRAJE NTRAJE -
. 

e=O. l E-04 e=O.lE-04 e=O. lE-01 e=O.lE-01 e=O. lE-01 e=O.lE-04 e=O .1 E-01 

-v•ND=lO Ev 1 ND=lO Ev 1 ND=l Ec 1 ND=l Ec 1 ND=l Ev 1 ND=l ·c•ND=0.1 

45.326 24.289 32.246 9.010 18.895 88.685 50,295 

(e = O.lE-01) 

NTRAJE 

e=O. lE-01 

Ev ,ND=O .1 

57. 797 

Table 10.9 Final execution time in seconds for example 4 



-313-

Vertica 1 CGST-SC CGST-SC-Rl CGST-SC-R3 CGST-SC-R20 
load at e = O. lE-01 e=O.lE-01 e = O.lE-01 e = O.lE-04 node 5 

Ev• NDIV = 10 Ev• NDIV = 10 Ev, NDIV = 10 Ev• NDIV = 10 

10 2.59444 2.58805 2.58881 2.59929 

20 5.19120 5.19236 5,20513 5.20629 

30 9.18493 9.19781 9.21069 9 .18700 

40 12.56039 12.54247 12.55356 12.56698 

50 16 .16411 16 .15798 16 .10670 16.13505 

60 20.00019 20.03265 20.15185 20.03777 

Ultimate 
load at 60.0 60.0 60.0 60.0 
inodes 

Tota 1 time 18.352 8.341 8.100 23.289 

' 

Table 10.10 Studies of example 4 with the conjugate 
gradient method 

J 



Vertical CGST-R20 CGST-Rl CGST-SC- CGST-SC CGST-SC-R3 
load at 
node 5 e = O.lE-04 e = O.lE-03 e = O. lE-01 e = O. lE-01 e = 0. lE-01 

fc , ND IV = 1 00 Ee ,NDIV = 100 E'" ,NDIV = 100 E" ,NDIV = 100 E ,NDIV = 100 
V 

10 2.39074 2.39073 2.38709 2.43875 2.42996 

20 5.53920 5.53932 5.54673 5.67127 5.66641 

30 8.85385 8.85385 8.84670 9.07256 9.07034 

40 12.14833 12.14826 12.12706 12 .43622 12 .45783 

50 15.60010 15 .60255 15.59573 16.06023 16 .00423 

60 19.30125 19.30205 19.25522 20.12381 20.06815 

Ultimate 
load at 70.0 70.0 70.0 63.0 63.0 
node 5 

Total . 
time 68.880 67.365 28.924 49.885 37.381 

Table 10.11 Studies of example 4 with the conjugate gradient method 

CGST-SC-R20 

e = O. lE-01 

E ,NDIV = 100 
\I 

2.42996 

5.66641 

9.07034 

12 .45783 

16 .00423 

20.06815 

63.0 

36.993 

I 
w -
""" I 



Node 
number 

1 

2 

3 

4 

5 

6 

7 

8 

13 

14 

15 

16 

ND= 10 ND= 1 

x(ft) . y(ft) z(ft) x{ft) y(ft) z{ft) 

-0.12523 -0.70147 12 .98974 0.14499 -0.82658 . 1 o. 96289 

0.00150 0.00263 9.94333 0.00486 0.00498 9.52403 

-1.15214 -0.35194 14. 28172 -0.83871 -0.42002 12.32271 

0.16457 0.00185 7.41783 0.16782 0.00418 7.27157 

0.44985 -0.34744 24.75501 0.94314 -0.40682 21.43947 

-0.16294 0.00214 7.41845 -0.16234 0.003286 7.23879 

-0.58849 0.22985. 11.72856 -0.35019 0 .05853 9.96671 

0.11765 -0.11346 7.41738 0.11655 -0.11655 7.25975 

0.07230 -0.19202 6.85170 0.17949 -0.25338 5.82834 
-

•0.10438 -0.12580 6.84569 -0.07320 -0.14791 5.82013 

-0.06632 0.07439 8.67995 0.07181 -0.03247 7.64370 

0.01383 -0.16349 8.67028 0.00256 -0.16245 7.24261 

Table 10.12 Final displacements at selected nodal points of ~xample 4 
with CGST-SC 

