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PT-symmetric deformations of integrable models

PT -symmetric deformations of integrable models

Andreas Fring

Centre for Mathematical Science, City University London,

Northampton Square,London EC1V 0HB, UK

E-mail: a.fring@city.ac.uk

A�������: We review recent results on new physical models constructed as PT -
symmetrical deformations or extensions of different types of integrable models. We present

non-Hermitian versions of quantum spin chains, multi-particle systems of Calogero-Moser-

Sutherland type and non-linear integrable field equations of Korteweg-de-Vries type. The

quantum spin chain discussed is related to the first example in the series of the non-unitary

models of minimal conformal field theories. For the Calogero-Moser-Sutherland models

we provide three alternative deformations: A complex extension for models related to all

types of Coxeter/Weyl groups; models describing the evolution of poles in constrained

real valued field equations of non-linear integrable systems and genuine deformations

based on antilinearly invariant deformed root systems. Deformations of complex nonlin-

ear integrable field equations of KdV-type are studied with regard to different kinds of

PT -symmetrical scenarios. A reduction to simple complex quantum mechanical models

currently under discussion is presented.

1. Introduction

Until fairly recently [1] non-Hermitian systems have been mostly viewed as not self-consistent
descriptions of dissipative systems. However, in contrast to the previous misconception it is
by now well understood that Hamiltonians admitting an antilinear symmetry may be used
to define consistent classical, quantum mechanical and quantum field theoretical systems.
Various techniques have been developed to achieve this. Central to this is construction
of metric operators such that certain quantities in the models can be viewed as physical
observables [2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. In particular, it was found that such type of
models possess real energy spectra in large sectors in their parameter space, despite being
non-Hermitian. The explanation for this property can be traced back to an observation
made by Wigner more than fifty years ago [12], who notices that operators invariant under
antilinear transformations possess either real eigenvalues or eigenvalues occurring in com-
plex conjugate pairs depending on whether their eigenfunctions also respect this symmetry
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PT-symmetric deformations of integrable models

or not, respectively. A very explicit example of such a symmetry is a simultaneous parity
transformation P and time reversal T . This PT -symmetry is trivially verified for instance
for Hamiltonian operators H, but less obvious for the corresponding wavefunctions ψ due
to the fact that often they are not known explicitly. When

[H,PT ] = 0 and PT ψ = ψ (1.1)

hold one speaks of a PT -symmetric system, but when only the first relation holds one
speaks of spontaneously broken PT -symmetry and when none of the relations in (1.1)
holds of broken PT -symmetry. Here we will view the PT -operator in a wider sense and
refer to it loosely as PT even when it is not strictly a reflection in time and space, but
when it is an antilinear involution satisfying

PT (αψ + βφ) = α∗PT ψ + β∗PT φ for α, β ∈ C, PT 2 = I. (1.2)

Very often synonymously used, even though conceptually quite different, are the no-
tions of quasi-Hermiticity [13, 14, 2] and pseudo-Hermiticity [15, 16, 4]. These concepts
refer more directly to the properties of the metric operator and their subtle difference is
often overlooked, even though this is very important as they allow for different types of
conclusions. In the quasi-Hermitian case the metric operator is positive and Hermitian,
but not necessarily invertible. It was shown [13, 14, 2] that in this case the existence
of a definite metric is guaranteed and the eigenvalues of the Hamiltonian are real. The
pseudo-Hermitian scenario, that is dealing with an invertible Hermitian, but not necessarily
positive metric, is less appealing as the eigenvalues are only guaranteed to be real but no
definite conclusions can be reached with regard to the existence of a definite metric. Thus
in this latter case the status and consistency of the corresponding quantum theory remain
somewhat inconclusive. More recently [17] the formal equivalence between the PT and the
metric operator has been exploited to draw a similar conclusion to the aforementioned one
by Wigner also for self-adjoint operators in a space with an invertible Hermitian indefinite
metric.

Even though some fundamental questions remain partially unanswered, such as the
puzzle concerning the uniqueness of the metric or the question of what constitutes a good
set of ingredients to formulate a consistent physical theory, the understanding is general
in a very mature state. So far it could be used to revisit some old theories, which had
either been discarded as being non-physical or had considerable gaps in their treatment,
and put them on more solid ground. Another interesting possibility which had opened up
through these studies is the formulation of entirely new models based on non-Hermitian
Hamiltonians which however possess the desired PT -symmetry. In other words, one may
use the PT -symmetry to deform or extend previously studied models and thus obtain large
sets of entirely unexplored theories. In principle, this kind of programme can be carried
out in any area of physics. Here we will explore how these ideas can be used in the context
of integrable models. We will not report here on how well established methods from
integrable systems can be applied to study non-Hermitian quantum mechanical models
[18], even though we will report some scenarios in which they naturally emerge as reduced
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integrable systems [19]. Instead we present here how these ideas have been used so far to
formulate and study new models previously overlooked as they would have been regarded
as non-physical due to their non-Hermitian nature. We present results on standard types
of integrable models, a quantum spin-chain, multi-particle systems of Calogero type and
nonlinear wave equations of KdV-type.

