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Abstract

This review of color processing in natural image viewing – rather than artificial laboratory images – 

addresses the role of color edges. Much of the color variation in nature is a result of evolutionary 

processes in complex organisms that have developed eye-brain systems that use color signals for a 

variety of biological functions. One aspect of human color processing is the tendency to attribute the 

appearance of extended color fields to a process of filling-in from the differential color signals at color 

edges, where one color transitions to another. Does such a process account for the appearance of 

extended color fields in natural images? Some form of color filling-in must underlie the color filling-in 

percept known as the Watercolor Effect, but this effect is too weak to account for the appearance of 

extended color fields in natural images. Moreover, natural images do not look very colorful when 

their color is restricted to edge transitions. Conversely, purely chromatic images with maximally 

graded (‘edgeless’) transitions look fully colorful, leading to the conclusion that color filling-in makes 

no more than a minor contribution to the appearance of extended color regions in natural images. 

Other effects, such as the selective enhancement of perceived image color by luminance contours 

coordinated with the color contours and color image structure, also play a role the color perception of 

natural images.

Word count: 2055
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The spectral variations that give rise to color are a ubiquitous feature of nature and natural images. 

Organisms, in particular, have evolved to use color as a signaling system in a wide variety of ways – 

species recognition among members of a species; species identification to other species; signaling of 

gender and of sexual receptiveness; camouflage against predators; signaling of readiness to as a food 

source in the case of fruit and flowers; etc. All these functions of color in the natural world are bound 

up with the visual perception of color by a neural system of some kind, implying that much of the 

color we find in nature is a result of evolutionary processes in complex organisms that have 

developed an eye-brain system that can appreciate the color signals.

These aspects of evolved color are distinct from the adventitious physical processes such as minerals, 

crystals and rainbows, which would be occurring in nature regardless of any organic evolution. These 

kinds of optically refrangent colors are also appreciated at least by human eyes, in the form of 

precious gemstones, and by certain bird species such as magpies and bower birds, but there seems to 

be no evolutionary aspect to the existence of such physical processes per se.

A. Original macaws B. Equiluminant color C. Grayscale

Fig. 1. Separation of the color information from the grayscale information in a color image of two parrots. A: original 
image. B: chromatic component with the luminance contrast removed.  C: grayscale image of the luminance component 
alone. 

Color is, of course, well established as having three dimensions of variation to the typical human eye 

(though perhaps many more in species with many more receptor types – such as the mantis shrimp 

(12 receptor types, Bok, Roberts & Cronin, 2018) or the Japanese swallowtail butterfly (9 receptor 

types; Arikawa, 2018). The dimensionality of color representation may be sliced in many ways, but 
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one of the most revealing is to separate the color variations from the grayscale variations in an image 

(Fig. 1, see Appendix I).

Doing so makes it clear how much information about object structure and boundaries is conveyed by 

color in natural images – without knowing what a parrot is, it is challenging to complete the overall 

outlines of the two parrots from bottom-up information in the grayscale image alone (or from the 

color image alone). Indeed, Hansen & Gegenfurtner (2008) show that pure color borders are as 

common in natural images as luminance borders, but that the two types carry statistically 

independent information. This illustrates the kinds of difficulties faced by computer science in real-

world object recognition.

A. Chromatically balanced B. Equiluminant balanced C. Grayscale balanced

Fig. 2. Balancing the chromatic information for equal color contrast across the color spectrum in the macaw image. A: the 
image of Fig. 1A chromatically balanced. B: balanced chromatic component with the luminance contrast removed.  C: 
grayscale image of the luminance component alone after chromatic balancing. 

The color image also illustrates the second dimension of color, which is the variation in the intensity 

of the color (otherwise known as saturation or color contrast) as well as its hue.  The reds and blues in 

Fig. 1B are very intense, while the greens are almost grayed out. These variations are adjusted in a 

second version of the image (Fig. 2), which was designed to balance the saturation levels across the 

color spectrum (see Appendix I).  When the luminance contrast is removed (Fig. 2B), the remaining 

hue boundaries now appear much less salient, making it clear that color contrast plays as great a role 

in making color regions stand out from their backgrounds as their hue. The contrast balanced colors, 



4

though still perceptually evident, do not stand out as expressing discrete shapes as strongly as those 

in the original color channel including color contrast variations (Fig. 1B).

