IT City Research Online
UNIVEREIST; ]OggLfNDON

City, University of London Institutional Repository

Citation: Murphy, R., Mondragon, E. & Murphy, V. A. (2009). Covariation, Structure and
Generalization: Building Blocks of Causal Cognition. International Journal of Comparative
Psychology, 22(1), pp. 61-74.

This is the published version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/22058/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.




City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk



http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

International Journal of Comparative Psychology, 2009, 22, 61-74.
Copyright 2009 by the International Society for Comparative Psychology

Covariation, Structure and Generalization:
Building Blocks of Causal Cognition

Robin A. Murphy and Esther Mondragon
University College London, United Kingdom

Victoria A. Murphy
University of Oxford, United Kingdom

Theories of causal cognition describe how animals code cognitive primitives such as causal strength,
directionality of relations, and other variables that allow inferences on the effect of interventions on
causal links. We argue that these primitives and importantly causal generalization can be studied
within an animal learning framework. Causal maps and other Bayesian approaches provide a
normative framework for studying causal cognition, and associative theory provides algorithms for
computing the acquisition of data-driven causal knowledge.

And though we must endeavour to render all our principles as
universal as possible, by tracing up our experiments to the utmost, and
explaining all effects from the simplest and fewest causes, it is still
certain we cannot go beyond experience; and any hypothesis, that
pretends to discover the ultimate original qualities of human nature,
ought at first to be rejected as presumptuous and chimerical (Hume,
Introduction, 1740/2002).

The psychology of causes and causation involves core behavioral and
cognitive functions and retains a central position in Experimental Psychology.
Perception (Michotte, 1946/1963), learning (Le Pelley, 2004), pattern or rule
acquisition (Conway & Christiansen, 2001; Murphy, Mondrag& Murphy,
2008), instrumental action (Buehner, 2006; Wasserman, Elek, Chatlosh, & Baker,
1993) and analogical thinking (Penn, Holyoak, & Povinelli, 2008)—even issues
related to questions of free-will (Haggard, Clark, & Kalogeras, 2002; see also
Blaisdell, 2008)—underlie causal understanding. Causal model theory (Waldmann
& Holyoak, 1992), causal map theory (Gopnik et al., 2004) and propositional
reasoning (Mitchell, De Houwer, & Lovibond, 2009) are recent attempts to explain
causal learning in humans. Similar theories are being developed to explain animal
conditioning (e.g., Beckers, Miller, De Houwer, & Urushihara, 2006; Courville,
Daw, & Touretzky, 2006). Much of this work is described in terms that seem to go
beyond simple Humean association. We review experiments touching on
components of causal learning studied in the conditioning chamber; statistical
learning, structure learning and generalization of structure.

It is worth beginning by discriminating between two very different types of
causal learning that themselves may invoke different representations and learning
processes. We will only address one of these two. Young (1995) provides a useful
distinction between personal causal theories, ones developed by direct observation,
from public causal theories that are acquired and elaborated via social or cultural
transmission. We argue that much of animal behavior can be explained via the
same associative learning processes that guide human personal causal theories. We
do not deny a role for theory-driven causal thinking acquired via logical reasoning
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and social or cultural transmission even in animalé simply believe that a
different set of explanations may be required (altdh see Heyes, 2005).

Experiential cause - effect learning involves adqugi a representation of
the temporally and spatially contiguous stimulusrés encountered in the world.
How does an animal learn that its behavior causie®a pellet to appear? How
does it learn that a tone seems to cause or (peibray) predict the occurrence
food (e.g., Blaisdell, Sawa, Leising, & WaldmanQ08)? These questions have
been the interest of animal Pavlovian and Instruadezonditioning research for
the last 100 years with recent advances in cauagl tireory challenging simpler
associative explanations.

Causal Map Theory (e.g., Gopnik et al., 2004; Pd&96) like Spatial Map
theory (O’'Keefe & Nadel, 1978) are descendentshef more general cognitive
map theory of Tolman (1948) who used maps as aphetgor explaining goal-
directed behavior and the flexible representatiohsausal knowledge. A causal
map is a developed representation of the cauda between events. Rather than
simply containing associated links, these repregiems code both causal power or
strength and temporal directionality. In additianexplaining the acquisition of
causal links the maps can be used to predict wietdte an intervention may have
on the causal links as well, deducing the consezpgeif novel pathways in a
causal net. For example, a virologist may use tairom and directionality to
discover which virus correlates with which disealeey are also able to intervene
to change the course of a disease by manipulategadonditions that support the
virus. However, an important aspect of causal thigkhat is under specified in
causal maps, but is a crucial aspect of causalithaghis an explanation of how
knowledge might generalize between domains. Switiogist who has a causal
theory of germs is also able to transfer this daksawledge to discover new
germs and develop new vaccines or perhaps to ptstihe existence of
antibiotics. The ability to see analogies acrossddusal structure of different sets
of stimuli is argued to be what makes human thigkinique (Penn & Povinelli,
2007). How might one characterize this type of clempgausal knowledge for the
rat in a conditioning chamber?

In this paper we consider some of the evidence léarning causal
primitives. The first one is well characterized dayimal models of conditioning -
strength of contingency. We then discuss some duidlata on temporal order and
structure and the generalization of causal stredimnovel stimuli.

