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Abstract

The comparative analysis of world music cultures has been the focus of several ethnomusi-

cological studies in the last century. With the advances of Music Information Retrieval and

the increased accessibility of sound archives, large-scale analysis of world music with

computational tools is today feasible. We investigate music similarity in a corpus of 8200

recordings of folk and traditional music from 137 countries around the world. In particular,

we aim to identify music recordings that are most distinct compared to the rest of our corpus.

We refer to these recordings as ‘outliers’. We use signal processing tools to extract music

information from audio recordings, data mining to quantify similarity and detect outliers, and

spatial statistics to account for geographical correlation. Our findings suggest that Botswana

is the country with the most distinct recordings in the corpus and China is the country with

the most distinct recordings when considering spatial correlation. Our analysis includes a

comparison of musical attributes and styles that contribute to the ‘uniqueness’ of the music

of each country.

Introduction

With the increasing accessibility of large sound archives and advances in Music Information

Retrieval (MIR) technologies [1] it is possible to automatically analyse vast amounts of sound

recordings. This has been the target of several MIR studies, usually with a two-fold scope: first,

the development of technology for the analysis of music audio, and second, the application of

technology to study musical phenomena. While the development of MIR technologies has

been advancing, few studies have attempted to apply it to the analysis of large corpora of folk

and traditional music. We are interested in a large-scale comparison of world music with par-

ticular focus on music similarity and distinctiveness.

In the field of ethnomusicology, several studies have considered the comparison of world

music cultures [2, 3]. Data collection and annotation for this type of research is usually done

manually by ethnomusicologists, a process which limits the potential for large-scale results. In

the field of MIR, large-scale comparative studies have focused mainly on Eurogenetic music

[4, 5], where Eurogenetic defines music styles of mainly Western traditions for example classi-

cal and popular repertoires. The study of non-Eurogenetic music using computational tools
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falls under the emerging field of Computational Ethnomusicology [6, 7]. While several

research projects have focused on the development of MIR tools for world music analysis

[8–12], no study, to the best of our knowledge, has applied such computational methods in the

analysis of a large world music corpus.

Music similarity lies at the heart of most MIR applications, such as music classification,

retrieval and recommendation [1]. In this study, we focus on music dissimilarity or musical

distinctiveness. In particular we aim to detect music outliers. Outlier detection is a common

pre-processing step in the analysis of big data collections [13]. In music, outlier detection can

reveal recordings with outstanding musical characteristics. Tracing the geographic origin of

these recordings could help identify areas of the world that have developed a unique musical

character. Due to the long-lasting traditions of orally-transmitted repertoires and the lack of

scores or consistent notation in world music, our music data is extracted solely from the

audio. Music similarity/dissimilarity in this case is modelled by considering musical attributes

captured in the audio signal.

In previous work we have explored the suitability of audio features for music similarity and

content description [14]. Audio features for the purpose of studying world music need to be

agnostic to style characteristics so that they can generalise to the diversity of music styles. We

found rhythmic and melodic descriptors that are invariant to tempo and pitch transformations

and are fairly robust to transformations of the recording quality. We used these features in

combination with feature learning to assess music similarity in a relatively small world music

corpus [15] as well as to detect and analyse music outliers in a preliminary study [16].

In this study we expand prior work to world music analysis using a larger corpus and evalu-

ating additional methods. We use signal processing tools to process audio data from a collec-

tion of recorded world music. Machine learning and data embeddings are used to learn a

feature space of music similarity. Data mining techniques are applied to detect outliers in this

space. Results are evaluated quantitatively using metrics to assess classification accuracy and

qualitatively via visualisation of the space and listening to audio examples. Our observations

on music similarity comply with expected geographical and cultural links whereas outliers pro-

vide insights on the evolution of world music. This is the first study to investigate outliers in

world music with such a large scale. Our developments contribute to defining concepts and

methods from which future work in the study of large world music corpora can benefit.

This paper is organised as follows. The Related work section provides a literature review of

related studies and methods. The Methodology section describes the materials and tools used

in this study. It focuses on details of the music corpus under investigation, audio feature

extraction and feature learning methods for music similarity, and data mining techniques to

assess music similarity and distinctiveness as well as methods for modelling spatial relations.

Results are presented in the Results section and limitations of the study as well as directions

for future improvement are considered in the Discussion section. Findings are summarised in

the Conclusion section.

Related work

Comparison of world music cultures

The comparison of world music cultures has been the topic of several ethnomusicological

studies since the beginning of the 20th century [2, 3, 17, 18]. Alan Lomax, one of the major

comparativists, made more than 4000 recordings from around the world and annotated their

performance-style characteristics based on the system of ‘Cantometrics’ [2, 17]. Using a phylo-

genetic analysis, he formed the hypothesis that there are two music evolutionary roots, the

eastern Asian and the Sub-Saharan African music cultures from which all other music styles
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have possibly evolved [17]. In a similar manner, Savage et al. [3] analyse 304 recordings from

the Garland Encyclopedia of Music [19] using the annotation system of ‘Cantocore’ [20] in

addition to the Cantometrics descriptors. In this study, Savage et al. show that there are no

‘absolute’ music universals, i.e., music properties that are shared amongst all music of the

world without exceptions, but rather ‘statistical’ universals, i.e., properties that occur with

exceptions but are statistically consistent in music from around the world. This supports the

hypothesis of the current study, that there are outliers, pieces outside the statistical norms

shared by much of the world’s music.

Applications of comparative musicology have also focused on contrasting music styles to

genetic and language evolution [3, 18, 21–23]. The study of 220 traditional songs from 9 indig-

enous populations from Taiwan [18] showed that population structure for genetics exhibits

stronger parallels to music than to language. The study of 700 recordings from 58 patrimonies

of rural areas in Gabon [23] found that there is a predominant vertical transmission of musical

characteristics such as metre, rhythm, and melody, where vertical transmission refers to the

inheritance from ancestors in contrast to the horizontal exchange between neighbours.

Large-scale music corpus analysis

Computational approaches to music analysis enable the study of larger music corpora.

Large-scale MIR studies have focused on the analysis of popular (mainly Eurogenetic) music

[4, 5, 24]. For example, Serra et al. [4] analysed pitch, loudness and timbre characteristics in

464411 recordings of contemporary Western popular music between 1955−2010 and found

that over the years music shows less variety in pitch transitions, consistent homogenisation of

the timbral palette, and louder and potentially poorer volume dynamics. A related study of

24941 Western popular music recordings between 1922−2010 showed that the most influential

songs were more innovative during the early 1970s and the mid 1990s [24]. Mauch et al. [5]

analysed 17094 songs from the US Billboard Hot 100 between 1960−2010 and found that pop

music evolved with particular rapidity during three stylistic ‘revolutions’; around 1964, 1983

and 1991. Other corpus analysis studies have focused on the automatic classification of music

by genre [25–27] via the combination of different audio features.

