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Abstract 

Under the concept of "Industry 4.0", production processes will be pushed to be increasingly interconnected, 
information based on a real time basis and, necessarily, much more efficient. In this context, capacity optimization 
goes beyond the traditional aim of capacity maximization, contributing also for organization’s profitability and value. 
Indeed, lean management and continuous improvement approaches suggest capacity optimization instead of 
maximization. The study of capacity optimization and costing models is an important research topic that deserves 
contributions from both the practical and theoretical perspectives. This paper presents and discusses a mathematical 
model for capacity management based on different costing models (ABC and TDABC). A generic model has been 
developed and it was used to analyze idle capacity and to design strategies towards the maximization of organization’s 
value. The trade-off capacity maximization vs operational efficiency is highlighted and it is shown that capacity 
optimization might hide operational inefficiency.  
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the Manufacturing Engineering Society International Conference 
2017. 
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1. Introduction 

The cost of idle capacity is a fundamental information for companies and their management of extreme importance 
in modern production systems. In general, it is defined as unused capacity or production potential and can be measured 
in several ways: tons of production, available hours of manufacturing, etc. The management of the idle capacity 
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Abstract

Industry 4.0 has encouraged manufacturing organisations to update their systems and processes by implementing Internet of Things
(IoT) technology in legacy systems to provide new services such as autonomous condition monitoring and remote maintenance. 
However, there is still no literature that guides in realizing the advantages and disadvantages of the fourth industry revolution in
terms of complexity, data security, and cost. This paper lays the foundation for the creation of an innovative conceptual model to 
estimate the cost for implementation of new architectures for legacy systems. The proposed approach considers aspects that impact 
the cost of different IoT architectures such as: complexity, data gathering and sharing protocols, and cyber security. The authors 
suggest a further implementation of the cost model, in order to guide the organisations in the most cost-effective architecture for 
modernisation of their legacy systems.
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1. Introduction

The digitalization revolution called Industry 4.0 engages consumer and benefits business in a new and innovative 
way where products, processes, persons and places are involved through data trial that can be captured, tracked, shared, 
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combined, mined, and analysed. Internet of Things (IoT) is an important and innovative technology in this new 
revolution. It is used to defining internet protocols to allow communication between machines, devices, objects and 
sensors anywhere on the network [1]. Along with its recognised benefits, Industry 4.0 also creates new challenges for 
industries in the development of technologies and processes. In this context, special attention is given to legacy 
systems that are not equipped with monitoring technology to know more about the machine status and performance. 
As legacy machine tools that are often isolated, not well-equipped with modern communication technologies, and 
with lack of open Application Programming Interfaces (API), it is difficult to monitor and control the entire production 
process [2]. Monitoring is the capability of the object to behave as a sensor or to be able to produce information about 
itself or the encompassing environment; control refers to the capability of remotely controlled objects with internet 
technology. Mainly, the IoT applications are used for monitoring and controlling. A new concept of intelligent 
systems, processes and machines is rising, which also brings new challenges associated to Information Technology 
(IT). This aspect is of high impact for factories that will be increasingly intelligent with the ability to collect, analyse 
and distribute data, converted into important information for monitoring and maintenance services.  At the same time 
these new intelligent systems based on IoT architectures expose the industries at the cyber-security risks often linked 
to the work environment, the workers, and the IT technology adopted for sharing information and data. Many IoT kits 
are available in the market, which are able to manage information and data, but they still not focus on the security 
aspects for quick adoption into the industry. Moreover, industries are still relatively not familiar with different IoT 
solutions, and in particular they do not know the cost associated to the implementation of these architectures as well
as the cost to make it secure. This paper aims to mitigate this challenge by presenting a conceptual model for estimating 
the cost for implementation of an IoT modular architecture for smart manufacturing environments, while focusing on 
legacy machine tools. The paper is structured as follows: Section 2 describes the research problem. Section 3 outlines 
related work. Section 4 explains the methodology adopted to carry out the study. Section 5 presents the cost model to 
mitigate the research problem. Section 6 describes a case study that was applied to validate the model. Section 7 makes 
a discussion of the results. Section 8 presents the conclusions and future work suggestions.

