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Theories of causal cognition describe how animals code cognitive primitives such as causal strength, 
directionality of relations, and other variables that allow inferences on the effect of interventions on 
causal links. We argue that these primitives and importantly causal generalization can be studied 
within an animal learning framework. Causal maps and other Bayesian approaches provide a 
normative framework for studying causal cognition, and associative theory provides algorithms for 
computing the acquisition of data-driven causal knowledge. 

 
And though we must endeavour to render all our principles as 
universal as possible, by tracing up our experiments to the utmost, and 
explaining all effects from the simplest and fewest causes, it is still 
certain we cannot go beyond experience; and any hypothesis, that 
pretends to discover the ultimate original qualities of human nature, 
ought at first to be rejected as presumptuous and chimerical (Hume, 
Introduction, 1740/2002). 

 
The psychology of causes and causation involves core behavioral and 

cognitive functions and retains a central position in Experimental Psychology. 
Perception (Michotte, 1946/1963), learning (Le Pelley, 2004), pattern or rule 
acquisition (Conway & Christiansen, 2001; Murphy, Mondragón, & Murphy, 
2008), instrumental action (Buehner, 2006; Wasserman, Elek, Chatlosh, & Baker, 
1993) and analogical thinking (Penn, Holyoak, & Povinelli, 2008)—even issues 
related to questions of free-will (Haggard, Clark, & Kalogeras, 2002; see also 
Blaisdell, 2008)—underlie causal understanding. Causal model theory (Waldmann 
& Holyoak, 1992), causal map theory (Gopnik et al., 2004) and propositional 
reasoning (Mitchell, De Houwer, & Lovibond, 2009) are recent attempts to explain 
causal learning in humans. Similar theories are being developed to explain animal 
conditioning (e.g., Beckers, Miller, De Houwer, & Urushihara, 2006; Courville, 
Daw, & Touretzky, 2006). Much of this work is described in terms that seem to go 
beyond simple Humean association. We review experiments touching on 
components of causal learning studied in the conditioning chamber; statistical 
learning, structure learning and generalization of structure. 

It is worth beginning by discriminating between two very different types of 
causal learning that themselves may invoke different representations and learning 
processes. We will only address one of these two. Young (1995) provides a useful 
distinction between personal causal theories, ones developed by direct observation, 
from public causal theories that are acquired and elaborated via social or cultural 
transmission. We argue that much of animal behavior can be explained via the 
same associative learning processes that guide human personal causal theories. We 
do not deny a role for theory-driven causal thinking acquired via logical reasoning 
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and social or cultural transmission even in animals but simply believe that a 
different set of explanations may be required (although see Heyes, 2005). 

Experiential cause - effect learning involves acquiring a representation of 
the temporally and spatially contiguous stimulus events encountered in the world. 
How does an animal learn that its behavior causes a food pellet to appear? How 
does it learn that a tone seems to cause or (perhaps only) predict the occurrence 
food (e.g., Blaisdell, Sawa, Leising, & Waldmann, 2006)? These questions have 
been the interest of animal Pavlovian and Instrumental conditioning research for 
the last 100 years with recent advances in causal map theory challenging simpler 
associative explanations. 

Causal Map Theory (e.g., Gopnik et al., 2004; Pearl, 1996) like Spatial Map 
theory (O’Keefe & Nadel, 1978) are descendents of the more general cognitive 
map theory of Tolman (1948) who used maps as a metaphor for explaining goal-
directed behavior and the flexible representations of causal knowledge. A causal 
map is a developed representation of the causal links between events. Rather than 
simply containing associated links, these representations code both causal power or 
strength and temporal directionality. In addition to explaining the acquisition of 
causal links the maps can be used to predict what effects an intervention may have 
on the causal links as well, deducing the consequences of novel pathways in a 
causal net. For example, a virologist may use correlation and directionality to 
discover which virus correlates with which disease. They are also able to intervene 
to change the course of a disease by manipulating the conditions that support the 
virus. However, an important aspect of causal thinking that is under specified in 
causal maps, but is a crucial aspect of causal cognition, is an explanation of how 
knowledge might generalize between domains. So the virologist who has a causal 
theory of germs is also able to transfer this causal knowledge to discover new 
germs and develop new vaccines or perhaps to postulate the existence of 
antibiotics. The ability to see analogies across the causal structure of different sets 
of stimuli is argued to be what makes human thinking unique (Penn & Povinelli, 
2007). How might one characterize this type of complex causal knowledge for the 
rat in a conditioning chamber?  