Fewer studies have considered the computational analysis of non-Western music corpora

[12, 28]. Moelants et al. [12] analysed pitch distributions of 901 recordings from Central Africa

and found that recent recordings exhibit Western-influenced scales. Gómez et al. [28] studied

aspects of timbre, rhythm, and tonality in 5905 recordings from Western and non-Western

music styles and showed that Western music is more equal-tempered than non-Western

music. A comparison between music features and geographical latitude and longitude showed

that latitude is mostly associated with tonal features whereas longitude with rhythmic ones. A

number of studies have considered automatic classification of non-Western music styles. Liu

et al. [29] classify 1300 music recordings into six cultural styles using timbre, rhythm, wavelet

coefficients and musicology-based features. Kruspe et al. [30] study the automatic classification

of 4400 recordings from non-Western music traditions into 9 geographical areas using features

of timbre, rhythm and tonality. Zhou et al. [31] use a corpus of 1142 non-Western music tracks

from 73 countries and predict the geographical location of each track via a regression method.

Computational approaches to music similarity

Music similarity is studied in several MIR application areas including automatic genre classifi-

cation [32], cover song detection [33], structural segmentation [34], pattern recognition [35]

and music recommendation [36]. In the Music Information Retrieval Evaluation eXchange

(MIREX), the annual public evaluation of MIR systems and algorithms, there is a task on
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Audio Music Similarity [37]. Since music is a multifaceted concept the study of music similar-

ity is often divided into separate aspects [38]. For example, studies have focused on developing

tools and datasets to investigate similarity in aspects of melody [39–41], rhythm [42–44], tim-

bre [45–47], or harmony [48, 49].

The assessment of music similarity is subjective. Automatic systems built for music similar-

ity tasks often need to be trained on a ground truth obtained from human listeners. Several

approaches have used genre labels as a proxy for similarity [27]. In this case the assumption is

made that songs from the same genre exhibit similar music characteristics. Other studies have

focused on the creation of a ground truth set via the collection of similarity ratings from

human listeners [50]. Given the scarcity of ground truth data, the evaluation of music similar-

ity systems and the suitability to generalise to all music has been challenged [51, 52]. For exam-

ple, music similarity systems that are evaluated based on the classification accuracy of genre

labels are demonstrated to learn irrelevant music attributes [51]. On the other hand, music

similarity systems evaluated with judgements from human listeners are limited by the inter-

rater agreement [52]. In particular, due to the challenges in the definition of music similarity

and the subjectivity of the task there is often a low inter-rater agreement. As computational

models are not expected to outperform the level of human agreement there exists an upper

bound beyond which the performance of the model cannot be further improved. Therefore

the development and evaluation of a music similarity system still remains a challenge, espe-

cially in the yet unexplored space of world music.

Outliers in big data collections

Outlier detection is an essential step in the analysis of big data collections [53]. Outliers denote

data points that deviate significantly from the distribution and often need to be filtered out or

treated in a different manner. Applications of outlier detection include, amongst others, the

identification of intrusions in computer networks [54], fraud in credit cards [55] and abnor-

mal symptoms in disease diagnosis [56]. The study of outliers with respect to spatial relations,

as assumed in this music research, adopts concepts of spatial statistics. A spatial outlier is usu-

ally viewed as a local anomaly whose non-spatial attribute values are extreme compared to its

neighbours [57]. Spatial outlier detection can help locate extreme meteorological events [58],

identify disease outbreaks [59], and predict crime hot spot areas [60].

The detection of outliers in music data is still a new area of research. Bountouridis et al.

[61] investigate outlier detection in music data using multiple sequence alignment techniques.

Lu et al. [62] compare outlier detection techniques applied on a music genre recognition data-

set. Hansen et al. [63] apply outlier detection using probability density estimation methods to

clean up large-scale datasets of mislabelled data. Livshin and Rodet [64] use outlier detection

methods to identify badly recorded musical instrument samples. In the current study, outlier

detection is used to identify geographical regions with distinct musical characteristics.

Methodology

The methodology is summarised as follows. For each audio recording in our dataset we extract

music descriptors by a) filtering out speech segments as detected via a speech/music discrimi-

nator algorithm, b) extracting audio descriptors capturing aspects of music style, c) applying

feature learning to reduce dimensionality and project the recordings into a similarity space.

We optimise parameters and evaluate music similarity in the projected space by a classification

task. The projected space is used to identify recordings that are outliers. We refer as ‘outliers’

to the recordings that stand out with respect to the whole set of recordings. Outliers are

detected for different sets of features focusing on rhythm, melody, timbre, or harmony and a
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combination of these. We take into account spatial relations to form geographical neighbour-

hoods and use these to detect spatial outliers, i.e., recordings that stand out with respect to

their neighbours. Lastly, we extract a feature representation for each country by summarising

information of its recordings. Hierarchical clustering is used to get an overview of similarity

and dissimilarity between countries. The methodology is summarised in Fig 1 and explained

in detail in the sections below.

In our analyses we use the country label of a recording as a proxy for music style. We

assume that recordings originating from the same country have common musical characteris-

tics and we use this as the ground truth to train our models. However, it is often the case that a

music style is not unique to a single country. Music styles may be shared across many countries

and a country may exhibit several music styles. The reason for choosing country as the unit of

analysis in this study is two-fold: First, country label is the most consistent information avail-

able in our music metadata compared to, for example, music genre, language, or culture infor-

mation (see also Data section). Second, several studies have considered larger geographical

regions (e.g., continents or cultural areas) for the comparison of music styles [28, 30, 65].

Country boundaries work in a similar way but provide a more fine-grained unit for analysis.

Alternative approaches are discussed further in the Discussion section.

Data

We aim to investigate music similarity in a world music corpus. The notion of world music is

ambiguous often mixing folk, popular, and classical musics from around the world and from

different eras [66]. In this study world music refers to recorded material from folk and tradi-

tional music styles from around the world. In particular we focus on field recordings collected

by ethnomusicologists since the beginning of the 20th century. Our music dataset is drawn

Fig 1. Overview of the methodology.

https://doi.org/10.1371/journal.pone.0189399.g001
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from two large archives, the Smithsonian Folkways Recordings [67] and the World & Tradi-

tional music collection from the British Library Sound Archive [68]. Both archives include

thousands of music recordings collected over decades of ethnomusicological research.

Even though access to large collections of world music recordings is now feasible, the crea-

tion of a representative world music corpus is still challenging. An ideal world music corpus

would include samples from all inhabited geographical regions and provide information on

the spatio-temporal and cultural origins of each music piece. The samples chosen would have

to be sufficient to represent the diversity of styles within each music culture and the corpus as

a whole should be a balanced collection of music cultures. Given the archives available today,

the challenges in corpus creation involve addressing what defines a good sample, how to bal-

ance the diverse styles represented in the collection, how to avoid the Western-music bias and

how to maximize the size of the corpus. These challenges have also been the main point of crit-

icism for several music comparative studies [69–72]. Our effort to create a world music corpus

from the currently available data is described below.