2. Research Problem

Manufacturing organisations typically aim at producing high-quality products to avoid defects as well as to make 
sure the machines run for a long-time span without compromising the company’s profit with prolonged break-downs. 
However, most of the manufacturers are equipped with legacy systems that are usually not effective in terms of life-
cycle duration and operational performance. Legacy systems are typically a piece of manufacturing equipment 
natively lacking external communication capabilities and API that could provide real-time machining data [2]. This 
fact makes it difficult to easily monitor the systems, which can introduce inefficiency and generate higher cost of 
sensor integration [12]. IoT technology emerged as a solution to improve legacy systems in order to achieve higher 
productivity and reduce machines breakdowns. This technology covers for example the installation of smart sensors 
able to analyse the machine performance in terms of machine status, energy usage and others machining parameters 
using power signals analysis [2], which allow optimising the machine usage and maintenance actions. However, to 
use these new smart applications (e.g. smart sensors, IoT technology, etc.) the manufacturers need to reconfigure the 
IT level to create the new generation of “smart legacy machines”. In this context, it is challenging for the companies 
to identify a standard IoT architecture for all machines because they are all very different. Moreover, there is limited 
insight from literature about the advantages and disadvantages of the different IoT architectures in terms of cost, 
considering relevant parameters that impact on cost such as security and complexity. For example, monitoring systems 
for legacy machine tools raise security aspects related to data sharing and data protection that are associated to both 
hardware and software threats. These threats can cause machines breakdowns and data compromise that may represent 
drop in productivity and competitiveness, which in turn represent higher costs to the organisation and loss of 
profitability. On the other hand, mitigation strategies for these threats have associated costs that need to be assessed 
by the companies at the type of deciding to implement a smart manufacturing system. This paper provides guidance 
to the manufacturing organisations through a cost estimation model aiming at assessing different IoT architectures 
assembly, considering important parameters associated to smart manufacturing implementation such as complexity of 
the solution, level of vulnerability of the machines, and data loss caused by new cyber threats, and estimating their 
cost for implementation.
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3. Related Work

The connection of millions of devices in both commercial and industrial applications is growing up [3]. Solution 
based on IoT technology can upgrade the data capabilities of manufacturing systems, pushing the integration of cloud 
computing and big data into smart manufacturing environments in order to realize connection from M2M which 
include the connections man-to-man, man-to-machine, and machine-to-machine [4]. In this way, this technology 
generates the common issues target for various attacks [5, 6, 7]. Many research projects have been proposed to develop 
remote monitoring and maintenance systems through IoT devices such as: [8], where the authors developed a wall-
mounted boiler remote monitoring and control systems based on cloud platform. In other related project; [9], where 
the authors developed an IoT application for fault diagnosis and prediction; [10], where a system called IoT for 
university has been developed, and [11], where the authors developed a security architecture for SOA-based IoT 
middleware based on data protection. These and many more publications present different remote monitoring and 
maintenance systems strategies to evaluate the performance of industrial machines. Also, a collection of the IoT papers 
focused on home, academic and industrial applications is available in literature. However, these examples do not cover 
issues related to cost assessment and estimation for the configuration and implementation of IoT architectures in the 
manufacturing environment. This paper introduces a cost estimation model for IoT architectures implementation.   

4. Research Methodology

The methodology of this paper fits within the description of Soft Systems Methodology (SSM) [13]. This 
methodology proved to be effective in dealing with issues in socio-technical systems comprising technology, 
processes, and human involvement to function in the whole system in meeting a desired objective [14].  In the research, 
the objective consisted of assessing the cost for implementation of an IoT system in legacy systems. To achieve the 
aim of this research, the typical seven steps of the SSM methodology have been simplified and applied in four iterative 
steps as follows:

1. Understanding the state of practice of smart manufacturing implementation in legacy machines, and 
identifying the current challenges;

2. Reviewing the literature to analyse the state of art of IoT systems implementation within the context of smart 
manufacturing;

3. Identification of a suitable technique for developing of a solution to the research problem;
4. Identifying an IoT system for applying and validating the developed solution, identify the key elements of 