Strength of Contingency

The British empiricists (e.g., Hume, 1740/2002)ved an initial model
for how researchers might think about how animatn causal relations. They
assumed, inabula rasa tradition, that causal knowledge was acquiredudhothe
senses rather than innately given. Acquiring amuh thsing knowledge about the
causal relations between events in the naturar@mvient requires using sensory
information to encode the relevant spatial and taalpcontiguity between events
(e.g., Baker, Murphy, Vallée-Tourangeau, & Meht@0P, Mackintosh, 1978).
From this perspective no true understanding of aapswer is acquired, in fact
causation is a human mental construction (Youn§519All that is observable to
the behaving animal and useful for predicting fatuevents are the local
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contiguous relations between events. So, tempordiguity between experiencing
food smells and the nutritional consequences oéstigg food encourages an
association between stimuli that allows an animdind similar food in the future.
In other words, it acts as if it has causal knogtedrhe actual causal mechanisms
behind volatile chemicals that excite nasal reaspt@nd the role played by
nutrition for physical health are cognitively ireeant to the animal. Contiguity as
a cue to causality has been the natural point aftacd between human
philosophical ruminating about causation and anitcoghition (Dickinson, 2001).

A theory of behavior, based simply upon a singlatignous pairing
between a smell and food, is insufficient to expldiow repeated similar
experiences over time come to drive this behaw@search with more direct
relevance to causation comes from studies exp@siimgals to similar stimuli that
are paired with similar outcomes over time.

Pavlov (1927) showed this with dogs that graduatiguired conditioned
salivary responses (CR) in anticipation of fooce(timconditioned stimulus; US).
Importantly, the acquisition of the CR followed esped presentation of a very
similar conditioned stimulus (CS) with a very sianilUS over time. Taking this
further, Rescorla and Lolordo (1966) showed thatd@@mning is not simply a
reflection of CS-US pairing experience, with greateumbers of pairings
contributing to greater behavior. Pavlovian cowmdiing involves animals being
sensitive to or computing the overall rates or philities of the US in presence
and the absence of the CS (see also Rescorla, 196%). In several studies
Rescorla and colleagues varied the relative likgithof the occurrence of a US
(e.g., Shock) during training sessions in whiclodginally neutral but soon to be
CS (e.g., Tone) was presented. Conditioning tdd8eas a predictor of shock was
controlled by whether the rate of US occurrencéhm presence of a CS was i)
greater than, ii) less than or iii) equal to theeraf US occurrence in its absence.
Learning occurred regardless of the number of pgériof the two events but the
strength of conditioned responding was proportiot@l the strength of the
contingency. These three contingencies fosteredtagswy, inhibitory or no
conditioning.

Conditioning to a CS occurs to the extent thaighals a change in US
likelihood from that observed in the absence of@i% On the surface this is much
like Kelley's (1973) explanation of how humans matausal attributions,“An
effect is attributed to the one of its possible semuwith which, over time, it
covaries” (Kelley, 1973 p. 108). Rescorla and @ulees’ experiments (1966,
1968, 1969) showed that conditioned behavior requiZSs that covaried with the
Us.

Although we have hinted at this point earlier sitimnportant for much of
the rest of the discussion to clearly distinguishc@nputational theory of
covariation learning from the algorithm that migitplain how covariation is
computed. Marr described this distinction quitecéuctly in relation to vision
(Marr, 1982). The visual system computes the m@bati required for 3-D
perception without an internal 3D representatiohisTdistinction in relation to
learning has also been made (Baker, Murphy, & \éalléurangeau, 1996; Cheng,
1997) but is worth repeating. An animal’s behawbaenges as the experimenter
manipulates the covariation, if the animal’s bebav sensitive to these changes
then the animal has a developed a representatitreafovariation. Covariation is
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computed by the experimenter in a number of passiEys; Pearson’s moment
correlation () provides a measure of how two variables covarythVine-way
binary events Allan’s (1980)p statistic captures the relation. One (relatively)
simple representation that accounts for the adiprisof this relation is a single
associative connection. The associative connedsiaacquired via a competition
between the target stimulus and the contextual faresontrol over activation of
the US representation. One algorithm that can coenhis value is the Rescorla-
Wagner model (Rescorla & Wagner, 1972; Chapman &bRts, 1990). We have
described the relation between these two levelsamdlysis in more detail
elsewhere arguing that the Rescorla-Wagner modeliges an associative
explanation of the representations of covaryingsli (Baker et al., 1996).

The Rescorla-Wagner model (Rescorla & Wagner, 1942 designed to
provide an associative account for contingencyniegreffects in animal learning.
It describes how learning involves acquiring andlating associations formed
between a stimulus and its outcome. In conditioriargns this is the association
between the CS and the US. Associations get strotgehe extent that a
discrepancy exists between the activation of thedpBesentation (that the CS can
cause) and the maximum level of activation causethe US itself. If there is a
difference between these two, learning will ocdure model also predicts that on
any given trial the cause or predictor of the onteois unknown and so all
potential causes or predictors of the US sharediseciative strength actioned by
the occurrence of the unpredicted US.