We use a subset of the Smithsonian Folkways Recordings collection which consists of more

than 40000 audio recordings, including music as well as poetry. It has a large representation

from North America (more than 21000 from the United States and around 1400 from Can-

ada). It also includes around 7700 recordings from Eurasia (1700 from the United Kingdom,

800 from Russia, 800 from France), 4200 recordings from South America (Mexico 600, Trini-

dad and Tobago 400, Peru 400), 2300 from Asia (India 400, Indonesia 400, Philippines 200,

China 200), 1900 from Africa (South Africa 200, Ghana 200, Kenya 100), and 400 from Ocea-

nia. Recording dates span from 1938 to 2014. We also use a subset of the World & Traditional

music collection of the British Library Sound Archive as curated for the purposes of the Digital

Music Lab project [8]. This subset consists of more than 29000 audio recordings with a large

representation (17000) from the United Kingdom. It also includes around 7300 recordings

from Africa (mostly from Uganda 3000), 2300 from Asia (mostly from Nepal 800 and Pakistan

700), and less than 1000 recordings from Oceania, North and South America. Recording dates

span from 1898 to 2014. The metadata associated with each music recording include the coun-

try where the recording was made and the year it was recorded, the language and sometimes

cultural background of the performers, the subject of the music or short description of its pur-

pose, the title, album (if any), and information of the collector or collection it was accessed

from.

In the above archives there is an unbalanced representation of music cultures, with the

majority of recordings originating from Western-colonial areas. What is more, metadata for

each recording is not always present or is inconsistent. To create a corpus we sample record-

ings based on the country information which in this case is more consistent than other cul-

ture-related metadata. In order to ensure geographical spread we require recordings from as

many countries as possible. We set a minimum requirement of Nmin = 10 recordings from

each country and select a maximum of Nmax = 100. Setting the minimum to 10 recordings is a

trade-off between allowing under-represented areas to be included in the dataset and having a

sufficient number of samples for each country. Although a sample of 10 recordings is too small

to represent the diversity of music styles within a country, raising this minimum to e.g. 50

would exclude many of the countries we currently analyse and would limit the geographical

scope of the study. Setting the maximum to 100 recordings prevents the over-represented

areas from dominating the corpus. We sample at random N recordings from each country,

where N is bounded by Nmin and Nmax as explained above.

Since the medium of analysis is digitised audio, most of our samples are dated since the

1950s, with the exception of some recordings from the British Library collection dated around

1900 which were digitised from wax cylinders. The duration of audio recordings from the

Outliers in world music
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Smithsonian Folkways Recordings collection is restricted to 30 seconds since we use the pub-

licly available 30-second audio previews. For the British Library Sound Archive data we have

access to complete recordings but we only sample the first music segments up to a total dura-

tion of 30 seconds for consistency with the short audio excerpts of the Smithsonian Folkways

collection.

Given the above criteria, the final collection consists of a total of 8200 recordings, 6132

from the Smithsonian Folkways Recordings collection and 2068 from the British Library

Sound Archive collection. The recordings originate from 137 countries with mean 59.9 and

standard deviation 33.8 recordings per country (Fig 2). A total of 67 languages is represented

by a minimum of 10 recordings, with a mean of 33.5 and standard deviation of 33.5 recordings

per language (Fig 3). The recordings span the years between 1898−2014 with median year

1974 and standard deviation of 17.9 years (Fig 4).

Audio content analysis

Over the years several toolboxes have been developed for music content description [73–76].

Applications of these toolboxes include tasks of automatic classification and retrieval of mainly

Eurogenetic music (Related work section). Audio content analysis of world music recordings

has additional challenges. First, the audio material is recorded under a variety of recording

conditions (live and field recordings), and is preserved to different degrees of fidelity (old and

new recording media and equipment). Second, the music is very diverse and music descriptors

designed primarily for Eurogenetic music might fail to capture particularities of world music

styles. Our audio content analysis process includes a pre-processing step to remove speech seg-

ments from the dataset (Pre-processing section) and low-pass filtering to reflect limitations of

old recording equipment (Features section). With respect to music descriptors, between spe-

cifically designing them as in other comparative music studies [28, 30, 31] and automatically

deriving them from the spectrogram [77, 78] we choose a middle ground. We use expert

knowledge to derive low-level music representations (Features section) and combine them

with feature learning methods (Feature learning section) to adapt the representation to partic-

ularities of the music we analyse. Details for each step of the audio content analysis process are

provided below.

Pre-processing. Our dataset consists of field recordings that sometimes mix speech and

music segments. We are only interested in music segments but due to the lack of metadata

speech segments cannot be filtered out a-priori. An essential pre-processing step is therefore

Fig 2. The distribution of countries in our dataset of 8200 world music recordings.

https://doi.org/10.1371/journal.pone.0189399.g002
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the discrimination between speech and music segments. By speech/music segmentation we

refer to the detection of segment boundaries and the classification of the segment as either

speech or music. The task of speech/music segmentation has been the focus of several studies

in the literature [79–81] and it was also identified as a challenge in the 2015 Music Information

Retrieval Evaluation eXchange (MIREX) [82]. We select the best performing algorithm [83]

from the MIREX 2015 evaluation. As part of the MIREX 2015 evaluation, the algorithm was

tested on a non-overlapping set of British Library recordings which is very similar to the

recording collection we use in this study and achieved a frame-based F-measure of 0.89. The

Fig 3. The languages in our world music corpus which are represented by a minimum of 10 recordings.

https://doi.org/10.1371/journal.pone.0189399.g003
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algorithm is based on summary statistics of low-level features including Mel frequency cep-

strum coefficients (MFCCs), spectral entropy, tonality, and 4 Hertz modulation, and is trained

on folk music recordings [84]. We apply this algorithm to detect speech/music segments for all

recordings in our dataset and use solely the music segments of each recording for further anal-

ysis. In case of long audio excerpts we only select the initial music segments up to a total dura-

tion of maximum 30 seconds (see also duration of recordings in Data section).

Features. We are interested in descriptors capturing aspects of world music style. We

adopt the notion of music style by Sadie et al. [85], ‘style can be recognized by characteristic

uses of form, texture, harmony, melody, and rhythm’. The use of form is ignored in this study

as most of our music collection is restricted to short audio excerpts rather than complete

recordings. We focus on state of the art descriptors (and adaptations of them) that aim at cap-

turing relevant rhythmic, timbral, melodic, and harmonic content. In particular, we extract

onset patterns with the scale transform [86] for rhythm, pitch bi-histograms [87] for melody,

average chromagrams [88] for harmony, and Mel frequency cepstrum coefficients (MFCCs)

[89] for timbre content description. We choose these descriptors because they define low-level

representations of the musical content, i.e., a less detailed representation but one that is more

likely to be robust with respect to the diversity of the music styles we consider. In addition,

these features achieved state-of-the-art performances in relevant classification and retrieval

tasks [14], for example, onset patterns with the scale transform perform best in classifying

Western and non-Western rhythms [90, 91] and pitch bi-histograms have been applied suc-

cessfully in (melody-based) cover song recognition [87].

