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Abstract

An explicit density-based solver suitable for multiphase �ows has been developed
and implemented in OpenFOAM. Phase change is predicted through the density
variation under the HEM assumption and di�erent thermodynamic models that
have been utilized, starting from barotropic EoS to more complicated ones that
include real �uid thermodynamics (Helmholtz EoS). In the latter, a tabulated
data technique has been followed aiming to reduce he computational cost; the
value of each thermodynamic quantity within each thermodynamic element is
approximated by a �nite element interpolation. Apart from the liquid and vapour
phases, the non-condensable gas is modelled by adding a transport equation for
the gas mass fraction (2-phase model). Finite volume discretization is employed
in conjunction with high order Runge-Kutta methods for time integration. A
Mach number consistent numerical �ux, based on approximate Riemann solvers,
is proposed and renders the solver suitable for low subsonic �ows of the liquid
regime, up to highly supersonic �ow conditions noticed in the vapour phase. The
validity of the developed models has been assessed against the exact solution of
the Riemann problem, experimental data, other numerical tools and parametric
studies.

Di�erent multiphase �ow simulations have been performed, from fundamental
studies of bubble dynamics and droplet impacts on a solid surface to industrial
applications such as Diesel injectors, needle-free devices and nozzles in cryogenic
�ows. Concerning the real �uid thermodynamics model, n-Dodecane bubble
dynamics simulations in the proximity of a wall have been performed. The e�ect
of the initial conditions and the di�erent thermodynamic models utilized was
investigated. The methodology has been also applied to cryogenic �ows inside
converging-diverging nozzles and demonstrated satisfactory agreement with prior
experimental studies. The 2-phase solver was employed for modelling the wave
dynamics and the cavitation regime inside a droplet which impacts a solid surface.
Finally, the in�uence of the initial bubble pressure and the meniscus geometry
on the developed jet velocity of a needle-free device is studied.
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Present contribution

The developed multiphase solver has the following attributes:

• Real �uid thermodynamics modelling: The Helmoltz energy EoS has

been employed and a uni�ed methodology is presented, suitable for both

subcritical and supercritical regimes. The Helmholtz energy EoS has been

utilized only in a few works, however here its applicability is extended to

di�erent materials, either for cavitating or �ashing �ows. For the latter,

simulations using the Helmholtz EoS have not been reported.

• Tabulated data technique: Instead of solving the Helmhotz EoS at each

time step, it is computationally more e�cient to have stored in advance

its solution in a 2-D table (thermodynamic mesh). Compared to previous

tabulated data approaches, an unstructued thermodynamic mesh, re�ned

around the saturation curve has been employed and a static linked-list

algorithm has been developed for e�cient data mining.

• Gas e�ect has been included: Apart from the liquid and vapour phases,

the non-condensable gas has been also modelled in a newly developed 2-

phase solver in OF. A thermodynamic closure has been provided, depend-

ing on the EoS used for each phase. More speci�cally, up to author's best

knowledge, the Tait EoS combined with 2 isentropic relations for liquid-

vapour-gas mixture of section 2.2.1, and section 2.3.2 have not been devel-

oped in the past.

• Mach consistent numerical �ux: The hybrid numerical �ux which is

proposed here, has been implemented in OF and tested for several cases.

The new �ux is a combination of approximate Riemann solvers and previ-

ously proposed �ux functions. It enables the use of the density based solver

even for �ow regimes with Mach number in the order of O(10−2) and its

behaviour has been tested for 2 material interfaces.



Present contribution

• Model cavitation during droplet impact: The phase-change between

the liquid and the vapour inside the droplet volume has been simulated for

�rst time, whereas the surrounding air is modelled by a transport equation.

• 2-phase simulation of liquid jets: The compressibility e�ects, as well

as the liquid-vapour mixture and the liquid-gas jet interface due to shock

wave focusing have been modelled, which has not been previously reported

in the literature.
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Symbols and abbreviations

Latin symbols

a molar Helmholtz energy (J)

a0 ideal gas contribution to the Helmholtz energy (J)

ar residual Helmholtz energy, responsible for the in�uence of Intermolec-

ular forces (J)

B liquid bulk modulus (Pa)

C speed of sound parameter (Pa · kg/m3)

CN Cavitation number (−)
Cp speci�c heat at constant pressure (J/(kg ·K))

Cv speci�c heat at constant volume (J/(kg ·K))

c speed of sound (m/s)

e internal energy (J/kg)

el0 internal energy at reference temperature T0 (J/kg)

E total energy (J/kg)

Fk k-direction inviscid (convective) �ux vector

FV
k k-direction viscous �ux vector

Fr Froude number (−)
Lv latent heat (J/(kg ·K))

M Mach number (−)
Nnm �nite element nodal shape function of node n, evaluated at node m

(−)
n normal surface vector (−)
p pressure (Pa)

n Tait equation parameter, n ∼ 7.15 for weakly compressible liquids (−)
p pressure (Pa)

Pr Prandtl number (−)
psat saturation pressure (Pa)

pc critical pressure (Pa)



Symbols and abbreviations

R speci�c gas constant (J/(kg ·K))

Re Reynolds number (−)
S geometric source vector for spherical coordinates
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Chapter 1

Introduction

1.1 Motivation

Cavitating �ows occur in a wide range of applications, some of the most im-

portant are in automotive industry (injection systems in IC engines), in naval

engineering (propellers), in energy industry (turbines and pumps) and in the

biomedical sector (lithotripsy, drug delivery). While in some cases cavitation

may act bene�cially, such as in lithotripsy, in the majority of the applications it

has an adverse e�ect, either reduced e�ciency, noise or even erosion damage of

the machine.

Modelling the multiphase �ow in many applications necessitates complex

thermodynamic EoS in order to accurately capture the �ow �eld under extreme

pressure or temperature conditions. One typical example is Diesel injection sys-

tems, where there is the tendency to rise the injection pressure up to 3000 bar

from 2000 bar [1], aiming to design more e�cient IC engines and to comply with

environmental friendly EU legislations [2, 3]. Such injection pressures result in

high velocity �elds (above 500 m/s) in the narrow passages of the injector, which

may lead to cavitation [4]. The main consequences of cavitation formation are

reduced injection volumetric e�ciency and material erosion [5]. Moreover, the

fuel density variation in the injector can be around 10% which can dramatically

change the fuel properties [6]. On the other hand, the bene�t of cavitation is

the increased spray cone angle, which o�ers improved air-fuel mixing [7]. There-

fore, there is the need of a compressible �ow solver with incorporated real �uid

thermodynamics.

Complex thermodynamic modelling is also required in �ashing phenomena

for cryogenic fuels in space applications. Similar to diesel injectors, there is a
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trend in rocket engines towards higher chamber pressures which will result in

a higher speci�c impulse for the engine [8], but may cause the liquid pressure

to go beyond the critical pressure [8]. Due to its high speci�c impulse, oxygen

is preferred compared to other fuels in such applications. Aiming to minimize

the fuel tank structure in the rocket, oxygen is stored in liquid form (LOX) at

cryogenic conditions [9]. For instance, LOX is used in the Ariane 5 and in the

future Arianne 5ME upper stage engines [10]. Experimental studies are scarce

due to the cryogenic �ow conditions, which pose serious questions about the

accuracy and reliability of the results [10], while numerical works necessitate

real �uid thermodynamics [11, 12] and there is again little information in the

literature regarding LOX simulations [12].

Although the temperature e�ects are not dominant in micro�uidics and needle-

free injection systems, the complexity of the latter lies in the three phase �ow

(liquid-vapour-air) and its jetting e�ects. In particular, the aim is to generate a

liquid jet strong enough to punch a hole into the skin through erosion and frac-

ture and to deliver the medicine/vaccine into the tissue, without damaging the

skin and the drug molecule [13, 14]. A determining factor for a successful design

is the possibility of splash back. If the volumetric rate of the hole formation is

less than the volumetric rate of the jet impinging the skin, back�ow is noticed

[15, 13]. This splashing back of the liquid from the skin onto the nozzle was

responsible for subject-to-subject contamination of hepatitis B virus [16, 17, 15].

Consequently, an algorithm appropriate to handle such phenomena and a nu-

merical investigation of the 3-phase �ow inside the needleless injection devices

has to be performed in order to examine if the above criteria are satis�ed.

The distinctive feature of multiphase �ows is the great variation in the speed

of sound among the di�erent phases, from 1 m/s for the vapour up to 1400 m/s

for the liquid regime. This variation in the speed of sound results in totally

di�erent �ow conditions, from subsonic (M ∼ 10−2) up to highly supersonic

(M ∼ 103 or even higher [18]). This is an obstacle either in pressure-based or in

density-based solvers. In the former, the condition number of the system is very

large, causing convergence problems, while in the latter, slow convergence and

dispersion in low Mach number �ows is noticed [19, 20, 21]. A uni�ed treatment

for all Mach number �ows is necessary, so as to obtain smooth and accurate

solutions [22, 23, 24, 25].

The motivation of the present work lies in understanding and investigating

2
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multiphase �ows from a numerical point of view. It can be concluded from the

above that a numerical approach with high order EoS is necessary in order to

describe the change in the �uid properties under extreme conditions, as well as

the capability to model three phase �ows. A CFD tool which o�ers a uni�ed

treatment for the above problems has been developed.

1.2 State of the art

In this section, the algorithms used in the literature to model the physical prob-

lems of section 1.1 are described [26, 27, 28]. The most important numerical

methods for modelling two-phase �ows and their classi�cation are shown in Fig.

1.1. In the present work, algorithms for HEM, with or without temperature

e�ects have been developed, as well as mass transfer models (di�use-interface

approach). For the three-phase solver developed in OF, the HEM approach is

extended by a homogeneous transport equation (VOF-like method) for the non-

condensable gas.

Figure 1.1: Classi�cation of the numerical methods for two-phase �ows. The
developed methods are in green.

In general, the numerical methods for two-phase �ows are classi�ed into con-

ventional mesh methods and mesh-free approaches. The former are further cat-

egorized into inhomogeneous (two-�uid or generally N-�uid for N phases) and

homogeneous (one-�uid) methods, while the latter are split into LBM [29] and

3
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Particle methods, SPH [30] being the most signi�cant among them.

Concerning the family of SPH methods, they were originally developed for

astrophysical problems in 1977 by Lucy, Gingold and Monaghan [31, 32]. How-

ever 15 years later, SPH was extended to free surface �ows by Monaghan [33]

and has been widely used for interfacial �ows ever since [34, 35]. Vila [36] in-

troduced the mathematical framework of the SPH-ALE, so as to overcome the

drawbacks of the standard SPH method. In follow-up studies, Marongiu et al.

[37, 38, 39, 40] applied the method in the free surface �ow of Pelton turbines and

later on, they implemented the method for GPU processors [41, 42]. Tradition-

ally, SPH methods can easily handle material deformation, without the need of

mesh deformation techniques and they o�er solutions free of dissipation. How-

ever, they su�er from some serious drawbacks. Due to the arbitrary distribution

of the particles in the numerical domain, the order of the spatial accuracy is not

straightforward and can vary within the domain. Consequently, in areas with

insu�cient population of particles or non-uniformly distributed particles, spatial

accuracy is downgraded.

In multi-component models (inhomogeneous methods) there is no mechanical

equilibrium between the phases (non zero slipping velocity), so each phase is

characterized by its own pressure and velocity �eld. Phase-change is predicted

by a transport equation for the vapour volume fraction with mass transfer terms

in the RHS (non-homogeneous PDE). Although this approach is more realistic,

it has some serious disadvantages in practice, such as the large computational

cost (N continuity, momentum and energy equations are solved for N phases)

and that it is problem dependent, due to the appropriate closure and interface

relations needed for each phase. The added value of multi-component models

was demonstrated by Wallis [43] and later on, a 2-�uid model was employed

by Baer and Nunziatio [44] for detonation waves in granular explosives. Saurel

and Abgrall [45] modi�ed the two-�uid model and extended its applicability for

multi-phase compressible �ows.

On the other hand, in homogeneous methods there is mechanical equilibrium

(1 pressure and 1 velocity �eld) and both phases behave as a mixture. This

approach is further classi�ed depending on whether or not thermodynamic equi-

librium is satis�ed. Thermodynamic non equilibrium methods are categorized

into interface-tracking, interface-capturing and di�use interface methods (mass

transfer models).

4
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In the interface tracking methods, the moving boundary (interface) is ex-

plicitly described by the computational mesh (interface nodes) and often its

movement is prede�ned, for example by the velocity vector. The location of the

inner mesh nodes however, is not prescribed and several techniques are used in

order to maintain good mesh quality, such as the elastic mesh update method.

Some of the most widely used interface tracking methods are the MAC technique,

front-tracking methods, the volume-tracking approach and IBM.

The oldest approach for modelling two-phase �ows is the MAC method, where

marker particles were used to identify the di�erent �uid regions on a stationary

grid [46, 47] and was used later on by Plesset and Chapman for bubble collapse

simulations [48].

In front tracking methods, which have been originally developed by Glimm

et al. [49] and in a follow-up study by Unverdi and Tryggvason [50], the interface

is explicitly described by the computational grid. The most famous package for

front tracking methods is FrontTier, which was originally developed by Glimm

et al. [51]. Du et al. [52] proposed signi�cant improvements to the FronTier

toolkit regarding topological bifurcations and they assessed the performance of

the front-tracking methodology compared to LSM and VOF. In general, front

tracking methods o�er high accuracy in resolving the interface between the two

phases. Their main advantage is that they allow for smear-free interfaces and

they can be applied to complex geometries while they allow for large deformations

of the surface to be simulated. They cannot capture large topological changes

though, for example the formation of cavity inside a liquid metal droplet [53].

Another drawback is their complexity, since the interface grid must be dynam-

ically reconstructed, either adding or removing nodes in areas of stretched or

compressed cells, respectively [50].

The immersed boundary method was originally developed by Peskin [54] for

�uid- structure interaction applications, but has been also used for representing

the interface between two phases on Cartesian grids [55]. In IBM, Eulerian

and Lagrangian variables are employed, the former on a �xed Cartesian mesh

and the latter on a curvilinear mesh which is able to move freely through the

Cartesian mesh. While their implementation is relatively easy, by adding for

example a source term in the NS equations, the solid or the interface motion is

not accurately described.

In the interface-capturing methods the interface is implicitly reconstructed

5
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by a �eld variable. Subcategories of the interface-capturing method are the

discontinuous and the continuous approach. The most popular continuous ap-

proach is the level-set method [56, 57], where the interface is described as the

zero level-set of some auxiliary function φ. Volume of �uid (VOF) [58] is the

most representative discontinuous interface-capturing method, where the main

idea is to calculate the vapour volume fraction which de�nes the interface as a

step function.

The volume of �uid (VOF) scheme, introduced by Hirt and Nichols [58]

and later Youngs [59] proposed a 3-D volume tracking algorithm (see also [60]).

Aniszewski et al. [61] made a comparative study among di�erent VOF method-

ologies. Based on the innovative works of [58, 59], the Piece-wise linear Interface

Calculation (PLIC) aprroach [62, 63], the Weighted Linear Interface Calcula-

tion (WLIC) method, which was introduced by Yokoi [64] and independently by

Marek et al. [65], and the Tangent of Hyperbola for Interface Capturing (THINC)

interface reconstruction scheme, which was described by Xiao et al. [66] (more

recent works are [67, 68]), have been developed. More recently, Shukla et al.

[69] solved the multi-component compressible �ow equations with an interface

compression technique aiming to capture the thickness of the interface within

a few cells. Although the VOF method was originally developed and has been

mainly used for incompressible �ows, it has been also extended to compressible

�uids[70, 71, 72, 73, 69, 67]. Nowadays, geometric VOF methods with arbitrary

unstructured meshes have become popular and have been implemented in the

open source CFD toolbox OpenFOAM [74, 75]. Apart from OpenFOAM, Ger-

ris, an open source incompressible VOF solver with adaptive mesh re�nement

capabilities, was originally developed by Popinet [76] and has been used in either

droplet or bubble simulations [77].

While admittedly the discussed interface-capturing methodologies can pro-

vide a sharp interface, the concept of "interface capturing" is questionable when

pressures reach close to the critical point, since liquid and vapour densities be-

come similar and surface tension diminishes, preventing a clear distinction be-

tween the two phases. Another challenge for interface capturing methods is that

they are numerically expensive and they cannot be used for capturing thousands

or millions of bubbles in a real case simulations.

In mass transfer models (di�use-interface approach), a transport equation for

the volume (or mass) fraction of the vapour with source terms to model phase-

6
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change is incorporated in the NS system of equations. The di�erent regions

share the same velocity, pressure and temperature, however the mass transfer

phenomena are time dependent and not instantaneous, while the mass transfer

rate and the nucleation points are �nite (non-equilibrium). The main drawback

of this approach is that the mass transfer source terms are empirical and case

dependent, and thus tuning is necessary. It has to be clari�ed here that mass

transfer terms are also added in VOF and LSM in order to model phase-change,

however they are considered as three distinct methodologies, since VOF and

LSM are characterized by sharp interface. Mass transfer models are based on

kinetic theory of gases, such as the Hertz-Knudsen equation [78, 77] or they adopt

condensation and vaporisation terms, such as the models suggested by Zwart-

Gerber-Belamri (ZGB) [79, 80], Merkle et al. [81] and Schnerr-Sauer [82]. In the

latter models, where condensation and evaporation terms are used, cavitation

is described with respect to the growth and collapse process of vapour bubbles.

Starting from nuclei, bubbles grow or collapse, depending on the �ow conditions

(pressure and temperature).

Overcoming the limitation of the previous methods, in HEM the two-phase

regime is in thermodynamic and mechanical equilibrium, so the two phases share

the same velocity, pressure and temperature. Although this assumption may not

be valid in metastable thermodynamic states, the model is accurate enough for

medium and large scale simulations of cavitating �ows (see for example [83],

where 120 million cells have been used for a bubble cluster collapse). In HEM

thermodynamic equilibrium is achieved instantaneously, as in�nite nucleation

points and in�nite mass transfer rate are assumed. Phase-change is predicted

here through the variation of density from the corresponding Equation of State

(EoS), without solving any transport equation for the volume vapour fraction

and thus, no empirical parameters and tuning are needed. Despite the limitation

of not explicitly de�ning the bubble interface, such models are still widely used

due to simplicity; this limitation has been proved not to be important, since the

bubble interface can be estimated by the density variation when using a reason-

able amount of cells. Since the bubble interface or the liquid-vapour interface in

general may be somewhat di�use, surface tension is commonly neglected. In any

case the e�ect of this assumption is minor, due to the minor role of the surface

tension at the stage of bubble collapse, which is mainly governed by inertia.

HEM models have been used for several applications, either macroscopic or

7
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microscopic ones and they can be either barotropic (pressure depends only on

the density) or they can include temperature e�ects. Delannoy and Kuevy [84]

proposed a barotropic law from which the phase change is predicted; di�erent

barotropic models have been also applied, such as [85, 86]. Barotropic models

have been employed in several studies, due to their simplicity, such as [87, 88, 89].

On the other hand, HEM with temperature e�ects has been employed by Saurel

et al. [90] for studying cavitation in an underwater projectile, by Schmidt, Sezal,

Adams et al. for hydrofoil [91, 83] and bubble cluster simulations [83] or for

modelling the �ow in injection nozzles [92, 23]. In the largest scale simulation

to author's best knowledge, Rossinelli et al. [93] used a single �uid model and

simulated the collapse of a bubble cluster of 15, 000 bubbles discretized with

13 trillion grid points; the liquid was modelled as sti�ened gas and the vapour

as ideal gas. Concerning works with real �uid thermodynamics, the interested

reader is addressed to the work of Dumbser [94] for cavitating �ows around

hydrofoils and to the work of the author [95] for single bubble collapse. In the

above works, density based solvers were utilized in order to model the hyperbolic

nature of the equations and to capture expansion and shock waves which were

formed.

1.3 Literature review

In this section, a literature review of most of the cases simulated in Chapters 3

and 4 is given, including both fundamental studies (bubble dynamics and droplet

impacts) and industrial applications (Diesel injectors, cryogenic �ow in nozzles

and the needle-free injection device).

1.3.1 Bubble dynamics

Many studies deal with the dynamics of vapour bubbles, both computationally

and experimentally, due to the implications they have in a number of physical

conditions and technological applications. Up to now, di�erent approaches have

been proposed for simulating bubble collapse dynamics, such as potential �ow

solvers with dynamic boundary conditions on the bubble surface, homogeneous

mixture models and interface tracking/capturing methods.

Methodologies based on potential �ow solvers have been among the �rst em-

ployed to simulate the collapse of bubbles. For example, Plesset and Chapman

8
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[48] were the �rst to study cavitation bubble collapse close to a solid surface. A

potential �ow solver was used for the liquid phase and a Marker-and-Cell tech-

nique was developed for tracking the bubble interface. A similar �ow solver was

employed by Zhang et al. [96, 97] but a Boundary Element Method was incorpo-

rated for predicting the shape of the bubble and the pressure pro�le on the wall.

In an extension of the BEM method, Wang [98] employed a combination of com-

pressible and incompressible potential �ow for the simulation of a bubble collapse

in the vicinity of a wall, aiming to describe the energy loss due to pressure waves

radiated during the bubble collapse. The advantage of the BEM methodology is

that only the bubble interface is discretized and resolved, transforming the 3D

problem to a 2D one. However, mesh handling is problematic when topological

changes of the bubble interface have to be taken into consideration, e.g. during

bubble jet formation or impact on walls. For that reason, Chahine [99] used a

coupling between an incompressible BEM potential �ow solver and a multiphase

compressible �ow solver based on the Euler equations for simulating the growth

and collapse of a bubble in the vicinity of (deformable) walls. Each solution

strategy was employed at di�erent stages of the bubble development; for the

violent growth and collapse of the simulated bubble the compressible multiphase

approach was used, whereas the BEM method was employed at intermediate

stages where �ow velocities are small.

Concerning bubble dynamics modelled under the HEM approach, Adams and

Schmidt [83] simulated the collapse of a bubble cluster consisting of 125 bubbles

with a 120 million cell grid. Another work by the same group [91], emphasized on

the detection of the shock formation and propagation in three dimensional cloud

cavitation on hydrofoils; HEM models have been also used for Diesel injector

simulations [23], microchannels [87] and for estimating erosion [100] among oth-

ers. Since the temperature variation of the liquid can be negligible in some cases,

the energy equation can be omitted and thus, barotropic cavitation models have

been successfully employed for the prediction of cavitation either on macroscopic

(e.g. hydrofoils [101], venturi [102], high pressure throttle �ows [103]), or single

bubble collapses [89].

Overcoming the limitation of the previous methods, front tracking methods

have been utilised for modelling bubble dynamics, since they o�er higher accu-

racy in resolving the exact bubble shape. Hawker and Ventikos [104, 105] used a

marker to track the liquid-gas interface in the FrontTier code; the computational

9
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mesh was divided into two regions, with di�erent EoS applied for each phase.

In a similar study, Popinet and Zaleski [106, 107] employed a �nite volume for-

mulation with a �xed grid and a front-tracking approach; free surface boundary

conditions were imposed for simulating bubble �ows near solid boundaries and

cubic splines were used for the surface representation. In addition, Pan et al.

[108] computationally studied a bubble transport in a microchannel by utilizing a

front-tracking approach in connection with an IBM methodology for the moving

boundaries.

Interface capturing schemes based on the VOF methodology have been also

employed to the simulation of cavitation bubbles. For example, Li et al. [109]

investigated the bubble collapse near a conical rigid boundary, formulating an

extension to the classical Rayleigh collapse time, incorporating the wall stand-o�

distance and the cone angle. Koukouvinis et al. [110, 111] investigated the e�ect

of asymmetries (e.g. pressure gradient and free surfaces) a�ecting the bubble

collapse, using the VOF technique, and demonstrating jetting e�ects and bubble

shape at collapse stages. Hu et al. [112] developed a conservative interface

method based on the level set technique for solving compressible multiphase

�ows, maintaining a sharp liquid-gas interface. The methodology was tested in

fundamental shock tube cases, bubble-shock wave interactions and underwater

explosions. In connection to the previous work, Lauer et al. [113] used a LSM

for bubble dynamics, including non-equilibrium thermodynamic e�ects and �nite

mass transfer based on the Hertz-Knudsen relation, while exploring the e�ect of

the wall distance on the bubble shape during collapse (see also [114]).

In two-phase models that utilise interface capturing methods, the common

assumption is to prescribe a �nite mass transfer rate across the bubble inter-

face, describing the evaporation and condensation processes. On the other hand,

in single-phase models (HEM), mass transfer is assumed to be in�nite. More

speci�cally, in barotropic models, pressure is only a function of density and thus,

temperature e�ects are omitted.

The homogeneous equilibrium model (HEM) approach is followed, where each

thermodynamic property can be expressed as a function of density and internal

energy. While in the previous studies, thermal e�ects were typically ignored or

were considered utilising simpli�ed EoS, the present work contributes towards a

better understanding of the thermodynamics of collapsing bubbles. The thermo-

dynamic closure used for the bubble dynamics simulations of section 3.3 is based

10
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on the Helmholtz energy EoS from NIST Refprop databases [115], which can

provide thermodynamic properties at subcritical and supercritical conditions in

a consistent framework. By using the Helmholtz EoS, a complex thermodynamic

model is incorporated in the �nite volume solver, while the tabulated data algo-

rithm is proved to be more e�cient than using iterative calculation methods for

�nding the thermodynamic properties at each time step. Following the method-

ology of Dumbser et al. [94], tabulated EoS are employed in the present explicit

density-based algorithm; the low Mach number problem is tackled by the hybrid

�ux model of Schmidt et al. [23]. To the author's best knowledge, this is the �rst

work implementing the Mach consistent numerical �ux in connection with real

�uid properties for n-Dodecane, demonstrating heating e�ects in bubble collapse

cases; the only relevant work is that of Dumbser et al. [94], who focused instead

on water/vapour behaviour in benchmark (e.g. shock tube, explosion/implosion,

forward step) and macroscopic (e.g. hydrofoil) cases. Furthermore, the strong

pressurization and heating leads to the formation of supercritical �uid in the

vicinity of the bubble collapse, which has not been reported before.

1.3.2 Diesel Injectors

From bubble dynamic studies of section 1.3.1, a rough estimation of the pressure

peaks and potential material erosion at conditions realised in micro-ori�ce �ow

passages can be obtained. A more detailed insight can be acquired by performing

larger scale simulations of industrial interest, such as Diesel injectors.

Sezal et al. have followed a compressible approach for simulating the �ow

inside a Diesel injector and predicted cavitation; the collapse pressure peaks

that were noticed, can be used as indicators of erosion [92, 116, 117]. Salvador et

al. have worked in di�erent aspects of Diesel injectors, starting from validation

cases [118] and expanded into the e�ect of geometrical features on the hydraulic

performance of the injectors (see also the work of Molina et al. [119]) and LES

simulations in OpenFOAM [120].