In a retina containing about 5 million cones of three varieties (selective for the red-, green- and blue-

regions of the color spectrum), it may seem self-evident that the perception of color is mediated by 

the outputs, or combinations of outputs, of those cone pathways at a local scale comparable to that 

of the receptors. However, color processing continues in the visual cortex, where a subpopulation of 

the neurons combines signals from the individual cones into color-edge detectors (Livingstone & 

Hubel 1984; Hubel & Livingstone, 1987; Shapley & Hawken, 2011), which inherently emphasize the 

local changes of color at color edges, at the expense of signals in regions of uniform color fields. In 

fact, such results are the basis for the widespread idea that much of color processing operates by 

identifying the colors at color edges (Larimer & Piantanida, 1988; Pinna, Brelstaff, & Spillmann, 2001; 

Von der Heydt et al., 2003; Shapley & Hawken, 2011; Paramei & van Leeuwen, 2016; Gerardin et al., 

2018). As Shapley & Hawken (2011) write, “many … perceptual results indicate that the color 

appearance of a region sometimes is even more dependent on color contrast at the boundary of the 

region than it is on the spectral reflectance of the region.” Perhaps the most famous perceptual result 

attributed to color edges is the strong color-orientation specificity in studies of joint color/orientation 

adaptation known as the McCullough Effect (McCollough, 1965). The argument proceeds from the 

proposal by Craik (1958), O’Brien (1966), and Cornsweet (1970) that lateral inhibition reduces or 

eliminates the neural response to uniform fields, leaving as the most salient features the edges, or 

regions of rapid luminance change in the image (Nieves, Nascimento & Romero, 2012). Edge 

information is then propagated into uniform regions to produce the full color impression (e.g., Gerrits 

& Vendrik, 1970; Grossberg & Mingolla, 1985; Ma & Manjunath, 1997; Iakovidou et al., 2019). This 

somewhat mysterious process, attributed to higher cortical levels, is known as “filling-in.”  

The filling-in concept is then generalized from luminance to color fields, forming is the conceptual 

basis of the ‘Watercolor Effect” of Pinna (1987), in which faint color is indeed seen to propagate 

across the white spaces between the double lines of two contrasting colors (Fig. 3). However, 

although there is demonstrable color filling-in, it is markedly unsaturated, as quantified by Wachtler & 

Wehrhahn (1997) and Gerardin et al. (2018), who show that it averaged about 10% of the strength of 

the luminance filling-in (or about a 0.5% effect in terms of cone contrast). This result raises the 
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question whether this weak form of color filling-in can account for the normal range of rich color 

perception of extended color surfaces in natural images, such as that of Fig. 1A.

Fig. 3. Left: An example of the Watercolor Effect of Pinna (1987), in which color is induced in the white regions between 
the double-color bounding lines. (From Pinna, Werner & Spillmann, 2003)

An interesting property of color filling-in is that it is weak or non-existent when the two colors of the 

border are equiluminant with each other (Pinna, Brelstaff & Werner, 2001; Devinck et al., 2005). Thus, 

it is not a pure color effect analogous to the filling-in of the luminance domain, which is a pure 

luminance effect. Instead, the color filling-in must be parasitic on the luminance filling-in, as though 

the activation of luminance propagation pathway (whatever that is) to carry the color signals along 

with it.

A primary argument against the logic of color filling-in as a general phenomenon is that most color-

selective receptive fields of cortical neurons do not exhibit surround inhibition (see Komatsu, 2006, 

for review). Moreover, there is little or no psychophysical evidence for lateral inhibition in the color 

domain. The type of low frequency fall-off that is taken as psychophysical evidence for lateral 

inhibition in the luminance domain (de Lange, 1953; Campbell & Robson, 1968) is not found for pure 

color modulation in either the spatial (van der Horst & Bouman, 1967; van der Horst, de Weert, & 

Bouman, 1967; Mullen, 1985) or temporal (van der Horst, 1969; Regan & Tyler, 1971) domains. These 

lines of evidence give every reason to expect only minimal filling-in process to operate for color 
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images. Even if color filling-in did operate under laboratory conditions, would it be an effective 

operating mode for the viewing of natural images? It seems most appropriate to answer this question 

under natural viewing conditions, in which the eye is free to move.