The audio features used in this study are computed with the following specifications. All

recordings in our dataset have a sampling rate of 44100 Hz. For all features we compute the

(first) frame decomposition using a window size of 40 ms and hop size of 5 ms. The output of

Fig 4. The time span of recordings in our world music corpus.

https://doi.org/10.1371/journal.pone.0189399.g004
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the first frame decomposition is a Mel spectrogram and a chromagram. We use a second

frame decomposition to extract descriptors over 8-second windows with 0.5-second hop size.

This is particularly useful for rhythmic and melodic descriptors since rhythm and melody are

perceived over longer time frames. Rhythmic and melodic descriptors considered in this study

are derived from the second frame decomposition with overlapping 8-second windows. Tim-

bral and harmonic descriptors are derived from the first frame decomposition with

0.04-second windows and for consistency with rhythmic and melodic features, they are sum-

marised by their mean and standard deviation over the second frame decomposition with

overlapping 8-second windows. The window of the second frame decomposition is hereby

termed as ‘texture window’ [25]. The window size w of the texture window was set to 8 seconds

after the parameter optimisation process described in the Parameter optimisation section. For

all features we use a cutoff frequency at 8000 Hz since most of the older recordings do not con-

tain higher frequencies than that. The audio content analysis process is summarised in Fig 5.

Rhythm and Timbre. For rhythm and timbre features we compute a Mel spectrogram with

40 Mel bands up to 8000 Hz using Librosa [76]. To describe rhythmic content we extract onset

strength envelopes for each Mel band and compute rhythmic periodicities using a second Fou-

rier transform with window size of 8 seconds and hop size of 0.5 seconds. We then apply the

Mellin transform to achieve tempo invariance [90] and output rhythmic periodicities up to

960 beats per minute (bpm). The output is averaged across low and high frequency Mel bands

with cutoff at 1758 Hz. The resulting rhythmic feature vector has length 400 values. Timbral

aspects are characterised by 20 MFCCs and 20 first-order delta coefficients after removing the

DC component [89]. We take the mean and standard deviation of these coefficients over 8-sec-

ond windows with 0.5-second hop size. This results in a total of 80 feature values describing

timbral aspects.

Harmony and Melody. To describe harmonic content we compute chromagrams using

variable-Q transforms [92] up to 8000 Hz with 5 ms hop size and 20-cent pitch resolution to

allow for microtonality. Chromagrams are aligned to the pitch class of the maximum magni-

tude per recording for key invariance. Harmonic content is described by the mean and stan-

dard deviation of chroma vectors using 8-second windows with 0.5-second hop size. The

dimensionality of the harmonic feature vector results in a total of 120 values. To describe

melodic content we extract pitch contours from polyphonic music signals using a method

based on a time-pitch salience function [93]. The pitch contours are converted to 20-cent reso-

lution binary chroma vectors with entries of 1, whenever a pitch estimate is active at a given

Fig 5. Overview of the audio content analysis process. Mel-spectrograms and chromagrams are processed in overlapping 8-second

frames to extract rhythmic, timbral, harmonic, and melodic features. Feature learning is applied to the 8-second features and average

pooling across time yields the representations for further analysis.

https://doi.org/10.1371/journal.pone.0189399.g005
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time, and 0 otherwise. Melodic aspects are captured via pitch bi-histograms which denote

counts of transitions of pitch classes [87]. We use a window of d = 0.5 seconds to look for pitch

class transitions in the binary chroma vectors. The resulting pitch bi-histogram matrix consists

of 3600 = 60 × 60 values corresponding to pitch transitions with 20-cent pitch resolution. For

efficient storage and processing, the matrix is decomposed using non-negative matrix factori-

sation [94]. We keep 2 basis vectors with their corresponding activations to represent melodic

content. It was estimated that keeping only 2 bases was enough to provide sufficient recon-

struction for most pitch bi-histogram matrices in our dataset (average reconstruction

error< 25%). Pitch bi-histograms are also computed over 8-second windows with 0.5-second

hop size. This results in a total of 120 feature values describing melodic aspects.

Combining all features together results in a total of 840 descriptors for each recording in

our dataset. A z-score standardisation of the 840 features is applied across all recordings before

further processing.

Feature learning. For the low-level descriptors presented in the Features section we aim

to learn high-level representations that best characterise music style similarity. Feature learn-

ing is also appropriate for reducing dimensionality, an essential step for the amount of data we

analyse. We learn feature representations from the 8-second frame-based descriptors. In our

analysis we consider the country label of a recording as a proxy for style and use this for super-

vised training and cross-validating our methods.

There are numerous feature learning techniques to choose from in the literature. Non-lin-

ear models such as neural networks usually require large training data sets [95]. We have a

fairly limited number of audio recordings and our low-level descriptors partly incorporate

expert knowledge of the music (section Features). In this case, simpler feature learning tech-

niques are more suitable for the amount and type of data we have. We explore the applicability

of 4 linear models trained in supervised and unsupervised fashions.

The audio features are standardised using z-scores and aggregated to a single feature vector

for each 8-second frame of a recording. Feature representations are learned using Principal

Component Analysis (PCA), Non-Negative Matrix Factorisation (NMF), Semi-Supervised

Non-Negative Matrix Factorisation (SSNMF), and Linear Discriminant Analysis (LDA) meth-

ods [94]. PCA and NMF are unsupervised methods and try to extract components that

account for the most variance in the data without any prior information on the data classes.

LDA is a supervised method and tries to identify attributes that account for the most variance

between classes (in this case country labels). SSNMF works similarly to NMF with the differ-

ence that ground truth labels are taken into account in addition to the data matrix in the opti-

misation step [96].

We split the 8200 recordings of our collection into training (60%), validation (20%), and

testing (20%) sets. We train and test our models on the frame-based descriptors; this results in

a dataset of 325435, 106632, and 107083 frames for training, validation, and testing, respec-

tively. Frames used for training do not belong to the same recordings as frames used for testing

or validation and vice versa. We use the training set to train the PCA, NMF, SSNMF, and LDA

models and the validation set to optimise the parameters. In each experiment we retain com-

ponents constituting to 99% of the variance. In the Results section we analyse the feature

weights for the components of the best performing feature learning method.