Concerning works with needle movement, Koukouvinis et al. [3] performed

compressible LES studies for estimating the �ow inside a Diesel injector (see also

[121, 2] from the same research group). The transient e�ects due to the needle

movement have been also taken into account in [122, 123, 124, 125]. Signi�cant

contribution in the �eld of mesh motion in pistons and GDI injectors has been

also made by Montorfano, Piscaglia et al. [126, 127, 128, 129]; they implemented
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a parallel algorithm for layer addition-removal in OF and performed LES studies.

In a follow-up work, Wu et al. [130] expanded the idea of Dynamic Length-Scale

Resolution Model (DLRM), which includes an adaptive rescaling procedure for

turbulent length and time scales in a simpli�ed square-piston engine. Compared

to LES, where the mean length scales of unresolved turbulence are proportional

to the local grid spacing, the turbulent length scale here is calculated based

on statistical turbulence models. The length and time scales which have been

modelled, are now �ltered in order to suppress their in�uence on the �ow �eld.

The functional form of the �lter is derived by comparison between the modelled

and the resolved scales [131]. Apart from the layer addition-removal technique,

Örley [132] et al. employed the IBM for modelling the needle motion and took

into account the vapour and gas phases as well.

In the present work, a Diesel injector simulation has been performed in OF by

utilising a density based solver with a Mach number consistent numerical �ux.

A two-step barotropic EoS, the Tait equation for the liquid and a isentropic-

resembling relation for the liquid-vapour mixture has been used. Compared to

past studies in OF (see for example [128, 129]), the compressibility e�ects have

been considered in the present study. The only exception is in [120], where com-

pressible simulations were performed in the standard pressure based OF solver

(cavitatingFoam). Simulation of a Diesel injector with real �uid thermodynamics

at high operating pressures was not feasible, since the operating conditions exceed

the applicability range of Helmholtz EoS. The applicability range of Helmholtz

EoS cannot be extended due to scarce experimental data needed for calibration.

1.3.3 Rocket propulsion systems

The Helmholtz EoS and the tabulated data technique are applicable to any

material, as long as experimental data exist to calibrate the EoS. Thus, the same

methodology can be expanded to cryogenic simulations of LOx, where real fuel

thermodynamic modelling is needed as well.

There are only a few research facilities conducting experiments at cryogenic

�ow conditions, such as the Lewis Research Center of NASA and the Mascotte

test facility of Onera [133]. In the former, Hendricks, Simoneau and Barrows

[134, 135] acquired experimental data for cryogenic �uids (Nitrogen, Methane,

Hydrogen and Oxygen) in four di�erent converging-diverging nozzle geometries.

Nevertheless, there is a lack in the literature concerning cryogenic studies due to
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the extreme conditions that the experimental facilities must achieve. This poses

di�culties in validating and calibrating the computational models developed by

several researchers.

Two-�uid models have been widely used in predicting �ashing �ows and they

were originally introduced by Wallis in 1980 [43]. Maksic and Mewes [136] sim-

ulated �ashing in converging-diverging nozzles by adding a transport equation

for the bubble number density (4-equation model) to the continuity, momentum

and energy equations. More recently, Liao and Lucas [137] performed a �ash-

ing �ow simulation in a 3-D converging-diverging nozzle for water by utilising a

two-�uid model with k − ω SST turbulence model. The 5-equation model they

used consisted of two continuity equations, 2 momentum equations and 1 energy

equation. Switching to more complex approaches, a 6-equation model (conti-

nuity, momentum and enthalpy equations for each phase separately) has been

employed by Marsh and O' Mahony [138] in Ansys Fluent for �ashing �ows and

by Mimouni et al. in NEPTUNE_CFD [139] for boiling �ows, where Janet et al.

[140] utilised a 7-equation model and they considered nucleation during �ashing

�ow in converging-diverging nozzles. In the latter, a bubble number transport

equation was added in the system of 6 equations. Meng and Yang [141] developed

a numerical framework for n species, by employing one continuity, one momen-

tum, one energy and n transport equations. The algorithm was incorporated

into a preconditioning scheme for solving �uid �ows at all speeds. Supercritical

LOx injection has been investigated numerically with reference to swirl atomisers

suitable for rocket engines [142, 143] using the Soave-Redlich-Kwong (SRK) EoS.

Concerning one-�uid models, the Homogeneous Relaxation Model (HRM),

which considers non-equilibrium vapour generation, was originally introduced by

Bilicki and Kestin [144] and later on by Downar-Zapolski et al. [145] for 1-D

�ows. Schmidt et al. [146] expanded the HRM to 2-D problems in order to

study thermal non-equilibrium and two-phase �ows with �ash-boiling (see also

[147]). In another approach, Travis et al. [12] utilised the Helmholtz EoS for

isentropic cryogenic �ows of hydrogen, methane, nitrogen and oxygen. They in-

troduced a non-equilibrium parameter in order to correlate the liquid and vapour

temperatures and they validated their �ndings against the NASA tabulated data

[134, 135]. Regarding mass-transfer models, Karathanassis et al. [148] assessed

their performance in a comparative study among Hertz-Knudsen [77], ZGB [80],

HRM [146] and HEM [28] models for various nozzle geometrical con�gurations.

13



1. Introduction

Apart from Eulerian approaches, hybrid methods have been used. For in-

stance, Ramcke et al. [149] used an Euler-Lagrange method for simulating LOX

and gaseous Methane. Schmehl and Steelant [150] performed a numerical in-

vestigation of Oxidizer Pre�ow in an Upper-Stage Rocket Engine with a hybrid

method, which is basically a combination of the Euler-Euler approach and the

Euler-Lagrange method. More recently, Gaillard et al. [9] modelled the cryogenic

injection in rocket engines in CEDRE software, by coupling a di�use interface ap-

proach (4-equation model) in a LES context (CHARME solver) with an Eulerian

kinetic model (SPIREE solver).

In the previous works, simpli�ed EoS were utilised or signi�cant assumptions

were made ignoring temperature e�ects, e.g. adiabatic �ow conditions. In some

other works, high order EoS such as the SRK EoS were employed [142, 143], which

in general requires a smaller number of experimental data points for �tting the

EoS parameters compared to Helmholtz EoS. However, SRK EoS is considered

to be less accurate than the Helmholtz EoS, which is independently calibrated

for each material. The aim of the present work is to employ a higher order and

more realistic EoS suitable for cryogenic �ows. Therefore, the cryogenic �ow in

a converging- diverging nozzle is modelled by utilizing the Helmholtz EoS, which

provides real �uid thermodynamics closure to the solved equations. The tabu-

lated data algorithm for the Helmholtz EoS has been incorporated in an explicit

single-phase solver in OF under the HEM approach; the use of HEM is justi�ed

by the retrograde behavior of Oxygen [151, 152]. In addition, the methodology

is applicable to di�erent �ow conditions, either subcritical or supercritical and

therefore o�ers a uni�ed treatment.

1.3.4 Droplet impacts

Droplets impacting onto solid or liquid surfaces are of signi�cance not only in

engineering applications [153, 154, 155], but also in many other �elds, such as

oceanography [153], food science [156] or even forensics [154]. Engineering appli-

cations where droplet impacts play a key role are low pressure steam turbines,

aircraft components which are subject to material erosion or ink-jet printing,

where thin coating is placed on the paper [157]. The steam in the turbine engine

operating at low pressure conditions is prone to condensation and thus, water

droplets are formed. These droplets travel with the �ow and can impact the blade

with high speeds (over 200 m/s) [158, 155]. Under those conditions, cavitation
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may form inside the droplet due to the pressure waves developing within the

droplet's volume. As a result, consecutive impacts can lead to erosion damage,

not only because of the impact pressure, but also due to the pressure increase

after the collapse of the cavitation bubble.

Numerous fundamental studies of droplet impacts address the complex phe-

nomena taking place, such as the interaction of shock and expansion waves, jet

starting from the free surface, cavitation and possible erosion. These include

analytical, experimental and computational works for a wide variety of impact

velocities and droplet diameters.

Heymann [159] and Lesser [160] were the �rst who provided analytic solutions

of liquid droplet impact onto a solid surface. Heymann [159] performed a quasi-

steady state 2-D analysis of the dynamics of impact between a compressible liquid

droplet and a rigid surface. However, this analysis is only valid for the initial

stages of the impact, during which the shock is attached to the solid surface,

so the jetting in the contact edge cannot be predicted. Later on, Lesser [160]

expanded this work and took into account the elasticity of the surface while he

also gave an analytic solution of the 3-D droplet impact problem. Regarding

experimental studies, Field et al. [161] studied the main mechanisms during the

droplet impact and documented that the edge pressures depend on the impact

velocity and the angle between the liquid and the solid surfaces (see also [162]).

Later on, Field et al. [163] presented high-speed images of impacted liquids using

several di�erent techniques. By adding gelatine in the water, they produced 2-

D drops between two transparent plates and the impact was modelled by a

projected third plate. This case has been utilised as a means of validation in

the present study since it elucidates the wave dynamics and the cavity formation

after impact.

Complex numerical simulations based on the solution of the Navier-Stokes

equations have also been performed, as they can in principle provide more de-

tailed insight to the phenomenon. Both Lagrangian (interface tracking) and Eu-

lerian (interface capturing) approaches, or even a combination of the two have

been performed for simulation of liquid droplet impact onto solid surfaces.

The Lagrangian approach has been widely used for simulating the droplet-gas

interface and the splash of a liquid droplet onto a �at plate was originally mod-

elled by Harlow and Shannon [164]; they used a marker-and-cell (MAC) �nite

di�erence algorithm ignoring surface tension and viscosity. In the subsequent
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studies of Tsurutani et al. [165] and Hatta et al. [166], a MAC technique was

used but this time surface tension and viscosity were taken into account (see also

[167]). The main drawback of MAC methods lies in the fact that they cannot eas-

ily predict large topological changes which take place at later times of the droplet

impact and therefore, more advanced methods have been developed. Some other

researchers employed the �nite element method (FEM) for discretizing the rele-

vant di�erential equations [168, 169, 170, 171]. A deforming triangular grid was

utilized in order to capture the interface between the liquid and the gas in the

above studies, whereas in [169], the mesh was adapting to the �ow �eld. For

instance, Fukai et al. [168] investigated the e�ect of impact velocity, droplet

diameter, surface tension and material properties on the hydrodynamics of the

droplet impingement by developing a FEM for the incompressible �ow equa-

tions. The hyperbolic character of the equations was obtained by the arti�cial

compressibility method. These methods traditionally cannot handle problems

with strong mesh deformation, where most likely degenerate cells occur.

Several studies have considered the e�ect of surface tension on the droplet de-

formation. For instance, Davidson [172] adopted the boundary integral method

(BIM) for predicting the spreading of an inviscid droplet impact. Furthermore,

Harvie et al. [173] simulated droplet impacts on hot surfaces; they employed

an implicit pressure-based algorithm for the incompressible Navier-Stokes equa-

tions. The interface of the droplet is captured by the VOF model which is

coupled with an 1-D algorithm for the �ow in the viscous vapour layer and the

heat transfer within the solid, liquid and vapour phases (vapour layer model).

VOF methodologies for tracking the free surface of droplets which impact a solid

surface have been also developed by Pasandideh-Fard et al. [174], Rieber and

Frohn [175], Bussmann et al. [176], Pasandideh-Fard et al. [177] and later on

by Malgarinos et al. [178]. In order to have a more accurate reconstruction of

the interface, Guo et al. [179] invoked the moment of �uid (MOF) method to

investigate droplet impingement and splashing on dry and wet surfaces. In the

MOF method, which is an extension of the VOF model, the centroid of each

material is integrated along with the volume fraction for each material.

Concerning compressibility e�ects, which were omitted in the previous stud-

ies, a front tracking solution procedure was invoked by Haller et al. [180] for

high-speed impact of small size droplets. A rectangular �nite di�erence Eule-

rian grid and a moving lower dimension Lagrangian one to track the location
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of the wave fronts have been utilized (see also [169]). In another compressible

approach, Sanada et al. [181] used the multicomponent Euler equations to model

high-speed droplet impact. They developed a third-order WENO scheme with an

HLLC Riemann solver and the time advancement was achieved by a third-order

TVD Runge-Kutta. More recently, Niu and Wang [182] developed a compressible

two-�uid model for the Euler equations and they proposed an approximated lin-

earized Riemann solver for the liquid-gas interface. Surface tension was neglected

due to high We number, as well as in the above high-speed droplet impacts. Fur-

thermore, they showed that higher impact speed results in higher impact pressure

and possible damage in the solid surface.

A compressible approach has been only considered in a small part of the

aforementioned literature, whereas in the present study, the compressibility ef-

fects during droplet impact which lead to cavitation formation are studied. To

author's best knowledge, this is the �rst time that cavitation is considered in

a droplet impact simulation and three phases are modelled; the only exception

is the work of Niu et al. [182], where cavitation zones have been identi�ed but

without actually simulating the phase-change process. Furthermore, parametric

studies with varying impact velocity and simulations with the absence or pres-

ence of gas between the droplet and the solid surface provide estimates of the

vapour generated and the pressure loading in the surface.

1.3.5 Needle-free injection

Needle-free injection systems (NFIS) have gained popularity and are widely used

nowadays instead of the invasive drug delivery systems, since they o�er several

bene�ts, such as e�ectiveness in mass immunization programmes, avoiding at

the same time infectious diseases such as HIV and hepatitis. Compared to con-

ventional needle injection systems, NFIS can inject not only liquid drugs and

vaccines, but also in solid particle form [14] and they ensure faster drug deliv-

ery. Based on the type of load, NFIS can be classi�ed as: powder injections,

liquid injections and depot (projectile) injections [13, 14]. Concerning the actua-

tion mechanism, spring and compressed gas are the most common power sources

among commercial needle-free injection systems.

In the present study, the liquid injection is simulated where the jet is created

due to the expansion of a laser-induced bubble [183]. Such laser powered systems

are not yet available for clinical use and were originally designed by Yoh et al.

17



1. Introduction

[184, 185, 186, 187]. The expansion of the high pressure bubble results in the

creation of a shock wave travelling inside the liquid, which is later re�ected by

the walls. When the superposition of the waves reaches the liquid-gas interface, a

liquid jet is formed in the nozzle which impacts on the skin surface [17, 185, 188].

The objective is to generate a liquid jet strong enough to punch a hole into the

skin through erosion and fracture and to deliver the medicine/vaccine in to the

tissues, without damaging the skin and the drug molecule [13, 14]. After that,

the depth of the hole is increased due to further impingement of the jet and the

mechanism is the same for all liquid injections. If the volumetric rate of the hole

formation is less than the volumetric rate of the jet impinging the skin, back�ow

is noticed [15, 13], which was responsible for subject-to-subject contamination

of hepatitis B virus [16, 17, 15] in the past. Once the jet impacts on the skin,

the �ow decelerates but it continues to travel through the hole, until it reaches a

point where the velocity is no longer su�cient to puncture the hole (stagnation

point). Because of the dispersion of the jet when it impacts the stagnation point,

the hole takes a spherical-like shape [15, 17].

Several works regarding theoretical, experimental and numerical works on

liquid jets formed by a shock wave have been performed. Apart from fundamental

studies, there are applications in medicine (NFIS), or even in military (shape-

charges).

Among the �rst theoretical studies on axisymmetric jets produced by a gas

bubble is the work of Longuet-Higgins [189]. Since such jets are inertia driven

in their initial stage, he modelled them by a Dirichlet hyperboloid, neglecting

surface tension and gravity (see also [190]). In a similar work, Antkowiak et

al. [191] examined the role of the free-surface geometry on the evolution of the

jet, when a tube �lled with liquid falls under gravity, by deriving an analytical

expression for the velocity �eld. Furthermore, Katz [192] modelled the aspherical

collapse of a bubble and predicted the shape and the velocity of the jet, whereas

Sun et al. [193], studied theoretically and experimentally the growth and the

collapse of a vapour bubble inside a micro-tube and they demonstrated the role

of the thermal e�ects.

Leighton et al. [194, 195, 196, 197] studied theoretically and experimentally

the collapse of a conical gas bubble at the end of a tube �lled with liquid. This

work was later extended by Symons [198], who derived an equation of motion for

the liquid displacement. Bergmann et al. [199] denoted the importance of the
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inward radial �ow in the strength and formation of the jet on the free surface. A

pressurised air �lled tube inside a container �lled with water was used in their

apparatus. After a sudden release of the pressure in the tube, a singularity is

formed on the interface. Tagawa et al. [200] produced thin supersonic micro-

jets by vaporisation of liquid in an open capillary. They examined how several

parameters such as the contact angle, the distance between the laser focus and

the free surface and the diameter of the capillary a�ect the jet velocity (see also

[201, 202]). Later, Hayasaka et al. [183] investigated the e�ect of the shock wave

on the jet velocity and on the cavitation onset. They demonstrated that the jet

velocity depends on the pressure impulse of the shock wave and that the prob-

ability of cavitation onset depends only on the peak pressure of the shock wave

(see also [203]). In a similar device, Avila et al. [204] demonstrated the creation

of two di�erent jets, due to the expansion and the collapse of a hemispherical

vapour bubble and they reported the potential of such devices in biomedical ap-

plications such as NFIS (see also [205]). Finally, Kiyama et al. [206] studied

the formation of jet on the gas-liquid interface in a test tube which is induced

by gravitational acceleration and hits the rigid �oor and they manifested three

di�erent types of jet (normal, splashing, cavitating).

Concerning numerical studies, Ory et al. [207] studied the growth and the

collapse of a vapour bubble in a narrow tube by employing the incompressible

Navier-Stokes equations without phase-change (see also [208]). Free surface and

surface tension were modelled using the marker-chain technique, where the free

surface was described by massless particles (markers). In a similar work, López-

Villa et al. [209] simulated the formation of a gaseous bubble inside a tube by

a constant gas �ow rate and compared their �ndings against experimental data.

By changing the shape of the surrounding walls from cylindrical to conical, they

demonstrated that the shape and the volume of the bubbles was also a�ected.

Duchemin et al. [210] simulated a bubble burst at a free surface of liquid and

the jet formation with a droplet at its tip. The marker-chain technique has been

used there as well for taking into account the free surface and surface tension.

In order to satisfy the boundary condition of zero tangential stress on the free

surface, a least-square approach has been utilized (see also [211]). Turangan et

al. [212] employed a free-Lagrangian method (FLM) for the compressible Euler

equations in order to simulate the jetting collapse of air bubbles in the water.

They performed simulations for a shock-induced collapse of an initially stable
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bubble with applications in lithotripsy, as well as for a bubble collapse due to

pressure di�erence between the liquid and the gas (see also [213]). In a follow-up

study, Turangan et al. [214] studied shock-induced collapse and its interaction

with elastic-plastic material. Finally, Peters et al. [215] simulated cavitating

microjets by using a boundary integral code. They also elucidated the e�ect of

several parameters on the jet velocity magnitude and they compared their results

with the experimental �ndings of Tagawa et al. [200].

In the above numerical works, the compressibility e�ects were neglected, apart

from [212]. On the contrary, the compressible Navier-Stokes equations have

been modelled in the present study aiming to capture the waves created by the

compressed gas and its re�ection at the meniscus. To author's best knowledge,

either the gas phase (air) or the vapour phase were neglected and phase change

has not been modelled in past studies. In the present work, a two-phase solver

able to model the liquid jet (water), the gas (air) and the cavitation regime

in the nozzle (vapour), has been employed. Although the penetration into the

human skin is not modelled, erosion and fracture of the skin is estimated based

on the velocity of liquid jet. While in previous studies e�orts to correlate the

dependence of the jet velocity on the contact angle have been made [215, 200], in

the present work di�erent meniscus geometries have been investigated in order

to study how the diameter and the velocity magnitude of the jet are a�ected.

1.4 Non dimensional numbers and cavitation regimes

The following non dimensional numbers are characteristic of the �ows examined

in the present work. The cavitation number CN characterizes the potential of

the �ow to cavitate:

CN =
p∞ − psat
1/2ρU2

. (1.1)

When CN < CNI , where CNI is the value of CN corresponding to cavitation

inception, cavitation usually becomes increasingly developed [216]. The Froude

number Fr indicates the in�uence of the gravity in the �uid �ow:

Fr =
U√
gL
. (1.2)
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The Mach number M is a measurement of the compressibility:

M =
U

c
. (1.3)

The Prandtl number Pr is de�ned as the ratio of momentum di�usivity to ther-

mal di�usivity:

Pr =
Cpµ

λ
. (1.4)

The Reynolds number Re is the ratio of the inertial forces to the viscous forces:

Re =
ρUL

µ
. (1.5)

The Strouhal number St is used for describing oscillating �ows:

St =
fL

U
, (1.6)

L here is the cavity length and f is the shedding frequency. The Weber number

We measures the �uid's inertia compared to its surface tension:

We =
ρlU

2L

σ
. (1.7)

In the above relations, L is the characteristic length of the �ow, U is the �uid

velocity magnitude, p∞ is the free stream pressure and g = 9.81m/s2 is the

gravitational acceleration.

Depending on the �ow conditions and the geometry, di�erent cavitation pat-

terns can be noticed [216, 117]:

• Bubble cavitation: Bubbles in low pressure regions due to the nuclei of

the liquid. These bubbles are travelling with the �ow �eld and disappear

in higher pressure regions.

• Sheet cavitation: A vapour region near the leading edge due to low

pressure. It can be found in propeller blades and hydrofoils.

• Cloud cavitation: Many vapour bubbles forming a large vapour structure

which is detached from the surface and it is travelling with the �ow �eld.

• Vortex cavitation: Vortex structures in regions of low pressure can cause

cavitation. It is usually found at the tip of lifting devices.
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• Supercavitation: Large region of vapour structure surrounding the body.
It can be noticed in applications with low cavitation numbers.

• Shear cavitation: In regions of high shear vorticity, coherent structures

are formed, for example in wakes, jets or hydrofoils at high angle of attack.

1.5 Objective

The aim of the present work is to develop a numerical tool in order to predict

cavitation in industrial multiphase �ow applications. The main objectives are

summarised:

• To develop an accurate in space and time FV method for cavitating �ows

in OF.

• Incorporate in the CFD solver real �uid thermodynamics, by employing

high order EoS (Helmholtz).

• Provide thermodynamic closure and develop a two-phase model for liquid,

vapour and gas phases.

• Implement a Mach number consistent numerical �ux to handle the transi-

tion from incompressible to highly compressible �ow regions.

• Perform veri�cation and validation of the numerical scheme. The algorithm

will be veri�ed against exact solutions and validation will be performed by

comparing with experimental results for several cases.

• Simulate cases of industrial interest in several di�erent engineering �elds,

such as automotive (injector nozzles) or biomedical (needle-free devices).

1.6 Outline

A short outline of the following chapters is given. In Chapter 2 the numerical

method is described, including the governing equations, the HEM approach, the

EoS used and their derived thermodynamic closure, as well as the space and time

discretization, as they have been implemented in OF. In Chapter 3 benchmark

cases and fundamental studies are presented, as a mean of validation for the
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developed algorithms. In Chapter 4 industrial applications and macroscale sim-

ulations are demonstrated, whereas in Chapter 5 the most important conclusions

are drawn and future work is proposed. Finally, in Appendix several additional

topics are discussed, such as the derivation of exact solutions for the Riemann

problem, the temperature di�erence during an isentropic compression etc.
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Chapter 2

Numerical Method

The solver described in this chapter is based on the explicit density-based OF

[217] solver which is called rhoCentralFoam. RhoCentralFoam is a single phase

solver using the Tadmor-Kurganov �ux and ideal gas assumption. The EoS

described in sections 2.2 and 2.3, the space discretization schemes of section 2.6

and the RK time advancement of section 2.7 have been implemented on this

modi�ed solver aiming to model 2 or 3 phases. A contribution of this work is

the thermodynamic closure which has been derived and it is presented in 2.2.3

for the liquid-vapour mixture, in 2.2.1 for the liquid-vapour-gas mixture and in

2.3.2 for the liquid-gas mixture. In addition, the capability of simulating low

Mach number �ows with Mach number consistent numerical �uxes is elucidated

in Fig. 2.8, whereas in Fig. 2.9 the suitability of the proposed hybrid �ux for

2-phase simulations is demonstrated.

2.1 Governing Equations

Without loss of the generality, the three dimensional compressible Navier-Stokes

equations with a transport equation for the gas mass fraction in conservative

form are considered:

∂U

∂t
+
∂Fk(U)

∂xk
=
∂FV

k (U,∇U)

∂xk
, in Ω, (2.1)

where k = 1, 2, 3 denotes the x, y, z directions. The following initial and bound-

ary conditions are used for the PDE system:

U(x, 0) = U0(x), in Ω, (2.2)
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U = UD, on ∂ΩD, (2.3)

∂U

∂n
= UN , on ∂ΩN , (2.4)

where U =
[
ρ ρYg ρu1 ρu2 ρu3 ρE

]T
is the conservative solution vector,

ρ is the mixture density, ρYg is the gas mass fraction and ρu is the mixture

momentum. The convective �ux tensor ¯̄F can be analysed into x, y and z

components: ¯̄F =
[
F1 F2 F3

]
, where:

F1 =



ρu1

ρYgu1

ρu2
1 + p

ρu1u2

ρu1u3

(ρE + p)u1



, F2 =



ρu2

ρYgu2

ρu2u1

ρu2
2 + p

ρu2u3

(ρE + p)u2



, F3 =



ρu3

ρYgu3

ρu3u1

ρu3u2

ρu2
3 + p

(ρE + p)u3



(2.5)

Similarly, the viscous �ux tensor ¯̄FV can be analysed into x, y and z components:
¯̄FV =

[
FV

1 FV
2 FV

3

]
, where:

FV
1 =



0

0

τ11

τ12

τ13

ukτ1k + q1



, FV
2 =



0

0

τ21

τ22

τ23

ukτ2k + q2



, FV
3 =



0

0

τ31

τ32

τ33

ukτ3k + q3



, k = 1, 2, 3

(2.6)

For Newtonian �uids the viscous stress tensor is given by the relation:

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)
, i, j, k = 1, 2, 3. (2.7)
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2.1. Governing Equations

Rewriting the viscous stress tensor of Eq. 2.7 in vector form:

¯̄τ = µ∇U + µ(∇U)T − 2

3
µ∇ ·UI = µ∇U + µ

(
(∇U)T − 2

3
tr(∇U)T I

)
, (2.8)

since ∇ · a = tr(∇a) = tr(∇a)T . The second part of Eq. 2.8 is the deviatoric

part of matrix ∇U multiplied by the factor 2 in the trace, since by de�nition,

the deviatoric part of a matrix A is: dev(A) = A− 1

3
tr(A)I. The viscous term

in the momentum equations takes the form of Eq. 2.8 in the OF implementation

and it is discretized according to section 2.6.