To evaluate the question of color filling-in, Tyler & Solomon (2018) used a color-border version of the 

equiluminant, balanced contrast color image of Fig. 2B, computed by filtering out its low spatial 

frequencies with an isotropic high-pass filter (Fig. 4; Tyler & Solomon, 2018).  It can be seen that the 

image appears as narrow lines of high contrast color borders with predominantly uniform gray 

between them (although there may be a hint of perceived color as expected from the Watercolor 

Effect). It is evident, therefore, that under free-viewing conditions the color borders per se in this 

natural image are not sufficient to provide for the full-color impression of the original image.

A. Color border B. With grayscale overlay

Fig. 4.  A: Color-border versions of the equiluminant, balanced contrast color image of Fig. 2, showing some degree of 
Watercolor Effect filling-in. B: the balanced grayscale overlay of Fig. 2 added to the color-border image, which reduces 
both the border color and the color filling-in percepts.

Now, it could be argued that full-color equiluminant images are unnatural, even when derived from a 

natural image, because they lack the natural joint occurrence of luminance and color borders that 

seems to be critical for the watercolor effect (Pinna, Brelstaff & Spillmann, 2001). Fig. 4 (right panel) 
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therefore shows the same color border information added back to the grayscale image of Fig. 2 

(right), which shows that, if anything, the luminance information tends to mask the color information 

rather than to induce enhanced filling-in, since the color now appears less vivid both at the borders 

and in the interior regions. This reduction in color filling-in is supported by recent demonstrations that 

luminance borders can selectively influence color perception and integration (van Lier, Vergeer, & 

Anstis, 2009; Anstis, Vergeer & van Lier, 2012a,b; Coia & Crognale 2018; Hong & Tong, 2017). An 

illustration of this effect for colored afterimages is found in Anstis, Vergeer & van Lier (2012b), based 

on the ‘natural images’ of paintings by Gainsborough (‘The Blue Boy’, ~1770) and Ingres (‘La Source’, 

1856). They showed that adding the luminance component from each image to a 50:50 meld of the 

chromatic components from both images selectively suppressed the other image (Fig. 5).  The meld is 

simply the sum of the balanced chromatic components (see Appendix I).

’Blue Boy’ ‘La Source’

Chromatic components Chromatic meld Chromatic meld with luminance components

Fig. 5. Demonstration of the selective effect of luminance structure on color perception (recast from Anstis, Vergeer & van 
Lier, 2012b), using the same logic as in Fig. 2.  Upper right: two classic paintings. Upper middle: their luminance 
components. Lower left: their balanced chromatic components. Lower middle: the color meld of the two chromatic 
components. Right, the color meld with the addition of each of the two luminance components. Note that the addition of 
each luminance component selectively switches the same color meld towards the colors of the respective originals.

One objection to this analysis might be that the equiluminant balancing procedure departs from the 

unbalanced nature of the color across natural images in general, and that color filling-in might be 

more effective for unbalanced color edges. To address this point, Tyler & Solomon (2018) included a 

further figure of the color edge manipulation for the unbalanced equiluminant case from Fig. 2 and 
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four other diverse natural images (Fig. 6). It is evident that only the smallest color patches at the scale 

of the edge-filtering show pronounced color percepts.  For more extended regions, filling-in is 

essentially absent, despite the variety of natural border structure. Except for small features like the 

blue car, which is on the scale of the border-color information, the brightly colored uniform regions all 

appear gray between the borders, implying that color filling-in failed to operate under these 

conditions. These results provide further support for the contention that color-border filling-in is not 

the primary mechanism for our color perception in natural images.