that system that impact its cost for development and studying the interrelationships between those elements towards 
application of the proposed solution. This flexible approach was taken in mind of the real world industrial context of 
IoT systems implementation in legacy machine tools (e.g. Industry 4.0), and to improve its practices through an 
iterative analysis, design and development of a solution for estimating the cost for implementation of an IoT system. 
An essential part of the study was the collaboration among researchers and practitioners. Within this process, there 
was an in-depth interaction with industrial practitioners, through semi-structured interviews, to understand the state 
of practice and to identify the current challenges experienced. In parallel with the industrial interaction, literature 
reviewed was carried out to identify related research results and to confirm a gap of research in this field. Also, 
modeling approaches were identified in literature and assessed in terms of their suitability to be applied to develop a 
solution to the research problem. The adopted technique was selected in agreement with all the researchers and based 
on their experience. A case study was also identified from literature where the proposed solution could be applied and 
validated. This case study consisted of an IoT architecture proposed in [18], and a number of assumptions were built 
based on empirical knowledge and literature results in order to allow the application of the proposed solution to this 
IoT architecture. The validation of the proposed solution through the case study analysis has been assessed by the 
researchers and it is believed to be innovative and a valuable conceptual solution for implementation that will aid for 
the organisations that plan to move towards the fourth industry generation.
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5. Cost Assessment Model for Smart Manufacturing Implementation in Legacy Systems (CAM-SMILS)

This section presents a conceptual model called Cost Assessment Model for Smart Manufacturing Implementation 
in Legacy Systems (CAM-SMILS). As discussed before, the innovation of the legacy systems and the creation of 
smart manufacturing environments is a relatively new concept that brings challenges to companies in terms of 
assessing the benefits and drawbacks of the concept. This assessment covers aspects such as complexity, security, 
usability, and perhaps more important, cost. The importance of these elements in the smart manufacturing environment 
is widely discussed in literature. The cost is associated to various aspects such as: implementation cost, maintenance 
cost, security costs etc. The CAM-SMILS model aims at assessing the cost for implementation of an IoT system in 
legacy machine tools, considering the complex environment of smart manufacturing. The model is targeted to support 
decision-making at the management level, guiding the organisations in the best strategy for innovating their legacy 
systems by comparing the cost of different IoT architectures. The CAM-SMILS is based on a Rule Based Fuzzy 
Cognitive Maps (RBFCM) technique that allows a representation and interpretation of the dynamics and complexity 
of an IoT system. The technique is an advanced modeling approach that mitigates limitations of other well-known 
techniques such as neural networks and system dynamics [15]. The representation of the IoT elements is made by 
fuzzy directed graphs with feedback, which are composed nodes (concepts) and fuzzy links (relations). The concepts 
are fuzzy variables described by linguistic terms, and relations are defined with fuzzy rules [16]. The variables can 
be: causal, if they have causal influence on another variable (node); effect, if they are subject to that influence; and 
causal-effect if they verify both cases. Each variable is assessed in terms of defined attributes that will map the 
cause/effect of the rules.

Figure 1: CAM-SMILS Model Description

Along these lines, the proposed model works as follows:
• Each element of the system (e.g. IoT system) is a variable. Each variable can also be broken-down in to sub-

variables and so on;
• Each variable has associated one of more attributes, that will be used to define causal-effect relationships 

with other attributes through rules;
• Each attribute has a qualitative scale associated (e.g. low, medium, high). Different attributes can have 

different scales and they can have different levels of granularity;
• IF-THEN rules are used to build the causal-effect relationships, as adapted from [17];
• The overall system (e.g. IoT system) is itself a variable that has associated a cost attribute. This system is 

directly or indirectly subject to the influence of all the other variables of the model. A possible configuration of the 
model is illustrated in Figure 1. The figure considers three variables, which includes the IoT system and two elements 
of that system such as: sub-system 1 and sub-system 2. Each variable has also associated some attributes that indicate 
the characteristics of those variables that impact other variables. Possible links between the variables and respective 
attributes are labeled as RLx, where x is the ID of the link. Each link has associated a number of rules that establish 
the relationship between attributes. For example, let’s consider the links RL1, RL2 and RL3, and let’s assume that 
attributes 1.1, 2.2, 2.1 are all measured in the same scale which is defined as: low, medium, high. Let’s also consider 
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that the cost attribute from the IoT system is measured in a scale defined as: very low, low, moderate, high, very high. 
Under these conditions, rules can be defined for each link that will impact in the overall IoT system’ cost. These rules 
can be defined, for example, based on the opinion and experience of subject matter experts. Examples of possible 
rules are: 

• For link RL3: low complexity of sub-system 1 cause high power in sub-system 2;
• For link RL2: high power in sub-system 2 causes high cost in sub-system 2;
• For link RL1: high cost in sub-system 2 causes medium cost of IoT system.
Other links and rules can be defined, and different configurations can be tested for each attribute in each variable, 

to assess the overall impact in the cost for implementation of the IoT system. There are also two other important 
aspects to refer about the model: the influence relation of multiple concepts, and the accumulation of impacts. When 
a rule involves two or more conditions to be verified (involving two or more different attributes) in order to define the 
impact in an attribute, Boolean operators AND or/and OR are used. Also, when two different rules impact the same 
attribute, that impact can be defined as cumulative using a pre-defined cumulative logic (e.g. medium + medium = 
high). The cumulative logic has to consider the different scales used to assess the different attributes.