The ¯̄τ · u term is the energy by viscous dissipation and the q term is the

energy by conduction. The heat �ux vector q is modelled by following Fourier's

law: q = −λ∇T , where λ is the thermal conductivity. This term is neglected in

the simulations, it is stated here for completeness.

2.1.1 RANS equations

The mean values of the �ow quantities have been calculated for turbulent �ows,

following Reynolds and Favre averaging of the NS equations [218]. According to

that, a turbulent �ow quantity A(x, y, z, t) can be decomposed into a mean value

(overbar) and a �uctuating part (prime):

A = A+ A′ (2.9)

The mean value is the time-averaged quantity of A:

A =
1

∆t

∫ t0+∆t

t0

Adt (2.10)

For compressible �ow, a density-weighted time average is used (Favre averaging):

A = Ã+ A′′ (2.11)

and now the density-weighted average of quantity A is:

Ã =
ρA

ρ
=

1

ρ∆t

∫ t0+∆t

t0

ρAdt (2.12)

and the mean of density weighted �uctuation is ρA′′ = 0. Note that A′ = 0 but

A′′ 6= 0, since by expanding the �rst equality of Eq. 2.12: Ã = A +
ρ′A′

ρ
, and
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hence A′′ = A′− ρ
′A′

ρ
. Applying the time average procedure on the compressible

NS equations, Eq. 2.1 is reformed for the mean conservative variables. The stress

tensor is now the sum of the viscous stress tensor and the Reynolds stress tensor

(Boussinesq approximation [218]):

τij = (µ+ µt)

(
∂ũi
∂xj

+
∂ũj
∂xi
− 2

3

∂ũn
∂xn

δij

)
− 2

3
ρkδij, i, j, n = 1, 2, 3. (2.13)

where µt is the eddy viscosity and k is the turbulent kinetic energy. The heat

�ux in the viscous term is now rede�ned as: q = −(λ + λt)∇T , where λt is
the turbulent thermal conductivity: λt =

µtCp
Prt

. The turbulent kinetic energy

in Eq. 2.13 can be neglected, since it is relatively small compared to mean �ow

enthalpy and the turbulent Prandtl number Prt is usually ∼0.9. The k− ε RNG
and k−ω turbulence models have been utilised and modi�ed following Reboud's

correction [219]. After solving the PDEs for the turbulent kinetic energy k and

the turbulent dissipation ε, the eddy viscosity µt is calculated from the following

formula:

µt = f(ρ)Cµk
2/ε, (2.14)

where Cµ = 0.085. Reboud replaced ρ with f(ρ) in the above eddy viscosity rela-

tion, aiming to reduce the eddy viscosity noticed in unphysically steady cavities

by introducing the limiter:

f(ρ) = ρsat,v +

(
ρsat,v − ρ

ρsat,v − ρsat,l

)n
(ρsat,l − ρsat,v), n >> 1, (2.15)

This modi�cation has been also extended to other turbulence models with the

same limiting function. Depending on the thermodynamic model, the corre-

sponding simpli�cations are made. For example, in the barotropic solver the

energy equation is omitted, whereas the mass transport equation is not solved

in the single phase solver with phase change etc. Likewise for the laminar and

the eddy viscosity, both of them are omitted in inviscid �ows and the latter is

omitted in laminar simulations. In cylindrical coordinates the NS equations (Eq.

2.1) are transformed to the ones described in Appendix A.
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2.2. HEM

2.2 HEM

In HEM, all phases are in thermodynamic and mechanical equilibrium, in other

words they share the same temperature and pressure (mixture). Thermodynamic

equilibrium is achieved instantaneously, as in�nite nucleation points and in�nite

mass transfer rate are assumed. In addition, the phase change between the

liquid and the vapour is predicted through the variation in the density from the

corresponding EoS. The gas, whenever modelled is non-condensable, therefore

there is no phase change between the gas and the liquid. So, if the two phases

are pure liquid (l) and a liquid-vapour mixture (v), the corresponding properties

are:

ρ = (1− αv)ρsat,l + αvρsat,v (2.16)

ρe = (1− αv)esat,lρsat,l + αvesat,vρsat,v (2.17)

ρh = (1− αv)hsat,lρsat,l + αvhsat,vρsat,v (2.18)

ρs = (1− αv)ssat,lρsat,l + αvssat,vρsat,v (2.19)

In the above relations, αv denotes the vapour volume fraction and αv + αl = 1.

The viscosity of the mixture is calculated by the weighted average of the liquid

and vapour viscosities:

µ = (1− αv)µsat,l + αvµsat,v (2.20)

and the mixture speed of sound is determined by using the Wallis speed of sound

formula [220] (except from the liquid-vapour mixture of 2.2.1):

1

ρc2
=

αl
ρsat,lc2

sat,l

+
αv

ρsat,vc2
sat,v

(2.21)

Expanding the HEM approach to 3 phases, which in the present study are pure

liquid (l), liquid-vapour mixture (m) and non-condensable gas (g), Eq. 2.16-2.19

take an equivalent form, for example the 3-phase mixture density is:

ρ = (1− βg)[ (1− αv)ρsat,l + αvρsat,v] + βgρg → ρ = βlmρlm + βgρg, (2.22)

where βg is the gas volume fraction and βg + βlm = 1. The same applies for the

rest quantities [221]. The density of the i component (i = l,m, g) can be found
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from:

ρi =
mi

Vi
=
Yim

βiV
=
Yi
βi
ρ, (2.23)

where β is the volume fraction of the i component and it is de�ned as:

βi =
Vi
V
,
∑
i

βi = 1, (2.24)

and Yi is the mass fraction of the i component, de�ned as:

Yi =
mi

m
,
∑
i

Yi = 1. (2.25)

The gas mass fraction is calculated from the transport equation (2nd relation

in Eq. 2.1) and the local vapour volume fraction can be calculated from the

formula:

αv =


0, ρ ≥ ρl,sat

βlm
ρl,sat − ρlm
ρl,sat − ρv,sat

, ρ < ρl,sat
(2.26)

The Wallis formula in order to �nd the speed of sound between the mixture (lm)

and the gas (g) can be expressed as:

1

ρc2
=

βlm
ρlmc2

lm

+
βg
ρgc2

g

, (2.27)

where the speeds of sound clm and cg depend on the EoS used for each phase

and will be explained in detail in 2.2.1 and 2.3. Wallis formula is used for most

of the thermodynamic models, unless otherwise stated (see 2.3.1).

2.2.1 Barotropic approach

The barotropic approach is the most simpli�ed EoS among HEM, since there is no

temperature e�ect (no energy equation is solved) and the saturation properties

have been calculated assuming constant temperature T. Below the EoS for 2

phase and 3 phase mixtures are described.

Liquid-vapour mixture

For the 2 phase mixture, the modi�ed Tait EoS for the liquid part and an

isentropic-resembling relation [87] for the mixture have been used:
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2.2. HEM

p(ρ) =


B

[(
ρ

ρsat,l

)n
− 1

]
+ psat, ρ ≥ ρsat,l

psat + C

(
1

ρsat,l
− 1

ρ

)
, ρ < ρsat,l

(2.28)

The speed of sound is calculated by di�erentiating the pressure with respect to

density c2 =
∂p

∂ρ
:

c(ρ) =



√
Bn

ρn−1

ρnsat,l
, ρ ≥ ρsat,l√

C

ρ2
, ρ < ρsat,l

(2.29)

Compared to Eq. 2.28, which is continuous at ρ = ρsat,l, Eq. 2.29 is not contin-

uous. After solving the continuity and momentum equations, Eq. 2.28 is used

for calculating the pressure with respect to density only, where the saturation

properties have been calculated at temperature 300K. Although this method is

robust, it lacks in predicting the temperature e�ects.

Liquid-vapour-gas mixture, linear EoS

Here the single �uid model for the liquid and mixture is extended by a transport

equation for the non-condensable gas. A linear barotropic model has been utilized

for the liquid and mixture. The density ρlm of the latter is:

ρlm = ρl,sat +
1

c2
(p− psat), c =

cl, p ≥ psat

cm, p < psat
(2.30)

The gas phase, has been modelled by an isothermal ideal gas EoS and thus, the

gas density is given by:

ρg =
p

RgTref
, (2.31)

where the reference temperature is Tref = 293.15K and the speci�c gas constant

is Rg = 287.06 J/(kg K). The barotropic approach is followed in cases where the

temperature di�erence is negligible (see Appendix C).

Di�erentiating isentropically Eq. (2.30) with respect to density, constant

speed of sound for the liquid and mixture is found for water: cl = 1482.35m/s

and cm = 1m/s, following Brennen [220] and Örley et al. [88]. For the ideal gas,
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the speed of sound is calculated from:

cg =
√
RgTref , (2.32)

In the three phase mixture, the speed of sound between lm and g phases is

determined by the Wallis speed of sound [216, 220]:

1

ρc2
=

1− βg
ρlmc2

lm

+
βg
ρgc2

g

, (2.33)

After solving the continuity equation, the transport equation for the gas mass

fraction follows, then the pressure equation is solved accompanied by the mo-

mentum equation. In order to calculate the pressure of the mixture, a closed

form equation of state describing the co-existence of three phases is employed

from Eq. (2.22):

ρ = βlm

[
ρl,sat +

1

c2
(p− psat)

]
+ βg

p

RgTref
, (2.34)

replacing the volume fraction βg from Eq. (2.23) and eliminating βlm by using

Eq. (2.25) and Eq. (2.31), a quadratic equation for the pressure is derived:

Ap2 + Bp+ C = 0, (2.35)

where

A =
1

c2
, (2.36)

B = ρ(Yg − 1) + ρl,sat −
p

c2
− YgρRgTref

c2
, (2.37)

C = YgρRgTref

(
psat
c2
− ρl,sat

)
. (2.38)

In the case of two real solutions p1, p2 ∈ R, the largest root of Eq. (2.35) is

kept. The speed of sound in Eq. (2.36), (2.37) and (2.38) is set to either cl

or cm, depending on the pressure at the previous time step for identifying the

liquid or mixture regions. Therefore, Eq. (2.35) is solved iteratively, in case

the computed pressure does not ful�l the original assumption. In practice, the

algorithm is repeated for no more than three iterations.
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Liquid-vapour-gas mixture, Tait-isentropic EoS

However, if the linear relation is replaced with the modi�ed Tait equation and

the isentropic-like relation of Eq. 2.28, there is no exact solution for the pressure

and it has to be iteratively solved. Solving Eq. 2.28 for density:

ρlm =


ρsat,l

(
p− psat
B

+ 1

)1/n

, p ≥ psat(
1

ρsat,l
− p− psat

C

)−1

, p < psat

(2.39)

whereas the gas density here is given by the isentropic gas EoS:

ρg =

(
p

C2

)1/γ

(2.40)

The gas phase is predicted by the homogeneous transport equation for the gas

mass fraction. The density of the mixture can be found from Eq. 2.23, 2.24:

ρYg
ρg

+
ρYlm
ρlm

= 1→ ρ =
ρgρlm

Ygρlm + Ylmρg
(2.41)

A closed form for the pressure is derived by replacing Eq. 2.39 and 2.40 into Eq.

2.41:

F(p) = ρYgρlm(p) + ρYlmρg(p)− ρg(p)ρlm(p) (2.42)

The derived Eq. 2.42 is non-linear and has no apparent exact solution. Thus, the

pressure is iteratively found by using the Newton-Raphson method of Eq. 2.43

and then the density and the volume fraction for each phase are calculated. It

has to be mentioned here that only the solutions when F ′(p) < 0 are of interest.

pk+1 = pk − F(p)

F ′(p)
(2.43)

The pressure within the Newton-Raphson iterations is relaxed and limited to a

minimum value pmin:

pk+1 = max
(
pmin, p

k+1rlx+ pk(1− rlx)
)

(2.44)

Here the superscript k denotes the Newton-Raphson iterations within the time

step loop from time n to n+1 and rlx is a relaxation coe�cient. So after solving

the continuity and the mass transport equations, the pressure equation 2.42 is
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iteratively solved until a convergence criterion is satis�ed (|F(p)| ≤ 10−6).

2.2.2 HEM with temperature e�ects (Liquid-vapour mix-

ture)

The second thermodynamic model which has been utilized, is a more sophisti-

cated extension of the previous barotropic model, since the saturation properties

depend on temperature [28, 222]. In this case, the modi�ed Tait equation is used

for the liquid, the ideal gas EoS for the vapour and the Wallis formula for the

speed of sound in the mixture regime. This model is based on the assumption

that the latent heat is constant and it is calculated based on the initial temper-

ature T0 = 300K, which is valid only for a small variation of the temperature.

Moreover, it cannot predict transcritical to supercritical transitions. The pres-

sure is given by the following three-step equation as a function of density and

temperature:

p(ρ, T ) =


B

[(
ρ

ρsat,l(T )

)n
− 1

]
+ psat(T ), ρ ≥ ρsat,l(T )

psat(T ), ρsat,v(T ) < ρ < ρsat,l(T )

ρRT, ρ < ρsat,v(T )

(2.45)

and the internal energy is given by the following equation:

e(T ) =


Cv,l(T − T0) + el0, ρ ≥ ρsat,l(T )

αρsat,v(T )evap(T ) + (1− α)ρsat,l(T )eliq(T )

ρ
, ρsat,v(T ) < ρ < ρsat,l(T )

Cv,v(T − T0) + Lv(T0) + el0, ρ < ρsat,v(T )

(2.46)

where evap and eliq stand for the internal energy of the liquid and vapour from

the �rst and the third step respectively. After calculating the solution vector and

thus the total energy is known, the Newton-Raphson method has been employed

for the following function in order to calculate the temperature:

F(T ) = e(T )− E(T ) +
1

2
(u2 + v2) = 0 (2.47)

Once the Newton-Raphson algorithm has converged, the pressure and the volume

fraction are calculated and then the algorithm advances to the next time step.
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The saturation properties have to be calculated for each Newton-Raphson itera-

tion, since they depend on the temperature and they are given by the following

formulas:

ln

(
psat(T )

pc

)
=
Tc
T

7∑
i=1

aiθ
âi , (2.48)

ρsat,l(T )

ρc
=

7∑
i=1

biθ
b̂i , (2.49)

ln

(
ρsat,v(T )

ρc

)
=

7∑
i=1

ciθ
ĉi , (2.50)

where θ = T/Tc. The coe�cients âi, b̂i, ĉi for n-Dodecane are given in Table

2.1 for ρc = 226.55 kg/m3, pc = 1817000Pa, γ = 1.03. It must be mentioned

here that the previous equations are valid as long as the temperature is within

the range: T ∈ [Tr, Tc], where r, c subscripts denote the triple point and the

critical point respectively. Therefore, the applicability range for n-Dodecane is:

T ∈ [Tr = 273.15, Tc = 658.1]K.

Table 2.1: Coe�cients in Eq. 2.48, 2.49, 2.50 for n-Dodecane. The coe�cients
are calculated in order to give the same saturation conditions as the Helmholtz
energy EoS.

Index ai âi bi b̂i ci ĉi
1 −0.03359 0 1.37610 0 −0.39275 0
2 −8.54218 1 11.88513 1 −19.73929 1
3 3.20579 3 −69.63935 2 78.72869 2
4 11.27780 4 297.58733 3 −361.4296 3
5 7.66350 5 −717.4947 4 779.84876 4
6 −7.09773 6 888.91121 5 −899.4366 5
7 −0.03359 0 −438.5464 6 331.66738 6

In conclusion, this method is e�cient but not so robust as the barotropic

model and it su�ers from limitations in the temperature range, compared to

the Helmholtz EoS, which will be presented next (see also section 2.4 where the

di�erent thermodynamic models are compared).

2.2.3 Helmholtz energy EoS for liquid-vapour mixture

The derivation of the thermodynamic properties from the Helmholtz energy is

described in this section. It has to be clari�ed here that this methodology is ap-

plicable for any material, assuming that there are experimental data to calibrate
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the aforementioned energy equation. The EoS for calculating the thermodynamic

properties of a material can be expressed using the Helmholtz energy, having as

independent variables the density and the temperature [115]:

a(ρ, T ) = a0(ρ, T ) + ar(ρ, T ) (2.51)

the above in dimensionless form becomes:

a(ρ, T )

RT
= α0(δ, τ) + αr(δ, τ), (2.52)

where δ = ρ/ρc, τ = Tc/T . The dimensionless Helmholtz energy contribution of

the ideal gas can be written in the form:

α0 = a1 + a2τ + lnδ + (c0 − 1)lnτ +
5∑

k=1

ckln

[
1− exp

(
− ukτ

Tc

)]
, (2.53)

where a1, a2 are arbitrary values set by the reference state. The residual Helmholtz

energy can take a complicated form depending on the material. For instance,

the residual Helmholtz energy for the n-Dodecane is written in the following

non-dimensional form [115]:

αr = n1δτ
0.32 + n2δτ

1.23 + n3δτ
1.5 + n4δ

2τ 1.4 + n5δ
3τ 0.07 + n6δ

7τ 0.8 + n7δ
2τ 2.16e−δ

+n8δ
5τ 1.1e−δ +n9δτ

4.1e−δ
2

+n10δ
4τ 5.6e−δ

2

+n11δ
3τ 14.5e−δ

3

+n12δ
4τ 12.0e−δ

3

.
(2.54)

Equations similar to 2.52 can be manipulated in order to obtain all thermody-

namic properties, like pressure, internal energy, enthalpy, entropy and speed of

sound as a function of density and temperature. The interested reader is ad-

dressed to [115] for all the necessary manipulations needed and the coe�cients

of Eq. 2.54 for n-Dodecane. Saturation conditions are identi�ed by using the

Maxwell criterion. i.e. the pressure for which the Gibbs energy of the liquid

and the vapour phases are equal. Upon identifying the saturation pressure as a

function of temperature, the saturation dome may be identi�ed; within the sat-

uration dome �uid properties are determined by using the mixture assumption

based on volume fraction α (Eq. 2.16-2.21).

The aforementioned procedure can be performed on the �y, during code exe-

cution. However, in practice it requires root �nding of non-linear equations, since

both Helmholtz equation and all the properties derived from it, are naturally ex-

pressed as a function of density ρ and temperature T , whereas the �ow solver
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calculates density ρ and internal energy e. In other words, at each time step the

conservative variables (ρ, ρE) must be transformed to ρ, T and then they can be

used to derive pressure and speed of sound for the next calculation step. This

can be achieved by using for example the Newton-Raphson method, however it

is very time consuming and ine�cient.

Tabulated data technique

Instead of solving the Helmholtz EoS for each time step (using the Newton-

Raphson method or similar), a similar technique as the one employed by Dumbser

et al. [94] has been employed. In the present work, an unstructured thermody-

namic table has been used (instead of the Cartesian used in [94]), which has been

constructed prior to the simulations, containing all the thermodynamic proper-

ties derived from the Helmholtz EoS. This way, the mismatch in the variables

needed as input in the Helmholtz EoS (ρ, T ) and the ones calculated from the

NS equations (ρ, ρE) is handled by numerical inversion. In other words, based

on (ρ, ρE) the rest thermodynamic properties are calculated. Static linked lists

have been used in order to split the thermodynamic table into smaller groups of

data and search only the group that has the desired values within its range. The

resulting algorithm is much more e�cient than the on-the-�y calculation of the

Helmholtz EoS, by almost one order of magnitude of the computational time.

The unstructured thermodynamic table for each material is built by selecting

an appropriate range for the density and the internal energy: ρmin ≤ ρ ≤ ρmax

and emin ≤ e ≤ emax that de�ne a 2-D table Σ = [ρmin, ρmax] × [emin, emax],

which should enclose the expected conditions for each simulation. The thermo-

dynamic table Σ, which has been created for each material, is discretized with

quadrilateral elements, in an unstructured way. For example, an unstructured

grid of approximately 40, 000 elements has been created for n-Dodecane (Fig.

2.1) and similarly for Oxygen O2 (Fig. 2.2). The grids has been re�ned around

the saturation curve in order to accurately capture the large variation of the

thermodynamic properties in this area (e.g. for speed of sound or internal en-

ergy). Indicatively for the n-Dodecane and Oxygen, 3-D phase diagrams derived

from the Helmholtz energy EoS are shown in Fig. 2.3 and 2.4 respectively, ex-

pressing pressure, internal energy and speed of sound as a function of density

and temperature.

During the algorithm execution, after calculating the conservative vector in
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Figure 2.1: Unstructured thermodynamic grid of approximately 40, 000 �nite
elements for n-Dodecane, re�ned around the saturation curve in order to capture
the rapid change in the thermodynamic properties.

Figure 2.2: Unstructured thermodynamic grid of approximately 34, 000 �nite
elements for Oxygen, re�ned around the saturation curve in order to capture the
rapid change in the thermodynamic properties.

the time loop, and hence the density and the internal energy are known, the ele-

ment of the thermodynamic grid in which each cell of the computational domain

belongs may be determined, by employing a static linked-list algorithm. Then

using a FE bilinear interpolation, any thermodynamic property φ in the space Σ

can be approximated as:

φ(ρ, e) =
nodes∑
n

Nn(ρ, e)bn, (2.55)
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Figure 2.3: Three dimensional phase diagrams for n-Dodecane, where the dashed
line is the saturation line. The properties have been derived from the Helmholtz
EoS.

where φ can be either pressure, temperature and speed of sound, which are needed

for the �ux calculation (see section 2.6), or any other property such as enthalpy,

entropy needed during the post-processing stage. The unknown coe�cients of φ

are notated by b and N is the shape function of node n:

Nn(ρ, e) = 1 + (e− en) + (ρ− ρn) + (e− en)(ρ− ρn). (2.56)

The b coe�cients of property φ for each element are calculated by solving the

following equation:
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Figure 2.4: Three dimensional phase diagrams for Oxygen, where the dashed
line is the saturation line. The properties have been derived from the Helmholtz
EoS.

[N]b = φ→



N11 N12 N13 N14

N21 N22 N23 N24

N31 N32 N33 N34

N41 N42 N43 N44





b1

b2

b3

b4


=



φ1

φ2

φ3

φ4


, (2.57)

where φi are the values of the property at the nodes of the quadrilateral element

(known from the thermodynamic table) and Nmn is the shape function of node

n evaluated at node m:

Nmn = 1 + (em − en) + (ρm − ρn) + (em − en)(ρm − ρn). (2.58)
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2.3. Liquid-gas �ows without phase change

The most e�cient way to �nd the coe�cient b, is to calculate in advance and

store the inverse of the mass matrix [N] for all elements before time advancement

begins. That way, the coe�cients b for each thermodynamic property φ can be

found:

b = [N]−1φ (2.59)

After �nding the conservative vector within the time loop, each thermodynamic

property φ can be approximated from Eq. 2.55.

2.3 Liquid-gas �ows without phase change

In this section, the EoS with temperature e�ects for 2-phase �ows of liquid and

gas are described. The transport equation for the gas is homogeneous and thus,

no phase change is predicted.

2.3.1 Sti�ened gas-ideal gas

The liquid density from the sti�ened gas EoS is given by:

ρl =
p+ p∞

(γl − 1)CvlT
, (2.60)

and the gas density using the ideal gas EoS is:

ρg =
p

RgT
, (2.61)

which is similar to Eq. 2.31, but now the temperature is not constant. The

density of the mixture can be found from Eq. 2.23, 2.24:

ρYg
ρg

+
ρYl
ρl

= 1→ ρ =
ρgρl

Ygρl + Ylρg
(2.62)

Replacing Eq. 2.60 and 2.61 into Eq. 2.62, a quadratic EoS for the pressure with

respect to temperature and density is derived:

Ap2 + Bp+ C = 0, (2.63)

where

A =
−1

Rg(γl − 1)CvlT 2
, (2.64)
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B =
ρYl
RgT

+
ρYg

(γl − 1)CvlT
+

p∞
Rg(γl − 1)CvlT 2

, (2.65)

C =
ρYgp∞

(γl − 1)CvlT
. (2.66)

In the case of two real solutions p1, p2 ∈ R, the largest root is kept. The internal
energy of the liquid, based on the sti�ened gas EoS can be derived from:

del = CvldT +

[
T

(
∂p

∂T

)
v

− p

]
dv, dvl = − 1

ρ2
l

dρl. (2.67)

Using Eq. 2.60, Eq. 2.67 becomes:

del = CvldT −
p∞
ρ2
l

dρl (2.68)

and after integration:

el = CvlT +
p∞
ρl
→ el =

p+ γlp∞
(γl − 1)ρl

, (2.69)

which are the two expressions of internal energy for sti�ened gas with respect to

temperature and pressure respectively. Similarly, the internal energy of the gas

is given by the following relation, assuming it is ideal:

eg = CvgT. (2.70)

The internal energy of the mixture is calculated by the weighted average of the

two phases:

e = egYg + elYl, (2.71)

replacing the internal energy of the liquid and the gas from Eq. 2.69, 2.70 into

Eq. 2.71 and using Eq. 2.60 the equation for the internal energy in terms of

pressure, temperature and mass fraction is derived:

T =
e

CvgYg + CvlYl + Yl(γl−1)Cvlp∞
p+p∞

(2.72)

So after solving the NS equations accompanied by the transport equation for

the gas mass fraction, and thus, the internal energy is known, the pressure and

temperature equations 2.63, 2.72 are iteratively solved. The temperature is cal-

culated based on an initial pressure guess and then the pressure is calculated
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2.3. Liquid-gas �ows without phase change

from the quadratic equation. This algorithm is repeated until a convergence cri-

terion is satis�ed, which in this case is a tolerance between the initial and the

�nal pressure. The speed of sound of the mixture based on the Gibbs energy is:

c =

√
f1T

f0 − f1
fpm

, (2.73)

where f0, f1 and fpm are given by:

f0 = 1− Ylρ(γl − 1)Tp∞Cvl
(p+ p∞)2

, (2.74)

f1 = RgYg + Yl(γl − 1)Cvl
p

p+ p∞
, (2.75)

fpm = YgCpg + YlCpl (2.76)

2.3.2 Tait-ideal gas

A similar approach is followed here, but now instead of the sti�ened gas EoS,

Tait EoS has been utilised for the liquid. The density of the liquid is given from

the �rst step of Eq. 2.28:

ρl = ρsat,l

(
p− psat
B

+ 1

)1/n

, (2.77)

whereas the gas density is given from Eq. 2.61 and the expression for the mixture

density is Eq. 2.62. After replacing the density expression for each phase in the

latter, the closed form of the pressure equation is derived:

ρYgρsat,l

(
p− psat
B

+ 1

)1/n

+ ρYl
p

RgT
= ρsat,l

p

RgT

(
p− psat
B

+ 1

)1/n

(2.78)

The above equations is solved iteratively with Newton-Raphson method by de�n-

ing the pressure function F(p) and its derivative F ′(p):

F(p) = ρYgρsat,l

(
p− psat
B

+1

)1/n

+ρYl
p

RgT
−ρsat,l

p

RgT

(
p− psat
B

+1

)1/n

, (2.79)
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(2.80)
F ′(p) =

[
− pρsat,l

(
p− psat
B

+ 1

)1/n−1

−Bnρsat,l
(
p− psat
B

+ 1

)1/n

+BnρYl + ρsat,lRgρYgT

(
p− psat
B

+ 1

)1/n−1
]/(

BnTRg

)
Similar to section 2.3.1, starting from Eq. 2.67 and making use of Eq. 2.77, the

internal energy of the liquid is given by:

el =Cvl(T −Tref )+
1

(n− 1)ρsat,l

(
p− psat
B

+1

)−1/n
[

(n−1)psat

(
p− psat
B

+1

)1/n

− (n− 1)psat +Bn−B +B

(
p− psat
B

+ 1

)
−Bn

(
p− psat
B

+ 1

)1/n
]

(2.81)

and in a short form:

el = Cvl(T − Tref ) +D(p), (2.82)

where

D(p) =
1

(n− 1)ρsat,l

(
p− psat
B

+ 1

)−1/n
[

(n− 1)psat

(
p− psat
B

+ 1

)1/n

− (n− 1)psat +Bn−B +B

(
p− psat
B

+ 1

)
−Bn

(
p− psat
B

+ 1

)1/n
]
.

