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Abstract 

An explicit density-based solver for the compressible Navier-Stokes equations able to simulate 

cavitating flows has been developed and utilised for the simulation of collapsing vapour bubbles. 

Phase-change is considered by employing the homogeneous equilibrium model (HEM). The wide 

variation of Mach numbers between the liquid, vapour and mixture regimes is tackled by a Mach 

consistent numerical flux, suitable for subsonic up to supersonic flow conditions. Time discretisation 

is performed using a second order low storage Runge-Kutta scheme. Thermodynamic closure is 

achieved by utilising the Helmholtz energy equation of state (EoS), making feasible simulation of 

conditions at subcritical and supercritical regions considering the variations of liquid and vapour 

temperatures during bubble collapse. In order to reduce the computational cost associated with the 

solution of the Helmholtz EoS at each time step, a tabulated data technique has been followed. The 

unstructured thermodynamic table, containing the thermodynamic properties derived from the 

Helmholtz EoS, has been constructed for n-dodecane, which has been the considered as the working 

fluid. The efficiency of the method is enhanced by a static linked-list algorithm for searching among 

the elements of the table. In addition, a finite element bilinear interpolation is used for approximating 

the unknown thermodynamic properties. After validating the numerical method, parametric studies 

considering 2-D axisymmetric vaporous bubble collapse in the proximity of a wall have been 

performed at conditions realised in micro-orifice flow passages. The temperature and pressure changes 

on the wall are estimated as function of the surrounding liquid pressure, the initial bubble radius and 

the location of the wall from the center of the initial bubble, revealing the expected range of variation 

as function on the set parameters. 
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Introduction 

Several numerical studies have been performed regarding vapour bubble dynamics, since they have numerous 

industrial and physical applications. Different methodologies such as potential flow solvers [1], homogeneous 

equilibrium mixture (HEM) models [2], interface capturing and interface tracking methods have been employed. In 

HEM models the phase change is predicted by the density variation and the main assumption is that the two phases 

are in mechanical and thermodynamic equilibrium. HEM methods have become popular due to their simplicity and 

because no empirical parameters are needed. On the other hand, interface tracking methods, such as front tracking 

methods [3], offer sharp interface and they also allow large deformations of the surface. Similar are the interface 

capturing methods, such as Volume of Fluid (VOF) approach [4] and Level Set Method [5]. Although the main feature 

of interface capturing methods is again sharp interface, in conditions close to the critical point there is not a clear 

distinction between the two phases. In the majority of the previous works thermal effects have been ignored, for 

example in barotropic models, or temperature effects have been taken into account by the use of simplified EoS, such 

as stiffened gas EoS or similar. The current study expands the previous work of Koukouvinis et al. [6] by examining 

the heating effects during the collapse of a vapour bubble. The thermodynamic closure in the HEM is achieved by the 

Helmholtz energy EoS from NIST Refprop databases [7], both for subcritical and for supercritical conditions. A 

tabulated form of the Helmholtz energy EoS has been implemented in the solver for higher numerical efficiency. 

 

Numerical Method 

The numerical method has been described in detail and validated in [8], here only the main features are discussed. The 

2-D Euler equations in r-z cylindrical coordinates with a geometric source term accounting for cylindrical symmetry 

are explicitly solved [9]: 
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Where t, r, z subscripts denote differentiation with respect to time, r direction and z direction respectively. U is the 

conserved variable vector, F(U) and G(U) are the fluxes at the radial (r) and axial (z) directions respectively and S(U) 

is the geometric source term: 
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where ρ is the fluid density, ur and uz the radial and axial velocity components respectively, p is the pressure, E is the 

total internal energy, equal to   euu zr 
22

2
1 , e is the internal energy of the fluid and s is the geometric source 

term. For cylindrical symmetry, s is equal to unity. The viscosity and the surface tension are neglected in the present 

study since the phenomenon is inertia driven [10]. 