The construction principle is fairly simple. Identifying some anti-symmetric operators
O in the system, we seek a deformation map δε of the form

PT : O �→ −O ⇒ δε : O �→ −i(iO)ε, (1.3)

with ε being a deformation parameter such that the non-deformed model is recovered in
the limit ε → 1. Alternatively one can also just add PT -symmetric terms to the original
system and regard them as perturbations.

2. PT -symmetrically deformed quantum spin chains

Quantum spin chains constitute a good starting point since, being just finite matrix models,
they can be viewed in many ways as the easiest integrable models. We present here a model
which has been considered first by von Gehlen [20], that is an Ising quantum spin chain
in the presence of a magnetic field in the z-direction as well as a longitudinal imaginary
field in the x-direction. The corresponding Hamiltonian for a chain of length N acting on
a Hilbert space of the form (C2)⊗N is given by

H(λ, κ) = −1

2

N�

j=1

(σz
j + λσx

jσ
x
j+1 + iκσx

j ), λ, κ ∈ R. (2.1)

We used the standard notation for the 2N ×2N -matrices σx,y,z
i = I⊗ I⊗ . . .⊗σx,y,z⊗ . . .⊗

I⊗ I with Pauli matrices

σx =

�
0 1

1 0

�

, σy =

�
0 −i
i 0

�

, σz =

�
1 0

0 −1

�

, I =

�
1 0

0 1

�

, (2.2)

describing spin 1/2 particles as i-th factor acting on the site i of the chain. This model
is of interest as it can be viewed [21] as a perturbation of the M5,2-model in the Mp,q-
series of minimal conformal field theories [22]. It is the simplest non-unitary model in this
infinite class of models, which are all characterized by the condition p− q > 1 and whose
corresponding Hamiltonians are all expected to be non-Hermitian. The PT -symmetry of
the model was exploited in [23].

2.1 Different versions of PT -symmetry

Let us first identify the PT -symmetry for the Hamiltonian (2.1). Non-Hermitian spin
chains have first been studied in this regard in [24], where the parity operator P ′ : σx,y,z

i →
σx,y,z
N+1−i was interpreted quite literally as a reflection about the center of the chain. Viewing
T as a standard complex conjugation P ′T is then easily identified as a symmetry of the
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XXZ-spin chain Hamiltonian HXXZ . However, it is seen immediately that this operator
is not a symmetry of the Hamiltonian H(λ, κ) in (2.1). Defining instead [23] the operator

P :=
N�

i=1

σz
i , with P2 = I

⊗N , (2.3)

as an analogue to the parity operator, we may carry out a site-by-site reflection

P : (σx
i , σ

y
i , σ

z
i ) → (−σx

i ,−σy
i , σ

z
i ) and T : (σx

i , σ
y
i , σ

z
i ) → (σx

i ,−σy
i , σ

z
i ). (2.4)

It is then easy to verify that this operator is a symmetry ofH(λ, κ), i.e. we have [PT ,H(λ, κ)] =

0. Clearly this PT -operator acts antilinearly satisfying (1.2) and is therefore a viable can-
didate for our purposes. In analogy to (2.3) it is then also suggestive to define

Px :=
N�

i=1

σx
i and Py :=

N�

i=1

σy
i , (2.5)

which act as
Px/y : (σx

i , σ
y
i , σ

z
i ) → (±σx

i ,∓σy
i ,−σz

i ). (2.6)

One can verify that
�
Px/yT ,H(λ, κ)

�
�= 0 and

�
Px/yT ,HXXZ

�
= 0. Similar properties can

be observed for the non-Hermitian quantum spin chain [25]

HDG =
N�

i=1

�
κzzσ

z
iσ

z
i+1 + κxσ

x
i + κyσ

y
i

�
, (2.7)

with κzz ∈ R and κx, κy ∈ C. Clearly when κx or κy /∈ R the Hamiltonian HDG is
not Hermitian, but once again one can find suitable symmetry operators. We notice that
[P ′T , H] �= 0, whereas [PT ,H] = 0 for κx, κy ∈ iR and

�
Px/yT , H

�
= 0 for κx/y ∈ R, κy/x ∈

iR.
Below we will encounter further ambiguities in the definition of the antilinear symme-

try, which will all manifest in the non-uniqueness of the metric operator and therefore in
the definition of the physics described by these models. For the Hamiltonians HXXZ and
HDG the consequences of this fact are yet to be explored.