(2.83)

Similarly, the internal energy of the gas, assuming it is ideal:

eg = Cvg(T − Tref ) + Lv0. (2.84)

The temperature equation is derived by Eq. 2.71 by using Eq. 2.82, 2.83, 2.84:

T =
ρe− ρYgLv0 − ρYlD(p)

ρYgCvg + ρYlCvl
+ Tref . (2.85)

After solving the NS and the transport equations and thus, the internal energy is

known, the pressure and temperature equations 2.78, 2.85 are iteratively solved.

The temperature is calculated based on an initial guess for the pressure and

then the pressure is calculated from the quadratic equation. This algorithm is

repeated until a convergence criterion is satis�ed, which in this case is a tolerance

between the initial and the �nal pressure.
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2.4. Evaluation of the di�erent EoS

2.4 Evaluation of the di�erent EoS

The thermodynamic models presented in 2.2, 2.3 are compared against the NIST

database [223] in this section, where n-Dodecane was selected as the working

liquid. In Fig. 2.5 the pressure and the speed of sound for the di�erent utilized

EoS suitable for modelling phase-change are plotted. The sti�ened gas EoS is not

suitable for modelling cavitation as the saturated liquid density is signi�cantly

di�erent from the physical saturation value [28]. If the parameters of [224] are

used in the sti�ened gas EoS for dodecane, negative pressures are obtained for

reasonable densities at the liquid state. And vice versa, in order for the density,

pressure and speed of sound to match the experimental data, non-physical values

for the speci�c heat at constant pressure must be used [28].

Fig. 2.5 can be utilized as a preliminary validation of the Helmholtz EoS

implementation, since the Helmholtz curve appears to be in good agreement

with the NIST database. The formulation of subsection 2.2.2 is not so accurate

compared to the Helmholtz EoS at large pressures and temperatures, although

it considers temperature e�ects (see Fig. 2.5). This is due to the fact that

the latent heat is constant regardless the temperature variation and because the

second term in the RHS of Eq. 2.81 is not taken into account. In practice,

convergence problems in the Newton-Raphson method have been noticed when

there is signi�cant temperature or pressure increase. The barotropic models

of subsection 2.2.1 are less accurate in high pressures and a large deviation in

the speed of sound between such models and the Helmholtz EoS is noticed in

the mixture regime. More speci�cally, in the Tait-isentropic vapour approach,

the speed of sound is estimated by the second step of Eq. 2.29, which is the

derivative of the isentropic relation, instead of using the Wallis formula or similar.

Among the four models, the less accurate is the linear EoS utilized for simulating

liquid-vapour-gas mixtures, where the speed of sound is a step function and large

deviation between the linear EoS and NIST at high pressures has been noticed.

2.5 Mass transfer models

Although this work focuses mostly on HEM, mass transfer models have been

developed for future use. In order to model phase-change, condensation and

evaporation source terms are added in the previously homogeneous transport
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Figure 2.5: Pressure (left) and speed of sound (right) of n-Dodecane with respect
to density for the thermodynamic models presented in 2.2, 2.3. The solid green
line is the Helmholtz EoS (2.2.3), the squares denote the modi�ed Tait-ideal
gas EoS which consider temperature e�ects (2.2.2), the solid blue line is the
barotropic approach by employing the Tait-isentropic vapour EoS, whereas the
triangulars represent the linear EoS for the liquid-vapour mixture which is also
barotropic (the �rst and the second subsections in 2.2.1 respectively). Finally,
the circles represent the NIST database [223].

equation for the gas mass fraction of section 2.3. Therefore, the liquid now

becomes vapour and vice versa through the transport equation and not through

the variation of the density as it was predicted by the EoS in section 2.2. The

Zwart-Gerber-Belamri (ZGB) [80] and the Schnerr and Sauer [82] models have

been implemented in OF.

Concerning the ZGB model, the evaporation and condensation terms are

respectively:

Re = Fvap
3αnucαlρv

RB

√
2

3

psat − p
ρl

, p ≤ psat (2.86)

Rc = Fcond
3αvρv
RB

√
2

3

p− psat
ρl

, p ≥ psat (2.87)

where RB = 10−6m is the bubble radius, αnuc = 5 · 10−4 is the nucleation

site volume fraction, Fvap = 50 and Fcond = 0.001 are the evaporation and

condensation coe�cients respectively. Regarding the Schnerr and Sauer model

the terms are as follows:

Re =
ρvρl
ρ
αvαl

3

RB

√
2

3

psat − p
ρl

, p ≤ psat (2.88)
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Rc =
ρvρl
ρ
αvαl

3

RB

√
2

3

p− psat
ρl

, p ≥ psat (2.89)

2.6 FV discretization

The Navier-Stokes equations (Eq. 2.1) can be also expressed in an integral form,

let Ω ∈ R3 be a physical domain and S = ∂Ω ∈ R2 its boundary:∫
Ω

∂U

∂t
dΩ +

∫
Ω

∇ · ¯̄F(U)dΩ =

∫
Ω

∇ · ¯̄FV (U)dΩ . (2.90)

Applying Gauss theorem:∫
Ω

∂U

∂t
dΩ +

∫
S

¯̄F(U) · ndS =

∫
S

¯̄FV (U) · ndS , (2.91)

where n is the unit normal vector on S , pointing out of the control volume.

Now let Ωh be a collection of N disjoint cells (or �nite volumes) Vi , i ∈ N that

partition Ω : Ωh =
⋃
i∈N

Vi , where N ⊂ Z+ is the number of cells. The boundary

of the control volume Vi is ∂Vi , which in 3-D is the sum of its surrounding faces

Aij , j ∈ M : ∂Vi =
M∑
j=1

Aij , where M ⊂ Z+ is the number of the local boundary

faces that the cell i has. The boundary ∂Vi can be an external boundary ∂V B
i :=

∂Vi : S ∩ ∂Vi 6= ∅, or an interior boundary ∂V int
i := ∂Vi : S ∩ ∂Vi = ∅. In case

of an interior boundary, the �nite volume Vi is neighbour with a �nite volume

Vm and share a common face: Aij = ∂Vi ∩ ∂Vm , where i,m ∈ N and j ∈ M

(see Fig. 2.6). Considering Eq. 2.91 for each control volume Vi , the weak form

of the NS equations is derived:∫
Vi

∂U

∂t
dVi +

∫
∂Vi

¯̄F(U) · nd∂Vi =

∫
∂Vi

¯̄FV (U) · nd∂Vi . (2.92)

The control volume average Ūi of Ui is:

Ūi(t) =
1

|Vi |

∫
Vi

U(x, y, z, t)dVi , (2.93)

where |Vi | is the volume of cell i. The discrete form of Eq. 2.92 is:

∂Ūi

∂t
+

1

|Vi |

M∑
j=1

∫
Aij

¯̄F(U) · nijdAij =
1

|Vi |

M∑
j=1

∫
Aij

¯̄FV (U) · nijdAij . (2.94)

47



2. Numerical Method

Figure 2.6: Two neighbour �nite volumes i (left) and i + 1 (right), as well as
their common interface ∂Vi ∩ ∂Vi+1 (orange).

2.6.1 Numerical �ux

As it can be seen in the previous sub-section from Eq. (2.32) and (2.30), the

speed of sound can vary from 1m/s in the mixture regime, up to 1482.35m/s in

the liquid region, whereas in the gaseous phase the speed of sound is 290m/s.

Due to this large variation in the speed of sound, the Mach number in three phase

�ows can range from 10−2 up to 102 or even higher [18]. This is an obstacle in

density-based solvers, since they are prone to slow convergence and dispersion in

low Mach number �ows [19, 20, 21]. Therefore, proper �ux functions suitable for

all-Mach number �ows have been developed and incorporated in density based

solvers, for instance in [22, 23], or in some more recent studies [24, 25]. In order

to handle the low Mach number problem, a hybrid numerical �ux, suitable for

multiphase �ows of 2 materials, is proposed here.

Mach consistent numerical �ux

Schmidt et al. [23] proposed a Mach consistent numerical �ux (MC) for cavi-

tating �ows, based on the HLLC and AUSM [22] �uxes. The behaviour of the

MC �ux is evaluated against the HLL �ux in Fig. 2.7 and against the Tadmor-

Kurganov central scheme [225] in Fig. 2.8. Given the bene�ts of the MC �ux,

it has been implemented in OF and used for cavitating �ows. In Fig. 2.7 the

Riemann problem in the computational domain x ∈ [−50, 50] with initial condi-

tions: ρL = 1000 kg/m3, uL = 0m/s, ρR = 1 kg/m3, uR = 500m/s is examined

at time 0.01 s. The computational solutions with the HLL and the MC �uxes

are compared against the exact solution. The solution obtained by the MC �ux

is closer than the HLL one to the exact solution, while the latter fails to cap-

ture the pressure right of the liquid region. In Fig. 2.8 the pressure contours
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for inviscid �ow around cylinder at M = 0.01 and p∞ = 150 bar are shown by

utilizing the standard rhoCentralFoam and the barotropicFoam solvers. In the

former, the central scheme of Tadmor-Kurganov for ideal gas was used, whereas

in the latter, the MC solver with the Tait equation was employed. The standard

density based solver gives an incorrect and oscillatory solution. The MC solver

however, provides a smooth and symmetric solution even for low Mach numbers.

The inviscid numerical �ux in the k direction at the i+1/2 interface (see Fig.

2.6) is:

F
i+1/2
k = ρL/Ru?k



1

Y L/R
g

u
L/R
1

u
L/R
2

u
L/R
3

EL/R



+ p?



0

0

δ1k

δ2k

δ3k

u?k



, (2.95)

where the interface velocity u?k, pressure p
? and speed of sound c? are approxi-

mated by:

u?k =
1

ρL + ρR

(
ρLuLk + ρRuRk +

pL − pR

c?

)
, (2.96)

p? =
pL + pR

2
, (2.97)

c? = max(cL, cR), (2.98)

The superscript L/R denotes that the value considered depends on the sign of

u?k; if u
?
k > 0, the left cell value is considered and vice versa.

Hybrid numerical �ux

Although the MC numerical �ux gives accurate and smooth solutions for 1 ma-

terial problems, overshoots were noticed when a 2 phase solver was employed (2

material problem), see Fig. 2.9. In Fig. 2.9 the Riemann problem for the linear

EoS (Eq. 2.34) in the computational domain x ∈ [−0.5, 0.5] with initial condi-

tions: ρL = 998.2 kg/m3, uL = 0m/s, Yg = 0, ρR = 0.017 kg/m3, uR = 0m/s,

Yg = 1 is examined at time 0.1µs. An overshoot in the velocity is noticed when

the MC �ux is employed, while the MC solver seems incapable of capturing the
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Figure 2.7: Comparison between HLLC and the Mach consistent (MC) numerical
�uxes for the 1 material Riemann problem at time t = 0.01 s; x-velocity on the
left and pressure on the right.

correct pressure pattern. For that purpose, a hybrid numerical �ux has been

developed and implemented in OF [226].

The aforementioned �ux is based on the Primitive Variable Riemann Solver

(PVRS) [227] and the Mach consistent numerical �ux of Schmidt et al. [23]. That

way, an e�cient and robust solver is developed, by utilizing an approximated

Riemann solver, instead of the exact one. At the same time, the numerical

scheme is suitable for subsonic up to supersonic �ow conditions. The inviscid

numerical �ux in the k direction at the i+1/2 interface takes the following form:

F
i+1/2
k = ρL/Ru?k



1

Y L/R
g

u
L/R
1

u
L/R
2

u
L/R
3

EL/R



+ p?



0

0

δ1k

δ2k

δ3k

u?k



, (2.99)

where the interface velocity u?k is approximated by:

u?k =
1

CL + CR

[
CLuLk + CRuRk + (pL − pR)

]
, (2.100)
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Figure 2.8: Pressure contours for inviscid �ow around cylinder at M = 0.01;
comparison between rhoCentralFoam (left) and barotropicFoam (right) solvers.

and C is the acoustic impedance C = ρc. The interface pressure p? is:

p? = (1− β)p?,incr + βp?,comp. (2.101)

In Eq. (2.101), the interface pressure is the sum of the incompressible and the

compressible parts, where the incompressible contribution is:

p?,incr =
CLpR + CRpL

CL + CR
, (2.102)

and the compressible contribution is:

p?,comp =
CLpR + CRpL + CRCL(uLk − uRk )

CL + CR
(2.103)

Depending on the Mach number, the contribution of the incompressible or the

compressible part in Eq. (2.101) is more dominant and the weighted term β is :

β = 1− e−aM , (2.104)

where the Mach number M is de�ned as:

M = max
( |uL|
cL

,
|uR|
cR

)
. (2.105)

The blending coe�cient is α∼(10, 100). For incompressible single phase �ow,
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Figure 2.9: Comparison between the MC and the Hybrid numerical �uxes for
the 2 material Riemann problem at time t = 0.01 s; x-velocity on the left and
pressure on the right.

Eq. (2.102) is taking the form of
1

2
(pL + pR) since CL = CR. However, for

two-phase �ows, Eq. (2.102) is much closer to the exact solution. Regarding

spatial accuracy, linear interpolation (2nd order spatial accuracy) with van Leer

reconstruction has been used [228].

2.7 Time discretization

For simulating unsteady �ows, where often an oscillating �ow pattern appears,

such as vortex shedding, higher order of time accuracy is required. This is

achieved by implementing RK schemes in the �ow solver. Let rewriting the

NS equations 2.1 as an initial value problem which is de�ned by the following

di�erential equation and its initial condition:

∂U

∂t
= R(t,U), U(t0) = U0 (2.106)

Here R denotes the inviscid and the viscous terms of the NS equations.

A low storage, four stage Runge-Kutta method, 2nd order in time has been

employed. The numerical solution of this di�erential equation is given by the

following steps, where the coe�cients have been chosen in order to improve
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stability [229]:

U1 = Un + 0.11R(Un), (2.107)

U2 = Un + 0.2766R(U1), (2.108)

U3 = Un + 0.5R(U2), (2.109)

Un+1 = Un + R(U3) (2.110)

For calculating the solution vector at an intermediate stage, only the solution

vector of the previous stage is required and when advancing to the next time-

step, only the solution vector at times n and n+ 1 are stored. A four stage RK,

with 4th order of temporal accuracy [227] has been also used and implemented

in OF:

k1 = R(tn,Un), (2.111)

k2 = R(tn +
∆t

2
,Un +

∆t

2
k1), (2.112)

k3 = R(tn +
∆t

2
,Un +

∆t

2
k2), (2.113)

k4 = R(tn + ∆t,Un + ∆tk3), (2.114)

Un+1 = Un + ∆t
[k1

6
+

k2

3
+

k3

3
+

k4

6

]
(2.115)

Here the solutions at all the intermediate stages are required to be stored in

order to advance from time n to time n+ 1. However, the advantage is that 4th

order of temporal accuracy is achieved with only 4 intermediate stages.
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Chapter 3

Results: Fundamental Studies

In this chapter, validation of the numerical method is performed for the Rie-

mann problem and the Rayleigh bubble collapse. Then, fundamental cases are

examined, such as bubble dynamics, �ow in a converging-diverging nozzle, the

�ow around a hydrofoil, bubble-shock wave interaction and droplet impact sim-

ulations. More speci�cally, the advantages of the numerical �ux compared to a

conventional one are demonstrated in Fig. 3.5, where a dispersion-free solution

is obtained. In addition, the vapour n-Dodecane bubble collapse alongside with

the cryogenic �ow in a converging-diverging nozzle demonstrate the applicability

of the solver to di�erent materials and phenomena, either cavitation or �ashing.

Concerning the collapse of vapour n-Dodecane bubbles, parametric studies at

conditions realised in micro-ori�ce �ow passages have been performed. The liq-

uid temperature and pressure changes on the wall are estimated as a function of

the surrounding liquid pressure, the initial bubble radius and the location of the

wall from the center of the initial bubble, giving an insight into fuel pyrolysis and

erosion damage. Finally, in the droplet impact simulations, the compressibility

e�ects have been considered and the cavitation formation inside the droplet has

been modelled at We numbers greater than 105, which has not been simulated

in the past, up to author's best knowledge.

3.1 Riemann problem

The Riemann problem is an Initial Value Probelm (IVP) with a discontinuity at

x0 [227]:
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U(x, t = 0) =

UL(x), x < x0

UR(x), x ≥ x0

(3.1)

For validating the developed numerical schemes, the 1-D Euler Riemann problem

is considered next, with two di�erent constant states on the left (UL) and right

(UR). Validation for the di�erent EoS implemented in OF and the di�erent

materials, such as water, n-Dodecane and LOX has been performed.

3.1.1 Barotropic model, liquid-vapour mixture

The �rst Riemann problem examined is for the single phase algorithm by employ-

ing the Tait EoS for the liquid and the isentropic gas EoS for the liquid-vapour

mixture. The shock tube problem is studied in the domain x ∈ [−50, 50] with

initial conditions for the left state: ρL = 1000 kg/m3, uL = 0m/s and for the

right state: ρR = 1 kg/m3, uR = 500m/s; the corresponding pressure based on

Eq. 2.28 is pL = 3.809MPa and pR = 890.45Pa respectively. Wave transmis-

sive boundary conditions have been used for the left and the right sides of the

shock tube, that is Un+1(x = L) = Un(x = L) and Un+1(x = 0) = Un(x = 0).

Comparison between the exact and the numerical solution is shown in Fig. 3.1

at time t = 0.01 s for �rst order of spatial accuracy with 2000, 5000 and 10000

equally spaced cells in the x direction. The numerical solution converges to the

exact solution as the cell resolution increases.

Figure 3.1: Veri�cation of the one-phase solver for the Riemann problem. Com-
parison of the x-velocity (left) and pressure (right) between the exact and the
numerical solution at time t = 0.01 s. First order accuracy in space with 2000,
5000 and 10000 cells has been used.
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3.1.2 Barotropic model, liquid-gas mixture (linear EoS)

The Riemann problem for the 2-phase algorithm is examined in the computa-

tional domain x ∈ [−0.5, 0.5] with initial conditions for the left state: ρL =

998.2 kg/m3, uL = 0m/s, Yg = 0 and for the right state: ρR = 0.017 kg/m3,

uR = 0m/s, Yg = 1. The boundary conditions on the right and the left sides

were set as wave transmissive. Comparison between the exact and the numerical

solution is shown in Fig. 3.2 at time t = 0.1µs, where second order of spatial ac-

curacy with 500 equally spaced cells in the x direction was used for obtaining the

numerical solution. A close-up view in order to compare �rst and second order

in space schemes with resolution either 500 or 1000 equally spaced cells in the

x direction is shown in Fig. 3.3. In Fig. 3.2, the exact solution of the Riemann

problem and the computed one are in satisfactory agreement and the wave pat-

tern has been correctly captured. As it was expected in Fig. 3.3, the 2nd order

solutions in space are free of numerical di�usion, which is dominant in the 1st

order schemes. In addition, the computed solution is getting closer to the exact

by increasing the mesh resolution and the numerical di�usion is eliminated. No

dispersion is noticed at the boundary interface (between the gas and the liquid),

which is the case when using convectional schemes such as HLLC or similar. The

exact solution of the Riemann problem is not trivial for multi-material cases and

it has been derived in the Appendix B.2.

Figure 3.2: Veri�cation of the two-phase solver for the Riemann problem. Com-
parison of the x-velocity (left), pressure (middle) and density (right) between the
exact and the numerical solution at time t = 0.1µs. Second order accuracy in
space with 500 cells has been used.
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3. Results: Fundamental Studies

Figure 3.3: Close-up view of the Riemann problem. Comparison of the x-velocity
(left) and pressure (right) between the exact and the numerical solution at time
t = 0.1µs. First and second order spatial accuracy schemes with resolution of
500 and 1000 cells have been used.

3.1.3 Helmholtz EoS, liquid-vapour mixture

N-Dodecane

The Riemann problem for the Helmhotz EoS is examined in the computational

domain x ∈ [−2, 2] with initial conditions for the left state ρL = 752.5 kg/m3,

TL = 289K and for the right state ρR = 717.5 kg/m3, TR = 350K. Comparison

between the exact and the numerical solution is shown in Fig. 3.4 at time

t = 0.5µs. First order of spatial accuracy with 800 equally spaced cells in the x

direction was used. Wave transmissive boundary conditions have been used for

the left and the right side of the shock tube. As it can be seen in Fig. 3.4, the

exact solution of the Riemann problem and the computed one are in satisfactory

agreement and the wave pattern has been correctly captured. The exact solution

of the Riemann problem is not trivial for an arbitrary EoS and it has been derived

in Appendix B.1.

LOX

Since the tabulated data algorithm has been used for cryogenic applications as

well, it has been validated for such conditions. The Riemann problem in the com-

putational domain with initial conditions for the left state: ρL = 965.8 kg/m3,

TL = 208.9K, uL = 0m/s and for the right state: ρR = 417.6 kg/m3, TR =

111K, uR = 0m/s is examined. The numerical solution is compared with the
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3.1. Riemann problem

Figure 3.4: Validation of the solver for the Riemann problem (n-Dodecane).
Comparison of the density (upper left), temperature (upper right), pressure
(lower left) and x-velocity (lower right) between the exact and the numerical
solution.

solution from an 1-D FV solver which has been validated against the exact so-

lution at time 1ms (Fig. 3.5). First order of spatial accuracy with 1000 equally

spaced cells in the x-direction has been used in both solvers. Wave transmissive

boundary conditions have been employed for the left and the right side of the

shock tube.

As it can be seen in Fig. 3.5, the two solutions are in satisfactory agree-

ment and the correct wave pattern has been successfully captured: a left moving

expansion wave on the left, a right moving contact discontinuity in the middle

and a right moving shock wave on the right. It has to be mentioned here that

although the same amount of computational cells and the same spatial accuracy

is used in both solvers, the traditional HLLC solver gives a dispersive solution at

the location of the right moving wave at x = 0.2m. This is a good demonstration
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3. Results: Fundamental Studies

of the capabilities of the Mach consistent numerical �ux, which gives smooth and

accurate solutions.

Figure 3.5: Validation of the solver for the Riemann problem (LOx). Comparison
of the density (upper left), temperature (upper right), pressure (lower left) and
x-velocity (lower right) between the numerical solution and the one from an 1-D
FV solver.

3.1.4 HEM with temperature e�ects

Pure liquid �ow

A shock tube con�guration for pure liquid �ow is examined in the computational

domain x ∈ [0, 1] with initial conditions for the left state (x < 0): pL = 108 Pa,

uL = 0m/s and for the right state (x ≥ 0): pR = 104 Pa, uR = 0m/s. First

order spatial accuracy with 1000 equally spaced cells was used and wave trans-

missive boundary conditions were utilised for both sides. Based on the initial
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3.2. Rayleigh bubble collapse (Helmholtz EoS)

con�guration, a left running expansion wave, a right running contact disconti-

nuity and a right running shock wave are formed and travel inside the domain.

Comparison with Koop's solution [28] at t = 90µs is shown in Fig. 3.6; the

present solution appears to be in satisfactory agreement with Koop's.

Figure 3.6: Validation of the HEM with temperature EoS for the Riemann prob-
lem (pure water): comparison of the pressure (left) and the x-velocity (right)
between the present (red) and Koop's solution [28] (green).

Liquid-vapour mixture

A shock tube con�guration for the liquid-vapour mixture is examined next in

the computational domain x ∈ [0, 1] with initial conditions for the left state

(x < 0): pL = 0.9 · 105 Pa, uL = −10m/s and for the right state (x ≥ 0):

pR = 0.9 · 105 Pa, uR = 10m/s. First order spatial accuracy with 1000 equally

spaced cells was used and wave transmissive boundary conditions were utilised

for both sides. Due to the opposite moving states, 2 expansion waves, one right

and one left running are formed and evaporation takes place. Comparison with

Koop's solution [28] at t = 90µs is shown in Fig. 3.7; the two solutions are in

satisfactory agreement.

3.2 Rayleigh bubble collapse (Helmholtz EoS)

The second test case examined is the Rayleigh bubble collapse, where a vapour

sphere of radius R0 = 400µm is under compression owing to the higher pressure

of the surrounding liquid. The bubble collapse velocity is given by Franc and

Michel [216]:
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3. Results: Fundamental Studies

Figure 3.7: Validation of the HEM with temperature EoS for the Riemann
problem (liquid-vapour mixture): comparison of the pressure (left) and the
vapour volume fraction (right) between the present (red) and Koop's solution
[28] (green).

dR

dt
= −

√√√√2

3

p∞ − pv
ρl

[(
R0

R

)3

− 1

]
, (3.2)

and the characteristic Rayleigh time τ of the bubble is:

τ = 0.915R0

√
ρl

p∞ − pv
, (3.3)

Here, the vapour pressure is pv = 19.64Pa, the liquid density is ρl = 744.36 kg/m3

and the far-�eld pressure is p∞ = 0.1MPa. An 1-D solver was employed for this

simulation, taking advantage of the spherical symmetry (see A). The total com-

putational domain is 20 times the size of the initial vapour radius in order to

minimize the interference of the boundaries. The mesh is re�ned in the bubble

region, where 1000 equally spaced cells have been used and a stretching ratio

of 1.05 with 150 cells has been used outside the bubble. Wave transmissive

boundary condition has been used on the far-�eld right side and symmetry con-

dition was selected for the left side. Comparison with the semi-analytical solution

gives satisfactory results (see Fig. 3.8), since the current methodology is able

to predict the correct curve of the bubble radius with respect to time. In Fig.