ND= 0.1 {NTRAJE) 

x{ft) y(ft) 

0.17286 -0.83462 

0.04997 0.04459 

-0.83831 -0.41661 

0.16743 0.00223 

1.06463 -0.41086 

-o .16289 -0.01538 

-0.36766 0.03515 

0.11913 -0.11439 

0.21278 -0.26697 

-0.07244 -o .15228 

0.08598 -0.02649 

0.00250 -0.16270 

z(ft) 

11.16048 

9.70974 

12.46288 

7 .35455 

21.53689 

7.66064 

10.11346 

7.35455 

5.97339 

5.96360 

7.80458 

7.35455 

I 
w .... 
01 
I 



Node 
number 

x(ft) 

1 0.27359 

2 0.00821 

3 -0.69630 

4 0.16799 

5 1. 23035 

6 0.15948 

7 -0.26702 

8 0.12009 

13 0.26052 

14 -0.05712 

15 0.13411 
-

16 0.00927 

ND= 10 ND= 1 ND= 0.1 

y(ft) z(ft} x(ft) y(ft) z(ft) x(ft) y(ft) 

-0.86781 10.0700 0.19985 -0.85125 11.01545 0.17286 -0.83462 

0.00607 9.83813 0.00496 0.00427 9.62922 0.04997 0.04459 

-0.42909 11.44717 -0 .81036 -0.42046 12.31465 -0.83831 -0.41661 

0.00031 7.41189 0.16728 0.00214 7.31420 0.16743 0.00223 

-0.42756 19.98091 1.09900 · -0.41994 21 .37359 1.06463 -0.41086 

0.00304 7.41889 -0.16220 0.00214 7.31420 -0.16289 -0.01538 

-0.02783 9.20658 -0.34611 0.02315 9.98363 -0.36766 0.03515 

-0.11293 7.41889 0.11903 -0.11440 7.31420 0.11913 -0.11439 

-0.26222 5.62411 0.22462 -0.27030 5.90625 0.21278 -0.26697 

-0.16526 5.61385 -0.06991 -0.15367 5.89609 -0.07244 -0.15228 

-0.07449 7 .13549 0.09941 -0.03733 7.69462 0.08598 -0.02649 

-0.16781 7 .13002 0.00249 -0.16270 7.31420 0.00250 -0.16270 

Table 10.13 Final displacements at selected nodal points of example 4 
with NTRAJE 

z(ft) 

11.16048 

9.70974 

12 .46288 

7.35455 

21.53689· 

7.66064 

10.11346 

7.35455 

5.97339 

5.96360 

7.80458 

7.35455 

I 
w ..... 
en 
I 



Member 

5 - 6 

9 - 10 

17 - 18 

11 - 12 

3 - 4 

7 - 8 

1 - 2 

15 - 16 
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Load at node 5 
ND = 0 .1 ND= 1 ND = 10 

Slackening Reloading Slackening Reloading Slackening Reloading 

13. 7 62.5 14.0 63.0 30.0 

15.5 - 16 .o - 30.0 

18.2 - 19 .o - 30.0 

22.6 - 23.0 - 30.0 

29.9 - 30.0 - 40.0 

42.4 - 43.0 .. so.o 
57.9 - 59.0 .. 60.0 

61. 1 62.0 70.0 

Table 10.14 Example 4: Loading history of members 
going "slack" (NTRAJE} 

Load at node 5 
Member ND= 1 ND~ 10 

Slackening Reloading Slackening Reloading 

5 .. 6 14.0 62.0 30.0 70.0 

9 - 10 16.0 - 30.0 -
17 - 18 18.0 - 30.0 -
11 - 12 23.0 - 30.0 -
3 - 4 30.0 - 30.0 -
7 - 8 43.0 - 50.0 -
1 - 2 57 .o - 60.0 -

15 -: 16 61.0 - 70.0 -

70.0 

-
-
-
-
-
-

Table 10.15 Example 4 Loading history of members going 
"slack" (CGST .. SC} 
. . 
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Plots of the load P versus the vertical displacements 

at joints 5 and 6 are shown in Figure 10.5. The two nodal 

displacerrents have produced almost coincident graphs up to the 

point when member 5-6 becomes slack. From then on node 6 follows 

a totally different curve until, when Preaches 62.5 kips, it 

again reloads. It· is of interest to see that both curves have 

the characteristics of a "softening" structure. 

