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Abstract: Current Light Detection and Ranging (LIDAR) based odometry solutions that are used for spacecraft relative
navigation suffer from quite a few deficiencies. These include an off-line training requirement and relying on the Iterative
Closest point (ICP) that does not guarantee a globally optimum solution. To encounter this, we suggest a robust architecture
that overcomes the problems of current proposals by combining the concepts of 3D local feature matching with an adaptive
variant of the H∞ recursive filtering process. Trials on real laser scans of an EnviSat model demonstrate that the proposed 
architecture affords at least one order of magnitude better accuracy compared to ICP.

1. Introduction

Automatic rendezvous and Docking (AR&D)
missions for spacecraft applications with non-cooperative
targets, i.e. with unknown attitude, is of great interest as
currently only cooperative or partially cooperative targets are
considered. One major part of the AR&D mission is the
precise position estimation of the Source spacecraft platform
in relation to the Target platform. Current solutions for
AR&D rely on relative ego-motion estimation, i.e. relative
odometry, and involve 2D visual solutions in a stereo camera
configuration [1–4] or a monocular [5] camera setup, 2D
Infrared (IR) [6] and 3D Light Detection and Ranging
(LIDAR) [7–16] relative navigation. The advantage of
exploiting the IR domain over the visual is the capability of
operating under several harsh illumination conditions such as
eclipse and solar glare. Even though [6] presents appealing
accuracy, it’s performance highly depends on the temperature
of the Target platform as the latter affects the robustness of
IR based local feature detection and matching.

The advantage of 3D LIDAR compared to its 2D
counterpart (visual and IR) is operating during day and night,
being independent of the target’s thermal properties and
capable of revealing the underlying structure of an object [17].
Despite current literature offering quite a few LIDAR based
relative navigation solutions [7–16], these present the
following deficiencies: First, they rely on the Iterative Closest
Point (ICP) [18] method that may settle the estimated rigid
body transformation solution in a locally rather than a
globally optimum solution. Second, current algorithms
require an off-line training process that exploits a 3D model
of the expected Target platform. Even though this is feasible
for known manmade objects, unknown or corrupted objects
lack of an a priori precisely known model. Third, despite [15,
16, 19] transfer computer vision concepts in the domain of
space relative navigation, the techniques exploited are
regional rather than local, neglecting the state-of-the-art
feature matching performance afforded by the latter type.
Fourth, the majority of current proposals is evaluated on fully
simulated scenarios [9–11, 14–16, 19], while only a few
algorithms are tested on real but rather simplistic scenarios
[12, 13].

Therefore, driven by the advantages of 3D LIDAR
odometry and the deficiencies of the current solutions, we
suggest a LIDAR based relative navigation architecture that
is appropriate for spacecraft applications. In that context, the
contributions and innovations of this work can be
summarized to:

a. An odomentry architecture that combines the
concepts of 3D local feature matching with an H∞ recursive
filtering process.

b. An adaptive variant of the H∞ recursive filtering
process that adjusts the measurement noise covariance
depending on the quality of the matched features.

c. In contrast to current techniques the suggested
one does not require any prior knowledge of the Target
platform.

d. We evaluate our technique on real point clouds
acquired by a LIDAR device rather than exploiting synthetic
data which is the norm in space odometry literature.

The rest of the paper is organised as follows; Section
2 presents the suggested H∞ LIDAR odometry, while Section 
3 evaluates our architecture against the typical ICP method
on real laser scans simulating a space relative navigation
scenario. Finally, Section 4 concludes this paper.

2. H∞ Lidar Odometry
The problem addressed in this work is LIDAR

odometry for spacecraft relative navigation. Specifically,
given a Source platform that has a 3D LIDAR sensor, we aim
at estimating its relative position in regards to a Target
satellite platform. Therefore, given two consecutive point

clouds 1{ ,..., }a
k k kp p=P and 1

1 1 1{ ,..., }b
k k kp p+ + +=P of the

Target that are captured from a LIDAR sensor placed on the

Source, with each vertex being in the form ( , , )k k k kp x y z=

and 1 1 1 1( , , )k k k kp x y z+ + + += , aim of the odometry process is to

calculate a rigid body transformation
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Fig. 1. Suggested recursive LIDAR based relative navigation.

with R being the rotation and T the translation component,
that maps the source point cloud Pk to the target Pk+1:

1k kp Rp T+ = + (2)
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(3)

Then at instance u , the position of the Source moving

platform relatively to Target satellite is given by:

* *

1

u

uR Rµ
µ=

=∏ (4)

A typical method to estimate *R is by employing an
ICP scheme that involves Pk and Pk+1. However, as
demonstrated in Section 3, the number of available vertices
in the satellite’s point cloud are very few forcing the ICP
registration to settle at a local minima, not accurately register

Pk and Pk+1 and thus provide an inaccurate *R . Driven by this
constraint and the deficiencies of the current solutions
presented in Section 1, we suggest an architecture appropriate

for space odometry that estimates *R by combining the
concepts of 3D local feature matching with an adaptive
variant of the H∞ recursive filtering process. The suggested
architecture is presented in Fig. 1, and comprises of the two
modules presented next.