A classification task is used to assess the quality of the learned space and optimise the

parameters. An ideal music similarity space separates well data points belonging to different

music classes and good classification results can be achieved with simple classifiers. We are not

interested to build a powerful classifier since our primary aim is to assess the learned embed-

dings and not to optimise the classification task itself. We therefore focus on classifiers widely

used in the machine learning community [97]. We train 4 classifiers, K-Nearest Neighbour
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(KNN), Linear Discriminant Analysis (LDA), Support Vector Machines (SVM), and Random

Forest (RF), to predict the country label of a recording. The purpose of the classification task is

to optimise the window size w of the audio descriptors and assess the quality of the learned

spaces in order to select the optimal feature learning method for our data. We use the classifi-

cation F-score metric to compare the performance of the models. In the Results section we

also analyse the coefficients of the best performing classifier.

In order to assess the contribution of different features to the classification task we consider

5 sets of features: a) scale transform (rhythmic) b) MFCCs (timbral), c) average chroma vectors

(harmonic), d) pitch bi-histograms (melodic), and e) the combination of all the above. In each

case, feature learning is applied on the selected feature set and frame-based projections are

aggregated using the mean prior to classification. We also tested for aggregation using the

mean and standard deviation of frame-based descriptors but this did not improve results;

hence it was omitted. In the case of testing the combination of all features (e), we first reduce

dimensionality for each feature set separately and then concatenate the components from all

feature sets before mean aggregation and classification. Results for the feature learning optimi-

sation and classification experiments are presented in the Results section.

Data mining

Outlier recordings. The feature learning and classification methods described above

(Feature learning section) identify the optimal projection for the data. In the next step of the

analysis we use the projected space to investigate music dissimilarity and identify outliers in

the dataset. A recording is considered an outlier if it is distinct compared to the whole set of

recordings. We detect outliers based on a method of squared Mahalanobis distances [13, 98].

Using Mahalanobis, a high-dimensional feature vector is expressed as the distance to the mean

of the distribution in standard deviation units. Let X 2 RI�J denote the set of observations for

I recordings and J features. The Mahalanobis distance for observation xi = (x1, x2, . . ., xJ)T for

recording i from the set of observations X with mean μ = (μ1, μ2, . . ., μJ)T and covariance

matrix S is denoted

DMðxiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxi � mÞ
TS� 1ðxi � mÞ

q

: ð1Þ

Data points that lie beyond a threshold, typically set to the q = 97.5% quantile of the chi-square

distribution with J degrees of freedom [99], are considered outliers. This is denoted

O ¼ fi 2 HjDMðxiÞ >
ffiffiffiffiffiffi
w2
J;q

q
g ð2Þ

where H = {1, 2, . . ., I} denotes the index of the observations.

Due to the high dimensionality of our feature vectors every data point can be considered far

from the centre of the distribution [100]. To compensate for a possible large amount of outliers

we consider a higher threshold based on the q = 99.9% quantile of the chi-square distribution.

To gain a better understanding of the type of outliers for each country we detect outliers

using a) rhythmic, b) timbral, c) harmonic, and d) melodic features. For example, for JR the

dimensionality of the rhythmic feature vector and XR 2 R
I�JR the set of observations, the set of

outlier recordings with respect to rhythmic characteristics is denoted

OR ¼ fi 2 HjDMðxR;iÞ >
ffiffiffiffiffiffiffiffiffiffiffiffi
w2
JR;99:9

q
g ð3Þ

for observation xR,i 2 XR. We detect outliers with respect to rhythmic (OR), timbral (OT),

melodic (OM), and harmonic (OH) characteristics.

Outliers in world music

PLOS ONE | https://doi.org/10.1371/journal.pone.0189399 December 18, 2017 12 / 28

https://doi.org/10.1371/journal.pone.0189399


Spatial neighbourhoods. In the previous section outliers were detected by comparing a

recording to all other recordings in the dataset. Here we take into account spatial relations and

compare recordings from a given country only to recordings of its neighbouring countries. In

this way we are able to identify spatial outliers, i.e. recordings that are outliers compared to

their spatial neighbours [57]. We construct spatial neighbourhoods based on contiguity and

distance criteria: a) two countries are neighbours if they share a border (a vertex or an edge of

their polygon shape), b) if a country doesn’t border with any other country (e.g., the country is

an island) its neighbours are defined by the 3 closest countries estimated via the Euclidean dis-

tance between the geographical coordinates (latitude and longitude) of the centre of each

country.

Let Ni denote the set of neighbours for country i estimated via

Ni ¼ fj 2 f1; . . . ;Rgjj is neighbour to ig ð4Þ

for R the number of countries. The spatial neighbourhood is represented as a weight matrix

W 2 RR�R where entry wij 2W is non-zero whenever country j is neighbour to country i. This

is denoted

wij ¼

(
1

ni
; if j 2 Ni

0; otherwise

ð5Þ

where ni = |Ni| denotes the total number of neighbours for country i. By definition, weight

matrix W is row-standardized,
PR

j¼1
wij ¼ 1.

Table in S1 Table provides the neighbours of each country as estimated via this approach.

The geographical boundaries of each country are derived from spatial data available via the

Natural Earth platform [101].

The set of recordings from a given country is appended with recordings from neighbouring

countries as defined by the country’s spatial neighbourhood (S1 Table). This set is used to

detect outliers with the Mahalanobis distance as defined in Eq 2. Spatial outliers are detected

in this manner for all countries in our dataset.

Outlier countries. The unit of analysis in the previous sections was the individual record-

ings. In this section we move one level up and place the focus at the country. We detect outlier

countries in a similar manner as before where country features now summarise the informa-

tion of the underlying recordings. The advantage of placing the focus at the country level is

that the feature representations can now summarise the variety of styles that exist in the music

of a country. Outliers are not judged by individual recordings but rather by the distribution of

the whole set of recordings of each country.

We use K-means clustering to map recording representations to one of K clusters. The

country representation is then derived from a histogram count of the K clusters of its record-

ings. Let X 2 RI�J denote the set of observations for I recordings and J features. We compute

K-means for X and map recordings to one of K clusters. We use a linear encoding function

f : RJ ! RK so that each recording representation xi 2 R
J for i = 1, . . ., I is mapped to a vector

x̂ i 2 R
K via the dot product between xi and the cluster centroids mk 2 R

J for k = 1, . . ., K clus-

ters. The feature vector for a country cr 2 R
K is the normalised histogram count of K clusters

for recordings i from country r, denoted

c0r ¼
X

i

f ðxiÞ: ð6Þ
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Each histogram is normalised to the unit norm, where cr ¼
c0r
kc0rk

. Let C 2 RR�K denote the fea-

ture representations for R countries and K clusters derived as explained above. The optimal

number K of clusters is decided based on the silhouette score [102] after evaluating K-means

for K between 10 and 30 clusters.

We estimate similarity between countries via hierarchical clustering [103]. For consistency

with the previous outlier detection method (section Outliers at the recording level), we use

Mahalanobis distance to estimate pairwise similarity between countries. Pairwise Mahalanobis

distance between countries is denoted

DMðci; cjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðci � cjÞ
T�S� 1ðci � cjÞ

q
ð7Þ

where �S is the covariance matrix and i, j 2 {1, 2, . . ., R}. A hierarchy of countries is constructed

using the average distance between sets of observations as the linkage criterion.