6. Case Study of Application: A modular IoT architecture approach

Industry 4.0 requires legacy systems to upgrade their IT capabilities and create new services such as remote monitoring 
and remote maintenance [18, 19], using different standard communication protocols. 

Figure2: The Modular IoT Architecture

Along with these lines, a new modular IoT architecture has been proposed in [18], to create a smart manufacturing 
environment upon legacy machine tools, as illustrated in Figure 2. That architecture is used in this work as a case 
study for validating the applicability of the CAM-SMILS model. A brief description of this IoT architecture is 
presented in Section 6.1. Then in Section 6.2, the important elements of this architecture are identified as well as their 
key attributes that impact the overall cost for implementation of the IoT system. 
An application of the CAM-SMILS model to the presented IoT architecture is then outlined based on a set of rules 
that have been built from literature review results and empirical knowledge.

6.1. Case Study Description

The IoT architecture presented in Figure 2 fits into any legacy machine [18]. It is a new remote monitoring 
architecture, and consists of three modules managed with an authenticated protocol. The first module (green box) is 
the static part fixed on the machine as sensors, actuators, and transceivers. Depending on the operating environment, 
it is possible to find different scenarios. The second module (red box) is the transmitter consisting of the activation 
protocol to start the data collection. The third module (blue box/dark green box) is the transceiver able to share the 
data using different communication technologies. The modular architecture presented was designed to ensure a sealed 
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and secure IoT Unit. Between the modules there is a standardised communication interface using a hardware and 
software authentication protocol allowing access to the data only for authorised users. This architecture communicates 
at the Machine-to-Machine (M2M) level as well as into the cloud or end-user’s device. The approach is designed to 
be auditable so that any misuse can be identified. The modular IoT Unit uses only a single sensor or actuator and a 
single communication component at a time. Limiting the size, the power supply and memory to process data is 
paramount. In terms of cost, cheap sensors can be applied with good resolution, good microcontrollers for monitoring 
and processing data as well as the different communication protocols for data sharing. This IoT architecture can be 
implemented with different kind of legacy systems and it is completely automatic as it only needs to plug the modules 
to each other. This architecture presents high flexibility to different working environments and a mitigation strategy 
to reduce its vulnerability to cyber-attacks.

6.2. CAM-SMILS model application

In the IoT architecture described, which will be denoted as IoT system, four sub-systems have been considered as 
shown in Figure 3(a). These sub-systems consist of: 

Sub-system 1 - “Legacy system” - is characterized by the attribute cost of the machine tool and complexity of 
devices’ implementation (e.g. the difficulty to equip the machine with external devices). This sub-system also includes 
sub-system 1.1 - “Smart sensors” – which regards the machine capability in terms of quality of the signals transmitted, 
signals speed and battery life-time. Sub-system 1.1.1 includes sub-system 1.1.1 - “Cyber-security” – which includes 
attributes as complexity of user authentication, vulnerability and the ability to avoid physical tampering on the device.

Sub-system 2 - “Cloud” - is characterized by the attributes: capacity of network storage and client platform in terms 
of compatibility level. It includes sub-system 2.1 - “Support service” – which concerns the level of autonomous service 
and software complexity that includes: technology used, bandwidth and connectivity. It also includes hardware 
complexity considering the networking equipment. Sub-system 2.1 includes sub-system 2.1.1 - “Cyber-security” –
which involves attributes such as complexity of the authentication and security of the communication protocols.

Sub-system 3 - “Service company” - the attributes are: cost of hardware (e.g. application program interface (API), 
hard disks, etc.), and speed data monitoring. It includes sub-system 3.1 - “Cyber-security” – which involves attributes 
such as: complexity of user authentication and security of the communication protocols and avoid tampering attack to 
the hard disks.
(a)         (b)

Figure 3: (a) IoT System Cost Model Application; (b) IoT Systems: Attributes, Links and Rules