In this paper we consider some of the evidence for learning causal 
primitives. The first one is well characterized by animal models of conditioning -
strength of contingency. We then discuss some further data on temporal order and 
structure and the generalization of causal structure to novel stimuli. 

 
Strength of Contingency 

 
The British empiricists (e.g., Hume, 1740/2002) provided an initial model 

for how researchers might think about how animals learn causal relations. They 
assumed, in tabula rasa tradition, that causal knowledge was acquired through the 
senses rather than innately given. Acquiring and then using knowledge about the 
causal relations between events in the natural environment requires using sensory 
information to encode the relevant spatial and temporal contiguity between events 
(e.g., Baker, Murphy, Vallée-Tourangeau, & Mehta, 2001; Mackintosh, 1978). 
From this perspective no true understanding of causal power is acquired, in fact 
causation is a human mental construction (Young, 1995). All that is observable to 
the behaving animal and useful for predicting future events are the local 
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contiguous relations between events. So, temporal contiguity between experiencing 
food smells and the nutritional consequences of ingesting food encourages an 
association between stimuli that allows an animal to find similar food in the future. 
In other words, it acts as if it has causal knowledge. The actual causal mechanisms 
behind volatile chemicals that excite nasal receptors and the role played by 
nutrition for physical health are cognitively irrelevant to the animal. Contiguity as 
a cue to causality has been the natural point of contact between human 
philosophical ruminating about causation and animal cognition (Dickinson, 2001).  

A theory of behavior, based simply upon a single contiguous pairing 
between a smell and food, is insufficient to explain how repeated similar 
experiences over time come to drive this behavior. Research with more direct 
relevance to causation comes from studies exposing animals to similar stimuli that 
are paired with similar outcomes over time.  

Pavlov (1927) showed this with dogs that gradually acquired conditioned 
salivary responses (CR) in anticipation of food (the unconditioned stimulus; US). 
Importantly, the acquisition of the CR followed repeated presentation of a very 
similar conditioned stimulus (CS) with a very similar US over time. Taking this 
further, Rescorla and Lolordo (1966) showed that conditioning is not simply a 
reflection of CS-US pairing experience, with greater numbers of pairings 
contributing to greater behavior. Pavlovian conditioning involves animals being 
sensitive to or computing the overall rates or probabilities of the US in presence 
and the absence of the CS (see also Rescorla, 1968; 1969). In several studies 
Rescorla and colleagues varied the relative likelihood of the occurrence of a US 
(e.g., Shock) during training sessions in which an originally neutral but soon to be 
CS (e.g., Tone) was presented. Conditioning to the CS as a predictor of shock was 
controlled by whether the rate of US occurrence in the presence of a CS was i) 
greater than, ii) less than or iii) equal to the rate of US occurrence in its absence. 
Learning occurred regardless of the number of pairings of the two events but the 
strength of conditioned responding was proportional to the strength of the 
contingency. These three contingencies fostered excitatory, inhibitory or no 
conditioning.  

Conditioning to a CS occurs to the extent that it signals a change in US 
likelihood from that observed in the absence of the CS. On the surface this is much 
like Kelley’s (1973) explanation of how humans make causal attributions,“An 
effect is attributed to the one of its possible causes with which, over time, it 
covaries” (Kelley, 1973 p. 108). Rescorla and colleagues’ experiments (1966, 
1968, 1969) showed that conditioned behavior required CSs that covaried with the 
US.  