Results

Parameter optimisation

As mentioned in the Audio content analysis section, the window size w in the feature extrac-

tion process (Features section) was optimised based on a classification task. Given the feature

transformed representations of each recording in the training set, we trained 4 classifiers

(KNN, LDA, SVM, RF), to predict the country label of a recording. Parameter optimisation

was based on the classification accuracy on the validation data. We used the weighted average

of the F-measure of each class [104], referred to as F-score, to report classification performance

in this case of unbalanced data classes. Fig 6 shows the classification F-score of the best per-

forming classifier (LDA) for a range of window sizes w. Based on this evaluation the optimal

window size was w = 8 seconds with highest F-score of 0.37 for the LDA classifier in combina-

tion with the LDA-transformed features.

The dimensions of the LDA-transformed features can be explained in the following way.

LDA components for the rhythmic features give more weight to the periodicities of the high-

frequency Mel bands (above 1758 Hz). Melodic features receive similar weights for both the

bases and activations of the pitch bi-histogram. LDA components for the harmonic features

assign more weight to relative pitch values (mean of chroma vectors) rather than pitch fluctua-

tions (standard deviation of chroma vectors) over time. LDA components for timbral features

focus on timbre fluctuation (mean and standard deviation of MFCC delta coefficients) over

time. This is opposite to the behaviour of PCA transformation where components focus on

absolute timbre qualities (mean and standard deviation of MFCC coefficients) over time. Fig 7

illustrates the difference between LDA and PCA components for the timbral features.

Classification

The classification results for the different classifiers in combination with the feature learning

methods are presented in Table 1. Classification accuracy of the test set was assessed after fix-

ing the window size of the feature extraction to w = 8 seconds as found optimal in section

Parameter optimisation. Results suggest that the best classifier for our data when the combina-

tion of all features is considered is the LDA classifier with the LDA-transformed features (clas-

sification F-score of 0.321). Rhythmic, melodic, and harmonic features achieved best

classification performance for the LDA-transformed features and the LDA classifier whereas

timbral features achieved best classification performance for the LDA-transformed features

and the SVM classifier. The first 10 components of the LDA classifier trained with the LDA-
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Fig 7. LDA and PCA components weigh timbral features in opposite ways. (A) LDA components focus on timbre fluctuation (mean and

standard deviation of MFCC delta coefficients) over time. (B) PCA components focus on absolute timbre qualities (mean and standard

deviation of MFCC coefficients) over time.

https://doi.org/10.1371/journal.pone.0189399.g007

Fig 6. Classification F-score on the validation set for the best performing classifier (LDA) across

different window sizes. Accuracies are compared for different feature learning methods (PCA, LDA, NMF,

SSNMF). Combinations of window sizes are marked by ‘+’ in (a), for example ‘4+8’ represents the accuracy

when combining features from the 4-second and the 8-second windows. Considering the performance of all

feature learning methods, the optimal window size is 8 seconds.

https://doi.org/10.1371/journal.pone.0189399.g006
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transformed features give more weight to the timbral and harmonic dimensions and explain

24% of the variance. The remaining components give more weight to the rhythmic and

melodic dimensions. More information on the classification results and confusion matrices

can be found in the published code repository (http://github.com/mpanteli/music-outliers).

Outliers at the recording level

We found the optimal feature learning method (LDA) that best approximates music similarity

in our data as defined by the classification task (Classification section). We use the LDA-pro-

jected space to investigate music dissimilarity and identify outliers in the dataset.

From a total number of 8200 recordings we identify 1706 recordings as outliers. The distri-

bution of outliers per country, normalised by the number of recordings per country in our

dataset, is summarised in Fig 8. We observe that the country with the most outliers is Botswana

with 61% (55 out of 90) of its recordings identified as outliers, followed by Ivory Coast (60%, 9

out of 15), Chad (55%, 6 out of 11), and Benin (54%, 14 out of 26). The percentage of outliers

per country was not significantly correlated with the number of recordings sampled from that

country (Pearson correlation coefficient r = −0.01 with p-value = 0.91).

Listening to some examples we summarise the following timbral characteristics for the out-

liers. Outlier recordings from Botswana include solo performances of the mouthbow and

dance songs featuring group singing accompanied with handclapping or other percussion.

Outlier recordings from Ivory Coast feature music from the Kroo ethnic group who originated

in eastern Liberia and consist of polyphonic music with singing accompanied by woodwind

Table 1. Classification F-scores of the test set for the country of recording (– denotes no transformation).

Transform Classifier F-score

All Rhythm Melody Timbre Harmony

LDA LDA 0.321 0.150 0.070 0.199 0.107

SSNMF LDA 0.183 0.053 0.039 0.165 0.082

NMF LDA 0.178 0.059 0.046 0.166 0.086

– LDA 0.177 0.060 0.038 0.191 0.084

PCA LDA 0.175 0.055 0.046 0.162 0.084

LDA KNN 0.152 0.055 0.023 0.282 0.086

SSNMF KNN 0.143 0.043 0.015 0.227 0.072

PCA KNN 0.141 0.053 0.027 0.221 0.081

– KNN 0.140 0.052 0.027 0.222 0.082

NMF KNN 0.114 0.043 0.029 0.178 0.080

– RF 0.083 0.040 0.032 0.114 0.057

LDA RF 0.071 0.031 0.017 0.150 0.051

NMF RF 0.063 0.032 0.020 0.126 0.042

PCA RF 0.046 0.026 0.019 0.140 0.045

SSNMF RF 0.045 0.031 0.018 0.116 0.035

LDA SVM 0.023 0.079 0.050 0.296 0.090

SSNMF SVM 0.021 0.011 0.005 0.019 0.014

NMF SVM 0.016 0.008 0.008 0.011 0.012

– SVM 0.015 0.047 0.038 0.250 0.088

PCA SVM 0.015 0.048 0.039 0.246 0.092

The window size of the features is 8 seconds as found optimal in section Parameter optimisation. Results are sorted by highest to lowest F-score of the

combination of all features (‘All’).

https://doi.org/10.1371/journal.pone.0189399.t001

Outliers in world music

PLOS ONE | https://doi.org/10.1371/journal.pone.0189399 December 18, 2017 16 / 28

http://github.com/mpanteli/music-outliers
https://doi.org/10.1371/journal.pone.0189399.t001
https://doi.org/10.1371/journal.pone.0189399


and guitar instruments. Outlier recordings from Chad feature mainly dance music with

emphasis on percussive and wind instruments as well as examples of the singing voice in solo

and group performances. Outliers from French Guiana feature solo flute performances and

singing with percussive accompaniment. Outlier recordings from Gambia include examples of

group singing with percussive accompaniment of drums, jingles and wooden blocks, solo per-

formances of the gong and flute. Outlier recordings from Benin include solo performances of

the Yoruba drums and music from the Fon culture including examples of group singing with

gong accompaniment.