The properties of n-Dodecane are derived from the Helmholtz energy. The Helmholtz energy is calibrated within the 

temperature range 263.6 K≤T≤700 K, for maximum pressure pmax=700 MPa and for maximum density ρmax=771.62 

kg/m3 [7]. The dimensionless form of the aforementioned EoS, having as independent variables the density and the 

temperature is given by: 

a 0 r(ρ,T)
α(δ,τ)= α (δ,τ)+α (δ,τ)

RT
                (3) 

Where δ=ρ/ρc, τ=Tc/T. From equation (3) all the thermodynamic properties can be obtained, such as pressure, internal 

energy, enthalpy and speed of sound as a function of density and temperature. The saturation conditions are identified 

by the Maxwell criterion and the fluid properties in the saturation dome are calculated by the mixture assumption, 

whereas the mixture speed of sound is determined from the Wallis speed of sound formula [11]. 

Instead of solving the Helmholtz EoS for each time step, a tabulated technique, similar to Dumbser et al. [12] has been 

implemented after explicitly solving the Euler equations. An unstructured thermodynamic table of approximately 

40,000 elements, refined around the saturation curve, which contains all the thermodynamic properties has been 

created. Then the thermodynamic table has been split into smaller data groups by static linked lists in order to search 

only in the group with the desired properties within its range. Since the density and the internal energy are calculated 

by the Euler equations, the corresponding element of the table is identified through numerical inversion from the above 

quantities. Any thermodynamic property φ (pressure, temperature or speed of sound) within a specific element of the 

table is then approximated by a Finite Element bilinear interpolation: 
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Where b are the unknown coefficients of φ and N is the shape function of node n:  

 n n n n nN ρ,e =1+(e - e )+(ρ - ρ )+(e - e )(ρ - ρ )               (5) 

And the coefficients of each property are calculated by: 

 
1

N


b =                    (6) 

Where φ are the values of the property at the nodes of the quadrilateral element and N is given by: 

mn m n m n m n m nN = 1+(e - e )+(ρ - ρ )+(e - e )(ρ - ρ )               (7) 

A Mach number consistent numerical flux has been implemented [13] in order to handle the great variation of the 

Mach number between the liquid and the vapour regimes. Time discretisation has been achieved by a low storage 

four-stage Runge-Kutta method, 2nd order in time. 

 

Results 
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In this section the results of a parametric bubble collapse are presented. The collapse of a vapour bubble in the vicinity 

of a wall is investigated for a different set of configurations (see Table 1 and [8] for details concerning the 

configuration). In Table 1 the ratio dw/Rb,0 is the distance from the wall to the center of the bubble divided by the initial 

bubble radius, pinf is the pressure of the liquid, T is the initial temperature for both the liquid and the vapour and τ is 

the Rayleigh collapse time for each case. The density of the vapour bubble for all the cases is ρvap=33.78 kg/m3. The 

computational domain is 20 times the initial bubble radius and 200 equally spaced cells have been used along the 

initial radius. This ratio has been kept for distance of 2.5Rb,0 from the origin and then the mesh is coarsened with ratio 

1.05 in both directions. Zero gradient boundary condition has been used for the right and the upper side, slip wall for 

the lower side, whereas for the y-axis of symmetry, the normal velocity component is zero. 

 

No dw/Rb,0 Rb,0 (μm) pinf (bar) T (K) τ (s) 
1 1.5 1 10 400 2.37e-08 

2 1.5 10 10 400 2.37e-07 

3 1.5 1 100 400 7.55e-09 

4 1.5 10 100 400 7.55e-08 

5 0 1 10 400 2.37e-08 

6 0 10 10 400 2.37e-07 

7 0 1 100 400 7.55e-09 

8 0 10 100 400 7.55e-08 

9 -0.5 1 10 400 2.37e-08 

10 -0.5 10 10 400 2.37e-07 

11 -0.5 1 100 400 7.55e-09 

12 -0.5 10 100 400 7.55e-08 

Table 1. Classification of the different cases examined. 