Although we have hinted at this point earlier, it is important for much of 
the rest of the discussion to clearly distinguish a computational theory of 
covariation learning from the algorithm that might explain how covariation is 
computed. Marr described this distinction quite succinctly in relation to vision 
(Marr, 1982). The visual system computes the relations required for 3-D 
perception without an internal 3D representation. This distinction in relation to 
learning has also been made (Baker, Murphy, & Vallée-Tourangeau, 1996; Cheng, 
1997) but is worth repeating. An animal’s behavior changes as the experimenter 
manipulates the covariation, if the animal’s behavior is sensitive to these changes 
then the animal has a developed a representation of the covariation. Covariation is 
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computed by the experimenter in a number of possible ways; Pearson’s moment 
correlation (r) provides a measure of how two variables covary. With one-way 
binary events Allan’s (1980) ∆p statistic captures the relation. One (relatively) 
simple representation that accounts for the acquisition of this relation is a single 
associative connection. The associative connection is acquired via a competition 
between the target stimulus and the contextual cues for control over activation of 
the US representation. One algorithm that can compute this value is the Rescorla-
Wagner model (Rescorla & Wagner, 1972; Chapman & Robbins, 1990). We have 
described the relation between these two levels of analysis in more detail 
elsewhere arguing that the Rescorla-Wagner model provides an associative 
explanation of the representations of covarying stimuli (Baker et al., 1996). 

The Rescorla-Wagner model (Rescorla & Wagner, 1972) was designed to 
provide an associative account for contingency learning effects in animal learning. 
It describes how learning involves acquiring and updating associations formed 
between a stimulus and its outcome. In conditioning terms this is the association 
between the CS and the US. Associations get stronger to the extent that a 
discrepancy exists between the activation of the US representation (that the CS can 
cause) and the maximum level of activation caused by the US itself. If there is a 
difference between these two, learning will occur. The model also predicts that on 
any given trial the cause or predictor of the outcome is unknown and so all 
potential causes or predictors of the US share the associative strength actioned by 
the occurrence of the unpredicted US. 

In Rescorla’s experiments (e.g., 1968) the competition for association is 
hypothesized to be between the Tone (CS) and the cues of the context. Our 
research interest in this phenomenon has been to explore this prediction. A CS 
trained as a cause of a US will acquire positive associative strength at the expense 
of the context whereas a CS trained without such a relation occasions the context 
as an associative predictor of the US. We have conducted a number of studies 
designed to directly examine this reciprocal conditioning prediction with both rats 
and humans. We looked specifically for patterns of reciprocal learning as well as 
certain frequency learning effects predicted by the associative model.  

In one set of appetitive Pavlovian conditioning experiments, rats were 
presented with Light-Food (i.e. CS-US) relations defined by the occurrence of a 10 
second Light paired with food pellets (Murphy & Baker, 2004). Six different 
groups of rats received 40 trials. For half of the sample (3 groups) the light was 
positively related to the occurrence of food while for the remaining 3 groups the 
light was unrelated to food occurrence. The likelihood of food on a trial with the 
light (p(US|CS) was 50% greater than on trials when the light was not present 
(p(US|noCS), the difference between these two conditional probabilities for food is 
captured by a moderately positive relationship. Allan’s (1980) one-way 
contingency between the CS and the US is expressed by the difference between 
these two conditional probabilities. In our case this was ∆p = 0.5. The overall 
likelihood of food in the absence of the light also varied between the three groups 
(0%, 25% and 50%). The three groups of rats receiving the unrelated Light-Food 
training received food on either 25%, 50% or 75% of trials regardless of the 
presence of the light. For these three groups, the Light signaled no change in the 
likelihood of food (∆p = 0.0). Much like Rescorla’s finding, rats showed 
statistically stronger nose-poke responding to the CS when it signaled an increased 
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likelihood of the US. Additionally, we found evidence that cues signalling a 
greater proportion of USs generated more responding regardless of the overall 
relation. Evidence of the reciprocal conditioning between the CS and the context 
came from an assessment of responding to a contextual cue, in our case a physical 
metal bar that entered the chamber. Learning about the context was measured by 
contact with it. In measuring responding to this cue we were able to demonstrate 
that as the predictiveness of the CS decreased, animals were attracted to and made 
contact with the context cue, as if it was the more reliable predictor of food. This 
result is consistent with the theoretical account Rescorla and Wagner provided for 
sensitivity to covariation (Rescorla & Wagner, 1972). Sensitivity to the covariation 
between cues is dependent upon the causal context within which the covariation is 
experienced.  