10.5 Conclusions 

The conjugate gradient method and the Newton Raphson 

method can be used very efficiently to study the ultimate 

carrying capacity of cable structures. In both methods the loads 

need to be applied in increments. Different load increments, 

however, produce different characteristics of the structure as 

it deflects from its initial configuration to its ultimate load 

capacity, and could very easily lead to erroneous results. The 

problem is extremely path dependent and this was demonstrated 

by the fact that the conjugate gradient method with and without 

reinitialization gave different results. The same happened with 

the scaled and unscaled versions of the method. 

The total computer time required for each method to predict 

the ultimate load is not readily comparable, since different 

load increments and termination parameters have a profound effect 

on the total execution time. The NTRAJE method, however, gave 

generally the fastest results. For larger load increments a more 

accurate behaviour was expected from the conjugate gradient 
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method than from the Newton Raphson method, because the stress­

strain curve is followed at more frequent intervals by the conjugate 

gradient method. This expected increase in accuracy did not, 

however, occur. 

By updating the slope of the stress-strain curve at each 

iteration, the methods gave better results than by keeping it 

constant inside each load increment. The use of small values 

for the termination parameter e, for each load increment, can 
. 

have a great effect on the final execution time yet give only 

slight improvement on the predicted displacements and the final 

ultimate load. 

The members were checked for slackening, reloading and 

rupturing, throughout this study, at the end of each load increment, 

which rather limited an improved behaviour of the methods for 

greater load increments. An alternative technique could be to 

check the members in each iteration, or after a specified number 

of iterations and not necessarily after convergence at a load 

increment. It is thought that this second approach should suit 

better the iterative nature of dynamic relaxation. This is 

an area in which dynamic relaxation could prove to be very effective 

if full use were made of the controllable smooth curves for the 

displacements as they build up from their initial configuration 

to their final values. Larger load increments could perhaps be 

implemented with intermediate checks to predict the load increment 

in which the first member of the structure will rupture. Smaller 

load increments could then be used to predict the exact ultimate 

carrying capacity of the structure. 
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CHAPTER 11 

GENERAL CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK 

11.l. Conclusions 

In an effort to select the best method of solution suitable 

for the static nonlinear analysis of cable supported structures, 

a number of different algorithms have been developed and 

compared. The methods were classified into three main categories ; 

(a) the conjugate gradient algorithms, {b} the relaxation 

methods and (c) the stiffness methods. It was shown that the 

conjugate gradient method, the Francel's method, the dynamic 

relaxation method, the Tchebycheff method and the Jacobi semi­

iterative method all, in fact, belong to the same family of 

iterative methods named "three term recursion formulae". They 

use the same number of vectors, they perform the same iterative 

process and they differ only in the way the scalar or relaxation 

parameters are evaluated. In other words they approach the 

minimum from different paths. 

It is very difficult to select in a general 't."ay the best 

method for the nonlinear solution of cable structures. Each 

method performs differently for different types of structures. 

When the criterion for comparison is the computer cost, then 

the stiffness method with Newton Raphson iterations in conjunction 

with Jenning's compact store elimination algorithm (NTRAJE) 

gave the more economical results for medium to large size 

problems. For very small problems the same method with the 
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semi-bandwidth storage scheme produced the best results. 

Taking into account further improvements of the method that 

have been reported recently, by introducing relaxation coefficients 

to scale down the overestimated displacements, the NTRAJE 

method is a very powerful technique for the.solution of cable 

supported structures. 

When, on the other hand, the criterion for comparison 

is the computer storage requirements, then it is obvious that 

all the vector methods are superior to stiffness methods • . 
Also, some of the vector methods can combine the inherent property 

of requiring less storage with fast convergence to the solution 

giving thus a very competitive computer cost and requiring only 

relatively small computers. 