In Rescorla’s experiments (e.g., 1968) the comipatitor association is
hypothesized to be between the Tone (CS) and tlkes ofi the context. Our
research interest in this phenomenon has beenplorexthis prediction. A CS
trained as a cause of a US will acquire positivadeisitive strength at the expense
of the context whereas a CS trained without suctlation occasions the context
as an associative predictor of the US. We have waied a number of studies
designed to directly examine this reciprocal caadihg prediction with both rats
and humans. We looked specifically for patternseaiprocal learning as well as
certain frequency learning effects predicted byassociative model.

In one set of appetitive Pavlovian conditioning exments, rats were
presented with Light-Food (i.e. CS-US) relationfiresl by the occurrence of a 10
second Light paired with food pellets (Murphy & Eak 2004). Six different
groups of rats received 40 trials. For half of Hanple (3 groups) the light was
positively related to the occurrence of food whibe the remaining 3 groups the
light was unrelated to food occurrence. The likatith of food on a trial with the
light (p(US|CS) was 50% greater than on trials wtiem light was not present
(p(US|NoCS), the difference between these two tiondi probabilities for food is
captured by a moderately positive relationship. aAk (1980) one-way
contingency between the CS and the US is exprdsgdte difference between
these two conditional probabilities. In our case twasAp = 0.5. The overall
likelihood of food in the absence of the light alswied between the three groups
(0%, 25% and 50%). The three groups of rats rengithe unrelated Light-Food
training received food on either 25%, 50% or 75%tridls regardless of the
presence of the light. For these three groupslLitjet signaled no change in the
likelihood of food @p = 0.0). Much like Rescorla’s finding, rats showed
statistically stronger nose-poke responding toGBewhen it signaled an increased
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likelihood of the US. Additionally, we found evidem that cues signalling a
greater proportion of USs generated more respongggrdless of the overall
relation. Evidence of the reciprocal conditioningiieeen the CS and the context
came from an assessment of responding to a coatecda, in our case a physical
metal bar that entered the chamber. Learning atbeutontext was measured by
contact with it. In measuring responding to thig eve were able to demonstrate
that as the predictiveness of the CS decreasetiamivere attracted to and made
contact with the context cue, as if it was the mmt@ble predictor of food. This
result is consistent with the theoretical accouasd®rla and Wagner provided for
sensitivity to covariation (Rescorla & Wagner, 197 &ensitivity to the covariation
between cues is dependent upon the causal conitikh which the covariation is
experienced.

One possible explanation for our results is basedesponse competition.
Response competition explanations are a simple faragnimals to behave as if
they have internalized a representation of thealaeationship. Animals perhaps
do not learn about the context when they are regipgrio the CS, or do not learn
about the CS when they are responding to the cbniéxs explanation still
requires that the contingency directs animals ¢octbrrect response. Alternatively,
Nose-pokes and context responding might be incabipand therefore only one
or the other response is possible. A response ditropeaccount of covariation
sensitivity requires a relatively simple peripheeacount of how the animals
‘solve’ the problem. Nevertheless, response coripetimay be the behavioral
solution for the computation problem of contingenegrning (see also Dwyer,
Starns, & Honey, in press, for a similar explamatmf causal interventions in
Blaisdell et al., 2006). We extended the analy$i€8/Context interactions by
studying humans in a causal discovery task thasupnably had none of the
response competition issues.

Research on human covariation detection has swgghdbat the same
associative model accurately predicts human adguisiof covariation (e.g.,
Baker, Berbrier, & Vallée-Tourangeau, 1989; Jenldné/ard, 1965; Wasserman
et al., 1993). In one experiment from our lab desitjto mirror the rat experiment
we provided undergraduate students with a causabdéry task. Students were
required to learn about various fictitious virusehse relations. Much like the
virologist of our original example, participantssdovered the contingency
between each virus and a specific disease. Sinvlahe CS-US (Light-Food)
relation that we trained the rats, students weaneéd with Virus labels that
preceded the disease effects. Causal judgmentsdikeose-pokes reflected both
the degree of contingency between the two eventsit{f*e or Zero) and the
frequency of the disease (Vallée-Tourangeau, Murphgw, & Baker, 1998). The
evidence for the reciprocal learning between stimand context, as a function of
variations in contingency, points directly to thevalvement of associative
processes in the computation of covariation. Asartgnt as covariation is,
elaborated causal map theory stresses the impertznather variables to support
causal knowledge, namely the temporal or structetations for causal learning.

-65 -



Temporal Structure

Causal structure in human learning has been argued to be as important as
causal strength for causal reasoning since one needs to know which event is the
cause and which one the effect (Lagnado, Waldmann, Hagmayer, & Sloman,
2007). It is claimed that associative models like the Rescorla-Wagner model
(RWM) do not take temporal order or structure into consideration (Griffiths &
Tenenbaum, 2005; Waldmann & Holyoak, 1992). There are two senses in which
the RWM addresses causal structure and temporal order. The first is that the model
predicts acquisition between the predictor and the outcome. The order in which the
events are experienced dictates which association is calculated. The association
describes the ability of the CS to activate the US, and is not usually bidirectional.
Trained with a set of 10 CBUS pairings the model predicts that the CS acquires a
strong positive association with the US, but not a strong positive association
between the US and the CS; in other words, presentation of the US will not excite
the CS. Conversely, given 10 B&S trials the model predicts that the CS
acquires a strong negative association with the US. Positive associations indicate
causal relations while negative associations indicate preventative relations. The
empirical evidence for this effect in the conditioning literature is strong.