3.8, the radius has been divided by the initial radius R0 and the time has been

non-dimensionalized by the Rayleigh time which is τ = 31.5µs for the current

con�guration.
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3.3. N-Dodecane bubble dynamics (Helmholtz EoS)

Figure 3.8: Comparison between the Rayleigh collapse solution and the numerical
one. The bubble radius and the time are expressed in non-dimensional form, in
reference to the initial radius R0 and Rayleigh collapse time τ respectively.

3.3 N-Dodecane bubble dynamics (Helmholtz EoS)

After validating the method for the Riemann problem of section 3.1.3 and for the

Rayleigh bubble collapse of section 3.2, the collapse of a vaporous n-Dodecane

bubble at di�erent con�gurations is simulated by utilising the tabulated data

algorithm presented in section 2.2.3. The viscosity and surface tension are ne-

glected in the present simulations, since bubble growth and collapse are inertial

phenomena [96]. The 2 − D Euler equations in the rz cylindrical coordinates

with a geometric source term in order to take into account cylindrical symmetry

[227] have been employed (see Appendix A).

The initial con�guration is the same as the cases examined in [113, 89]. The

radius of the bubble is R = 400µm and its centre has been placed at distance

d = 416, 140 and −140µm from the horizontal wall (x-axis) on the axis of

symmetry (y-axis), as it can be seen in Fig. 3.9. The properties of the liquid

n-Dodecane surrounding the bubble are pl = 12.144MPa, Tl ≈ 300K and the

vapour bubble properties are pv = 19.64Pa, Tv ≈ 300K. The computational

domain is 20 times the bubble radius and 200 equally spaced cells were used for

describing the initial radius of the bubble. After distance 2.5R from the origin,

the mesh is coarsened with ratio 1.05 in both directions. Zero gradient boundary

condition has been used for the right and the upper side, slip wall for the lower

side, whereas for the y-axis of symmetry, the normal velocity component is zero.
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3. Results: Fundamental Studies

3.3.1 Numerical investigation

In Fig. 3.10, 3.11, 3.12 there are two columns of images. In the �rst column the

pressure �eld is shown on the left and the velocity �eld on the right. Similarly,

in the second column the temperature �eld is shown on the left and numerical

Schlieren is depicted on the right. In all images, iso-lines of density 380 kg/m3 are

shown as well. In Fig. 3.13, 3.14, 3.15 wall pressure (left) and wall temperature

(right) combined with the density iso-surface of 380 kg/m3 are shown. The units

are in SI or their submultiples and multiples of the SI units. The simulation

time indicated in the next Figures is non-dimensional and it is divided by the

Rayleigh collapse time τ = 2.88µs.

Figure 3.9: Initial bubble con�gurations: the bubble centre is placed at d =
416µm, d = 140µm and d = −140µm from the origin of the axes.

In all three con�gurations, there is slow shrinking of the bubble initially, until

the jet is formed and after that the bubble is collapsing rapidly. Of course, the

direction of the jet depends on the con�guration, as it will be explained below.

In Fig. 3.10 the evolution of the bubble collapse is shown for the con�guration

where its initial centre is placed at d = 416µm from the x-axis. At the beginning

of the collapse, a rarefaction wave expands from the bubble. The interaction of

the rarefaction wave with the wall causes local depressurisation and vaporisation

in the vicinity of the wall [89]. As the collapse proceeds, the bubble shape

departs from spherical, due to the interaction with the wall boundary (x-axis).

A micro-jet is formed on the top of the bubble and the heart-like-shape is noticed,

which is in accordance with previous results reported [113, 89]. In addition, the

propagating pressure wave after collapse is shown at time 1.18 in Fig. 3.10.

There is a signi�cant rise in the temperature of the liquid, up to 1000K, after
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3.3. N-Dodecane bubble dynamics (Helmholtz EoS)

the collapse of the bubble, due to vapour condensation and liquid compression,

while there is a signi�cant drop in the temperature above the bubble, to 273K,

due to the large acceleration of the �ow which causes a reduction in the internal

energy. We highlight here, that the critical point for n-Dodecane is Tc ∼ 658K

and pc ∼ 18 bar; this implies that in areas of collapse the �uid may transition

to supercritical state. In Fig. 3.11 instances of the bubble having initially its

centre at d = 140µm from the x-axis are shown. Again, a non-symmetric shape

for the bubble and a micro-jet are created. A torus which is attached to the

wall is formed and it collapses creating a pressure wave. In both cases, that

is for d = 416µm and d = 140µm, the jet's and the bubble collapse direction

are towards the wall. In this speci�c case, a secondary jet is created when the

primary jet, which is normal to the wall, is de�ected at the wall and interacts

with the remaining ring (t = 1.09 in Fig. 3.11). In Fig. 3.12 snapshots of the

bubble having its centre in the lowest position (d = −140µm) are demonstrated.

In comparison with the two previous positions, the shape of the bubble looks

like a pin and the collapse direction is tangential to the wall. The jet which is

formed is towards to the axis of symmetry, which was not the case in the previous

positions. A propagating pressure wave at t = 0.77 is shown in Fig. 3.12.

Focusing on the iso-surfaces of Fig. 3.13, 3.14, 3.15, the di�erent collapse

pattern is clearly visible. The justi�cation for the collapse shape is related to

the local angle between the liquid-vapour interface and the wall, at the closest

point or point of contact to the wall; this has been discussed in more detail in

[89], but the main mechanism will be brie�y discussed here as well. When the

local angle is below 90◦, the �ow in the vicinity of the wall tends to detach,

reducing the pressure and preventing further acceleration of the collapse, thus

near wall velocities are small and the collapse is mainly directed in the form

of a micro-jet towards the wall on the axis-of-symmetry. On the other hand,

when the local angle is higher than 90◦ the �ow tends to move towards the

wall, leading to pressurization and further acceleration of the collapse (see Fig.

3.16-3.18 where the velocity vectors are illustrated). These e�ects underline the

in�uence of boundary presence and pressure gradients to the bubble collapse, as

demonstrated also in experimental [230, 231] and numerical work [48, 105, 113].

In Fig. 3.16, 3.17, 3.18 the velocity vectors are shown and the supercritical

cells (Tc = 658.1K, pc = 1.817MPa) are coloured in black, whereas the vapour

(white) and liquid (grey) regions are distinguished by a red iso-line of density
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380 kg/m3.

3.3.2 E�ect of thermodynamic models

Amore thorough study of the collapse times for the previous con�gurations which

are compared against di�erent thermodynamic models is shown next, such as the

barotropic model of section 2.2.1, the HEM with temperature e�ects of section

2.2.2 and the Helmholtz EoS of section 2.2.3. The model parameters and the

initial conditions have been chosen accordingly to match the conditions of the

Helmholtz EoS bubble collapse, for consistency reasons. The initial con�guration

of the barotropic model of section 2.2.1 is as follows: B = 125.956MPa, psat =

40Pa, ρsat = 744.29 kg/m3, C = 1100Pa · kg/m3 and n = 7.15. The initial

density of the liquid was set to ρl = 753.91 kg/m3 and the density in the bubble

was set to ρl = 74.0 kg/m3. For the HEM model with temperature e�ects of

section 2.2.2, the initial density of the liquid was set to ρl = 752.3 kg/m3, whereas

the density in the bubble was ρl = 3.95 kg/m3 and the initial temperature was

T0 = 300K. In addition, B = 168.638MPa, n = 7.15, R = 48.9 J/(kg · K),

Cvl = 1823 J/(kg · K), Cvv = 1593.3 J/(kg · K), Lv = 345739.0 J/(kg · K) and

el0 = 9450 J/kg have been set. In Fig. 3.19, vapour volume fraction (left) with

respect to time is shown for the three di�erent thermodynamic models. The

collapse time of the bubbles is reasonable and comparable to the Rayleigh collapse

time, as well as proportional to the initial volume of the vapour which exists in the

bubble. It is obvious that the barotropic model predicts slightly earlier collapse

time for all three positions of the bubble, because the pressure is expressed

only as a function of the density, and the temperature e�ect is not taken into

account. The other two models considering the temperature e�ects, predict the

same collapse time and their curves coincide for all three positions of the bubble.

However, for the highest position after the collapse, rebound is noticed for all

three models but for the Helmholtz EoS the rebound is more dominant. This

rebound in Fig. 3.19 is caused due to the conservation of angular momentum;

even if the solver employed is based on the Euler equations, the asymmetric

bubble collapse near the wall induces vorticity (it is evident in Fig. 3.16 at t =

1.13, 1.15, 1.18 ). This vorticity causes centrifugal force, which prevents the total

collapse and disappearance of the bubble, at least until vorticity is dissipated by

numerical di�usion. For more information on the rebound of cavitating vortices

the interested reader is addressed to [216] (see also [107]). In addition, if the
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3.3. N-Dodecane bubble dynamics (Helmholtz EoS)

Figure 3.10: Contour �eld instances during vapour bubble collapse for d =
416µm. Time has been non-dimensionalized with τ = 2.88µs.
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Figure 3.11: Contour �eld instances during vapour bubble collapse for d =
140µm. Time has been non-dimensionalized with τ = 2.88µs.
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Figure 3.12: Contour �eld instances during vapour bubble collapse for d =
−140µm. Time has been non-dimensionalized with τ = 2.88µs.
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Figure 3.13: Wall pressure and temperature contours combined with bubble iso-
surface of ρ = 380 kg/m3 for d = 416µm. Time has been non-dimensionalized
with τ = 2.88µs.
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Figure 3.14: Wall pressure and temperature contours combined with bubble iso-
surface of ρ = 380 kg/m3 for d = 140µm. Time has been non-dimensionalized
with τ = 2.88µs.
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Figure 3.15: Wall pressure and temperature contours combined with bubble iso-
surface of ρ = 380 kg/m3 for d = −140µm. Time has been non-dimensionalized
with τ = 2.88µs.
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Figure 3.16: Depiction of the supercritical (black), vapour (white) and liquid
(grey) regions, combined with velocity vectors for d = 416µm. Time has been
non-dimensionalized with τ = 2.88µs.

Figure 3.17: Depiction of the supercritical (black), vapour (white) and liquid
(grey) regions, combined with velocity vectors for d = 140µm. Time has been
non-dimensionalized with τ = 2.88µs.
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Figure 3.18: Depiction of the supercritical (black), vapour (white) and liquid
(grey) regions, combined with velocity vectors for d = −140µm. Time has been
non-dimensionalized with τ = 2.88µs.
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EoS is expressed as a function of density and internal energy, baroclinic torque is

predicted, due to the misalignment of pressure and density gradient vectors and

as a result, more vorticity is generated [232]. This is the case for the Helmholtz

EoS, where the rebound is more dominant than the barotropic model. The HEM

with temperature e�ects is weakly dependent on the temperature and thus, the

rebound is the same as the barotropic model.

In Fig. 3.19 (right) the maximum wall pressure is shown with respect to time,

which is due to the impact of the jet to the wall. It can be noticed that all models

predict similar patterns for each position of the bubble, and the wall pressure

can even be of the order of 1010 Pa for the lowest position of the bubble, as it

has also been shown by Koukouvinis et al. [89]. The maximum wall pressure

is predicted slightly earlier in the barotropic model, as a result of the earlier

collapse time which was also noticed in this model. This pressure increase which

is due to the re-entrant jet and the shock wave after the collapse of the bubble,

can lead to erosion damage of materials.

Figure 3.19: Vapour volume fraction of the bubble and maximum wall pressure
with respect to time. Time has been non-dimensionalized with τ = 2.88µs.

3.3.3 E�ect of initial conditions

In this subsection, parametric studies of vaporous bubble collapse in the proxim-

ity of a wall have been performed, aiming to investigate how the distance between

the bubble center and the wall, the surrounding liquid pressure and the initial

bubble radius a�ect the maximum pressure and temperature on the wall. The

examined cases are summarized in Table 3.1.
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Table 3.1: Numbering, wall distance divided by the bubble radius dw/R, bubble
radius R, liquid pressure pl, initial temperature of both phases T and Rayleigh
collapse time τ of the simulated bubble dynamics cases.

No dw/R R (µm) pl (bar) T (K) τ (s)
1 1.5 1 10 400 2.37 · 10−8

2 1.5 10 10 400 2.37 · 10−7

3 1.5 1 100 400 7.55 · 10−9

4 1.5 10 100 400 7.55 · 10−8

5 0 1 10 400 2.37 · 10−8

6 0 10 10 400 2.37 · 10−7

7 0 1 100 400 7.55 · 10−9

8 0 10 100 400 7.55 · 10−8

9 −0.5 1 10 400 2.37 · 10−8

10 −0.5 10 10 400 2.37 · 10−7

11 −0.5 1 100 400 7.55 · 10−9

12 −0.5 10 100 400 7.55 · 10−8

In Fig. 3.20 the volume of vapour (top left), the maximum wall pressure

(top right) and the maximum wall temperature (bottom middle) are shown with

respect to time. Regarding Fig. 3.20, the collapse time is proportional to the

initial volume of the vapour for each bubble. A rebound is noticed for cases

1-4, however it is weaker than the one noticed in section 3.3.1, due to the larger

distance between the wall and the center of the bubble. The early pressure peaks

at t < 0.5 for cases 1, 2 and at t < 0.8 for cases 3, 4 (Fig. 3.20) are because of

the collapse of a vapour region below the bubble which was originally created by

a rarefaction wave (see also [95]). A pressure and temperature peak (total max-

imum) due to the bubble collapse is noticed in Fig. 3.20 at t ∼ 1 for cases 1-8

and at t ∼ 0.7 for cases 9-12. However, at cases 1-4 are noticed the lowest wall

pressures and the lowest wall temperatures because most of the energy is trans-

formed into kinetic and as a consequence the pressure increase is not as signi�cant

as in the rest cases; the same applies for the temperature. On the contrary, at

cases 5-8 the maximum wall pressures and the maximum wall temperatures are

noticed due to the maximum compression that the bubble undergoes during its

collapse. After the collapse of the bubble (t > 1.5), additional pressure peaks are

noticed for cases 1-4, because of the collapse of the regenerated vapour regions

(rebound). For all three �gures the curves among the cases with di�erent initial

radius but the same surrounding pressure and the same distance dw coincide as it

was expected, given the fact that the time has been non-dimensionalized with τ .

Although the vapour volume is higher in bubbles with larger initial radius, the
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non-dimensional distance dw is the same and thus, the actual distance between

the center of the bubble and the wall is higher. Proportionally, it has the same

e�ect as a vaporous bubble with smaller initial radius placed at smaller actual

distance from the wall surface.

In Fig. 3.21 the evolution of the bubble iso-surface (αv = 0.5) for case 1

is shown. Compared to Fig. 3.10 and 3.13, the bubble shape is much more

symmetrical due the longer distance between the bubble center and the solid

surface; the heart-shape is only noticed at the later stages of the collapse (t =

1.06, 1.08), which was much more evident in Fig. 3.10 and 3.13. Up to non-

dimensional time t = 1.03, a slow shrinking of the bubble is noticed, while

afterwards until t = 1.08 the bubble experiences a rapid collapse due to the high

velocity jet. A rebound is noticed after t = 1.22 owning to the EoS and the

in�uence of the wall (see also section 3.3.2 and [95]).

3.3.4 Conclusions

The pressure increase due to the re-entrant jet and the shock wave after the

collapse can potentially lead to erosion damage of materials. Furthermore, the

maximum temperatures noticed on the wall which are actually the maximum

temperatures of the liquid, are high enough during cavitation collapse that they

can induce pyrolysis of Diesel fuel and contribute to deposit formation.

During the grid independence study, higher maximum pressure and tempera-

ture for the �ner mesh have been noticed. This is reasonable in a way that more

scales can be captured with the �ner mesh. For example, if the vapour bubble

size is smaller than the cell size, then it cannot be captured with the coarse mesh

and neither can the collapse. Similar observations have been made by Adams

and Schmidt [83]. Furthermore, the collapse time was the same, regardless the

resolution of the mesh that has been used.

The system-cpu time required for each thermodynamic model is compared

for simulating the bubble collapse case until time 6.5µs. The user-cpu time for

the Helmholtz model is almost 3.7 times the HEM time, whereas the barotropic

simulations are computationally the most e�cient, as the execution time is al-

most 52 times smaller than the HEM time. The main reason for the increased

cpu-time of the HEM model is the iterative calculation of the temperature using

Newton-Raphson method, which necessitates complex expressions, especially in

the mixture regime. The energy equation, which is not solved in the barotropic
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Figure 3.20: Vapour volume fraction of the bubble, maximum wall pressure and
maximum wall temperature with respect to time for the con�gurations given in
Table 3.1. Time has been non-dimensionalized with τ .

Figure 3.21: Bubble collapse evolution for case 1 ; iso-surfaces of vapour volume
fraction αv = 0.5. Time has been non-dimensionalized with τ .

model, doesn't a�ect the computational cost of the HEM with temperature ef-

fects.

Although no gas phase is included in the current model and thus the heat-

ing in the inner of the bubble cannot be predicted, real �uid thermodynamics
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are incorporated in the algorithm, with the potential of predicting supercritical

transitions. The barotropic model is robust and can be used as a reference, but

temperature e�ects are ignored. The HEM with simpli�ed thermodynamics, is

only applicable for a small range of temperatures. On the other hand, Helmholtz

EoS is applicable for a wider range, as long as experimental data exist to cal-

ibrate the equation (regarding the applicability range of the bubble dynamics

simulations, see Appendix E). For instance, in some cases during the vapour

bubble collapse, local conditions may exceed the applicability range of the equa-

tion for the selected material. In such cases, the Helmholtz EoS was applied

to derive thermodynamic properties beyond the calibration limits. Even though

there is no guarantee that the calibration of the Helmholtz equation is valid in

this regime, the derived properties have been checked for consistency (e.g. in-

creasing density as pressure increases, for given temperature) and were found to

behave in a reasonable manner, i.e. no in�exion or stationary points were found,

indicating a monotonic behaviour of the property functions. Although the trend

of all thermodynamic models employed is similar, supercritical transitions are

only possible to capture using the Helmholtz (or equivalent cubic/high order

EoS, such as Peng-Robinson, see Lacaze et al. [233]), showing the importance of

accurate thermodynamic modelling.

3.4 2-D axisymmetric nozzle (Helmholtz EoS)

In order to expand the tabulated data methodology to cryogenic �ow appli-

cations, inviscid �ow of LOX inside a symmetrical converging-diverging noz-

zle is examined. The circular cross-section S is variable with the length x:

S(x) = 0.01x2+0.01, x ∈ [−2, 2]m. The inlet conditions are ρin = 817.07 kg/m3,

Tin ≈ 143K, which will lead to an inlet pressure pin = 5387100Pa, whereas in the

outlet condition, only the pressure is speci�ed, pout = 1634699.75Pa. A struc-

tured grid of approximately 5200 cells has been created for a 5◦ wedge, where the

length size is ∆x ≈ 1 cm, equally spaced in the x-direction and ∆y ≈ 4.3mm,

equally spaced in the y-direction (∆y changes in the x direction, as the radius of

the nozzle decreases or increases).

As it can be seen in Fig. 3.22, the obtained numerical solution and the refer-

ence solution from a pseudo 1-D FV solver coincide for all the plotted quantities.

Due to subsonic �ow conditions in the entrance, �ow accelerates in the converg-
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ing part. In the diverging part, �ow continues to accelerate (M > 1), resulting

in further depressurization and beginning of vaporization. The supersonic region

in this con�guration is extended all the way down until the exit and no shock

wave is noticed.

3.5 Cavitating �ow around NACA 0015 (barotropic

model)

The cavitating �ow around NACA 0015 hydrofoil is simulated next. The cavi-

tation sheet formation and the shedding of the vapour cloud are predicted in a

periodic pattern by employing the single phase barotropic model of section 2.2.1.

A 2-D NACA 0015 hydrofoil at 6◦ angle of attack with chord length c = 0.13m

was utilised and the computational grid which was created, consists of 16.8k

�nite volumes. The hydrofoil curve is discretized by 160 cells, equally divided

between the upper and the lower sides; the leading and trailing edges are re�ned

with stretching ratio of 1.3 · 10−4m (the computational domain is shown in Fig.

3.23). In the in�ow, the free-stream velocity is set to be u∞ = 12m/s and a

zero gradient condition was selected for the pressure. The free-stream pressure is

p∞ = 105 Pa, which is speci�ed in the outlet. The hydrofoil surface is treated as

no-slip wall. First order interpolation was used initially and then, second order

interpolation with van Leer �ux limiter was utilized. The time-step is controlled

by the CFL number, whose value was selected to be 0.9.

In Fig. 3.24 the 4 latest cavitation cycles of the generated vapour volume

fraction are shown. The �ow �eld has an oscillatory behaviour and it can be

described as periodic. The order of the reconstruction and the mesh resolution

strongly a�ect the cavitation frequency f and consequently the St number [234,

116, 28]. For instance, Sauer [234] reported a frequency of f = 11Hz, whereas

in the work of Schnerr et al. [116] the frequency was calculated to be f = 9Hz

for both �rst order coarse and second order �ner grids. Koop [28] reported

f = 19.9Hz (St = 0.21) when 100 cells where used for the airfoil, whereas when

the NACA geometry was described by 400 cells, a frequency of f = 40.9Hz

(St = 0.44) was calculated. In the present study, the St number was calculated

to be about St = 0.52, based on the cavitation frequency of f = 48Hz.

In Fig. 3.25, 3.26, 3.27 contour �elds for the pressure, the vapour volume

fraction and the velocity magnitude within a cavitation cycle are shown respec-
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Figure 3.22: Validation for the converging-diverging nozzle case: comparison
of the density (upper left), temperature (upper right), pressure (middle left),
velocity magnitude (middle right), Mach number (lower left) and vapour volume
fraction (lower right) between the OF solver (OF) and a pseudo-1D FV solver
(HLLC).

tively. The corresponding times for each frame number of Fig. 3.25 are shown in

Table 3.2. The �rst and the last frames, frame 1 and frame 8 demonstrate the

periodic pattern, as frame 1 is from the previous period. In frame 2 the sheet
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Figure 3.23: Computational grid of 16.8k cells around NACA 0015 hydrofoil.

Figure 3.24: Plot of the generated vapour volume fraction of the NACA 0015
hydrofoil with respect to time for 4 cavitation cycles.

cavity starts to grow at the leading edge of the hydrofoil. Another vapour region

from the previous shedding cycle has convected and it is in the middle of the

chord. In frame 3 the sheet cavity has increased and there is a re-entrant �ow

noticed (see Fig. 3.27 in the middle of the chord on frame 3 ), while the shed

vapour region has travelled towards the trailing edge and it starts to collapse

on frame 4. In the next frame (frame 5 ), the shed vapour region has collapsed,

the sheet cavity has reached its maximum length and the shedding is about to

begin. While the shed vapour region collapses in the trailing edge, a pressure

peak is noticed in frame 6. In frame 6 part of the sheet cavity has collapsed

and it is decomposed into smaller vapour regions, which produce a shock wave

as they collapse. Three di�erent shock waves at the leading edge of the hydrofoil

are shown in frame 7 of Fig. 3.25 as a result of the collapse of di�erent vapour
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regions which were originally part of the sheet cavity.

Table 3.2: Frame number and the corresponding time for the NACA 0015 hy-
drofoil simulation.

Frame No t (s)
1 0.6020
2 0.6070
3 0.6090
4 0.6125
5 0.6150
6 0.6185
7 0.6225
8 0.6230

3.6 Bubble-shock wave interaction (Sti�ened-ideal

gas)

The two-phase solver of section 2.3.1 is utilized to model a gaseous bubble-shock

wave interaction. Such phenomena are noticed in lithotripsy (see selectively

[235, 236, 237, 238]) or for drug delivery purposes. Similar to the vaporous

bubble collapse of section 3.3, the phenomenon is inertia driven and thus, the

compressible Euler equations are solved.

A wedge of 5◦ is used by taking advantage of the problem axial symmetry.

A gaseous bubble of initial radius R0 = 400µm at atmospheric conditions (pg =

0.1MPa, Tg = 300K, Yg = 1) is surrounded by water at the same pressure and

temperature (pl = 0.1MPa, Tl = 300K, Yl = 0). The bubble center is on the

y-axis, at y = 416µm above the solid surface. On the upper side, water at higher

pressure (ps = 6MPa, Ts = 300K, Ys = 0) is set as boundary condition (see

Fig. 3.28). The computational domain is extended up to 20 times the bubble

radius; 150 equally spaced cells were used for describing the initial radius of the

bubble. After distance 2.5R0 from the origin, the mesh is coarsened with ratio

1.05 in both directions. Zero gradient boundary condition has been used for the

right side, slip wall for the lower side, pressure inlet for the upper side and wedge

for the 2 front and back sides.

In Fig. 3.29 a temperature slice is shown on the left accompanied with the

bubble iso-surface (Yg = 0.5) which is coloured by the velocity magnitude. Fur-

thermore, in Fig. 3.30, 3.31 contours of the magnitude of the density gradient
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Figure 3.25: Instances of the pressure contours for the NACA 0015 hydrofoil.

are shown on the left slice, combined with the bubble-liquid interface in red

(Y = 0.5), whereas on the right slice the pressure contours are depicted accom-

panied with the bubble-liquid interface in white (Y = 0.5).

It can be observed that the bubble collapse pattern is similar to the bubble

evolution at the highest position of section 3.3.1, as in both of them the distance

between the center of the bubble and the solid boundary is the same. However,

the bubble collapse in section 3.3.1 is driven by the pressure di�erence between

the vaporous bubble and the surrounding liquid, in contrast to this section where
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Figure 3.26: Instances of the vapour volume fraction contours for the NACA
0015 hydrofoil.

the collapse is because of the downwards moving shock wave; initially the gaseous

bubble and the surrounding liquid share the same temperature and pressure. As

soon as the shock wave hits the bubble (t > 6.6µs), the latter starts to shrink,

slowly in the beginning (t = 8, 10, 12µs) but rapidly in the later stages of the

collapse where a strong jet has been developed on the upper side (t > 12µs).

The heart-like shape is distinct from t = 12.4µs up to t = 12.8µs. At the last

two frames (t = 12.8, 13µs) of Fig. 3.29 before the collapse, the jet has been

developed and takes its maximum value. At t = 13.2µs the bubble collapse
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Figure 3.27: Instances of the velocity magnitude contours for the NACA 0015
hydrofoil.

is shown followed by a pressure peak and at times t = 13.6, 14µs the shock is

travelling away from the initial bubble location.