The gradient methods have been applied in two categories ; 

those without linear search, the linearized methods, and those 

with one or two dimensional linear search. The first category 

has the advantage of being more straightforward whil~ the second 

category of methods. with the exception of the memory gradient 

method (CGMEM), produced faster results. For problems with 

· moderate nonlinearity the CGFRIN method produced competitive 

results, while for highly nonlinear problems the simple conjugate 

gradient algorithm with Newton Raphson iterations never failed 

to converge and reached the required acc~racy in reasonable 

execution time. The memory gradient method, with the scalar 

parameters being calculated from the minimization of the total 

potential energy with respect to a and not as in all other 
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methods from the K-orthogonality condition, produced 

extremely slow results in all but the small problem of the single 

cable. This confirms the usefulness of the method to optimi­

zation problems with a few numbers of unknowns. 

The methods using one dimensional linear search, gave 

similar results. When the required convergence was not very 

strict, then Fletcher and Reeves method with Davidon's linear 

search (CGFR) and Buchholdt's method with a fourth order 

polynomial representation of the total potential energy (CGBUC) 

produced the quickest results. As the termination parameter • • 

, becomes smaller, in other words as we begin to test the "well 

behaviour" of the methods, the above mentioned methods failed 

to reach the required accuracy whereas the methods using Stanton's 

bracketing technique converged to the required accuracy. In 

particular, the CGST method with the regula-falsi bisection 

algorithm to approximate the minimum in the bracketed interval, 

gave the more consistent and accurate results. 

The relaxation methods, also, have been applied in two 

categories ; those using the principle of dynamic relaxation 

and the successive overelaxation methods. The successive 

overelaxation method , although for linear problems with tri­

diagonal matrices having a convergence rate twice as fast as 

dynamic relaxation, produced much slower convergence than the 

dynamic relaxation when applied to nonlinear problems. The 

automatic adjustment of the relaxation parameter w based on 

Carre's algorithm (SORESC} produced faster and more consistent 
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results than Hageman's algorithm (SORESH) and in all cases both 

methods gave better results than the SORES method with the optimum 

p~rameter being constant through the iteration process. 

The dynamic relaxation method has been applied in three 

different forms. The method using an "a priori" evaluation 

of the iteration parameters gave very competitive results for 

problems with moderate nonlinearity. As the problem became 

more and more nonlinear the need to adjust the iteration parameters 

became obvious when the method failed to reach the equilibrium 

position and diverged. The time required for the evaluation 

of the maximum ·and mtnimum eigenvalues of the stiffness matrix 

was reduced to an average of 10% of the total execution time. 

The principle of kinetic damping gave very satisfactory 

results for most of the problems investigated in this work. 

The method has the advantage of requiring only the determination 

of the maximum eigenvalue of the current stiffness matrix and 

an approximation to this value can be very easily obtained 

from the Gershgorin bound theorem. The combination of the 

conjugate gradient algorithm and the dynamic relaxation method 

(CGTCH) gave unsatisfactory results.· It is believed, however, 

that in problems with ill-conditioned matrices, such as cable 

supported structures with flexible boundaries, the method 

could produce better convergence when the transformation from 

the ill-conditioned system to a system less ill-conditioned 

will be justified. 
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The automatic adjustment technique {DRAUT) for the 

relaxation parameters produced the best results of all the 

relaxation methods. For the particular case of the hyperbolic 

paraboloid of example 3 the method reached the required accuracy 

in almost the same execution time as· the NTRAJE method. In 

all other cases, the DRAUT method gave ~imilar results to the 

DRKV and CGST methods. From the two divergence criteria used 

in DRAUT and ORK methods, the one with the velocity-difference 

criterion produced the more consistent and reliable results. 

The diagonal matrix scaling technique gave in all cases 

better results than the unscaled methods. Only for the single 

cable of example l did the initial scaling technique give 

inferior results to the unscaled version. This is because the 

changes involved in the stiffness matrix as the structure 

defonns towards its final equilibrium state are too big, making 

the scaling effects negligible. An updated process for the 

diagonal coefficient of the stiffness matrix every so often will, 

however, improve the convergence. The scaling effect was more 

powerful when applied to the conjugate gradient methods than 

to the relaxation methods. This fact. indicates that the conjugate 

gradient methods are more sensitive to ill-conditioned problem 

than the dynamic relaxation methods. Reinitializations 

applied to the conjugate gradient methods always improved the 

convergence, and in particular this technique had greater 

influence on the unscaled versions of the methods. 