Moscovitch and Lolordo (1968) describe a set of experiments showing
how the behavior acquired when a CS is presented before a US is markedly
different from the behavior acquired when the CS follows the US. With standard
forward pairing of the CS and US animals treat the CS as a predictor of shock
occurrence. Trained with the same stimuli with the order of the stimuli reversed
they treat the CS as a signal that the shock has already occurred. (see also Holder
& Garcia, 1987).

Conditioned behavior therefore, is influenced by the ordering of the cues
but this evidence does not tell us whether the temporal order of the cues is encoded
during conditioning. Causal map theory implies that each causal event pair
represents the strength of the association as well as the temporal structure
(Lagnado et al., 2007). What is the evidence then that animals encode these
relations? Encoding temporal order requires demonstrating that animals can
discriminate A>B from B>A.

Seger and Scheur (1977) demonstrated that rats could discriminate trials
with Tone>Light>Food from those with the order of the two CSs reversed
Light>Tone>no Food. The confound for any interpretation that requires temporal
order encoding is that the rats might have learnt to respond to the second part of
the trial and simply solved the discrimination by responding to the late occurring
Light (see also Weisman, Wasserman, Dodd, & Larew, 1980).

A series of appetitive Pavlovian conditioning experiments that
unambiguously shows temporal order acquisition was performed in our lab. Rats
were required to learn that the order in which two neutral cues were presented
signaled whether food was going to be delivered, but where every cue was at the
beginning and end of both reinforced and nonreinforced pairs (Murphy,
Mondraghn, Murphy, & Fouquet, 2004). In these experiments neutral auditory and
visual cues (e.g., lights, tones, clicks) were trained in pairs such that each of four
cues had four different roles. They were each the first and second cues of both
rewarded and nonrewarded trials. In this way nothing about an individual stimulus
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informed the rats of the possible outcome of tfad. tFable 1 illustrates the design
utilized in these experiments. Although a minimufrttoee stimuli are needed to
answer this question, using four stimuli has theaatage that it allows that pairs
of cues have a balanced role in terms of theiradigg relation to the other two
cues. So both A and C precede B and D but sigmalrglrersed contingency
between the cues and the US. We trained rats wislecbnd exposures to
individual elements and presented food pelleto¥dlhg half of the orders. The
measure of conditioned behavior during the secdimdukis of each pair was
whether they would come to nose-poke the fooditvanticipation of food on the
appropriate trials. Although a somewhat difficuisatimination for rats to learn
they did come to solve this problem. Although temap@rder is not represented,
per se, as a variable in the RWM, other versions of asgo@& models can quite
easily incorporate this order (e.g., Baetu & Baker,press). We discuss the
application of associative principles to problenfigemnporal order in more detail
in the following section.

Tablel

Experimental design used in Murphy et al. (2004)stody temporal order discrimination. Each
stimulus (A, B, C and D) was trained as the firatd asecond stimulus and was paired with
reinforcement (Rf+) and nonreinforcement (nRf-).

Reinforcement conditions Rf + nRf-
A->B B>A
B->C C->B
Stimulus pairs
C->D D->C
D->A A->D

In summary, the evidence is that temporal ordemat always coded
during learning, can be acquired given the appabprcausal structure training.
This is not a new suggestion, although these anedata on the extent to which
temporal order can be acquired and used as ardieative cue for behavior.
Miller and colleagues have proposed that the eteirgoral structure of training is
acquired during conditioning. The Temporal Encoditgpothesis suggests that
rats code temporal information about the CS andtation to the US (e.g.,
Barnet, Grahame, & Miller, 1993; Blaisdell, Dennist & Miller, 1998) with a
fine-grained temporal detail.

Rule Learning and Generalization

The evidence that rats can discriminat®B from B->A may be argued
to be at the very low end of complexity in causalpnterms. Other more complex
causal ordering experiments have been conductddrat$ that indicate that rats
can solve these causal problems. Blocking (Kam#69), Backward blocking
(Miller & Matute, 1996), and the difference betwemymmon cause and common
effect training (Beckers, Miller, De Houwer, & Uhibara, 2006) have all been
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tested. Generally, findings are consistent with a Bayesian Causal map analysis.
However, this might not be surprising since this analysis provides a justification
for many possible results depending upon the causal map that is acquired.