 

 In Figure 1 the volume of vapour (left), the maximum pressure on the wall (middle) and the maximum temperature 

on the wall (right) are shown with respect to time. Regarding Figure 1a, the collapse time is proportional to the initial 

volume of the vapour for each bubble. A rebound is noticed for cases 1-4, however it is weaker than the one noticed 

in [8], due to the larger distance between the wall and the center of the bubble. The early pressure peaks at Time<0.5 

for cases 1, 2 and at Time<0.8 for cases 3, 4 (Figure 1b) are because of the collapse of a vapour region below the 

bubble which was originally created by a rarefaction wave (see also [8]). A pressure and temperature peak (total 

maximum) due to the bubble collapse is noticed in Figure 1b and Figure 1c at Time~1 for cases 1-8 and at Time~0.7 

for cases 9-12. However, at cases 1-4 are noticed the lowest wall pressures and the lowest wall temperatures because 

most of the energy is transformed into kinetic and as a consequence the pressure increase is not as significant as in the 

rest cases; the same applies for the temperature. On the contrary, at cases 5-8 the maximum wall pressures and the 

maximum wall temperatures are noticed due to the maximum compression that the bubble undergoes during its 

collapse. After the collapse of the bubble (Time>1.5), additional pressure peaks are noticed for cases 1-4, because of 

the collapse of the regenerated vapour regions. The pressure increase due to the re-entrant jet and the shock wave after 

the collapse can potentially lead to erosion damage of materials. For all three figures the curves between cases with 

different initial radius but the same surrounding pressure and the same distance dw coincide, as it was expected, given 

the fact that the time has been non-dimensionalised with τ. 

                                               

(a)                                                                        (b)                                                                         (c) 
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Figure 1. Volume of vapour (left), maximum wall pressure (middle) and maximum wall temperature (right) with respect to time for different 

vapor bubble configurations. Time has been non-dimensionalized with the Rayleigh collapse time τ and the volume of vapour with the initial 

vapour volume of the bubble. 

 

In Figure 2 the pressure (left slice) and the temperature (right slice) contour fields are demonstrated for several time 

instances during the collapse for case No 1. At Time=0.1 the shape of the bubble is almost spherical in comparison 

with [6], [8] where a heart-shape was formed. This is due to the larger distance of the bubble from the wall, therefore 

the effect of the boundary is weaker than the aforementioned studies. The bubble takes a non-spherical heart-like 

shape only at later times just before the collapse, when the micro-jet has already been formed on the top of the bubble 

and the pressure field has been developed (Time=1.05 and Time=1.07). By that time there is no significant temperature 

variation. However, at the moment of the collapse (Time=1.08), there is a significant pressure increase up to 1600 

MPa and a temperature increase up to 550 K due to the condensation of the bubble. Finally, at Time=1.1 the shock 

wave travelling away from the axis of symmetry is shown. 

 

 
Figure 2. Instances during the vapour bubble collapse for case No 1. Time has been non-dimensionalized with Rayleigh collapse time. Pressure 

field (left slice) and temperature field (right slice) are shown. 

Conclusions 
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In the present work, a HEM approach combined with real fuel thermodynamics has been presented and utilized for 

vaporous bubble collapse simulations. A parametric study of the temperature and pressure changes on the wall with 

respect to the surrounding liquid pressure, the initial bubble radius and the distance of the wall from the center of the 

initial bubble has been performed. It can be concluded that the temperature increase during bubble collapse is not 

negligible, for example in cases 5-8 it can reach up to 1000 K. The maximum pressure and temperature increase is 

observed when the center of the initial bubble is on the wall (spherical symmetry). These heating effects during bubble 

collapse can possibly have implications in injector nozzles, since they can change the fuel properties and have a serious 

impact on the flow field. 
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