One possible explanation for our results is based on response competition. 
Response competition explanations are a simple way for animals to behave as if 
they have internalized a representation of the causal relationship. Animals perhaps 
do not learn about the context when they are responding to the CS, or do not learn 
about the CS when they are responding to the context. This explanation still 
requires that the contingency directs animals to the correct response. Alternatively, 
Nose-pokes and context responding might be incompatible and therefore only one 
or the other response is possible. A response competition account of covariation 
sensitivity requires a relatively simple peripheral account of how the animals 
‘solve’ the problem. Nevertheless, response competition may be the behavioral 
solution for the computation problem of contingency learning (see also Dwyer, 
Starns, & Honey, in press, for a similar explanation of causal interventions in 
Blaisdell et al., 2006). We extended the analysis of CS/Context interactions by 
studying humans in a causal discovery task that presumably had none of the 
response competition issues. 

Research on human covariation detection has suggested that the same 
associative model accurately predicts human acquisition of covariation (e.g., 
Baker, Berbrier, & Vallée-Tourangeau, 1989; Jenkins & Ward, 1965; Wasserman 
et al., 1993). In one experiment from our lab designed to mirror the rat experiment 
we provided undergraduate students with a causal discovery task. Students were 
required to learn about various fictitious virus-disease relations. Much like the 
virologist of our original example, participants discovered the contingency 
between each virus and a specific disease. Similar to the CS-US (Light-Food) 
relation that we trained the rats, students were trained with Virus labels that 
preceded the disease effects. Causal judgments like rat nose-pokes reflected both 
the degree of contingency between the two events (Positive or Zero) and the 
frequency of the disease (Vallée-Tourangeau, Murphy, Drew, & Baker, 1998). The 
evidence for the reciprocal learning between stimulus and context, as a function of 
variations in contingency, points directly to the involvement of associative 
processes in the computation of covariation. As important as covariation is, 
elaborated causal map theory stresses the importance of other variables to support 
causal knowledge, namely the temporal or structural relations for causal learning. 
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Temporal Structure 
 

Causal structure in human learning has been argued to be as important as 
causal strength for causal reasoning since one needs to know which event is the 
cause and which one the effect (Lagnado, Waldmann, Hagmayer, & Sloman, 
2007). It is claimed that associative models like the Rescorla-Wagner model 
(RWM) do not take temporal order or structure into consideration (Griffiths & 
Tenenbaum, 2005; Waldmann & Holyoak, 1992). There are two senses in which 
the RWM addresses causal structure and temporal order. The first is that the model 
predicts acquisition between the predictor and the outcome. The order in which the 
events are experienced dictates which association is calculated. The association 
describes the ability of the CS to activate the US, and is not usually bidirectional. 
Trained with a set of 10 CS�US pairings the model predicts that the CS acquires a 
strong positive association with the US, but not a strong positive association 
between the US and the CS; in other words, presentation of the US will not excite 
the CS. Conversely, given 10 US�CS trials the model predicts that the CS 
acquires a strong negative association with the US. Positive associations indicate 
causal relations while negative associations indicate preventative relations. The 
empirical evidence for this effect in the conditioning literature is strong.  

Moscovitch and Lolordo (1968) describe a set of experiments showing 
how the behavior acquired when a CS is presented before a US is markedly 
different from the behavior acquired when the CS follows the US. With standard 
forward pairing of the CS and US animals treat the CS as a predictor of shock 
occurrence. Trained with the same stimuli with the order of the stimuli reversed 
they treat the CS as a signal that the shock has already occurred. (see also Holder 
& Garcia, 1987).  

Conditioned behavior therefore, is influenced by the ordering of the cues 
but this evidence does not tell us whether the temporal order of the cues is encoded 
during conditioning. Causal map theory implies that each causal event pair 
represents the strength of the association as well as the temporal structure 
(Lagnado et al., 2007). What is the evidence then that animals encode these 
relations? Encoding temporal order requires demonstrating that animals can 
discriminate A�B from B�A. 