2.1 Correspondence Estimation Module

We describe all vertices belonging to each point cloud
Pk and Pk+1 using a variant of the Histogram of Distances
(HoD) [20] entitled HoD-Short (HoD-S) [21, 22]. Despite
current literature offering quite a few 3D local feature
descriptors such as the Fast Point Feature Histogram (FPFH)
[23], Rotational Projection Statistics (RoPS) [17] and
Signatures of Histograms of Orientations (SHOT) [24], we
used the HoD-S due to its processing efficiency and
robustness to highly sparse point clouds [21, 22, 25] as
examined in this work.

The operating principle of HoD-S is; for each vertex
i
kp belonging to Pk a spherical volume V of radius ρ that is

centred at i
kp is extracted. Then HoD-S calculates the point-

pair L2-norm distance distributions of the vertices within V,
which are encoded in a coarse manner, i.e. based on a low-

resolution distance bin. The description radius used is 20Res,
where Res is the average Pk+1 resolution and the encoding
quality of HoD-S is set to 10 bins. It should be noted that due
to the very high sparsity of Pk, we intentionally do not use a
keypoint detection strategy and therefore describe all vertices
belonging to Pk.

Let 1{ ,..., }iN
k k kf f=F and 1

1 1 1{ ,..., }jN

k k kf f+ + +=F be

two sets of HoD-S features for point clouds Pk and Pk+1

respectively. We match feature i
kf from kF with its nearest

feature 1
j

kf + from 1k+F based on an L2-norm metric:

( )1 1 21,2,...,
arg min

j

i j i j
k k k k

j N
f f f f τ+ +

=
← − < (5)

where ι,j are the feature indexes and the threshold τ is
experimentally set to 0.8 to remove the majority of the

outliers. The matched feature pairs 1{ , }i j
k kf f + are considered

as feature correspondences, while their associated vertices

{ }1,i j
k kp p +Ω = are considered as point correspondences. We

speedup the feature matching process of Eq. (5) by
employing a Fast Library for Approximate Nearest
Neighbours (FLANN) [26] matching scheme. It is worth
noting that further reducing τ would provide better quality
feature matches but simultaneously reduce the number of
matches and in consequence reduce the iterations of the H∞
filter as explained in Section 2.2 and ultimately reduce the
overall odometry accuracy. In addition, we avoid adding a
feature refinement stage as this would increase the processing
burden. Current literature suggests global pose-graph
optimization, i.e. finding feature matches between non-
adjacent frames or applying loop closure. Despite that, in our
trials we want to push the limits of a more processing efficient
strategy that involves only a Nearest Neighbour feature
matching scheme between sequential point clouds.

2.2 Adaptive Recursive Filtering Module

Given the correspondences Ω we extend [27] and
solve Eq. (3) by suggesting an adaptive H∞ recursive filtering
scheme. The proposed algorithm is based on a recursive
optimal state estimation of the state variable

11 12 13 21 22 23 31 32 33[ ]T
k x y zx r r r r r r r r r t t t= that essentially

encompasses the rigid transformation between Pk and Pk+1 by
exploiting the correspondences Ω .
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The H∞ filter is a recursive optimal state estimator

where kx is the state variable vector and [ , , ]k k k kx y zψ Τ= is

the measurement vector that contains the 3D coordinates of

the point correspondences 1
j

kp + belonging to Pk+1 which are

included in Ω . In this work, we use a slightly modified
version of the H∞ filter:

1 1k k kx w− −= Φ + (6)

k k k kH x vψ = + (7)

where Φ and H are the state transition and the
measurement model matrices respectively. We define

*
0 0[ | ]R I TΦ = = with I the identity matrix and 0 [0 0 0]TT = ,

w and v are the model and the measurement noise factors

respectively with covariance matrices 2
12(0, )wW N Jσ and

2
3(0, )vV N M Jσ where wσ and vσ are small positive

values and J is the unity matrix. kH contains the actual

measured 3D coordinates of i
kp belonging to Pk that are

included in Ω :

1 1 1

1 1 1

1 1 1

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

k k k

k k k k

k k k

x y z

H M x y z

x y z

+ + +

+ + +

+ + +

 
 
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 
 

(8)

with M an adaptive coefficient that aims at adjusting the
measurement noise covariance based on the quality of the

matched features 1{ , }i j
k kf f + defined as:

( )110 i j
k kM f f += ⋅ −∑ (9)

In contrast to the typical H∞ filter [28], in this work
we suggest an adaptive measurement model matrix Hk. The
constant in Eq. (9) is experimentally estimated to fine tune
the overall H∞ filter performance.