Complex serial ordered events are also important to causal map theory and
have been studied in animals in relation to serial and pattern learning. The
advantage that three element sequences, or higher, have over two-element pairs is
that three elements allow the experimenter to present more complex causal
relations among stimuli as a cue for behavior. Three elements also allow us to ask
guestions as to whether animals can extract the causal chains present in the
experience. There is already a considerable body of evidence from studies of
animal behavior that chains of sequences can be learnt (e.g., Capaldi & Miller,
2001; Fountain, 2008; Gentner, Fenn, Margoliash, & Nusbaum, 2006). In the
experiment we describe here, we used pairs of stimuli to construct three element
sequences to test for temporal structure as well as extraction of pattern learning in
rats. direr

Prelinguistic infants (Marcus, Vijayan, Bandi Rao, & Vishton, 1999;
Saffran, Aslin, & Newport, 1996), primates (Hauser, Weiss, & Marcus, 2002) and
pigeons (Hebranson & Shimp, 2003) can learn simple rules that describe sequential
relations. The reason we liken these to causal maps is that they contain some of the
important elements of a causal map (Gopnik et al., 2004). Causal relations are a
form of rule which describes the temporal relation between chains of events.
Although the experiments that form the basis for our study with rats were
conducted ostensibly to study innate language abilities in infants they embody
simple rules that have the characteristics of a causal relation (see also Katz,
Wright, & Bodily, 2007; Penn & Povinelli, 2007).

These experiments used a modification of a pattern learning design
originally suggested to explain early evidence of language learning in babies.
Using a habituation procedure Marcus et al., (1999; see also Saffran et al., 1996)
exposed 7-month-old infants to strings of phonemes that obeyed a rule (e.g.,
XYX). When subsequently exposed to novel phoneme strings that either did or did
not adhere to the habituated rule, 15 out of 16 babies gazed longer in the direction
of the sound source when the inconsistent sequences were played. These
researchers took this finding to suggest that the babies had learnt a rule in the
initial exposure phase and could therefore discriminate the habituated rule during
the test phase. From the perspective of causal map theory this procedure is
analogous to training a cyclic causal map in which events in a causal chain
reoccur. The transfer phase to novel items is of some interest to researchers of
causal cognition since the ability to transfer suggests that the learned rule was
flexible and could be applied in novel domains, albeit within the same sensory
modality.

We examined whether rats could learn to resolve three-element sequential
rules (Murphy, Mondragn, & Murphy, 2008). In our first experiment hungry rats
were exposed to sequences of stimuli (e.g., light and dark) like the two element
sequences used to test learning of temporal order except now rats were exposed to
three-element sequences (light-dark-light) that obeyed rules. Items consistent with
the rule (e.g., A-B-A) were paired with food reinforcement while those that
violated the rule were extinguished. The test of acquisition required examining
nose-poking behavior on the third element of each trained sequence. Each element
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was present on both reinforced and nonreinfordel$ tthe animals could only use
the previous two cues to determine whether it vipgeapriate to anticipate food on
a given trial. Rats were able to learn this disgration suggesting acquisition of
the temporal structure of these cues.

The design of the experiment allows at least twesfiade conclusions
about how multiple instances of each rule werenlkeafnimals may learn for
example that ABA and BAB signaled food but do netgeive them as from the
same category. The sequences may have been tesateehaviorally equivalent
because of their consequences but the rats mayawetan internal representation
of the extracted rule. Evidence from research ajuiaed equivalence (Honey &
Watt, 1998) suggests that animals can generalite@elea training stimuli that
signal the same consequences. In our case bo#noest of our trained rules had
the same consequences and they were behavioralilyadent, providing evidence
of sequential and rule learning in rats.

In a second experiment we tested whether rats walidw the
generalization of responding, that is would the@atmovel stimuli that obeyed the
same pattern as instances that were similar toeihéorced stimuli from training.
As in the previous experiment rats were trainedhwtiree element auditory
sequences comprised of two pure tones (A = 3.2 Bz, 9 kHz). Following
training with the XYX rule rats were exposed to absequences that obeyed or
did not obey the learned rule. These novel insamised auditory stimuli outside
of the training range (C = 12 kHz, D = 17.5 kHzheTpairs of stimuli were
counterbalanced for half the animals. During a®éstie novel cues rats responded
more to the novel sequences that obeyed the rdlis. dvidence suggests that
temporal sequences are both learnable and trahkferBhe underlying abstract
rule that relates the elements was transferrechéonbvel cues. We have been
arguing that this sort of ability has somethingcommon with a causal rule. This
rule describes the temporal relation between ewamdsan outcome, and is flexible
enough to be used in novel domains. It is worthraglthat in spite of behaving on
the basis of the rule, the animals may not be aicguanything like a symbolic
representation of the rule.

We may ask how the rats might solve this probletreyTcould perhaps
transpose a sort of tune from training to transfémuli. A simple associative
account (Mackintosh, 1965; Spence, 1937) basedemé¢neralization gradients
generated by the specific stimuli could not expthim results. If on the transfer test
the elements are transposed simply as a resulgeheralization process in which
the common elements are ignored and the uniqueeelsmacquire the critical
positive or negative strength, there would be nsisbfor discrimination. All the
instances of our training sequences both reinfoeradl nonreinforced, share the
same common elements and the same unique eleneegis A and B). All the
instances of the transfer sequences also shamathe and unique stimuli (e.g., C
and D). Thus, any common elements shared betwaating and transfer would
be identical for all sequences. The only sourcediscrimination requires some
sort of temporal encoding. Consequently, a simpémegalization model of
transposition can not explain these results. Sévemssible associative
mechanisms are possible. For instance Wallace andt&n (2002) developed a
Sequential Pairwise Associative Memory (SPAM) tccaamt for pattern of
numbered stimuli (reward magnitude).
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Recently Baetu and Baker (in press) have modelesktBlement chain
sequences using a simple auto-associator. In thedel all three stimuli in a
sequence AB->C become associated as well as context cues thatsaociated
with pairs of stimuli. Temporal order was modelgdviarying the order in which
the elements of the stimulus chain were activai¥iih no a priori assumptions
concerning the causal structure, the associativeéehrgettled on a set of weights
that modeled specific aspects of the human datdich the model was compared.
The humans were taught sequences of visual stimtairestingly, specific aspects
of causal map theory, such as adherence to theaviattes, were obeyed by the
model and the human participants. Importantly feomassociative perspective, the
acquisition of a causal map was performed with sgumptions and only the basic
principles of association.