Seger and Scheur (1977) demonstrated that rats could discriminate trials 
with Tone�Light�Food from those with the order of the two CSs reversed 
Light�Tone�no Food. The confound for any interpretation that requires temporal 
order encoding is that the rats might have learnt to respond to the second part of 
the trial and simply solved the discrimination by responding to the late occurring 
Light (see also Weisman, Wasserman, Dodd, & Larew, 1980). 

A series of appetitive Pavlovian conditioning experiments that 
unambiguously shows temporal order acquisition was performed in our lab. Rats 
were required to learn that the order in which two neutral cues were presented 
signaled whether food was going to be delivered, but where every cue was at the 
beginning and end of both reinforced and nonreinforced pairs (Murphy, 
Mondragón, Murphy, & Fouquet, 2004). In these experiments neutral auditory and 
visual cues (e.g., lights, tones, clicks) were trained in pairs such that each of four 
cues had four different roles. They were each the first and second cues of both 
rewarded and nonrewarded trials. In this way nothing about an individual stimulus 
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informed the rats of the possible outcome of the trial. Table 1 illustrates the design 
utilized in these experiments. Although a minimum of three stimuli are needed to 
answer this question, using four stimuli has the advantage that it allows that pairs 
of cues have a balanced role in terms of their signaling relation to the other two 
cues. So both A and C precede B and D but signal the reversed contingency 
between the cues and the US. We trained rats with 5-second exposures to 
individual elements and presented food pellets following half of the orders. The 
measure of conditioned behavior during the second stimulus of each pair was 
whether they would come to nose-poke the food tray in anticipation of food on the 
appropriate trials. Although a somewhat difficult discrimination for rats to learn 
they did come to solve this problem. Although temporal order is not represented, 
per se, as a variable in the RWM, other versions of associative models can quite 
easily incorporate this order (e.g., Baetu & Baker, in press). We discuss the 
application of associative principles to problems of temporal order in more detail 
in the following section. 
 
Table 1 
Experimental design used in Murphy et al. (2004) to study temporal order discrimination. Each 
stimulus (A, B, C and D) was trained as the first and second stimulus and was paired with 
reinforcement (Rf+) and nonreinforcement (nRf-). 

 

 

 
 
 
 
 
 
 

 
In summary, the evidence is that temporal order, if not always coded 

during learning, can be acquired given the appropriate causal structure training. 
This is not a new suggestion, although these are new data on the extent to which 
temporal order can be acquired and used as a discriminative cue for behavior. 
Miller and colleagues have proposed that the entire temporal structure of training is 
acquired during conditioning. The Temporal Encoding Hypothesis suggests that 
rats code temporal information about the CS and its relation to the US (e.g., 
Barnet, Grahame, & Miller, 1993; Blaisdell, Denniston, & Miller, 1998) with a 
fine-grained temporal detail.  

 
Rule Learning and Generalization 

The evidence that rats can discriminate A�B from B�A may be argued 
to be at the very low end of complexity in causal map terms. Other more complex 
causal ordering experiments have been conducted with rats that indicate that rats 
can solve these causal problems. Blocking (Kamin, 1969), Backward blocking 
(Miller & Matute, 1996), and the difference between common cause and common 
effect training (Beckers, Miller, De Houwer, & Urushihara, 2006) have all been 

Reinforcement conditions Rf + nRf- 

Stimulus pairs 

A�B B�A 

B�C C�B 

C�D D�C 

D�A A�D 
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tested. Generally, findings are consistent with a Bayesian Causal map analysis. 
However, this might not be surprising since this analysis provides a justification 
for many possible results depending upon the causal map that is acquired.  