3.7 Droplet impact (3-phase mixture, linear EoS)

The capabilities of the 2-phase solver of section 2.2.1 can be demonstrated in

a droplet impact simulation, where gas, liquid and vapour are modelled [226].

A planar 2-D droplet impact case has been selected for qualitative validation
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Figure 3.28: Initial con�guration of the bubble-shock wave interaction problem.

of the propagating shock and the re�ected expansion waves against available

experimental data [163]. Then, 2-D axisymmetric droplet impingement on a solid

wall is modelled for di�erent impact velocities, in order to investigate the extent

of the cavitation zone and how bubble collapse can possibly lead to material

erosion. The droplet impact simulations are summarised in Table 3.3, where the

Re,We and Fr numbers have been calculated, based on the impact velocity uimp

and the droplet diameter D.

Table 3.3: Numbering, description, impact velocity, Reynolds, Weber and
Froude numbers of the droplet impact cases which have been simulated. As
2-D axisymmetric are denoted the wedge simulations and no air means that in
the initial condition the droplet is attached to the wall, in comparison to the rest
of the simulations where the droplet is 3 cells above the wall in the beginning of
the simulation.

Name Description uimp (m/s) Re We Fr
1 planar 2-D 110 1.1 · 106 1.67 · 106 351.2
2 2-D axisymmetric 110 1.1 · 106 1.67 · 106 351.2
3 2-D axisymmetric 27.5 2.75 · 105 1.05 · 105 87.8
4 2-D axisymmetric 55 5.5 · 105 4.19 · 105 175.6
5 2-D axisymmetric 82.5 8.2 · 105 9.43 · 105 263.4
6 2-D axisymmetric 220 2.2 · 106 6.71 · 106 702.4
7 2-D axisymmetric 550 5.5 · 106 4.19 · 107 1756
8 2-D axisymmetric, no air 27.5 2.75 · 105 1.05 · 105 87.8

The �ow can be considered inviscid (the Reynolds number Re is 106 for

impact velocity 110m/s and thus the boundary layer is too thin and the �ow

87



3. Results: Fundamental Studies

Figure 3.29: Bubble-shock wave interaction contour plots for several time in-
stances. Temperature contours on the left slice, combined with the bubble iso-
surface for Yg = 0.5, which is coloured by the velocity magnitude.

is inertia driven). Our interest is mainly associated with the initial stages of

impact during which cavitation and its subsequent collapse take place; these

occur during the early stages of splashing, so inviscid simulations have been

performed. The minimum Weber number We in the present droplet impact

simulations is calculated to be around 105 and thus, surface tension is negligible;

the minimum Froude number Fr is 88 and therefore the gravitational forces are

insigni�cant compared to the inertia ones. Due to the high impact velocities

which result in high We and therefore neglecting the surface tension, contact

angle boundary conditions are not explicitly de�ned. Zero gradient boundary

88



3.7. Droplet impact (3-phase mixture, linear EoS)

Figure 3.30: Bubble-shock wave interaction contour plots of numerical Schlieren
and pressure for several time instances. Density gradient magnitude contours on
the left slice, combined with the bubble iso-line for Yg = 0.5 (red) and pressure
contours on the right slice, combined with the bubble iso-line for Yg = 0.5 (white).
At time t = 6.6µs a long shot view of pressure contours is also shown.

condition in the transport equation for the gas mass fraction is used at the

wall instead (equivalent to a contact angle of 90◦). Surface wettability plays

an important role only when a low velocity �eld is noticed in the lamella and

therefore adhesion forces become signi�cant [239]. However, in the present study

the lamella velocity is approximately 10 times higher than the uimp = 110m/s

and therefore such e�ects are ignored. Although a 3-D simulation would generally

89



3. Results: Fundamental Studies

Figure 3.31: Bubble-shock wave interaction contour plots of numerical Schlieren
and pressure for several time instances (continued). Density gradient magnitude
contours on the left slice, combined with the bubble iso-line for Yg = 0.5 (red)
and pressure contours on the right slice, combined with the bubble iso-line for
Yg = 0.5 (white).

have captured the interfacial instabilities, a 2-D axisymmetric simulation was

preferred instead, in order to reduce the computational cost. In addition, these

instabilities are formed at later droplet impact times, which are not simulated

here.

In the HEM approach which is followed in the present work, in�nite nucleation

points and in�nite mass transfer are assumed, so thermodynamic equilibrium is

achieved instantaneously. This methodology has been demonstrated to accu-

rately predict the Rayleigh collapse of vaporous structures (see [240, 91, 241]).

Given the original con�guration and the �nal simulation time, which is before the

splashing regime, sharp interface algorithms have not been used in the present

study. The droplet is initially placed next to the wall impinging with velocity

uimp into stagnant air and as a consequence, there is no droplet motion in the air

before the impact. The latter would necessitate sharp interface schemes in order

to avoid having a di�usive interface while the droplet is travelling in the air.
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In addition, at later stages of splashing, which are not simulated in the present

study, sharp interface algorithms are necessary in order to provide a smear-free

interface. Concerning temperature e�ects, they are not taken into account in the

present study, since they are negligible. The interested reader is addressed to C,

where this assumption is justi�ed.

3.7.1 Planar 2-D droplet impact

The �rst case examined is a planar droplet impact on a solid wall for which

experimental data are available [163]. A 2-D simulation, with second order dis-

cretization in space was performed in order to validate the algorithm against the

2-D experimental data of Field at al. [163]. A circular cross-section water column

of diameter D = 10mm is placed between two transparent plates, separated by

a small distance. The impact is modelled by a third plate which is projected

with velocity 110m/s among the two plates. For the numerical simulation, the

centre of the droplet was placed at (x0, y0) = (0, 0.00505) in the computational

domain (−0.2, 0.2)× (0, 0.2); 150 cells have been placed along the initial droplet

radius R (grid size ∼ 33µm). The viscous e�ects are negligible due to the high

Re number (Re = 1.1 ·106) and our interest is mainly associated with the impact

and pressure wave dynamics. The same cell size as in the droplet radius has

been kept until distance 2R in the positive and negative x-direction and until

1.5R in the positive y-direction. After that, a stretching ratio of 1.05 has been

applied, resulting in a total amount of 380 k cells. A CFL number of 0.5 was

chosen for the time step selection (∆t ∼ 5 · 10−9s) in the explicit algorithm. Ini-

tially, the pressure of the surrounding air and the water droplet is atmospheric,

p(t = 0) = 101326Pa. In this way, the initial density for the two phases is cal-

culated from the barotropic EoS. Zero gradient boundary conditions have been

selected for the right, left and upper faces, whereas the lower face is set as wall.

In Fig. 3.32 the experiment [163] (left) and the numerical solution (right) for the

droplet impact are compared.

The main mechanisms noticed both in the experimental work [163, 161] and

past numerical simulations [181, 180, 182] are jetting, as well as shock and ex-

pansion waves; these are also identi�ed in the present study. In frame (a) the

droplet impacts the wall, whereas in the next frame, a shock wave is forming, as

a result of the impact. While the liquid close to the impact point is compressed,

the information of the impact has not travelled in the rest of the droplet, which
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is still moving with the impact velocity [159]. Those two regions are separated

by the shock front (frame (b)), which is created by individual wavelets emanat-

ing from the contact edge [160, 161]. In the preliminary stages of the impact,

the edge velocity is higher than the speed of sound and there is a tendency to

decrease. As long as the edge velocity is higher than the shock speed, the shock

is attached to the contact edge. When the edge velocity reaches the critical value

of the shock speed, the shock wave is detached from the contact line (frame (c))

and it is propagating in the rest of the liquid (until frame (g)). This mechanism

is responsible for the expansion of the liquid and the jetting, which is created in

the contact edge (frame (d), denoted as J in the experimental results). In frames

(e), (f) and (g), the shock wave is re�ected normal to the free surface as an ex-

pansion wave which focuses in the inner region of the drop. These low pressure

areas are potential cavitation regimes and their extent, as well as the volume of

the vapour depend on the impact velocity [182]. In frames (g), (h), the shock

wave reaches the highest point of the drop and it is then re�ected downwards.

In the last frames, the jetting is more advanced and the re�ected shock is shown

in the upper middle of the drop at frames (i) and (j) (denoted as R in frame (i)

and focused to point F in frame (j) of the experiment).

Comparing the present simulation with previous experimental studies of Field

et al. [163], similar wave structures at the same time scale are noticed. The edge

pressure in the contact edge is around 0.22GPa and it exceeds the water ham-

mer pressure [161], which is estimated about 0.16GPa, where the water hammer

pressure is de�ned as pwh = ρlcluimp. The shock wave which is moving upwards

and its re�ection have been recognized at similar time frames between the ex-

periment and the simulation. Furthermore, the jetting (starting from frame (d))

is around ten times the impact speed, or even higher, as it has been mentioned

in [161]. Rarefaction waves have been also identi�ed in the later stages of the

droplet impact and they follow the same pattern as in the experimental study.

The production of vapour in the �nal stages is evident due to the pressure drop

and the areas where vapour is generated are in accordance to the experiment.

However, in the experimental study the maximum volume of vapour is in the

centre of the droplet, whereas in the present work, vapour is more dominant on

the upper sides, perimetrically of the droplet. This is because bulk liquid tension

cannot be captured with the present methodology, as negative pressures cannot

be predicted by Eq. 2.30 for the given values of cl, cm, ρl,sat, psat.
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Figure 3.32: Validation of the numerical solution (right) against experiment
(left) for a 2-D drop impact on a solid wall with impact velocity 110m/s. The
interframe time is t = 1µs. The left �gure is taken from Field et. al [163].

3.7.2 2-D axisymmetric droplet impact

The previous simulation is now performed in a 2-D axisymmetric computational

domain, in order to model the impact of spherical droplets. Starting from the half

of the 2-D meshes of section 3.7.1, a wedge of 5◦ is created by taking advantage of

the axial symmetry (see Fig. 3.33). The same initial and boundary conditions are

kept, apart from the wedge faces and the axis of symmetry. At the beginning, a

grid independence analysis is performed and then, the e�ect of the impact veloc-

ity's magnitude is investigated for the intermediate grid. Second order accurate

spatial discretisation schemes have been used for this simulation and a CFL num-

ber of 0.5 was chosen for the time step selection (∆t ∼ 3 · 10−10 s) in the explicit

algorithm. In the following �gures, pressure has been non-dimensionalized with

the water hammer pressure pwh, velocity with the impact velocity uimp and the

dimensionless time is calculated from: t =
T − tbimp
D/cl

, where tbimp = 0.00005/uimp

is the time of the impact, based on the initial con�guration (in cases where the

droplet is not attached to the wall, but there is air between them). This way,

the shock wave will be at the same y-position at a given non-dimensional time

for all impact velocities.
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Figure 3.33: Droplet impact con�guration (left) and computational grid (right).

In Fig. 3.34 the results of the grid independence study are shown having

as impact velocity 110m/s. Three di�erent grids have been utilized, with 117 k,

380 k and 1.5 k cells. In the �ne area (0, 2R)×(0, 1.5R) the resolution of 330×225,

660 × 450 and 1320 × 900 cells has been used for the coarse, intermediate and

the �ne grid respectively. On the left-hand side of Fig. 3.34, the maximum wall

pressure with respect to time is shown and on the right-hand side the generated

volume of vapour at a line parallel to the y axis (x = 0.6mm) at time t = 1.19

is plotted. The maximum wall pressures are similar for all grids and the peak

noticed in the vapour volume fraction after y = 0.8 is almost identical for all

resolutions. It can be concluded from the above study that there is convergence

of the solution for the selected grid resolutions. The intermediate grid (380 k

cells), referred as case 2 from now on, is considered to be accurate enough and

it is selected for the rest of the simulations.

In Fig. 3.35 and 3.36 the evolution of the droplet impact is shown for case

2. More speci�cally, in Fig. 3.35 the pressure �eld (left slice) and the velocity

magnitude (right slice) are shown in conjunction with the iso-surface of 0.5 gas

mass fraction on the left �gures, whereas on the right �gures, the numerical

Schlieren is depicted by utilizing di�erent scales for the inner and the outer

computational domain of the droplet in order to capture the di�erent waves,

which are propagating in the liquid water and in the air. In Fig. 3.36 the wall

pressure (lower slice) and the vapour volume fraction (upper slice) combined with

the iso-surface of 0.5 gas mass fraction are demonstrated for case 2. The main

mechanisms and the �ow pattern in the 2-D axisymmetric simulation (case 2 )
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Figure 3.34: Grid independence study for three di�erent grids (coarse, intermedi-
ate, �ne). Maximum wall pressure with respect to time is shown on the left. The
values of the vapour volume fraction on the right �gure are exported at a line
parallel to the y axis starting from x = 0.6mm, z = 0 at time T = 0.083. Wall
pressure is divided by pwh, time is measured from the moment of the impact and
it is non-dimensionalized with τ = D/cl, whereas distance y has been divided by
the drop diameter D.

are similar to the planar one (case 1 ) for the same impact velocity (110m/s). At

time t = 0.44 the droplet has already impacted the wall and the shock wave is

visible in the Sclieren �gure. The jetting has started, however it is more evident

at time t = 0.89 and it is responsible for the non-spherical shape of the droplet.

As the shock moves to the upper half of the droplet, it is re�ected on the droplet

surface and expansion waves, which are moving downwards, are noticed in the

Schlieren �gures, starting from time t = 0.89. Those rarefaction waves create

low pressure areas and thus, cavitation is noticed at times t = 1.19 and t = 1.48

(see also Fig. 3.36). The maximum wall pressure is realised at the moment of

the impact and it decreases afterwards (see Fig. 3.41).

The planar and the axisymmetric solutions exhibit many similarities; never-

theless, there is a discrepancy in the pressure �eld between case 1 and case 2.

The maximum pressure is higher in case 1, as it can be seen in Fig. 3.37 and has

been also noticed in previous studies [161].

At a later stage of the droplet impact (Fig. 3.38), the splashing is more

evident than at time t = 1.48. In Fig. 3.38 the pressure �eld (left slice) and the

velocity magnitude (right slice) are shown in conjunction with the iso-surface of

0.5 gas mass fraction on the left �gures, whereas on the right �gures the wall

95



3. Results: Fundamental Studies

pressure (lower slice) and the vapour volume fraction (upper slice) combined

with the iso-surface of 0.5 gas mass fraction are demonstrated for case 2. Several

vaporous regions have been created from the rarefaction waves and they start

collapsing consecutively. At times t = 3.19 and t = 3.56 the third and second

vaporous regions have just collapsed respectively. A peak in the pressure due

to the shock wave created by the collapse is noticed at times t = 3.56 and t =

3.64, however the location (far away from the wall) and the strength (maximum

pressure is 0.09pwh) cannot denote erosion. At t = 3.79 the beginning of the

Richtmyer-Meshkov instability [242] is noticed on the upper side of the droplet,

however this issue is not further investigated here, where the main focus is the

violent impact dynamics at the early time of the impact, rather than the splashing

at later times.

The e�ect of the impact velocity

In Fig. 3.39, the above results are compared to lower impact velocities, 55m/s

and 27.5m/s at the same dimensionless time t = 1.48. The same con�guration

as in the left image of Fig. 3.35 is followed here as well. The droplet spreading

at lower impact speeds is less dominant and the droplet is closer to the spherical

shape, as it can be seen from the droplet iso-surface plots. On the other hand,

in case 2 the transition to splashing is evident, as the jetting area is split to

two di�erent regions. Furthermore, the high pressure area and the lamella are

larger in case 2 but the ratio |umax|/uimp in all cases (case 2-4 ) is between 7.2

and 11, whereas the ratio pmax/pwh is around 0.13. Although the above indicate

similar non-dimensional maximum pressures and jetting velocities regardless the

impact velocity, it is worth pointing out that the maximum pressure and velocity

�elds are signi�cantly lower in case 3 and 4. For example, the jetting velocity is

reduced by even one order of magnitude (∼1400m/s in case 2 and ∼190m/s in

case 4 ).

In order to compare the vapour generated for each impact velocities at the

same non dimensional time t = 1.48, slices with the vapour volume contour

(upper) combined with the same iso-surface are shown in Fig. 3.40 for case 2, 3

and 4. For the highest impact velocity (case 2 ) the vapour volume is increased

even one order of magnitude compared to the values of lower velocities. It can

be concluded that the amount of the vapour and the extent of the cavitation

area, which is generated at later stages, monotonically depends on the impact
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velocity (this is also evident in Fig. 3.41 where 6 di�erent impact velocities are

examined). The wall pressure (bottom) is also depicted in Fig. 3.40; although

the maximum is approximately the same for all cases, it extends to a larger area

for higher impact velocities.

In Fig. 3.41 a parametric study for six di�erent impact velocities (case 2-7 ) is

performed for the intermediate grid resolution, where the maximum wall pressure

(left) and the generated volume of vapour (right) with respect to time are plotted.

As it has been already discussed in the previous paragraph and in previous studies

[182, 168], it is straightforward that higher impact velocities result in higher wall

pressures (although the ratio
pmax,wall
pwh

is almost constant regardless of the impact

velocity). More production of vapour due to the re�ection of a stronger shock

developing during the liquid-solid contact is calculated. The cavitation inside

the droplet may also contribute to pressure increase on the solid surface at the

bubble collapse stage. This is shown on the wall pressure �gure, where at higher

impact velocities there are small peaks occurring at later times (case 7 ).

The e�ect of gas in cavitation generation

It is remarkable that the initial con�guration can a�ect the existence or not of

cavitation and material erosion close to the wall, even for low impact velocities.

As initial condition in case 8 is now selected the droplet to be attached to the

wall (in contrast to case 1 -7 ), so there is no air between them. To demonstrate

that the impact velocity is not the determining factor here, uimp = 27.5m/s was

selected. Surprisingly enough, in Fig. 3.42 vapour is created at the impact point

and a vaporous region is formed above it due to a rarefaction wave at an early

stage of the impact. The maximum vapour volume fraction created is even three

times higher than case 2 at time t = 1.48, where the impact velocity is four

times larger. Consequently, there is a signi�cant increase in the pressure �eld

due to the collapse, as it can be observed in Fig. 3.43, which results in around

60% higher wall pressure, compared to case 3. In practice, the above case can

be realised at steam turbine blades, where the rare�ed environment implies very

low steam density, consequently there is little droplet/vapour interaction.
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3.7.3 Conclusions

The comparison against the 2-D planar impact experiment is satisfactory, as

similar �ow patterns have been identi�ed. Impacts of spherical droplets on a

solid surface have been also simulated and the formed cavitation areas have

been identi�ed. Due to pressure decrease and vaporisation in the droplets which

impact the solid surface, vapour phase has been modelled.

The droplet impact time scale is timpact = D/uimp and in the present con�gu-

ration for impact velocity uimp = 110m/s is calculated to be timpact ≈ 9 · 10−5 s,

whereas the cavitation collapse time is approximated from the characteristic

Rayleigh time tcav = 0.915R0,vap

√
ρl

p∞ − psat
and it is calculated to be tcav ≈

2.2 ·10−5 s. The signi�cantly larger time scale of the droplet impact phenomenon

in comparison to the characteristic time of the cavitation collapse justi�es why

the collapse of the vaporous regions inside the droplet don't a�ect the shape of

the droplet and its splashing.

The impact velocity strongly a�ects the droplet shape and spreading, as well

as the jetting velocity and the volume of vapour produced in the upper area of

the droplet. Increased impact velocity may result in more damage and possibly

material erosion not only because of higher impact pressure, but also due to the

collapse of the vaporous bubbles inside the droplet. However, in order to notice

signi�cant pressure increase due to the bubble collapse, the impact velocity must

be extremely high which is rather di�cult to be realised in practical applications

such as steam turbines. Apart from that, the initial location of the droplet with

respect to the solid surface, which actually means the absence or not of gas around

the droplet, can in�uence the volume of vapour generated at the initial stages of

the impact. If there is no gas between the droplet and the solid surface, pressure

can get close to its maximum value, which is at the moment of the impact (pwh)

and material erosion may take place. It should be clari�ed here that the above

phenomenon can even occur at low impact velocities, uimp = 27.5m/s.
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Figure 3.35: Drop impact at velocity 110m/s. Left �gure: Iso-surface of liquid
mass fraction for Yg = 0.5 combined with pressure (left slice) and velocity mag-
nitude (right slice). Right �gure: Density gradient magnitude, di�erent scale for
the interior and the exterior of the droplet. Pressure and velocity are divided
by pwh and uimp respectively, whereas time is measured from the moment of the
impact and it has been non-dimensionalized with D/cl.
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Figure 3.36: Drop impact at velocity 110m/s. Iso-surface of liquid mass fraction
for Yg = 0.5 combined with wall pressure (bottom slice) and vapour volume
fraction (upper slice). Pressure is divided by pwh and time is measured from the
moment of the impact and it has been non-dimensionalized with D/cl.

Figure 3.37: Comparison of the maximum wall pressure between a planar 2-D
and a 2-D axisymmetric simulation at impact velocity 110m/s. Wall pressure
is non-dimensionalized with pwh and time is measured from the moment of the
impact and it has been non-dimensionalized with τ = D/cl.
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Figure 3.38: Later stage of droplet impact at velocity 110m/s. Left �gure: Iso-
surface of liquid mass fraction for Yg = 0.5 combined with pressure (left slice)
and velocity magnitude (right slice). Right �gure: Iso-surface of liquid mass
fraction for Yg = 0.5 combined with wall pressure (bottom slice) and vapour
volume fraction (upper slice). Pressure and velocity are divided by pwh and uimp
respectively, whereas time is measured from the moment of the impact and it
has been non-dimensionalized with D/cl.
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Figure 3.39: Comparison of the pressure (left slice) and the velocity magnitude
(right slice) for uimp = 22.5m/s (left), uimp = 55m/s (middle) and uimp =
110m/s (right) at non dimensional time t = 1.48. The iso-surface of liquid mass
fraction for Yg = 0.5 is also shown. Pressure and velocity are divided by pwh and
uimp respectively, whereas time is measured from the moment of the impact and
it has been non-dimensionalized with D/cl.

Figure 3.40: Comparison of the vapour volume fraction (upper) and wall pressure
(bottom) for uimp = 22.5m/s (left), uimp = 55m/s (middle) and uimp = 110m/s
(right) at non dimensional time t = 1.48. The iso-surface of liquid mass fraction
for Yg = 0.5 is also shown. Pressure is divided by pwh and time is measured from
the moment of the impact and it has been non-dimensionalized with D/cl.
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Figure 3.41: Maximum wall pressure (left) and generated vapour volume (right)
with respect to time for di�erent impact velocities. Wall pressure is divided by
pwh, time is measured from the moment of the impact and it has been non-
dimensionalized with τ = D/cl, whereas vapour volume is divided by the initial
droplet volume.

Figure 3.42: Close-up view of case 8 at non-dimensional times t = 0.15 (left), t =
0.18 (medium) and t = 0.25 (right). Slices of vapour volume fraction combined
with iso-line of liquid mass fraction for Yg = 0.5 are shown. Time has been
non-dimensionalized with D/cl.

Figure 3.43: Close-up view of case 8 at non-dimensional times t = 0.15 (left),
t = 0.18 (medium) and t = 0.25 (right). Slices of pressure combined with
iso-line of liquid mass fraction for Yg = 0.5 are shown. Time has been non-
dimensionalized with D/cl and pressure with pwh.
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Chapter 4

Results: Industrial Applications

In this chapter, �ows of industrial interest have been studied, such as the �ow

inside a diesel injector, jet formation in a needle-free device and the cryogenic

�ow in a converging-diverging nozzle. Diesel injector simulations with a modi�ed

barotropic solver in OF have been preformed. Concerning the needle-free device

simulation, the cavitation formation inside the nozzle has been modelled for

�rst time, as well as how the jet magnitude and the jet diameter are a�ected

by the meniscus shape of the interface between the liquid and the vapour. In

addition, by employing the methodology presented in 2.2.3 for the cryogenic

nozzle simulations, a uni�ed treatment for subcritical and supercritical regimes

can be modelled, see for example sections 4.3.1 and 4.3.2 respectively.

4.1 Diesel injector simulation (liquid-vapour mix-

ture)

The �rst case examined in this chapter is the tip of a Diesel injector with 5

holes (see Fig. 4.1 where the main parts of the injector are named). Needle

movement is not examined here, the simulations are at a static needle lift of

105µm. Given the Re number inside the ori�ce which is ∼ 30, 000, RANS

simulations have been considered by utilizing the k-ε model with the Reboud

correction. In order to reduce the computational cost and taking advantage of

the problem symmetry, one hole of the injector is simulated only, which means

72◦ of the injector, instead of the 360◦ (see Fig. 4.1). The resulting grid size is

approximately 200k cells. Symmetry boundary conditions have been employed

on the sides, pressure is speci�ed in the inlet to be pin = 1800 bar, which results
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in a cavitation number CN = 0.028. The outlet pressure is set to be pout = 50 bar,

whereas no-slip wall boundary conditions have been set on the needle, ori�ce and

the body of the injector. A hemispherical volume is added in the outlet, to avoid

in�uencing the �ow in the ori�ce by the pressure outlet boundary condition. As

a consequence of simulating 1/5th of the injector nozzle geometry, eccentricity

e�ects which are more dominant during the needle movement, have been omitted

and 3-D turbulence phenomena may have been suppressed. Finally, temperature

e�ects have not been considered, since such EoS are less e�cient compared to the

barotropic approach and may also exceed the applicability range of higher order

EoS, for instance of the Helmholtz EoS. The parameters of the barotropic EoS

and the kinematic viscosity values for the liquid and the vapour are summarized

in Table 4.1.

Figure 4.1: 5 hole Diesel injector (left) and computational grid of a 72◦ domain
(right).

In Fig. 4.2 the contour �elds of pressure (left), vapour volume fraction (mid-

dle) and velocity magnitude (right) are depicted. The �ow �eld inside the nozzle

is the expected: the �ow accelerates in the narrow passage between the body and

the needle, passes through the sac and further accelerates in the ori�ce, resulting

in pressure decrease and cavitation formation on the upper side of the ori�ce.

A steady-state solution is obtained, in other words the cavity on the upper side

of the ori�ce is stationary. Although this steady-state solution contradicts the

experimental observations of [243] where cavity shedding and cavitating vortices

were noticed, the same cavity pattern has been also predicted in [241]. In the
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Table 4.1: Liquid and vapour phase properties utilized in the 5 hole Diesel
injector simulation.