One aspect of causal thinking that these modelsataaccount for is the
transfer data. We believe that the addition of @soeiative generalization
mechanism between elements in the sequence may thiise associative models
to predict the pattern of generalization finding®or final experiment and we are
currently investigating this idea. A similar ideashbeen used by Haselgrove,
George, and Pearce (2005) to understand generafizdtspatial structure.

Penn and Povinelli (2007) have argued that whataeimals and humans
apart is the ability to analogize complex caus#étiens. Complex in that they
involve sequences of interrelated directional retethips. At the conference in
Belgium that initiated this special issue, DerelnfPeresented the interesting
example of how causal relations are used to f@stalogies and causal discovery.
The scientific model developed to understand theef® and relations between
celestial bodies in the solar system provided daulismol for predicted the
movement of light in the night sky. This causalniework involves directional
relations and forces describing a number of physibgects. The model provided
scientists with novel predictions and more gengragfovided an important
milestone in human understanding of the cosmoswElet on to argue that the
ability to use this causal model in novel domaiashsas in the development of a
theory of the structure of the atom was an exangbl¢he causal analogizing
process (putting aside the problem that the anahmg fundamentally incorrect).
Surely, a rat has no corresponding ability. Butcae ask whether rats have the
ability to learn sequences of directionally specitlated events? Further can they
generalize this knowledge to novel stimuli thatdnaever been experienced? The
usefulness of a causal model is in its ability ®ttansferred to novel contexts.
Causal relations are rules that describe how stireldte to one another and are
based at least partially on empirical evidence ow levents are contingently
related. Temporal order, sequence learning anceeps of generalization might
explain how causal maps are formed.

Causal map theory provides important value for ttwmputational
understanding of the nature of causal problems.a¥gee these theories are less
helpful in understanding how the brains of animaisluding humans) come to
solve causal problems (e.g., Baker, Baetu, & Murpiypress; Baker et al., 1996).
Normative descriptions of causal thinking providseful computational analyses
of causal problems but may not explain the braagerithms for extracting causal
relations. The analogy between humans’ and anine@ssal cognition may be
closer than we think.

-70 -



References

Allan, L. J. (1980). A note on measurement of aoggincy between two binary variables
in judgment taskBulletin of the Psychonomic Society, 15, 147-149.

Baetu, |. & Baker, A. G. (in press). Human judgnsenf positive and negative causal
chains.Journal of Experimental Psychology: Animal Behavior Processes.

Baker, A. G., Baetu, I, & Murphy, R. A. (in pres®ropositional learning is a useful
research heuristic but it is not a theoretical atgm. Behavioral and Brain
Sciences.

Baker, A. G., Berbrier, M. W., & Vallée-Tourangeak., (1989). Judgments of a 2x2
contingency table: Sequential processing and tmileg curve Quarterly Journal
of Experimental Psychology, 41B, 65-97.

Baker, A. G., Murphy, R. A., & Vallée-Tourangeau,(F996). Associative and normative
models of causal induction: Reacting to versus rstdeding cause. In D. R.
Shanks, K. J. Holyoak, & D. L. Medin (Ed3he Psychology of Learning and
Motivation (Vol. 34, pp. 1-45). San Diego: Academic Press.

Baker, A. G., Murphy, R. A.,Vallée-Tourangeau, & Mehta, R. (2001). Contingency

learning and causal reasoning. In R. R. Mowrer &8SKlein (Eds.),Handbook
of Contemporary Learning Theories. (pp. 255-306) Hillsdale, New Jersey:
Lawrence Erlbaum Associates.

Barnet, R. C., Grahame, N. J., & Miller, R. R. (B®9Local time horizons in Pavlovian
learning.Journal of Experimental Psychology: Animal Behavior Processes, 19, 215-
230.

Beckers, T., Miller, R. R., De Houwer, J., & Urusaia, K. (2006). Reasoning rats:
forward blocking in Pavlovian animal conditioning sensitive to constraints of
causal inferencelournal of Experimental Psychology: General, 135, 92-102.

Blaisdell, A. P. (2008). Cognitive dimension of og@et learning. (pp 173-195). In H. L.
Roediger, 11l (Ed.),Cognitive Psychology of Memory. Vol. 1 of Learning and
Memory: A Comprehensive Reference, 4 vols. (J. Byrne Editor). Oxford: Elsevier.