Complex serial ordered events are also important to causal map theory and 
have been studied in animals in relation to serial and pattern learning. The 
advantage that three element sequences, or higher, have over two-element pairs is 
that three elements allow the experimenter to present more complex causal 
relations among stimuli as a cue for behavior. Three elements also allow us to ask 
questions as to whether animals can extract the causal chains present in the 
experience. There is already a considerable body of evidence from studies of 
animal behavior that chains of sequences can be learnt (e.g., Capaldi & Miller, 
2001; Fountain, 2008; Gentner, Fenn, Margoliash, & Nusbaum, 2006). In the 
experiment we describe here, we used pairs of stimuli to construct three element 
sequences to test for temporal structure as well as extraction of pattern learning in 
rats. direr 

Prelinguistic infants (Marcus, Vijayan, Bandi Rao, & Vishton, 1999; 
Saffran, Aslin, & Newport, 1996), primates (Hauser, Weiss, & Marcus, 2002) and 
pigeons (Hebranson & Shimp, 2003) can learn simple rules that describe sequential 
relations. The reason we liken these to causal maps is that they contain some of the 
important elements of a causal map (Gopnik et al., 2004). Causal relations are a 
form of rule which describes the temporal relation between chains of events. 
Although the experiments that form the basis for our study with rats were 
conducted ostensibly to study innate language abilities in infants they embody 
simple rules that have the characteristics of a causal relation (see also Katz, 
Wright, & Bodily, 2007; Penn & Povinelli, 2007). 

These experiments used a modification of a pattern learning design 
originally suggested to explain early evidence of language learning in babies. 
Using a habituation procedure Marcus et al., (1999; see also Saffran et al., 1996) 
exposed 7-month-old infants to strings of phonemes that obeyed a rule (e.g., 
XYX). When subsequently exposed to novel phoneme strings that either did or did 
not adhere to the habituated rule, 15 out of 16 babies gazed longer in the direction 
of the sound source when the inconsistent sequences were played. These 
researchers took this finding to suggest that the babies had learnt a rule in the 
initial exposure phase and could therefore discriminate the habituated rule during 
the test phase. From the perspective of causal map theory this procedure is 
analogous to training a cyclic causal map in which events in a causal chain 
reoccur. The transfer phase to novel items is of some interest to researchers of 
causal cognition since the ability to transfer suggests that the learned rule was 
flexible and could be applied in novel domains, albeit within the same sensory 
modality.  

We examined whether rats could learn to resolve three-element sequential 
rules (Murphy, Mondragón, & Murphy, 2008). In our first experiment hungry rats 
were exposed to sequences of stimuli (e.g., light and dark) like the two element 
sequences used to test learning of temporal order except now rats were exposed to 
three-element sequences (light-dark-light) that obeyed rules. Items consistent with 
the rule (e.g., A-B-A) were paired with food reinforcement while those that 
violated the rule were extinguished. The test of acquisition required examining 
nose-poking behavior on the third element of each trained sequence. Each element 
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was present on both reinforced and nonreinforced trials; the animals could only use 
the previous two cues to determine whether it was appropriate to anticipate food on 
a given trial. Rats were able to learn this discrimination suggesting acquisition of 
the temporal structure of these cues. 

The design of the experiment allows at least two possible conclusions 
about how multiple instances of each rule were learnt. Animals may learn for 
example that ABA and BAB signaled food but do not perceive them as from the 
same category. The sequences may have been treated as behaviorally equivalent 
because of their consequences but the rats may not have an internal representation 
of the extracted rule. Evidence from research on acquired equivalence (Honey & 
Watt, 1998) suggests that animals can generalize between training stimuli that 
signal the same consequences. In our case both instances of our trained rules had 
the same consequences and they were behaviorally equivalent, providing evidence 
of sequential and rule learning in rats. 

In a second experiment we tested whether rats would show the 
generalization of responding, that is would they treat novel stimuli that obeyed the 
same pattern as instances that were similar to the reinforced stimuli from training. 
As in the previous experiment rats were trained with three element auditory 
sequences comprised of two pure tones (A = 3.2 kHz, B = 9 kHz). Following 
training with the XYX rule rats were exposed to novel sequences that obeyed or 
did not obey the learned rule. These novel instances used auditory stimuli outside 
of the training range (C = 12 kHz, D = 17.5 kHz). The pairs of stimuli were 
counterbalanced for half the animals. During a test of the novel cues rats responded 
more to the novel sequences that obeyed the rule. This evidence suggests that 
temporal sequences are both learnable and transferable. The underlying abstract 
rule that relates the elements was transferred to the novel cues. We have been 
arguing that this sort of ability has something in common with a causal rule. This 
rule describes the temporal relation between events and an outcome, and is flexible 
enough to be used in novel domains. It is worth adding that in spite of behaving on 
the basis of the rule, the animals may not be acquiring anything like a symbolic 
representation of the rule. 