Property ph4 injector
ρsat,l (kg/m

3) 747.65
ρsat,v (kg/m3) 6.5
psat (Pa) 1.1 · 105

B (MPa) 110
νl (10−6m2/s) 2.8088
νv (10−6m2/s) 1.1538

n (−) 7.15
C (Pa · kg/m3) 1250

latter the incapability of RANS in predicting cavitation inception is reported, as

turbulence models fail to accurately resolve the vortex structures in low pressure

regions. The purpose of RANS models is to predict the mean �ow path by adding

turbulent viscosity and therefore, the generation of vortical structures and their

connection with cavitation formation is not properly modelled [241]. On the

other hand, LES studies accurately predict both the mean velocity pro�les and

the large eddies responsible for cavitation formation [3, 241].

Figure 4.2: Pressure (left), vapour volume fraction (middle) and velocity magni-
tude (right) contours are shown on y = 0 slice for the Diesel injector simulation
with k-ε turbulence model (Reboud correction).
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4.2 Needle-free injection (liquid-vapour-gas mix-

ture, linear EoS)

In this section, numerical simulations of the needle-free device are presented for

several di�erent initial conditions, regarding the pressure of the gas bubble and

the geometry of the interface between the water and the air [244]. First, results

for the conventional meniscus design and comparison with experimental values

are shown. Then a parametric study for di�erent values of the bubble pressure is

performed as another mean of validating the methodology. In the end, di�erent

meniscus geometries have been simulated in order to �nd a design appropriate for

needle-free devices, ensuring focused high speed and focused jets. The di�erent

cases examined are summarised in Table 4.2.

Table 4.2: Numbering, meniscus geometry, pressure of the gas bubble, Reynolds
and Weber numbers of the needle-free injection cases that have been simulated.
The Reynolds and Weber numbers are calculated based on the jet diameter.
Trumpet shape is referred to a meniscus geometry, with conical shape close to
the axis and hemispherical shape towards the wall (see also Fig. 4.10).

Name Meniscus geometry pbub (Pa) Re We
case 1 hemispherical 2 · 107 388 84.3
case 2 hemispherical 3.7 · 107 459 118
case 3 hemispherical 5 · 107 704 278
case 4 hemispherical 7 · 107 839 394
case 5 hemispherical 1 · 108 1105 683
case 6 hemispherical 1.35 · 108 1245 866
case 7 hemispherical 1.5 · 108 1411 1110
case 8 conical 5 · 107 120 80
case 9 trumpet 5 · 107 423 1000

The minimum Weber number in the present simulations is calculated to be

aroundWe = 80 and thus, surface tension has been neglected. However, in order

to further justify this argument, the e�ect of surface tension has been investigated

in case 1 by utilizing Ansys Fluent CFD software. As it can be seen from Fig. 4.3,

where the jet velocity is plotted with respect to the distance between the bubble

and the jet, the role of surface tension is negligible. The maximum Reynolds

number is around Re = 1411 and consequently, the �ow has been considered

to be laminar. Both non-dimensional numbers are based on the jet diameter.

It is also worth to mention that the vapour bubble which is created by the

focused laser [183, 200], is modelled as a hemisphere of non-condensable gas. It
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is impossible to simulate the whole process, as the laser pulse induces transition

to plasma state (see [245, 183]), while several chemical reactions take place until

�nally the vapour bubble is created. Due to lack of available thermodynamic

models in order to describe such phenomena, a barotropic approach has been

utilized [88]. Additionally, in order to model the heating due to the pulse, the

pulse pattern should be known (e.g. the energy deposition over time), since it

is not a step function but there is a gradual increase from zero to maximum

intensity. Such heating e�ects have been neglected in the present study. The

main focus here is the study of the formation of the primary jet, which is created

due to the bursting gas, and to identify the appropriate conditions under which

the jet is able to penetrate the skin surface. The vapour bubble collapse and the

secondary jet which is created, is out of scope here. Finally, the soft tissue is

not modelled here; estimation of the jet penetration into the skin is given based

on the water hammer pressure in 4.2.4. Some preliminary simulations modelling

the tissue by an additional transport equation are shown in Appendix D, but

without modelling the elastic behaviour of the human skin.

Figure 4.3: Investigation of the surface tension e�ect on the needle-free injection
simulation: plot of the jet velocity with respect to the distance between the
bubble and the air-liquid interface(Bg = 0.5) including (triangles) and neglecting
(diamonds) surface tension.

4.2.1 Numerical simulation

The geometry of the device is taken from [183] and can be seen in Fig. 4.4,

4.10. Since the problem is axisymmetric, a structured-mesh wedge of 5◦ angle is
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employed with approximately 90k equally spaced cells with ∆x = 2.5 · 10−6m

(Fig. 4.4). The upper and the left sides of the wedge have been set as no-slip

wall, whereas in the right side, the pressure is speci�ed (atmospheric). Initially,

compressed gas (di�erent initial pressure pbub depending on the case examined)

is in the hemispherical bubble (gas mass fraction Y = 1), which is in the centre

of the left wall, while the water (Y = 0) and the air (Y = 1) are in atmospheric

conditions patm, as it is shown in Fig. 4.4. The liquid phase is left to the meniscus

and the gas phase is on the right side of the meniscus. The initial density in each

phase is determined from the barotropic EoS.

For the grid independence study, three di�erent meshes have been employed,

22k cells (coarse grid), 90k cells (intermediate grid) and 356k cells (�ne grid).

In Fig. 4.5 the velocity magnitude (left) and the gas mass fraction (right) values

along the x-axis are plotted (y = 175µm) at t = 10µs. While in general the

three grids are in good agreement, there are small deviations in the velocity

plot. The deviation close to the origin of x axis is due to the more accurate

representation of the bubble in higher resolution grids. Concerning the velocity of

the jet (x > 1mm) and how its magnitude depends on the grid resolution, more

di�usive solution is obtained with a coarse grid and therefore smaller velocity

�uctuations are noticed in velocity plot of Fig. 4.5. The intermediate grid has

been selected, since it is in satisfactory agreement with the dense one.

In Fig. 4.6 the pressure (x− y plane) and velocity magnitude (x− z plane)

contours are shown, combined with iso-surfaces for the vapour (white) and the air

(pink) phases. At time instant 1.5µs the pressure wave has already been re�ected

at the meniscus resulting in the initialisation of an axisymmetric microjet. Apart

from the aforementioned mechanism, the focusing in the nozzle is also responsible

for the acceleration of the �ow [204, 215] (see also Fig. 4.9). In the next frame

(t = 13.5µs), the jet has been formed and a small cavitation regime is barely

visible. At time instant 20µs the cavitation area has expanded and the the jet

has moved forward.

Comparison with experimental results of Hayasaka et al. [183] is shown in

Fig. 4.7. The correspondence between the laser energy in the experiment and

the pressure of the hemispherical bubble which has been used as initial condition

in the simulation, is achieved by equalising the laser energy with the dynamic

energy of the bubble. The dynamic energy of the bubble is calculated from

Edyn = ∆pV , where ∆p = pbub − pliq with pbub and pliq being the pressure of
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the bubble and the liquid respectively and V is the volume of the hemisphere.

Because of the barotropic EoS, the heat absorbed from the bubble is not taken

into account and thus, a calibrating coe�cient n is used in order for the dynamic

energy of the bubble to match the absorbed laser energy: E = n∆pV (in the

present study n = 151). Overall, the experimental and the numerical values are

in satisfactory agreement, as the same pattern is noticed: initially high jet veloc-

ities were measured and then an asymptotic decrease of the jet velocity follows.

However, in the last points which correspond to the largest available distances,

the decrease rate of the jet velocity with respect to distance is slightly smaller

in the simulations, compared to the experimental data. This discrepancy in the

results is due to the visual approximation of the initial meniscus shape in the

simulations, which is roughly replicated from the experiment based on a �gure.

The jet evolution is strongly a�ected by the meniscus shape, as it will be shown in

section 4.2.3 and hence, even small di�erences between the approximated shape

and the one created in the experiments can cause deviation in the jet velocity.

Another reason is the inconsistency between the 0◦ and 90◦ experimental data

[183], which is more evident for the higher energy experiments. The 0◦ data have

a more abrupt decrease of the jet velocity and signi�cantly larger error bars. The

simulation points are either in the range of the 0◦ experimental points or in the

90◦ points, while for larger distances the simulation points are slightly above the

90◦ points.

Figure 4.4: Needleless injection con�guration for the hemispherical meniscus
geometry: the computational domain (liquid, air, bubble), liquid-gas interface
(black line), solid boundary (dashed area) and axis of symmetry (dash dot line).
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Figure 4.5: Grid independence study for the needle-free device. Plots of velocity
magnitude (left) and gas mass fraction(right) along a line parallel to the x-axis
(y = 175µm) at t = 10µs.

4.2.2 Dependence on the bubble pressure

Several simulations have been performed for di�erent values of the bubble pres-

sure (case 1 -case 7 ). In Fig. 4.8 the linear relation between the bubble pressure

or the absorbed laser energy and the jet velocity is shown. The laser energy is

calculated from the dynamic pressure of the bubble, as explained in 4.2.1. Simi-

lar �ndings have been reported in the experimental work of Tagawa et al. [200]

and in the numerical work of Peters et al. [215]. In the latter, they modelled

the pressure wave by a pressure pulse on the bubble and they demonstrated the

linear correlation between the pressure pulse and the jet velocity. The fact that

the linear function is not intercepted at ujet = 0, means that a jet is formed

even for lower values of absorbed laser energy and there is no threshold heat, in

contrary to the previous studies of Tagawa et al. [200] and of Peters et al. [215].

This is due to the energy that has been spent in the experiment in order to heat

the �uid before vaporisation [193]. In the simulations of Peters et al. [215], sur-

face tension is responsible for the threshold, whereas in the present work surface

tension is not modelled and therefore there is not such a threshold.

In Fig. 4.9 the magnitude of the pressure gradient is shown for case 3 and

case 7 combined with vapour volume fraction iso-lines of α = 0.5 (red). For

the �rst four time instances plotted, the pattern is similar for both cases since

the wave emanating from the bubble travels at almost the same wave speed

(u+ c). In the �rst time instance plotted (t = 0.2µs), the shock wave, which has

been emitted by the bubble, travels in the liquid. At t = 0.4µs it has already
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Figure 4.6: 2-D axisymmetric needle-free device simulation for pbub = 5 · 107 Pa
and the standard meniscus shape (case 3 ). Pressure �eld on the x− y plane and
velocity magnitude �eld on the x−z plane are shown, combined with iso-surfaces
for vapour volume fraction α = 0.5 (white) and iso-surface for gas volume fraction
Bg = 0.5 (pink).

been re�ected from the upper horizontal wall and the re�ection of the wave has

reached the bubble, while the original wave moves to the positive direction of

the x axis. At t = 0.6µs the superposition of three waves travels in the liquid.

The original wave is advancing into the capillary, while its previous re�ection has

been re�ected again from the upper vertical wall and it is moving towards the

negative direction of the x axis. Apart from those two waves, another re�ection

at the bubble moves upwards. At t = 0.8µs the original wave is re�ected at
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Figure 4.7: Comparison of case 2 and case 6 with experimental data of Hayasaka
et al. [183]. Jet velocity as a function of the distance between the bubble and the
air-liquid interface(Bg = 0.5) for laser energy 185µJ (left) and 650µJ (right).

the meniscus and the formation of the jet starts. Due to higher bubble pressure

in case 7, the jet has travelled a longer distance in the capillary compared to

case 3, as it can be seen at t = 9µs. In addition, cavitation regions have been

formed in the upper wall for both cases; however in case 7 the vapour phase is

much more extended and there is an additional vapour regime close to the axis of

symmetry, because of the stronger shock wave. Although a similar low pressure

exists in case 3, vapour in not generated, as the pressure is slightly above the

saturation pressure. In the last time instant plotted (t = 10.6µs), a new shock

wave is noticed in case 7, emanating from the collapse of the vaporous bubble,

something which is not observed in case 3.

Figure 4.8: The in�uence of the initial bubble pressure on the jet velocity.
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Figure 4.9: Slice on the x−y plane for z = 0. Magnitude of the pressure gradient
combined with vapour volume fraction iso-lines of α = 0.5 (red) for case 3 (left)
and case 7 (right).

4.2.3 Dependence on the free surface geometry

In this section the sensitivity of the jet velocity to the meniscus geometry is

investigated. Based on shaped charge jets, three di�erent geometries for the
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free surface have been utilised as initial condition: the hemispherical free surface

shape (case 3 ), the conical shape (case 8 ) and the trumpet shape (case 9 ), as

they are shown in Fig. 4.10. The hemispherical shape has been also adopted

in previous experimental works by dipping the tip of the tube in a hydrophobic

solution [200]. In practice, the conical and trumpet shapes of the meniscus can

be achieved by placing a gelatin cap on the free surface of the liquid. In Table

4.3 the maximum jet velocity and the jet diameter are summarised. It is evident

that by utilising the trumpet shape for the meniscus geometry, jet velocity has

the maximum value among the three cases, while at the same time the diameter

of the jet remains small. The jet diameter of case 3 is one order of magnitude

smaller than the diameter of the capillary, while the jet diameters of case 8 and

case 9 are one order of magnitude smaller than case 3.

The contact angle between the free surface geometry and the wall determines

the focusing of the �ow. In the worst case scenario, if the contact angle is 90◦, a

�at free surface is created, the liquid moves in the tube parallel to the walls and

no jet is formed. On the other hand, a contact angle of 0◦ results in curvature

equal to the radius of the capillary. As the contact angle becomes smaller, the

focusing is increased, resulting in higher jet velocities [200, 202, 215]. In Fig. 4.11

the vectors on the liquid-gas interface of the capillary are shown, combined with

red iso-line of gas volume fraction Bg = 0.5 for case 3, case 8 and case 9. From

the vector �eld at three frames the increased focusing in the conical and trumpet

meniscus is evident, since more liquid volume is on the tip of the interface. On

the other hand, in the hemispherical shape the vectors are almost parallel which

means reduced focusing. It can be also concluded that the evolution of the jet

is much faster in case 8 and case 9 and that the jet diameter in case 3 is much

larger compared to the other two cases (t = 10µs). In shaped charges, similar

shape for the liner is used with similar e�ects on the hole diameter and the

penetration depth. In general, conical liner results in deeper penetration and a

small hole diameter, whereas hemispherical liner create a larger diameter and

shallow penetration [246, 247, 248, 249].

In Fig. 4.12 and 4.13 the pressure (x− y plane) and the velocity magnitude

(x − z plane) contours are shown combined with iso-surfaces for the vapour

(white) and the air (pink) phases. Similar to Fig. 4.6, the �rst time frame is just

after the re�ection of the wave at the meniscus interface and the initialisation of

the jet is shown. In the second and the third frames, the jet has been formed
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and advances in the capillary, while cavitation areas have been identi�ed. The

jets with the conical and trumpet initialisation are more focused and have larger

velocity magnitude than the hemispherical shape (see also Table 4.3 and Fig.

4.11).

Figure 4.10: Initial condition of the meniscus, from top to bottom: hemispherical
initialisation (case 3 ), conic initialisation (case 8 ) and trumpet initialisation
(case 9 ). The opening angle of the cone is 37◦, the opening angle of the trumpet
is 10◦, the contact angle between the interface and the y axis is 32◦ and the
aspect ratio is 0.64.

Table 4.3: The e�ect of the meniscus geometry on the maximum jet velocity and
on the jet diameter for pbub = 5 · 107 Pa.

Meniscus geometry ujet (m/s) Djet (µm)
hemispherical 28.3 25

conical 48 2.5
trumpet 170 2.5

4.2.4 Conclusions

The validity of the results has been assessed by comparison with experimental

values, by demonstrating a linear relation between the laser energy (or initial

bubble pressure) and the jet velocity and �nally, by comparing the results of

case 3 with Ansys Fluent. Then, numerical experiments with di�erent gas-liquid

interface shapes, such as hemispherical, conical and trumpet looking shapes are
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Figure 4.11: Slice on the x − y plane for z = 0. Vector �eld on the liquid-gas
interface, for gas volume fraction Bg = 0.5 (red iso-line). From top to bottom:
hemispherical initialization (case 3 ), conic initialization (case 8 ) and trumpet
initialization (case 9 ). The magnitude of the vectors is proportional to the
velocity magnitude.

performed in order to correlate these shapes with the velocity magnitude and

the diameter of the jet. The trumpet shape, which initially resembles to a cone

and then takes a spherical shape, was found to give focused microjets, while

the velocity magnitude of the jet was the maximum among the cases examined,

ensuring skin penetration. The critical jet velocity (ucr) for skin penetration

is approximated by equalizing the water hammer pressure (pwh) with the yield

stress of the human skin, which has an average value of 15MPa [250]. In the

cases simulated the jet velocity is by far larger than the ucr = 10m/s and

therefore, the formed jet is strong enough to penetrate the skin. In addition,

the jet diameter when using the conical or the trumpet shape in the interface,

was found to be one order of magnitude smaller than the jet diameter noticed

with the hemispherical meniscus shape. From a practical point of view, the

trumpet interface between the medicine and the air can be formed by a soft

gel encapsulation machine. In a hypothetical needle-free device, a more focused

jet will lead to reduced pain, as less nerve cells will be damaged. Assuming

there is a good reproducibility of experiments with the trumpet meniscus shape,

such studies can o�er insight towards a new needle-free design. However, further

investigation from a �uid structure interaction point of view, whether the drug

will be successfully delivered or not has to be performed. Preliminary simulations
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4.2. Needle-free injection (liquid-vapour-gas mixture, linear EoS)

Figure 4.12: 2-D axisymmetric needle-free device simulation for pbub = 5 · 107 Pa
and the conical meniscus shape (case 8 ). Pressure �eld on the x − y plane and
velocity magnitude �eld on the x−z plane are shown, combined with iso-surface
for vapour volume fraction α = 0.5 (white) and iso-surface for gas volume fraction
Bg = 0.5 (pink).

are shown in Appendix D. In addition, it must be examined if the drug molecule

will be damaged after the interaction with the shock and the penetration. The

above are out of scope of the present work, where main focus is placed on the

wave dynamics and the modelling of the multiphase �ow.
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Figure 4.13: 2-D axisymmetric needle-free device simulation for pbub = 5 · 107 Pa
and the trumpet meniscus shape (case 9 ). Pressure �eld on the x − y plane
and velocity magnitude �eld on the x − z plane are shown, combined with iso-
surface for vapour volume fraction α = 0.5 (white) and iso-surface for gas volume
fraction Bg = 0.5 (pink).

4.3 Conical converging-diverging nozzle (Helmholtz

EoS)

In order to demonstrate the applicability of the tabulated data algorithm in

turbulent cryogenic �ows, RANS simulations for a conical converging-diverging

nozzle are performed. A wedge of 5◦ is simulated (see Fig. 4.15), taking ad-

vantage of the problem symmetry; the nozzle geometry is demonstrated in Fig.
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4.14. The k − ω SST turbulence model with the Reboud correction has been

employed and the turbulence variables have been initialized accordingly, based

on the Reynolds number in the in�ow. The k−ω SST turbulence model behaves

well for moderate and high Reynolds numbers and has been utilised for similar

studies, see for example [148].

Figure 4.14: Geometry of the conical converging-diverging nozzle [135]. The
in�ow has been expanded upstream in order to impose the stagnation conditions
of the experiment. The grey area denotes the computational domain, whereas
inlet and outlet are coloured by blue and red colour respectively.

Figure 4.15: Computational grid for the conical nozzle case.

4.3.1 Subcritical conditions

The above geometry is initially tested at subcritical conditions. Validation of

the model is performed against the experimental data of Hendricks et al. [135].

Therefore, in the in�ow the total pressure is speci�ed ptot,in = 1.1385MPa

(Reinflow = 65k) and the temperature is Tin = 93.6K, whereas in the outlet

the static pressure is pout = 0.26MPa.
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In Fig. 4.16 contour �elds for the velocity magnitude, temperature and

vapour volume fraction are shown. Similar to the previous case, the �ow acceler-

ates in the converging part before the throat, due to the subsonic �ow conditions.

Then a region of supersonic acceleration downstream the throat follows, which

is terminated by a normal shock wave. The shock wave produces an instanta-

neous deceleration of the �ow to subsonic speed. The subsonic �ow decelerates

through the remainder of the diverging section and exhausts as a subsonic jet.

The vapour phase generated just after the throat region results in an increased

Mach number (M = 1.2). The mixture speed of sound here is determined by the

Wallis formula [220] under the instantaneous phase change assumption. Almost

full liquid vaporization has occurred after the throat, around x = 0.015. The dis-

crepancy of this point between the experiment and the simulation is responsible

for predicting slightly di�erent location of the shock wave (see also Fig. 4.17).

Figure 4.16: Contour �elds for the converging-diverging nozzle [135], RANS sim-
ulation: velocity magnitude (upper), temperature (middle) and vapour volume
fraction (bottom).

In Fig. 4.17 the obtained pressure distribution along x-axis is compared with

the experimental results of Hendricks et al. [135]. While admittedly the nu-

merical solutions are in good agreement with the experimental values, there is

a small variation in the location of the shock wave between the experiment and
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the simulations. Unfortunately, the lack of measurements downstream the noz-

zle, doesn't allow for further comparison. Compared to the inviscid simulation,

the shock wave is suppressed in the RANS simulation and 2 smaller magnitude

waves are noticed instead. Furthermore, in the inviscid simulation a pressure

step is noticed at the location of the throat, which is not evident in the RANS

simulation, due to numerical di�usion which is included from turbulence mod-

elling.

Figure 4.17: Pressure distribution along x-axis for the conical converging-
diverging nozzle; comparison between inviscid (dashed black), RANS (green)
simulations and the experimental values (red square) [135].

4.3.2 Supercritical conditions

The next case examined is the �ow in the same nozzle but at supercritical pres-

sure conditions; the total pressure at the inlet is ptot,in = 13.3056MPa, the

temperature at the inlet is Tin = 93.6K and the static pressure at the outlet is

pout = 10MPa. Contour �elds of velocity magnitude, temperature and pressure

are shown in Fig. 4.19. A similar pattern as in 4.3.1 is noticed, however the shock

wave at the throat is more abrupt and results in immediate deceleration of the

�ow, followed by cooling of the liquid. After the steep decrease of pressure in the

throat, the pressure �eld remains constant during the expansion of the nozzle.

Since there are not experimental data available for these conditions, comparison

against Ansys Fluent CFD package by employing the NIST thermodynamic li-

brary is shown in 4.19. As it can be seen, there is a good agreement between the

two numerical solutions and the location of the shock wave has been accurately

predicted.
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Figure 4.18: Contour �elds for the converging-diverging nozzle [135] at super-
critical pressure conditions: velocity magnitude (upper), temperature (middle)
and vapour volume fraction (bottom).

Figure 4.19: Pressure distribution along x-axis for the conical converging-
diverging nozzle; comparison between the solutions obtained by OF (dashed
black) and Ansys Fluent (green square).
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Chapter 5

Conclusions and future work

In conclusion, a FV density based solver, suitable for multiphase applications has

been developed and implemented in OF. Several di�erent EoS and their thermo-

dynamic closure have been employed starting from simpli�ed EoS and advancing

to real �uid thermodynamics. Apart from modelling phase-change between liq-

uid and vapour, the gas phase has been also simulated by adding a homogeneous

transport equation to the NS equations. A Mach number consistent numerical

�ux is also proposed in order to handle the low Mach number problem, noticed

in the liquid regime. Explicit Runge-Kutta schemes have been implemented in

OF aiming to accurately model the unsteady cavitation phenomena.

The solver and the di�erent EoS incorporated have been validated against ex-

act solutions for the Riemann problem, the Rayleigh bubble collapse and several

other parametric studies of benchmark cases, such as bubble dynamics, droplet

impacts, cavitating �ow around hydrofoils etc. More speci�cally, three di�erent

thermodynamic models have been utilized and compared for bubble dynamics

simulations and non-dimensional bubble collapse studies have been performed for

di�erent operating conditions. Regarding the two-phase solver, qualitative and

quantitative comparisons have been performed for the 2-D droplet impact and

the needleless injection respectively. In addition, the validity of the solver has

been assessed by comparison with commercial packages (Ansys Fluent). Finally,

the tabulated data algorithm has been tested and compared against experimen-

tal data, in-house 1-D numerical tools and Ansys-Fluent for converging-diverging

nozzles in cryogenic �ow conditions.

Concerning the capabilities of the solver, it is compatible with all the existing

turbulence models in OF, as well as with the LES libraries. Therefore, LES

studies of injector nozzles are currently being simulated by other researchers
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from the author's group using the barotropic approach.

As a future work, the developed methodology can be expanded towards two

di�erent directions, either for moving boundary or for Fluid Structure Interaction

(FSI) problems. In the former, two di�erent approaches are being followed, IBM

and layer addition-removal algorithms, which have been developed in OF by

researchers within the same research group. IBM methodologies [55] have been

incorporated in the two-phase solver of section 2.2.1 for simulating the impact

of a solid body on a liquid jet and for modelling the �ow in mechanical heart

valves. In addition, layer addition-removal algorithms [126, 127, 128, 129] are

being utilized in conjunction with the the barotropic solver of section 2.2.1 for

simulating the �ow in Diesel injectors with moving needle.

Cavitation is involved in many multi-physics applications, for instance in FSI

problems. Starting from the needleless injection system, the human skin can be

modelled as an elastic medium [214] by performing a structural analysis. The

input in the solid mechanics solver will be the velocity and the pressure �elds

calculated from the NS equations and as output the deformation of the tissue and

possible rupture will be predicted, giving a more accurate estimation whether the

liquid jet velocity will penetrate the human skin or not.

Expanding to multi-material applications, such as numerical modelling of the

brain and head, the aim here is to model traumatic brain injury (TBI), either

due to blast or due to impact and bullet penetration. The formation of the

shock wave upon the blast or the impact, as well as the propagation of the wave

within the skull and the other structures of the brain can be modelled. In the

literature, the properties of the di�erent brain structures, such as the white and

grey matter, the cerebral spinal �uid (CSF) and the bone, have been modelled by

utilizing several di�erent constitutive models [251, 252, 253, 254, 255, 256, 257].

That way, the cavitating �ow solver can be combined with a structural solver for

multi-material modelling.
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Appendix A

2-D Euler equations in cylindrical

coordinates

The 2-D Euler equations in the r-z cylindrical coordinates with a geometric source

term for accounting cylindrical symmetry are considered [227]:

Ut + F(U)r + G(U)z = S(U), (A.1)

where the t, r, z subscripts indicate di�erentiation with respect to time, r direc-

tion and z direction respectively. U is the conserved variable vector, F(U) and

G(U) are the �uxes at the radial (r) and the axial (z) directions respectively,

whereas S(U) is the geometric source term, to take into consideration the axial

symmetry.