The problem that the H∞ filter is trying to solve is the

$ ,min maxw vx
G where G is defined as:

$( )
( ) ( )

kk
Q

k kW V

average x x
G

average w average v

−
=

+
(10)

subject to 1/G γ< , with Q being a weighting matrix and γ

a small constant number representing the required accuracy
of the filter. The H∞ filter equations solving Eq. (10) are:

( )
11

1 1
T

k k k k kL I gQP H V H P
−−

− −= − + (11)

1
1

T
k k k kK P L H V −

−= Φ (12)

1
T

k k kP P L W−= Φ Φ + (13)

$ $ $( )1k k kk kx x K H xψ+ = Φ + − (14)

where Q Idt= with
510dt −= and 0.1g = being regulating

parameters. The number of iterations of the H∞ filter is the 

cardinality of Ω and ultimately the final $x after all iterations

is transformed into *R , which is input to Eq. (4) in order to
estimate the LIDAR odometry. It should be noted that in
contrast to our solution, [19] uses a Multiplicative Extended
Kalman Filter (MEKF) to smooth *R rather that estimating
the *R as done in this work. Additionally, [19] requires an
offline training stage that uses a known 3D model of the
expected Target platform, which for our solution is not
required.

Space objects typically have symmetric or nearly-
symmetric shapes, thus being prone to produce ambiguous
measurements. However, in the suggested odometry
architecture we reduce the number of such Target pose
conditions by tuning the description radius of HoD-S to
balance features descriptiveness, even in these ambiguous
conditions, with processing efficiency. Despite that strategy,
a limited number of Target poses may still exceed the
robustness of HoD-S but our architecture still manages to
preserve its robustness via the adaptive recursive filtering
module. Specifically, in the event measurements are

ambiguous, these are considered as noisy kψ values and are

compensated within the adaptive H∞ filtering process.

3. Experiments

3.1 Experimental Setup

Real laser scans of satellites are not available and
therefore we create a number of AR&D scenarios in our
Unmanned Autonomous Systems Lab (UASL), simulating a
scenario view as presented in Fig. 2. Trials evaluate the
suggested LIDAR odometry of a moving platform, i.e. Source,
in relation to a scaled EnviSat satellite model, i.e. Target. Fig.
3 shows the EnviSat model and the acquired Pk in various
poses. It should be noted that in order to increase the realistic
nature of our scenarios, we discarded the vertices that do not
belong to the EnviSat model and thus ultimately each point
cloud comprises of approximately 190 vertices. The moving
platform utilizes a VLP-16 Velodyne Puck Lite LIDAR to
capture the EnviSat point cloud. In

Fig. 2 Scenario view presenting the Source platform at instance k and k+1
acquiring 3D point cloud data from the Target platform via the onboard
LIDAR sensor. R* is the estimated relative motion of the Source to the Target
platform based on the suggested HoD-S and adaptive H∞ scheme. 

(a) (b) (c)
Fig. 3 Scaled EnviSat satellite model (a) visual imagery (b)-(c) acquired
point cloud in various poses (satellite model enclosed in the dashed red box)

Source
at k+1

R*
Source
at k

LIDAR

LIDAR

Target
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Table 1 Performance metrics for Scenario 1

T
avge (m) max

Te (m) drift (m)Terror (%) t (ms)

ICP 0.408 1.990 0.438 4.38 6
HoD-S+H∞ 0.008 0.036 0.140 1.40 59

Table 2 Performance metrics for Scenario 2

T
avge (m) max

Te (m) drift (m) Terror (%) t (ms)

ICP 2.807 7.707 2.697 14.28 13
HoD-S+H∞ 0.023 0.081 0.147 0.78 72

(a) (b)
Fig. 4. Odometry plots for scenario 1 (a) 2D plot (X-Y projection) (b) 3D plots.

order to estimate the accuracy of the proposed odometry
algorithm, the Source is tracked by an Optitrack setup [29] to
determine its ground truth position. Optitrack can provide in
sub-millimetre accuracy the position of objects that are within
its field of view and are visible in the Near Infrared (NIR)
bandwidth. For that purpose, we placed on the VLP-16 highly
NIR reflective markers.