Blaisdell, A. P., Denniston, J. C., & Miller, R. R1998). Temporal encoding as a
determinant of overshadowinglournal of Experimental Psychology: Animal
Behavior Processes, 24, 72-83.

Blaisdell, A. P., Sawa, K., Leising, K. J., & Waldmim, M. R. (2006). Causal reasoning in
rats.Science, 311, 1020-1022.

Buehner, M. J. (2006). A causal power approacretoning with rates. In R. Sun & N.
Miyake (Eds.), Proceedings of the 28th Annual Cretiee of the Cognitive Science
Society. Mahwah, New Jersey: Erlbaum.

Capaldi, E. J. & Miller, R. M. (2001). Molar vs nemular approaches to reward schedule

and serial learning phenomethaarning and Mativation, 32, 22-35.
Chapman G. B. & Robbins, S. J. (1990). Cue intezadh human contingency judgment.
Memory & Cognition, 18, 537-545.

Cheng, P. W. (1997). From covariation to causat®oausal power theorysychological
Review, 104, 367-405.

Conway, C. M. & Christiansen, M. H. (2001). Seqigriearning in non-human primates.
Trendsin Cognitive Sciences, 5, 539-546.

Courville, A. C., Daw, N. D., & Touretzky, D. S.{26). Bayesian theories of conditioning
in a changing worldTrends in Cognitive Science, 10, 294-300.

Dickinson, A. (2001). The 28th Bartlett Memorialdtere. Causal learning: an associative
analysisQuarterly Journal of Experimental Psychology, 54B, 3-25.

Dwyer, D. M., Starns, J., & Honey, R. C. (in presSpausal reasoning in rats: A re-
appraisalJournal of Experimental Psychology: Animal Behavior Processes.

Fountain, S. B. (2008). Pattern structure and ralduction in sequential learning.
Comparative Cognition & Behavior Reviews, 3, 66-85.

-71 -



Gentner, T. Q., Fenn, K. M., Margoliash, D., & Nasm, H. C. (2006). Recursive
syntactic pattern learning by songbirtisture, 440, 1204-1207.

Gopnik, A., Glymour, C., Sobel, D. M., Shulz, L.ughmir, T., & Danks, D. (2004). A
theory of causal learning in children: Causal mapd Bayes net$?sychological
Review, 111, 3-32.

Griffiths, T. L. & Tenenbaum, J. B. (2005). Strugtuand strength in causal induction.
Cognitive Psychology, 51, 334-384.

Haggard, P., Clark, S., & Kalogeras, J. (2002).Wvtdry action and conscious awareness.
Nature Neuroscience, 5, 382-385.

Haselgrove, M., George, D. N. & Pearce, J. (2005 discrimination of structure: IIl.
Representation of spatial relationshipiournal of Experimental Psychology:
Animal Behavior Processes, 31, 433-448.

Hauser, M. D., Weiss, D., & Marcus, G. (2002). Rldarning by cotton-top tamarins.
Cognition, 86, 15-22.

Hebranson, W. T. & Shimp, C. P. (2003). “Artificigtammar learning” in pigeons: A
preliminary analysis_earning & Behavior, 31, 98-106.

Heyes, C. (2005). Imitation by association. In Sirlely & N. Chater (Eds.)Perspectives
on Imitation: From Mirror Neuronsto Memes. Cambridge, MA: MIT press.

Holder, M. D. & Garcia, J. (1987). Role of tempomabter and odor intensity in taste-
potentiated odor aversioBehavioral Neuroscience, 101, 158-163.

Honey, R. C. & Watt, A. (1998). Acquired relationaduivalence: Implications for the
nature of associativeJournal of Experimental Psychology: Animal Behavior
Processes, 24, 325-334.

Hume, D. (1740/2002). A treatise on human natureuttéBberg etext.
http://www.gutenberg.org/dirs/etext03/trthn10.txt

Jenkins, H. & Ward, W. (1965). Judgment of contimge between responses and
outcomesPsychological Monographs, 7, 1-17.

Kamin, L. J. (1969). Selective association and @wrdng. In N. J. Mackintosh & W. K.
Honig (Eds.) Fundamental Issuesin Associative Learning. Halifax, NS: Dalhousie
University Press.

Katz, J. S., Wright, A., & Bodily, K. D. (2007). dges in the comparative cognition of
abstract-concept learninGomparative Cognition & Behavior Reviews, 2, 79-92.

Kelley, H. H. (1973). The processes of causallattibn. American Psychologist, 28, 107-
128.

Lagnado, D. A., Waldmann, M. R., Hagmayer, Y. & 8, S. (2007). Beyond
covariation: Cues to causal structure. In A. Gopkil. Schultz (Eds.),Causal
learning: Psychology Philosophy and Computation. Oxford: Oxford University
Press.

Le Pelley, M. E. (2004). The role of associativettiy in models of associative learning:
A selective review and a hybrid modeQuarterly Journal of Experimental
Psychology, 57B, 193-243

Mackintosh, N. J. (1965) Transposition after ‘ssgtimulus’ training.The American
Journal of Psychology, 78, 116-119.

Mackintosh, N. J. (1978). Cognitive or associativeories of conditioning: Implications of
an analysis of blocking. In S. Hulse, H. FowlerV& K. Honig (Eds.)Cognitive
Processes in Animal Behavior. Hillsdale, New Jersey: Lawrence Erlbaum
Associates.