Fig. 6. The chromatic edge information for a diversity of natural images (top row) shown as the raw (non-balanced) color 
edges, and added to the unfiltered luminance information (bottom row). Although full color is seen for edge features (as 
in Carol Channing’s red hat lanyard), there is only a weak percept of filling-in for these natural images across smaller 
colored regions at the scale of residual the edge colors themselves.

Interestingly, Hamburger et al. (2006, 2012) report a remarkably strong variety of color propagation, 

under the decidedly unnatural viewing condition wherein images are stabilized on the retina. In this 

case, surface colors can propagate across strong color borders to invade interior regions of any other 

color.  The resulting color is not a mixture but completely dominated by the stronger surface color. 

Thus, color propagation under stabilized retinal adaptation exhibits remarkable higher-order 

interactions that cannot be explained by the kind of basic border-to-border filling-in examined in this 
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review of color processing in natural image viewing.  These effects may be related to the afterimage 

(and hence stabilized) color filling-in reported by Shimojo, Kamitani & Nishida (2001).  Color is induced 

laterally in the Varin illusion (a color version of the Kanisza illusion) is replicated in the afterimage of 

the stimulus. The wrinkle in the afterimage version is that there is reciprocal fading of the inducing 

pattern and induced color field, implying that the filled-in afterimage color was an afterimage of the 

induced color filling-in (rather than a filling-in color from the afterimage of the illusion color).

Conclusion

There are four types of filling-in identified in this survey of color filling-in effects in natural images.   

The classic type of filling-in is Craik-O’Brien-Cornsweet form of region filling-in the luminance 

information from the edges, which only partially accounts for the perceived brightness of the region.  

The Watercolor Effect is the chromatic version of the same effect, but is approximately 10x weaker 

than its luminance counterpart. The third type is the Hamburger-type figural regional filling-in of color 

across stabilized-image color borders, which is based on the figural relations of an outer surrounding 

region filling-in over a different-colored inner region.  And the final type is the Shimojo-Kamitani- 

Nishida selective enhancement of color filling-in (or filling-out) to luminance defined borders, with 

complementary suppression of color regions that are incompatible with the luminance border 

structure.

Figure Credits
Figs. 1,2,4: dima266f ; Fig. 6 l to r: dima266f, pixelio.de, Fedor Yakubovich, Tony Hisgett, Allan Warren; Fig. 7, 
Jim Kasson.
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Appendix I: Equiluminance Transforms

All of the transformations were performed in accordance with international standards (see IEC, 1999).  

The chosen sRGB images were downloaded from the internet. Each sRGB image was represented by 

an  matrix , where  and  are the number of pixels in each row and column, where each mn 3 S m n

matrix entry is a real number . The original nonlinear gamma correction was linearized by u 0,1 

replacing each value  with , whereu v

.v

u 12.92 u 0.04045

u 0.055
1.055








2.4

otherwise










Each resulting "linear" pixel  was then converted to greyscale via matrix V r g b





multiplication with the transpose of vector . Each pixel  in the L 0.2126 0.7152 0.0722



 y

greyscale matrix (Fig. 1c) has been gamma corrected, i.e. Y

.y
12.92V L V L  0.0031308

1.055 V L 1 2.4
 0.055 otherwise






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Residual chromatic images were obtained from the difference between original and greyscale 

versions (both normalized to have zero mean). Specifically, if we let  and  represent the scalar, X mX

arithmetic mean and maximum absolute value of every entry in an arbitrary matrix , then the X

'equiluminant' image in Fig. 1b is described by a matrix in which each element  is scaled to lie within c

the interval , i.e. , , where  is each element in the normalized difference 0,1  c d mD 1



 2 d

matrix D defined by . The meld of the two equiluminant images for Fig. 5 was defined D S SYY

by DM = (D1 + D2)/2, with the addition of the luminance component by DMY = (DM + Y)/2.

The logic of the chromatic balancing was to shift the centroid of the equiluminant pixel gamut to the 

neutral (gray) point of the color space.  In practice, this was implemented by adjusting the red-cyan 

balance of the equiluminant image to its perceptual balance point for the authors, as illustrated in Fig. 

2B.
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