All trials are implemented in MATLAB on an Intel i7
with 16GB RAM. Even though real space platforms use
space-graded Field Programmable Gate Arrays (FPGAs), we
believe that in the context of evaluating the conceptual
validity and performance of our proposed architecture against
current odometry methods, the computer platform used
during trials is acceptable.

3.2 Evaluation Criteria

Similarly to current literature [9, 15, 16, 30], we
compare the accuracy of the suggested architecture against an
optimally tuned ICP registration process. We use a point-to-
point ICP, while odometry performance is evaluated based on
the average and the maximum tri-axial translational error
between the ground truth position of the moving platform
(GT) as tracked by the Optitrack and the estimated one:

( )2

1

1
( ) ( )

u
T opt
avg GT i

i

e avg T avg T
u =

= −∑ (15)

( )2

max max ( ) ( )T opt
GT ie avg T avg T= − (16)

where u is the number of point clouds, opt
iT is the transformed

translation matrix from the LIDAR reference frame to the
Optitrack reference frame in order to make applicable its
comparison with the ground truth translation. In addition to
these metrics, we also calculate the drift, i.e. RMSE, between
the estimated end-point and the GTend-point, the
corresponding translational error Terror as a percentage over
the distance travelled and the average processing time t per
Target scene.

3.3 Odometry trials

3.3.1 Scenario 1: This scenario considers a forward-
backward motion of the moving platform with respect to the

EnviSat model. Even though the trajectory might be
considered simplistic, it is quite challenging due to the
sparsity and limited structure of the EnviSat point cloud (Fig.
2(b) and (c)).

From Table 1 it is evident that the suggested
architecture is considerably more accurate than ICP. The
suggested architecture performs well for the following
reasons. First, HoD-S is robust to highly sparse point clouds
[21, 22, 25] providing to the adaptive H∞ filter only well-
established correspondences. Second, the H∞ filter has been
designed for robustness against extreme nuisances, and third,
the adaptive measurement noise covariance Hk affords further
performance improvement over the standard H∞ recursive
filter.

Fig. 4 presents the trajectory plots of ICP and the
suggested HoD-S/ adaptive H∞ filter in 2D and in 3D. This
figure clearly indicates that the proposed scheme is more
accurate than ICP, and still has an affordable processing time
in the order of milliseconds (Table 1).

3.3.2 Scenario 2: This scenario is more challenging because
in addition to the sparse point cloud of scenario 1, the
trajectory is highly curved. Despite that, the accuracy
afforded by the proposed architecture is only mildly affected,
whereas ICP is heavily affected. Table 2 presents the
performance metrics for scenario 2, where it is evident that
the suggested combination of HoD-S and adaptive H∞
outperforms ICP by a large margin. Similarly to Scenario 1,
ICP is faster but given the higher accuracy of the suggested
architecture and the processing time of a few milliseconds,
the combination of HoD and H∞ is quite appealing. Fig. 5
presents the trajectory plots in 2D and in 3D.

3.3.3 Scenario 3: This scenario is even more challenging as
is involves a 3D translation of the Target platform. Similarly
to the previous scenarios, HoD-S combined with the adaptive
H∞ filter exhibits the superiority of the suggested
architecture. Regarding computational time, ICP is more
processing efficient but the average 70ms processing time per
Target scene required by our solution is still quite low. The
performance metrics of this scenario are presented in Table 3,
while Fig. 6 presents the trajectory

Y
[m

]
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(a) (b)
Fig. 5. Odometry plots for scenario 2 (a) 2D plot (X-Y projection) (b) 3D plots.

(a) (b)
Fig. 6. Odometry plots for scenario 3 (a) 2D plot (X-Y projection) (b) 3D plots.

plots of ICP and the suggested HoD-S/ adaptive H∞ filter.

4. Conclusion

LIDAR based odometry for space relative navigation is a
challenging task due to the small number of vertices and the
sparsity of the point cloud target. As demonstrated, ICP,
which is currently the standard algorithm for space odometry
applications, fails to afford accurate space relative navigation.
Therefore, we propose a robust architecture appropriate for
space odometry that combines a HoD-S based 3D local
feature matching with an adaptive H∞ recursive filtering. The
advantages of our technique against current solutions are
neglecting the requirement of an off-line training process, the
need of a priori knowledge of the expected Target platform,
and exploiting 3D local feature based concepts rather than
regional ones. The accuracy of the suggested algorithm is
tested on real laser scans of an EnviSat satellite model, where
we demonstrate that the proposed architecture is an appealing
solution outperforming ICP and affording at least one order
of magnitude better accuracy compared to ICP.

As future work, we intend to investigate alternative
recursive filtering algorithms and extend to even more
complex both real and simulated scenarios. It would be also
interesting to implement embedded hardware in the loop
recursive filtering registration
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