The problem of evaluating the extreme eigenvalues of the 

stiffness matrix was investigated by comparing the efficiencies 
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of a number of iterative methods. The power method is the 

simplest to use and gave very satisfactory results for the 

maximum eigenvalue. The evaluation of the minimum eigenvalue 

needs a more careful approach and could lead to erroneous · 

results. The coordinate relaxation method was, in all cases, 

inferior to the conjugate gradient type of methods. The 

modifications proposed by Fried for evaluating the scalar 

parameter e in the same way as in the memory gradient method 

did not produce fast enough resul~s. The same happened when 

the Bradbury and Fletcher orthogonalization process was 

applied to eliminate the dependence of the convergence of the 

method on the initial estimate of the final eigenvector. The 

best results, however, were obtained using the simple conjugate 

gradient algorithm with the scalar a being evaluated from the 

minimization of the Rayleigh quotient with respect to a, and the 

scalar e from the A-orthogonality condition. The method also 

remained unaffected by the choice of the initial estimate for 

the final eigenvector. 

Path dependent problems created by the slackening of the 

members, and by nonlinear stress-strain relationships were 

studied. For the particular problems of example 4 considered 

in this work, when only slackening of members is allowed to 

occur, the stiffness methods with Newton Raphson iterations 

gave the correct results with only one increment of the applied 

load. However, there is always the danger when applying 

the NTRAJE method of jumping into another configuration and 

producing erroneous results. The same ~ould happen with the 

conjugate gradient method since there is no way t? control the 
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interim displacement states until the final equilibrium position 

is achieved. Only the dynamic relaxation method with automatic 

adjustment of the relaxation parameters can safeguard convergence 

by a proper control of the iteration parameters to ensure always 

that the method is overdamped and thus never exceeding the final 

equilibrium position in the course of the iterations. By 

using incremental load analysis this inefficiency of the two above 

mentioned methods can be overcome, but at the cost of 

increased execution time. 

In problems with nonlinear stress-strain relationships 

the NTRAJE method gave the fastest results. The improvement 

in convergence by the use of the conjugate gradient method was 
. 

negligible and the method required the same load increments as 

the stiffness method with Newton Raphson iterations. It is 

believed, however, that dynamic relaxation with controllable 

iteration parameters could reach the required solution using 

higher load increments in less computer time. All the checks 

for loading, reloading and slackening of the members can be 

performed after a number of iterations and not necessarily at 

the end of a load increment, allowing a greater flexibility in 

the selection of the optimum load increment. It is in this 

area of path dependent problems that the method could be 

· extremely effective •. 

11.2. Suggestions for future work 

The most obvious extension to this work would be to 
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apply the dynamic relaxation method with automatic adjustment 

of the relaxation parameters to the ultimate load analysis of 

cable supported structures. This is an area of path dependent 

problems where the inherent properties of dynamic relaxation 

can be utilized, allowing for greater load increments to be 

handled with a consequent reduction in the required computer 

time. A more generalised ultimate load analysis, with the 

inclusion of buckling of struts would also be an interesting subject 

for investigation. 

A comparison of the efficiencies of various methods of 

analysis for cable structures supported by flexible boundaries 

would be another useful subject for investigation. It is 

believed that the conjugate gradient methods would be affected 

more seriously by the high condition number. The zig-zag 

behaviour involved in the p directions could make the conjugate 

gradient methods inferior to the dynamic relaxation method. 

Also of interest would ·be the response of the conjugate 

gradient-Tchebycheff method to this type of structure. The 

application of another type of combined method, the symmetric 

overelaxation-Tchebycheff method, could also produce good 

convergence characteristics in this area with ill-conditioned 

matrices. 

The use of block operations in the gradient and relaxation 

methods can further improve the convergence of the methods. 

The extension of the comparison to a greater number of stiffness 

methods could also be of interest. 
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The inclusion of more elaborate matrix storage techniques 

and liner solution procedures is an aspect to be investigated. 

The effect of backing storage techniques and more sophisticated 

nonlinear solution methods on the total execution time and 

computer cost is another area worthy of study. 

Perhaps of greatest relevance would be a study of the 

methods examined in this work when applied to the problems of 

form-finding of prestressed configurations and the optimization 

of cable systems. Time dependent loading and the possible 

effects of flutter are also problems of particular importance 

in the design of light-weight.long span cable systems. 
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