Marcus, G. F., Vijayan, S., Bandi Rao, S., & Vishtd. M. (1999). Rule learning by
seven-month old infant§cience, 283, 77-80.

Marr, D. (1982).Vision: A Computational Investigation into the Human Representation
and Processing of Visual Information. San Francisco: Freeman.

Michotte, A. E. (1946/1963)he Perception of Causality. London: Methuen & Co.

Miller, R. R. & Matute, H. (1996). Animal analoguescausal judgment. In D. R. Shanks,

-72 -



K. J. Holyoak, & D. L. Medin (Eds.)The Psychology of Learning and Motivation
(Vol. 34, pp. 1-45). San Diego: Academic Press.

Mitchell, C. J., De Houwer, J., & Lovibond, P. (press). The propositional nature of
human associative learningehavioral and Brain Sciences.

Moscovitch, A. & Lolordo, V. M. (1968). Role of stf in the Pavlovian backward fear
conditioning procedurelournal of Comparative and Physiological Psychology, 66,
673-678.

Murphy, R. A. & Baker, A. G. (2004). A role for A3S contingency in Pavlovian
conditioning.Journal of Experimental Psychology: Animal Behavior Processes, 30,
229-239.

Murphy, R. A., Mondragon, E., Murphy, V. A. (200&ule learning in ratsscience, 319,
1849-1851.

Murphy, R. A., Mondragén, E., Murphy, V. A., & Fouet, N. (2004). Temporal order of
CSs as a discriminative cue for conditioned respandehavioral Processes, 67,
303-311.

O’'Keefe, J. & Nadel, L. (1978). The hippocampusaasognitive map. Oxford: Oxford
University Press.

Pavlov, I. (1927)The conditioned reflexes. London: Dover Press.

Pearl, J. (1996). Structural and probabilistic editis In D. R. Shanks, K. J. Holyoak, & D.
L. Medin (Eds.)The Psychology of Learning and Motivation (VVol. 34, pp. 393-435).
San Diego: Academic Press.

Penn, D. C., Holyoak, K. J., & Povinelli, D. J. (8). Darwin’s mistake: Explaining the
discontinuity between human and nonhuman miBdkavioral and Brain Sciences,
31, 109-130.

Penn, D. C. & Povinelli, D. J. (2007). Causal caigmi in human and nonhuman animals:
A comparative, critical reviewAnnual Review of Psychology, 58, 97-118.

Rescorla, R. A. (1968). Probability of shock in fhiesence and absence of CS in fear
conditioning.Journal of Comparative and Physiological Psychology, 66, 1-5.

Rescorla, R. A. (1969). Conditioned inhibition afaf resulting from negative CS-US
contingenciesJournal of Comparative and Physiological Psychology, 67, 504-
509.Rescorla, R. A. & Lolordo, V. M. (1965). Inhilbin of avoidance behavior.
Journal of Comparative and Physiological Psychology, 59, 406-412.

Rescorla, R. & Wagner, A. (1972). A theory of Pawm conditioning: Variations in the
effectiveness of reinforcement and non-reinforcamimA. Black & W. Prokasy
(Eds.), Classical Conditioning Il: Theory and Research. New York: Appleton
Century Crofts.

Seger, K. A. & Scheuer, C. (1977). The informatiopaperties of S1, S2 and the S1-S2
sequence on conditioned suppressfmmal Learning & Behavior, 5, 39-41.

Saffran, J., Aslin, E., & Newport, E. (1996). Sstittal learning by 8 month old infants.
Science, 274, 1926-1928.

Spence, K. W. (1937).The differential response nimals to stimuli varying within a
single dimensionPsychological Review, 44, 430-444.

Tolman, E. C. (1948). Cognitive maps in rats ana.rReychological Review, 55, 189-208.

Vallée-Tourangeau, F., Murphy, R. A., Drew, S. &kBg A. G. (1998). Judging the
importance of constant and variable candidate causetest of the Power PC
theory.Quarterly Journal of Experimental Psychology, 51A, 65-84.

Waldmann, M. R. & Holyoak, K. J. (1992). Predictieed diagnostic learning within
causal models: Asymmetries in cue competitidournal of Experimental
Psychology: General, 121, 222-236.

Wallace, D. G. & Fountain, S. B. (2002). What isirleed in sequential learning? An
associative model of reward magnitude serial-pattérarning. Journal of
Experimental Psychology: Animal Behavior Processes, 28, 43-63.

-73 -



Wasserman, E. A., Elek, S. M., Chatlosh, D. L., &kBr, A. G. (1993). Rating causal
relations: Role of probability in judgments of resge-outcome contingency.
Journal of Experimental Psychology: Learning, Memory, and Cognition. 19, 174-
188.

Weisman, R. G., Wasserman, E. A, Dodd, P. W. D.,L&ew, M. B. (1980).
Representation and retention of two-event sequerigepigeons Journal of
Experimental Psychology: Animal Behavior Processes, 6, 312-325.

Young, M. (1995). On the origin of personal caugaories.Psychonomic Bulletin &
Review, 2, 83-104.

-74 -