To gain a deeper understanding of the type of outliers for each country we detect outliers

using a) rhythmic, b) timbral, c) melodic, and d) harmonic features. Results are shown in

Fig 9. With respect to rhythmic aspects the countries with the most outliers are Benin (50%, 13

Fig 8. Distribution of outliers per country. The colour scale corresponds to the normalised number of outliers per

country, where 0% indicates that none of the recordings of the country were identified as outliers and 100% indicates

that all of the recordings of the country are outliers.

https://doi.org/10.1371/journal.pone.0189399.g008

Fig 9. Distribution of outliers per country for each feature. Outliers detected for features of (A) rhythm, (B) timbre, (C) melody, and (D)

harmony. The colour scale corresponds to the normalised number of outliers per country, from 0% of outliers (light colours) to 100% (dark

colours).

https://doi.org/10.1371/journal.pone.0189399.g009
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out of 26), Botswana (49%, 44 out of 90), and Nepal (42%, 40 out of 95). The countries with the

most outliers with respect to timbral characteristics are French Guiana (78%, 19 out of 28),

Botswana (48%, 43 out of 90), and Ivory Coast (40%, 5 out of 13). The countries with the most

outliers with respect to melodic aspects are Zimbabwe (53%, 8 out of 15), Uruguay (48%,

15 out of 31), and Guinea (46%, 5 out of 11) and with respect to harmonic aspects Benin (54%,

14 out of 26), Pakistan (46%, 42 out of 91), and Gambia (36%, 18 out of 50).

Listening to some examples we summarise the following characteristics for the outliers.

Rhythmic outliers include examples from African polyrhythms as well as examples with fre-

quent transitions between binary and ternary subdivisions. The most prominent instruments

in the rhythmic outliers are pitched and non-pitched percussion. Most rhythmic outliers tend

to have a ‘full’ rhythm, i.e. there are many onsets within each bar duration. Outliers with

respect to timbral characteristics include solo performances of xylophones and gongs for

example recordings from Botswana, Indonesia, and Gamelan recordings from the Philippines.

Another category of instruments that often gives rise to timbre outliers are wind instruments

such as reedpipes and flutes. Outliers with respect to melodic characteristics include poly-

phonic melodies performed on the accordion (e.g. recordings from Uruguay) or the mbira

(e.g. recordings from Zimbabwe). With respect to harmony, outliers exhibit microtonal scales

and feature instruments with distinct tuning, for example solo sitar or surnai performances

from Pakistan, xylophone and gong performances from Benin and Indonesia. Listening exam-

ples can be found at the online demo (see http://mpanteli.github.io/music-outliers/demo/

outliers).

Spatial outliers. In the previous section we detected outliers by comparing a recording to

all other recordings in the dataset. Here we take into account spatial relations and we compare

recordings from a given country only to recordings of its neighbouring countries (section Spa-

tial neighbourhoods). We summarise the distribution of spatial outliers, normalised by the

total number of recordings in each spatial neighbourhood, in Fig 10. Results show that China

is the country with the most spatial outliers (26%, 26 out of 100), followed by Brazil (24%, 24

out of 100), Colombia (21%, 19 out of 90), and Mozambique (21%, 7 out of 34).

China is the country with most spatial neighbours in our dataset, bordering with 12 other

countries for which we have music data (S1 Table). Recordings from China feature the butter-

fly harp string instrument and singing examples from the Han cultural group, often with a

bright sound and prominent singing in relatively high frequencies. These examples are

Fig 10. Distribution of outliers per country for the spatial neighbourhoods shown in S1 Table. The colour

scale corresponds to the normalised number of outliers per country, from 0% of outliers (light colours) to 100% (dark

colours).

https://doi.org/10.1371/journal.pone.0189399.g010
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compared to various instruments and music styles from the neighbouring countries including

lute performances from Kyrgyzstan, Mongolian jewish harp, Indian tala, Nepalese percussion

and wind instrument performances, polyphonic singing from Vietnam and Laos, and instru-

mental pieces featuring the balalaika from Russia. Compared to the analysis of global outliers

(Fig 8) we observe that recordings from China stand out only with respect to its spatial neigh-

bourhoods but are not so distinct compared to the whole dataset of world music.

Outliers at the country level

In this section we consider the country instead of the individual recordings as the unit of anal-

ysis and detect outlier countries as described in section Outlier countries.

The silhouette score indicated an optimal number of K = 10 clusters. We refer to the coun-

try labels of each recording to give an overview of the music styles captured in each cluster.

The 3 most frequent countries in each cluster are shown in Fig 11.

The similarity between countries was estimated via hierarchical clustering. Results are pre-

sented in a dendrogram in Fig 12. The countries with the most distinct feature representations

are South Sudan, Botswana, Ghana, Austria and Switzerland (in order of most to least dis-

tinct). The aforementioned countries were found dissimilar (with respect to a threshold) to

any other country in our dataset.

Recordings from South Sudan feature mostly examples of the singing voice in solo and

group performances. The use of solely the singing voice is what we believe makes the feature

representation of South Sudan so different from other countries. A similar observation holds

for recordings from Austria and Switzerland featuring mostly dance songs with accordion

accompaniment. This might not be a unique music style across our dataset but the consistent

use of this style in the recordings from Austria and Switzerland is what we think makes them

most distinct from other countries. Botswana and Ghana, also detected as outlier countries

with the hierarchical clustering approach, exhibit the use of a variety of music styles. Botswana

Fig 11. The top 3 countries for each of the 10 clusters.

https://doi.org/10.1371/journal.pone.0189399.g011
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was also detected as the country with the most outlier recordings compared to the global data-

set (section Outliers at the recording level). We note that Fig 12 also revealed some music simi-

larity relationships between countries of geographical or cultural proximity. However, as the

scope of this study is rather on music dissimilarity and outliers we leave the exploration of

these relationships for future work.

Fig 12. Hierarchical clustering of the 137 countries in our dataset. Each country was represented by the histogram of cluster mappings

of its recordings (Outlier countries section). The most distinct countries are annotated with red colour.

https://doi.org/10.1371/journal.pone.0189399.g012
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Discussion

We combined world music recordings from two large archives and proposed a methodology

to extract music features and detect outliers in the dataset. We developed signal processing

methods to process music information from the audio signal taking into account the chal-

lenges imposed by noisy and musically diverse recordings. Our analyses explored differences

and similarities of world music and revealed geographical patterns of music outliers.

We took into account several pre-processing steps to isolate relevant music information

from the audio signal: speech segments were separated from music, frequencies above 8000 Hz

were omitted for consistency with old recording equipment, and low-level music descriptors

were combined with feature learning to give higher-level representations robust to diverse

music characteristics. The size of the texture window was optimised and we found that longer

windows (8 seconds) provide better representations for our music data than shorter ones

(4,2,1 seconds). Feature learning was better in the supervised setting (LDA outperformed PCA

and NMF) even though class labels (in this case countries) were not necessarily unique identi-

fiers for the underlying musical content.