Sub-system 4 - “End-user devices” - involves attributes such as: complexity, compatibility and quality of software 
and hardware parts (e.g. type of devices, category of devices, type of vendor, type of operative system (OS) version). 
It includes sub-system 4.1 - “Cyber-security” – which concerns about the attributes: support manufacturer, 
accessibility, and authentication protocols (e.g. to avoid physical access by unauthorized users).  The links between 
the sub-systems described and that were considered for the case study analysis are described in Figure 3(b).
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This figure is a representation of the system presented in Figure 2 in the form of a system of systems. For the 
purpose of analysis, all the attributes considered for each system will be measured in the same scale which is defined 
as: low, medium, and high, including the cost attribute of the IoT system. The sub-systems are connected to each other 
through the links RLx, x ∈ [1, 17], where each link has an association between two attributes from two sub-systems. 
To facilitate the interpretation of the links identified, they were divided in two categories where the first category 
(RLx, x ∈ [1,9]) have a direct link to the the IoT architecture cost, while the second category (RLx, x ∈ [10, 17])
involves direct links between sub-systems of the IoT system (e.g. indirect links to the IoT architecture cost).

Thus, for the first category of links the following rules were considered:
RL1: if the cost of hardware equipment for sub-system 1 is low, the cost of the IoT architecture is medium;
RL2: if the complexity of sub-system 1 is medium, the cost of the IoT architecture is medium;
RL3: if the assistance cost of sub-system 2 is low, the cost of the IoT architecture is medium;
RL4: if the complexity of sub-system 2 is high, the cost of the IoT architecture is high;
RL5: if the cost of the security protocol of sub-system 2 is low, the cost of the IoT architecture is medium;
RL6: if the cost of the hardware equipment of sub-system 4 is medium, the cost of the IoT architecture is high;
RL7: if the RAM capacity of sub-system 4 is medium, the cost of the IoT architecture is medium;
RL8: if the cost of the hardware of sub-system 3 is high, the cost of the IoT architecture is high;
RL9: if the assistance cost of sub-system 3 is low, the cost of the IoT architecture is medium;

For the second category of links, the following rules were established:
RL10: if the power of sub-system 1 is high, the cost of hardware for sub-system 1 is high;
RL11: if the complexity of sub-system 1 is low, the cost of security protocols of sub-system 2 is medium;
RL12: if the RAM capacity of sub-system 4 is low, the speed of data monitoring for sub-system 1 is low;
RL13: if the complexity of sub-system 1 is medium, the security protocol of sub-system 3 is low;
RL14: if the speed of data monitoring of sub-system 3 is high, the RAM capacity if sub-system 4 is high;
RL15: if the speed of data monitoring of sub-system 4 is high, the RAM capacity of sub-system 4 is high;

With these established links and rules, and using the logic of the CAM-SMILS model presented in Section 5 (after 
further implementation of the model in a simulation platform), the companies can see the impact on cost to implement 
the IoT architecture presented in Figure 2, and establish a cost-effective move to the Industry 4.0.

7. Discussion

The main challenge identified in this work is related to the cost estimation of the implementation of IoT technology 
in legacy systems. After an interaction with industry practitioners, as described in Section 4, it was possible to identify 
a lack of understanding in this field, which raises their uncertainty about the advantages and disadvantages of these 
new approaches, and in terms of cost. Moreover, literature also gives limited insight about this topic and no research 
has been identified that quantifies the cost for implementation of different IoT architectures. In this paper, the authors 
present the CAM-SMILS model that aims at being a conceptual solution to assess the cost for implementation of 
different IoT architectures. One important characteristic of the CAM-SMILS is the ability to perform the cost 
assessment based on qualitative input data. This is very important and in particular at the management level, as 
decisions can be made based on a quick and relatively easy assessment over the concept of IoT and smart 
manufacturing, considering subjective and hardly quantifiable aspects such as complexity, speed, and security. The 
CAM-SMILS is based on a RBFCM technique, which the authors believe to be an appropriate approach to assess the 
benefits and drawbacks of the legacy machines innovation, giving a high-level perception of the most effective IoT 
configuration according to cost expectations and targets. 

8. Conclusion and Future Work

The outcomes of this research benefit organisations through the conceptual solution proposed to estimate and 
compare between the cost of different IoT architectures for their legacy systems. This study is also a lever to the 
research in this area, motivating further work in the field. Along these lines, the authors suggest a further 
implementation of the CAM-SMILS model in a simulation platform so that it could be applied in a practical industry 
scenario and assessed and validated with more confidence. It can also be applied to different IoT architectures in order 
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to allow a comparison between the cost of implementation of each one and identify the most suitable for a particular 
scenario.
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