We may ask how the rats might solve this problem. They could perhaps 
transpose a sort of tune from training to transfer stimuli. A simple associative 
account (Mackintosh, 1965; Spence, 1937) based on the generalization gradients 
generated by the specific stimuli could not explain the results. If on the transfer test 
the elements are transposed simply as a result of a generalization process in which 
the common elements are ignored and the unique elements acquire the critical 
positive or negative strength, there would be no basis for discrimination. All the 
instances of our training sequences both reinforced and nonreinforced, share the 
same common elements and the same unique elements (e.g., A and B). All the 
instances of the transfer sequences also share the same and unique stimuli (e.g., C 
and D). Thus, any common elements shared between training and transfer would 
be identical for all sequences. The only source for discrimination requires some 
sort of temporal encoding. Consequently, a simple generalization model of 
transposition can not explain these results. Several possible associative 
mechanisms are possible. For instance Wallace and Fountain (2002) developed a 
Sequential Pairwise Associative Memory (SPAM) to account for pattern of 
numbered stimuli (reward magnitude). 
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Recently Baetu and Baker (in press) have modeled three element chain 
sequences using a simple auto-associator. In their model all three stimuli in a 
sequence A�B�C become associated as well as context cues that are associated 
with pairs of stimuli. Temporal order was modeled by varying the order in which 
the elements of the stimulus chain were activated. With no a priori assumptions 
concerning the causal structure, the associative model settled on a set of weights 
that modeled specific aspects of the human data to which the model was compared. 
The humans were taught sequences of visual stimuli. Interestingly, specific aspects 
of causal map theory, such as adherence to the Markov rules, were obeyed by the 
model and the human participants. Importantly from an associative perspective, the 
acquisition of a causal map was performed with no assumptions and only the basic 
principles of association. 

One aspect of causal thinking that these models cannot account for is the 
transfer data. We believe that the addition of an associative generalization 
mechanism between elements in the sequence may allow these associative models 
to predict the pattern of generalization findings of our final experiment and we are 
currently investigating this idea. A similar idea has been used by Haselgrove, 
George, and Pearce (2005) to understand generalization of spatial structure.  

Penn and Povinelli (2007) have argued that what sets animals and humans 
apart is the ability to analogize complex causal relations. Complex in that they 
involve sequences of interrelated directional relationships. At the conference in 
Belgium that initiated this special issue, Derek Penn presented the interesting 
example of how causal relations are used to foster analogies and causal discovery. 
The scientific model developed to understand the forces and relations between 
celestial bodies in the solar system provided a useful tool for predicted the 
movement of light in the night sky. This causal framework involves directional 
relations and forces describing a number of physical objects. The model provided 
scientists with novel predictions and more generally provided an important 
milestone in human understanding of the cosmos. He went on to argue that the 
ability to use this causal model in novel domains such as in the development of a 
theory of the structure of the atom was an example of the causal analogizing 
process (putting aside the problem that the analogy was fundamentally incorrect). 
Surely, a rat has no corresponding ability. But we can ask whether rats have the 
ability to learn sequences of directionally specific related events? Further can they 
generalize this knowledge to novel stimuli that have never been experienced? The 
usefulness of a causal model is in its ability to be transferred to novel contexts. 
Causal relations are rules that describe how stimuli relate to one another and are 
based at least partially on empirical evidence on how events are contingently 
related. Temporal order, sequence learning and a process of generalization might 
explain how causal maps are formed. 

Causal map theory provides important value for the computational 
understanding of the nature of causal problems. We argue these theories are less 
helpful in understanding how the brains of animals (including humans) come to 
solve causal problems (e.g., Baker, Baetu, & Murphy, in press; Baker et al., 1996). 
Normative descriptions of causal thinking provide useful computational analyses 
of causal problems but may not explain the brain’s algorithms for extracting causal 
relations. The analogy between humans’ and animals’ causal cognition may be 
closer than we think. 
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