U =



ρ

ρur

ρuz

ρE


, F(U) =



ρur

ρu2
r + p

ρuruz

(ρE + p)ur


, G(U) =



ρuz

ρuruz

ρu2
z + p

(ρE + p)uz


,

S(U) = −s
r



ρur

ρu2
r

ρuruz

(ρE + p)ur



(A.2)



A. 2-D Euler equations in cylindrical coordinates

where r is the distance from the axis/point of symmetry and s is unity for

cylindrical symmetry and 2 for spherical symmetry. The rest of the variables are

the same as in section 2.1.
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Appendix B

Analytical Solutions

B.1 Exact Riemann Problem solution for an ar-

bitrary equation of state

In this section, the methodology for �nding the exact solution to the Riemann

problem for the Euler equations, for an arbitrary equation of state of the form

p = f(ρ, e). The equation of state may be provided in closed form, where sim-

pli�cations as in Toro [227] may be done, or in a general tabular form (The

interested reader is also addressed to [258, 259, 260, 261, 262, 263, 224]).

Figure B.1: Wave structure of the Riemann problem for the Euler equations for
a general equation of state p = f(ρ, e).

The form of the Riemann problem solved is:
∂U

∂t
+
∂F(U)

∂x
= 0

U(x, 0) =

UL, x < 0

UR, x ≥ 0

(B.1)
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where U(x, t) is the vector of conservative variables and F(U) is the �ux vector,

as shown below:

U =


ρ

ρu

ρE

 , F(U) =


ρu

ρu2 + p

u(ρE + p)

 , (B.2)

where E = 1/2u2 + e, with e being the internal energy. The Jacobian matrix

A(U) is:

A(U) =



0 1

∂p

∂ρ
+

∂p
∂e

(
u2 − 2e

)
− 2ρu2

2ρ
u

(
2− ∂p

∂e

)
u

[
2p+ ∂p

∂e

(
2e− u2

)
+ ρ

(
u2 − 2∂p

∂ρ
+ 2e

)]
2ρ

(
ρ− 2∂p

∂e

)
u2 + 2p+ 2eρ

2ρ

0
1

ρ

∂p

∂e(
∂p
∂e

+ ρ

)
u

ρ

 (B.3)

and the eigenvalues λ1, λ2, λ3 are:

λ1 = u−

√
∂p

∂ρ
+
∂p

∂e

p

ρ2
λ2 = uλ3 = u+

√
∂p

∂ρ
+
∂p

∂e

p

ρ2
(B.4)

The solution of the Euler equations B.1 is self similar, with two genuinely non-

linear waves, corresponding to λ1 and λ3 eigenvalues, that can be either shock

waves or rarefaction waves (Fig. B.1). These waves separate the solution of the

Riemann problem to the left state (L), the right state (R) and the star region

(∗). In the star region, pressure and velocity are the same, but density and

internal energy are not. The latter also change along the contact discontinuity

(corresponding to λ2). To �nd the solution to the Riemann problem, one needs

to solve a non-linear algebraic equation for pressure:

g(p∗) = gL(p∗) + gR(p∗) + uR − uL = 0 (B.5)
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B.1. Exact Riemann Problem solution for an arbitrary equation of state

Functions gL and gR depend on the type of non-linear wave. For shock waves

the Rankine-Hugoniot conditions are employed, eventually leading to:

gK,shock =

[
(p∗ − pK)(ρ∗K − ρK)

ρ∗KρK

]1/2

, (B.6)

for K = L or R state. Apart from Eq. B.6, energy conservation applies across

the shock wave:

e∗K =
1

2
(p∗ + pK)

(
ρ∗K − ρK
ρ∗KρK

)
+ eK , (B.7)

To solve Eq. B.6 and B.7 an iterative procedure is required; initially one assumes

an initial internal energy e∗K (e.g. equal to eK) which, combined with pressure

p∗, corresponds to a density ρ∗K . This density can be used to obtain the gK,shock

function and the internal energy from the energy balance (Eq. B.7). Since e∗K

from Eq. B.7 and e∗K are not necessarily the same, due to the guessed value of

the latter, e∗K is corrected and the process is repeated till convergence.

For the rarefaction wave, the calculation is more complicated, since it involves

the Riemann invariants across an isentropic path. The Riemann invariants are

shown below for the left rarefaction wave:

du+
c

ρ
dρ = 0, s = sL (B.8)

and the right rarefaction wave:

du− c

ρ
dρ = 0, s = sR (B.9)

Integration of these relations is not convenient to be done analytically for a

general EoS, which might be expressed in tabular form. It is rather convenient to

perform the integration numerically on an isentropic path across the rarefaction

wave, as follows for e.g. the left rarefaction wave:

u∗ − uL +

∫ ∗
L

(
c

ρ

)
s=sL

dρ = 0 (B.10)

One can split the integral as follows:

u∗ +

∫ ∗
ref

(
c

ρ

)
s=sL

dρ = uL +

∫ L

ref

(
c

ρ

)
s=sL

dρ, (B.11)

where ref is a reference state e.g. at the minimum allowable density of EoS. In
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a similar manner one may derive the relation for the right rarefaction wave:

u∗ −
∫ ∗
ref

(
c

ρ

)
s=sR

dρ = uR +

∫ R

ref

(
c

ρ

)
s=sR

dρ, (B.12)

and eventually, the function

gK,rarefaction =

∫ ∗
ref

(
c

ρ

)
s=sK

dρ−
∫ K

ref

(
c

ρ

)
s=sR

dρ, (B.13)

Hereafter the integral
∫ K

ref

(
c

ρ

)
s=sK

dρ will be referred to as IK(pK). Calculation

of the isentropic integral IK(pK) may be done numerically. At �rst, one needs to

calculate the states that have the same entropy s, as the right (R) and left (L)

state.

Assuming that the thermodynamic properties are expressed in the form of

f(ρ, e), the isentropic path may be calculated as follows:

1. determine the entropy of the K state (K can be either L or R), as sK =

s(ρK , eK).

2. starting from a low reference density, ρref , and increasing by intervals dρ,

the point that corresponds to sK is found by iteratively correcting internal

energy e, for the given path point i. Internal energy correction may be done

with the Newton-Raphson method, till a speci�ed tolerance is reached.

3. after reaching the tolerance, the rest thermodynamic properties (e.g. pres-

sure, speed of sound etc.) for (ρi, ei) may be found. Speed of sound c, is

needed to evaluate the term inside the integral I. Pressure is needed in

order to express the integral as a function of pressure; this is preferable,

because pressure at the whole star region is the same. The integral may be

calculated by using the trapezoid rule, or a more accurate Simpson method.

Care should be taken in areas of large changes in the speed of sound, as

e.g. near saturation lines.

4. the procedure may be done till a high pressure pmax which should be greater

than the pressure expected to appear in the rest calculations.
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Switching between rarefaction and shock wave is done based on pressure:

gK =

gK,rarefaction, pK < p∗

gK,shock, pK ≥ p∗
(B.14)

The solution for the star region can be achieved with the Newton-Raphson

method:

pn = pn−1 −
g(pn−1)

g′(pn−1)
urf (B.15)

where n is the number of the iteration, urf is an under-relaxation factor to

enhance stability in case of highly non-linear EoS and g′ is the derivative of Eq.

B.5. Note that for such equations it is preferable to resort to a numerically

approximated value of the derivative, as:

g′ =
g(ρ− ε)− g(ρ)

ε
, (B.16)

where ε is a small positive number. For highly non-linear EoS, it might be prefer-

able also to bound the maximum change of pressure from iteration to iteration,

in order to prevent overshoots/undershoots and enhance stability, i.e.:

pn = max(min(pn, pmax), pmin), (B.17)

where pmax, pmin can be percentage of density during the previous iteration,

e.g. 120% and 80% of pn−1 respectively. After determining p∗ within su�cient

tolerance, determining velocity u∗ is trivial, through the following equation:

u∗ = 0.5(uL + uR) + 0.5[gR(p∗)− gL(p∗)] (B.18)

Identi�cation of the type of waves is done depending on pressure at the star

region comparing the left and right states: if p∗ > pK then the wave between

the ∗ and K region is a shock wave, else it is a rarefaction wave. The type of

wave determines the wave speed and the transition between the two states. For

a shock wave the transition is sharp and the wave speed is given by: Left shock:

SL = uL −
QL

ρL
(B.19)

Right shock:

SR = uR −
QR

ρR
(B.20)
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with

QK =

[
(p∗ − pK)ρ∗Kρ

∗

ρ∗K − ρK

]1/2

(B.21)

Rarefactions, contrary to shock, are gradual changes in density, pressure and

velocity. Thus, they are associated with two speeds, one for the head of the

rarefaction and one for the tail: Left rarefaction, head: SLH = uL − cL and tail:

SLT = u∗−cL Right rarefaction, head: SRH = uR+cR and tail: SRT = u∗+c∗R In

order to �nd the conditions inside the rarefaction wave, the Riemann invariants

shall be used. For a left rarefaction, one has to solve the following equation for

the point i inside the rarefaction:

xi
t

+ c(pi) + IL(pi) = uL + IL(pL) (B.22)

Similarly, for the right rarefaction:

xi
t
− c(pi)− IR(pi) = uR − IR(pR) (B.23)

Solution of Eq. B.22 and B.22 can be done numerically, solving for density, using

Newton-Raphson method, applying under-relaxation and taking care during the

updating of the density values. Experience has shown that it is better to apply

a low under-relaxation factor of even 0.02.

Assuming the n-Dodecane Helmholtz EOS and assuming an initial discon-

tinuity of the form ρL = 752.5kg/m3 and temperature TL = 289K for x < 0,

ρR = 717.5kg/m3 and TR = 350K for x ≥ 0 (which corresponds to pL ∼ 44330Pa

and pR ∼ 109bar), one obtains that the solution of the Riemann problem at

the star region is: p∗ = 6017572Pa, u∗ = −5.94m/s, ρ∗L = 755.86kg/m3,

ρ∗R = 713.48kg/m3, T ∗L = 290.02K, T ∗R = 349.47K With rarefaction wave

to the right STR = 1125.13m/s, SHR = 1162.62m/s and shock wave to left

SL = −1336.49m/s.

B.2 Exact Riemann Problem for multi-material

problems

In this section, the methodology for �nding the exact solution to the Riemann

problem for the multi-material Euler equations is derived. In the literature there

are limited works discussing exact Riemann solvers for multi-material applica-
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tions. Mainly, these focus on multiple velocities, pressures and temperature

�elds, see e.g. [264, 224]. The discussion here will be limited to just two di�erent

materials sharing the same velocity, pressure and temperature �elds. The mate-

rials will be referred to as material-1 and material-2, however the methodology

may be extended to any number of materials. For the sake of generality, the

discussion will not be limited to an explicit form of equation of state. Instead,

the equations of state for the two distinct materials will be assumed to depend

on density and internal energy only, i.e. have a form p = p(ρ) or p = p(ρ, e),

which may have an explicit formula or be in tabular form as in [89, 95]. Material

variation will be tracked using a mass fraction transport equation which will af-

fect the mixture equation of state. Thus, the mixture equation of state that will

be examined is of the form p = p(ρ, Y ) or p = p(ρ, e, Y ), where Y is the mass

fraction of material-2, de�ned in Eq. (2.25). Following Toro [227], the form of

the Riemann problem solved is:
∂U

∂t
+
∂F(U)

∂x
= 0

U(x, 0) =

UL, x < 0

UR, x ≥ 0

(B.24)

The same nomenclature as in the rest of the paper is used.

B.2.1 Pressure is only a function of density and mass frac-

tion

In case the mixture pressure is only a function of density and mass fraction,

p = p(ρ, Y ) the conservative variables and the �ux vector are:

U =


ρ

ρu

ρY

 , F(U) =


ρu

ρu2 + p

ρuY

 , (B.25)

To derive the Jacobian matrix, it is convenient to recast the U and F(U) vectors

and equation of state p = p(ρ, Y ), as:
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U =


u1

u2

u3

 , F(U) =


u2

u2
2

u1

+ p

(
u1,

u3

u1

)
u3u2

u1

 , p = p

(
u1,

u3

u1

)
, (B.26)

The Jacobian matrix is calculated as:

A(U) =



∂f1

∂u1

∂f1

∂u2

∂f1

∂u3

∂f2

∂u1

∂f2

∂u2

∂f2

∂u3

∂f3

∂u1

∂f3

∂u2

∂f3

∂u3


(B.27)

After calculating all terms and replacing back the conservative variables:

A(U) =


0 1 0

∂p

∂ρ
− u2 − ∂p

∂Y

Y

ρ
2u

1

ρ

∂p

∂Y

−uY Y u

 (B.28)

The eigenvalue analysis of the Jacobian matrix results to:

λ1 = u− c

λ2 = u

λ3 = u+ c

(B.29)

and right eigenvectors:

K1 =


1

u− c

Y

 , K2 =



∂p

∂Y

u
∂p

∂Y

Y
∂p

∂Y
− ρ∂p

∂ρ


, K3 =


1

u+ c

Y

 (B.30)

where c is the speed of sound equal to

√
∂p

∂ρ
. The waves associated with λ1, λ3

eigenvalues are non-linear waves (shock waves or rarefaction waves) and the λ2
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eigenvalue is a linearly degenerate wave associated with a contact discontinuity.

B.2.2 Pressure is a function of density, internal energy and

mass fraction

In case the mixture pressure is only a function of density, internal energy and

mass fraction, p = p(ρ, e, Y ) the conservative variables and the �ux vector are:

U =



ρ

ρu

ρE

ρY


, F(U) =



ρu

ρu2 + p

u(ρE + p)

ρuY


, (B.31)

where E = 1/2u2 + e, with e being the internal energy. To derive the Jacobian

matrix, it is convenient to recast the U and F(U) vectors and EoS p = p(ρ, e, Y )

as:

U =



u1

u2

u3

u4


, F(U) =



u2

u2
2

u1

+ p

(
u1,

u3

u1

− u2
2

2u1

,
u4

u1

)
u2

u1

(
u3 + p

(
u1,

u3

u1

− u2
2

2u1

,
u4

u1

))
u4u2

u1


, (B.32)

p = p

(
u1,

u3

u1

− u2
2

2u1

,
u4

u1

)
(B.33)

The Jacobian matrix is:
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A(U) =


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)
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1
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(
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ρ
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
(B.34)

The Jacobian eigenvalues [λ1, λ2, λ3, λ4] are:

λ1 = u− c

λ2 = λ3 = u

λ4 = u+ c

(B.35)

and right eigenvectors:

K1 =



1
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1

2

(
u2 − cu+ 2p/ρ+ 2e

)
Y


, K2 =



2
1

X

∂p

∂Y

2
u

X

∂p

∂Y

0

1


,

K3 =



2
1

X

∂p

∂e

2
u

X

∂p

∂e

1

0


, K4 =



1

u+ c

1

2

(
u2 + cu+ 2p/ρ+ 2e

)
Y



(B.36)
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where c is the speed of sound, de�ned as: c =

√
∂p

∂ρ
+
∂p

∂e

p

ρ2
and X =

∂p

∂e
u2 +

2
∂p

∂e
e − 2

∂p

∂ρ
ρ + 2

∂p

∂Y
Y . The waves associated with λ1, λ4 eigenvalues are non-

linear waves (shock waves or rarefaction waves) and the λ2, λ3 eigenvalues are

linearly degenerate waves associated with a contact discontinuity.

B.2.3 Exact solver derivation

Despite the di�erence in the Jacobian matrix structure with respect to the single

material, ideal gas Euler equations [227], the eigenstructure is very similar. In

both cases (pressure is function of ρ, Y or pressure is a function of ρ, e, Y ), the

eigenvalues correspond to two non-linear waves and one contract discontinuity

wave. In fact, since the material interface will travel at the contact discontinuity,

allows to split the original multi-material Riemann problem, to two coupled

single-material Riemann problems, as shown in Fig. B.2 and B.3.

Figure B.2: Wave structure of the Riemann problem for the multi-material Euler
equations for a general equation of state p = f(ρ, e, Y ).

Consequently, to solve the multi-material Riemann problem exactly, one has

to do the following procedure:

1. Assume an initial star region velocity, u?.

2. Based on this assumed u?, solve each material separately, with a single ma-

terial Riemann solver, assuming that the contact discontinuity is a moving

wall at velocity uwall = u?. General Riemann solvers for arbitrary equations

of state in the form of p = p(ρ) or p = p(ρ, e) may be found in [95]. The

solution of each single-material problem is done assuming wall boundary

conditions, i.e. pR = pL, ρR = ρL, but uR = −uL + 2uwall. For example,
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Figure B.3: Equivalent splitting of the multi-material Riemann problem to two
coupled single-material Riemann problems.

in Fig. B.3, when solving for material-1, the right state conditions are

U =
[
ρL ρL(2uwall − uL) eL

]T
. Similarly for material-2, the left state

conditions are U =
[
ρR ρR(2uwall − uR) eR

]T
.

3. After solving the two individual Riemann problems for material-1 and

material-2, the calculated star region pressure for the two materials p?1 and

p?2 is not necessarily the same. Thus, the u∗ velocity must be corrected

iteratively, until p?1 = p?2.

4. Once p?1 = p?2 up to a prescribed tolerance, the exact solution of the Rie-

mann problem is the superposition of the two individual problems, i.e. the

L and L∗ states frommaterial-1 and R and R∗ states frommaterial-2. Note

that in cases of large disparities in the acoustic impedance of the materials

(e.g. liquid/gas interfaces), p? will be very sensitive to small variations of

u? for the sti� phase, thus under-relaxation of the corrected u? is advised.

As a demonstration of the aforementioned solver of section 2.6.1, the following

cases will be examined and compared with PVRS solvers in literature [227]. The

material properties are as follows: material-1 : Liquid EoS, p = c2
L(ρ−ρl,sat)+psat,

cL = 1482.35m/s, psat = 2340Pa, ρl,sat = 998.16 kg/m3 material-2 : Gas EoS,

p = ρRgTref , Rg = 287.06 J/(kgK), Tref = 293K

Case A

The initial con�guration of the Riemann problem is shown in Table B.1. The

exact solution is p? = 1430.9Pa and u? = 0.067m/s. The PVRS-solver, using

average states between L, R fails to properly predict the star region; in fact, it
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predicts p? = 50666.7Pa (3440.9 % deviation from exact) and u? = 0.11m/s

(66.9 % deviation from exact). On the other hand, the PVRS-solver outlined

in section 2.6.1, predicts p? = 1430.9Pa (practically identical to exact solution)

and u? = 0.066m/s (0.2 % deviation from exact). Note that this is the same

case used for validation in section 3.1.2.

Table B.1: Initial con�guration for the Riemann problem of B.2.3.

material-1, x < 0 (Liquid) material-2, x ≥ 0 (Gas)
ρL = 998.202 kg/m3 ρR = 0.017 kg/m3

uL = 0m/s uR = 0m/s
pL = 99902.8Pa pR = 1400Pa

Case B

The second Riemann problem is a much more demanding case, since there is a

huge pressure and density variation between the L, R states. The initial con-

�guration of this Riemann problem is shown in Table B.2. The exact solution

is p? = 144.4Pa and u? = 2.73m/s. The PVRS-solver, using average states

between L, R again fails to properly predict the star region, due to the averag-

ing; in fact, it predicts p? = 20.2 · 105 Pa (1400000 % deviation from exact) and

u? = 4.56m/s (66.7 % deviation from exact). On the other hand, the PVRS-

solver outlined in section 2.6.1, predicts p? = 144.4Pa (practically identical to

exact solution) and u? = 2.72m/s (0.32 % deviation from exact).

Table B.2: Initial con�guration for the Riemann problem of B.2.3.

material-1, x < 0 (Liquid) material-2, x ≥ 0 (Gas)
ρL = 1000 kg/m3 ρR = 0.0017 kg/m3

uL = 0m/s uR = 0m/s
pL = 40.4 · 105 Pa pR = 143Pa

Case C

In this case, although the pressure and density ratios are much lower than the

case in section B.2.3, the challenge is to predict the induced depressurization due

to the high gas velocity. The initial con�guration of this Riemann problem is

shown in Table B.3. The exact solution is p? = 81548Pa and u? = 2.68m/s.

The PVRS-solver, using average states between L, R again fails catastrophically,
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predicting a negative p?; it predicts p? = −154923Pa (290 % deviation from

exact) and u? = 9.46m/s (250 % deviation from exact). On the other hand, the

PVRS-solver outlined in section 2.6.1, predicts p? = 82025Pa (0.59 % deviation

from exact solution) and u? = 2.67m/s (0.33 % deviation from exact).

Table B.3: Initial con�guration for the Riemann problem of B.2.3.

material-1, x < 0 (Liquid) material-2, x ≥ 0 (Gas)
ρL = 1000 kg/m3 ρR = 1 kg/m3

uL = 0m/s uR = 10m/s
pL = 40.4 · 105 Pa pR = 84151Pa

Case D

Also, in order to demonstrate the capability in predicting temperature e�ects and

taking into account energy equation, a case examined by Saurel et al. [224] will be

discussed. This case involves interaction of vapour and liquid dodecane, modelled

as ideal gas and sti�ened gas respectively. The properties of the materials are:

material-1 : Liquid, sti�ened gas EoS, p = e(γL − 1)ρ − γLp∞, e = cv,LT +
p∞
ρ
,

cv,L = 1077 J/(kgK), p∞ = 4 · 108 Pa, γL = 2.35 material-2 : Ideal gas EoS,

p = ρRgTref , e = cv,GT , Rg = 48.9 J/(kgK), cv,G = 1956 J/(kgK) The initial

discontinuity in this case is described in Table B.4. The exact solution with the

described solver is p? = 186835.8 kg/m3, u? = 140.7m/s, ρ?,L = 454.9 kg/m3,

ρ?,R = 3.68 kg/m3 which is identical with the published solution.

Table B.4: Initial con�guration for the Riemann problem of B.2.3.

material-1, x < 0 (Liquid) material-2, x ≥ 0 (Gas)
ρL = 500 kg/m3 ρR = 2 kg/m3

uL = 0m/s uR = 0m/s
pL = 108 Pa pR = 105 Pa
TL = 688 k TR = 1022.3K
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Appendix C

Isentropic Compression

In Table C.1, isentropic compression of liquid water starting from saturation

conditions (T = 293K, p = 2317Pa) is calculated based on the properties of

[265, 223]. The temperature increase is negligible for pressure 2500 bar (∼ 6K)

and even for higher pressures, temperature increase is not signi�cant in com-

parison to the other phenomena which take place. For example, in the droplet

simulations of section 3.7 for impact velocity 110 m/s, the maximum pressure

is 1460 bar resulting in temperature increase less than 3.5K. The above justify

the barotropic EoS which was selected and the omission of thermal e�ects.

Table C.1: Temperature di�erence for isentropic compression of liquid water.
Properties are derived from [265].

Pressure (Pa) Temperature (K) Temperature Di�erence (K)
2317.45 293 0

107 293.15 0.15
108 294.959 1.959

2.5 · 108 299.109 6.109
5 · 108 306.905 13.905

109 321.933 28.933
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Appendix D

Modelling of the skin tissue

In this section, preliminary simulations of the skin tissue are performed by em-

ploying Ansys Fluent CFD solver. The validity of the developed model in OF

is assessed against Fluent in Fig. 4.3 and therefore it can be concluded that a

similar �ow �eld is predicted from the OF solver as well. Regarding the numer-

ical approach in this section, an additional transport equation for modelling the

tissue as compressible liquid with large viscosity (µtis = 0.1 kg/(m · s)) is added
to the equations of section 2.2.1 (see [266, 267]). Therefore, water, air and tissue

are treated as immiscible �uids. In Fig. D.1 the initial con�guration is shown,

whereas in Fig. D.2 pressure (left) and velocity (right) contours combined with

the iso-lines of gas volume fraction of αg = 0.5 (gas-liquid interface is denoted by

dash line) and tissue volume fraction αtis = 0.5 (gas-tissue interface is denoted

by solid line) are demonstrated for pbub = 5 · 107 Pa. It is elucidated that the

developed jet due to the bursting bubble is strong enough to cause skin punc-

ture, which is also in accordance with the estimation given when water hammer

pressure was used as criterion for skin penetration. At time t = 34.3µs the liquid

jet is about to impact the skin surface. Due to the compression of the air above

the jet, the velocity �eld of the gas phase is increased, however it does not cause

a deformation of the gas-soft tissue interface as it is not focused. On the other

hand at time t = 40.5µs the liquid jet has just reached the soft tissue, whose

interface is deformed because of high velocity �eld of the jet. At later times

t = 53 and 79.8µs the jet has further travelled into the soft tissue. As the jet

further advances, its velocity magnitude is decreasing until a stagnation point is

created at the maximum depth.
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Figure D.1: Initial con�guration of the needleless injection with the soft tissue
modelled. The gaseous bubble of pbub = 5·107 (orange), the liquid in atmospheric
pressure (blue), the air in atmospheric pressure (red) and the soft tissue (pink)
are depicted.

Figure D.2: Contour �elds of the needleless injection when considering the addi-
tional phase of the soft tissue phase: pressure (left) and velocity contours (right)
combined with the iso-lines of gas volume fraction of αg = 0.5 (gas-liquid inter-
face is denoted by dash line) and tissue volume fraction αtis = 0.5 (gas-tissue
interface is denoted by solid line) at 4 instances during the penetration of the
liquid jet into the soft tissue are shown.
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Appendix E

Applicability range of Helmholtz

EoS

In Tables E.1, E.2 and E.3, the number of the cells where extrapolation was used

beyond the applicability range of the Helmholtz EoS is shown for the bubble

collapse cases of section 3.3. In addition, the minimum and maximum values

of density are also shown in order to get an estimation of how extrapolation

a�ects its value. As it can be seen, a small percentage of the total cells has been

calculated beyond the calibration range of the Helmholtz EoS.

Table E.1: Percentage of the cells where the thermodynamic properties have been
calculated using the Helmholtz EoS beyond its calibration limit for the bubble
collapse of section 3.3 with d = 416µm (highest postion).

t/τ Cells beyond
calibration

min-max ρ
(kg/m3)

1.04 1.8% 4− 826
1.13 4.2% 3− 864
1.15 3.3% 5− 994
1.18 1.9% 550− 916

Table E.2: Percentage of the cells where the thermodynamic properties have been
calculated using the Helmholtz EoS beyond its calibration limit for the bubble
collapse of section 3.3 with d = 140µm (high position).

t/τ Cells beyond
calibration

min-max ρ
(kg/m3)

1.01 0.5% 4− 807
1.09 0.1% 2− 890
1.10 0.1% 553− 1014
1.14 0.9% 388− 843
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Table E.3: Percentage of the cells where the thermodynamic properties have been
calculated using the Helmholtz EoS beyond its calibration limit for the bubble
collapse of section 3.3 with d = −140µm (low position).

t/τ Cells beyond
calibration

min-max ρ
(kg/m3)

0.72 0% 4− 777
0.75 1.2% 4− 852
0.76 0.7% 751− 1011
0.77 0.5% 554− 868
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