We proposed a method to detect outliers and explored several ways of understanding the

musical differences. We listed the countries with the most outlier recordings and expanded the

analysis to explain which music features are distinct in these outlier recordings. For example,

Botswana was the country with most of its recordings detected as outliers and feature analysis

showed that those outliers were mostly due to rhythmic and timbral features. With respect to

rhythmic features, African countries indicated the largest amount of outliers with recordings

often featuring the use of polyrhythms. Harmonic outliers originated mostly from Southeast

Asian countries such as Pakistan and Indonesia, and African countries such as Benin and

Gambia with recordings often featuring inharmonic instruments such as the gong and bell.

We ran a sensitivity experiment to check how stable our outlier findings are with respect to

different datasets. We repeated the outlier analysis 10 times, each time selecting at random a

stratified sample of 80% of the original dataset. The majority vote of outlier countries resulting

in the top K = 10 positions of each experiment was used as the ground truth. Assessing the pre-

cision at K = 10 for each experiment assuming majority vote ground truth showed that the

geographical patterns of outliers (Fig 8) were on average consistent across multiple random

subsets of the original dataset (precision at Kmean = 0.67, standard deviation = 0.06).

Incorporating spatial information we were able to compare recordings from neighbouring

countries. This gave rise to music cultures that are not distinct compared to the global dataset

but are still unique compared to their spatial neighbours. For example, music from China with

bright timbres was found to be unique compared to its many spatial neighbours. Music from

Brazil was also distinct compared to its spatial neighbours, an observation that could be attrib-

uted to cultural differences such as the use of different languages between Brazil and its neigh-

bouring countries. Proving historical and cultural influence is not the aim of this study but we

believe our findings could provide a good starting point for further investigation.

We also proposed a method to extract feature summaries for each country and estimated

clusters for the whole set of recordings. We found 10 clusters to best represent the music styles

in our dataset and observed recordings from geographically similar regions often clustered

together. Hierarchical clustering at the country level representation revealed African countries

such as South Sudan, Botswana, and Ghana as most distinct from others in the dataset.

Hubness

This research deals with high dimensional vectors and analysis of nearest neighbour relation-

ships. High dimensional spaces are prone to produce data points that appear in the
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neighbourhood of other points disproportionately often. We tested the effect of hubness in

our data following the approach suggested by Schnitzer et al. [105]. We measured hubness as

the skewness of the n-occurrence where n-occurrence defines the number of times track x
occurs in the top n neighbours of other tracks. We used pairwise Mahalanobis distances and

assessed the n nearest neighbours for each track in our dataset for n = 60, the average number

of recordings per country. We observed a positively skewed distribution with hubness = 10.1.

A total of 129 out of 8200 recordings occurred in the nearest neighbour lists of more than 1000

tracks (2% large hubs) and 3332 recordings had n-occurrence = 0 (41% orphans). Pairwise

Mahalanobis distances in this study are only used for the computation of outlier countries

(section Outlier countries). Future work could aim to reduce hubness via local scaling or

mutual proximity [105].

Future work

There are several steps in the overall methodology that could be implemented differently and

audio excerpts and features could be expanded and improved. Numerous audio features have

been proposed in the literature for describing musical content in sound recordings for various

applications. We selected a small set of features from the MIR domain based on their state-of-

the-art performance and relevance for world music analysis. It is clear that any such set of fea-

tures does not capture all aspects of a set of musical recordings. Future work could explore the

suitability of feature sets proposed by ethnomusicologists [20] or embeddings learned from

raw audio or spectrograms [106].

We used linear feature learning methods to learn higher-level representations from our

low-level descriptors. Depending on the data and application, more powerful non-linear meth-

ods could be employed to learn meaningful feature representations [107]. What is more, our

analysis relies on a bag-of-frames approach where temporal information of the entire music

piece is lost by averaging short frames across time. Although this approach is in line with state

of the art MIR research [87, 90] alternative methods capturing temporal relationships such as

Hidden Markov Models [108] could be considered.

Like all studies of this nature our study is subject to sampling bias. Our observations on

world music similarity are restricted to the dataset we analyse. It is difficult to gather represen-

tative samples of ‘all’ music of the world. We aimed to maximise geographical spread in the

dataset by including as many countries as possible and representative samples from each coun-

try were drawn at random. This resulted in a total of 137 countries with a minimum of 10

recordings per country. Even though this is the largest and most diverse corpus of world music

studied so far, there are many areas of the world and cultures that are not represented. The cre-

ation of a representative world music corpus will continue indefinitely as more music is

recorded and the digitisation of archived recordings proceeds.

In this study country labels have been considered a proxy to music style and have been used

to train models for music similarity and dissimilarity. While countries provide a broad notion

of ethnic boundaries, music styles are not homogeneous within these boundaries. A country

may exhibit several music styles and a music style may spread across many countries. The

ambiguity of these boundaries provides an upper limit to the performance of our models. This

ambiguity could be reduced by incorporating more information, for example the culture or

language of the musicians, to better approximate the music style of a recording. Extracting cul-

ture or language information from the currently available metadata requires additional manual

labour and this is a task left for future work.

Furthermore, a lot of information regarding the music style of a recording can be extracted

from the date it was created. Music evolves over time, and two recordings from the same
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location but recorded with a time difference of 50 years may vary in their style. In this study

we ignored temporal information and considered our dataset as a static collection of world

music. Country of origin and recording date could be used together to define the music style

of a recording.

Our study focuses on the detection of outliers in music collections. The data we work with

are numerical representations derived from a multi-step procedure of processing the audio sig-

nal. The suitability of the audio tools can be questioned with regard to their ability to capture

and represent high-level musical concepts [70]. Likewise, the patterns we observe can some-

times be artifacts of the tools we use. We note that in this study the estimated outliers did not

appear to be attributable to recording date differences or acoustic environments but quantita-

tive and qualitative evaluation could be expanded [109].

Conclusion

The comparison of world music cultures has been traditionally studied with non-computa-

tional tools. We investigated similarity in a large corpus of world music using signal processing

and data mining tools. We analysed thousands of recordings from folk and traditional music

from around the world and quantified differences and similarities. Our findings identify

regions that have possibly developed unique musical characteristics such as Botswana, as well

as China, which is most distinct from its neighbours. We have also explored geographical pat-

terns of music outliers for different sets of features and found that Benin has the most outlier

recordings with respect to rhythm and harmony, French Guiana with respect to timbre, and

Zimbabwe with respect to melody. A categorisation into world music styles identified 10 clus-

ters with South Sudan and Botswana exhibiting the most distinct use of these clusters. This is

the first study to consider the computational analysis of such a large world music corpus.

There is a lot to be explored yet and we believe continuing on this line of research will help us

understand better the music cultures of the world.
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