2.2 The two site model

It is instructive to commence with the simplest example for which all quantities of interest
can be computed explicitly in a very transparent way. We specify at first the length of the
chain to be N = 2 and without loss of generality fix the boundary conditions to be periodic
σx
N+1 = σx

1 . The Hamiltonian (2.1) then acquires the simple form of a non-Hermitian
(4× 4)-matrix

H2(λ, κ) = −1

2
[σz ⊗ I+ I⊗ σz + 2λσx ⊗ σx + iκ (I⊗ σx + σx ⊗ I)] , (2.8)

= −






−1 iκ
2

iκ
2 λ

iκ
2 0 λ iκ

2
iκ
2 λ 0 iκ

2

λ iκ
2

iκ
2 −1





. (2.9)
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The characteristic polynomial for (2.9) factorizes into a first and a third order polynomial
such that the eigenvalues acquire a simple analytic form. Defining the domain

UPT =
�
λ, κ : κ6 + 8λ2κ4 − 3κ4 + 16λ4κ2 + 20λ2κ2 + 3κ2 − λ2 − 1 ≤ 0

�
(2.10)

in the parameter space, the PT -symmetry is unbroken in the sense described by (1.1) when
(λ, κ) ∈ UPT . The four real eigenvalues are evaluated in this case to

ε1 = λ, ε2 = 2q
1

2 cos
�
θ
3

�
− λ

3 , ε3/4 = 2q
1

2 cos
�
θ
3 + π ∓ π

3

�
− λ

3 , (2.11)

where

θ = arccos

�
r

q3/2

�
, q =

1

9

�
3 + 4λ2 − 3κ2

�
, r =

λ

27

�
18κ2 + 8λ2 + 9

�
. (2.12)

We depict the eigenvalues in figure 1 for some fixed λ or κ and varying κ or λ, respectively.
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Figure 1: Unavoided level crossing: eigenvalues as functions of λ (κ) for fixed κ (λ) for H2(λ, κ)

[23].

We observe the typical behaviour for PT -symmetric systems, namely that two eigen-
values start to coincide at the exceptional point [26] when κ and λ are situated on the
boundary of UPT . Going beyond those values, the PT -symmetry is spontaneously broken
and the two merged eigenvalues develop into a complex conjugate pair. This is of course
a phenomenon prohibited for standard Hermitian systems by the Wigner—von Neumann
non-crossing rule [27].

For the Hamiltonian (2.8) one can compute explicitly the left |Φn� and right eigenvec-
tors |Ψn�, forming a biorthonormal basis

�Ψn |Φm� = δnm, and
�

n
|Φn� �Ψn| = I (2.13)

and verify that indeed for the spontaneously broken regime the second relation in (1.1)
does not hold, see [23] for the concrete expressions. We have then all the ingredients to
compute the metric operator ρ and define the inner product �.|.�ρ := �.|ρ.� with regard to
which the Hamiltonian (2.8) is Hermitian

�ψ|Hφ�ρ = �Hψ|φ�ρ. (2.14)
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Computing the signature s = (s1, s2, . . . , sn) from

P |Φn� = sn |Ψn� with sn = ±1 (2.15)

we may evaluate the so-called C-operator introduced in [3]

C :=
�

n
sn |Φn� �Ψn| , (2.16)

and hence the metric operator ρ, which also relates the Hamiltonian to its conjugate

ρ := PC, H†ρ = ρH. (2.17)

The explicit expressions can be found in [23], from which one can verify explicitly that
the metric operator is Hermitian, positive and invertible. Thus the Hamiltonian (2.8) is
quasi-Hermitian as well as pseudo-Hermitian. From the expression for ρ we can also obtain
the so-called Dyson map η [28], by taking the positive square root η =

√
ρ. This operator

serves to construct an isospectral Hermitian counterpart h to H by its adjoint action. For
(2.8) we find

h2(λ, κ) = ηH2(λ, κ)η−1 =
�

s=x,y,z

νsσs ⊗ σs + µz(σz ⊗ I+ I⊗ σz). (2.18)

The constants νx, νy, νz and µz can be found in [23].

2.3 Perturbative computation for the N-site model

It is clear that when proceeding to longer spin chains it becomes increasingly complex to
compute the above mentioned operators such that exact computation become less transpar-
ent and can only be carried out with great effort. However, we may also gain considerable
insight by resorting to a perturbative analysis. For this purpose we separate the Hamil-
tonian into its Hermitian and non-Hermitian part as H(λ, κ) = h0(λ)+ iκh1, where h0 and
h1 are both Hermitian, with κ being a real coupling constant as for instance introduced in
(2.1). Assuming next that the inverse of the metric exists and that it can be parameterized
as ρ = eq, the second equation in (2.17) can be written as

H† = eqHe−q = H + [q,H] +
1

2
[q, [q,H]] +

1

3!
[q, [q, [q,H]]] + · · · (2.19)

Presuming further that the metric can be perturbatively expanded as

q =
∞�

k=1

κ2k−1q2k−1, (2.20)

we obtain the following equations order by order in κ

[h0, q1] = 2ih1, (2.21)

[h0, q3] =
i

6
[q1, [q1, h1]], (2.22)

[h0, q5] =
i

6
[q1, [q3, h1]] +

i

6
[q3, [q1, h1]]−

i

360
[q1, [q1, [q1, [q1, h1]]]]. (2.23)
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It is clear from (2.21)-(2.23) that at each order one new unknown quantity enters the
computation for which we can solve our equations, i.e. in (2.21) we solve for q1 for known
h0 and h1, in (2.22) for q3, in (2.23) for q5, etc. This process can be continued up to any
desired order of precision, see [8] for further general details on perturbation theory.

Proceeding in this manner we compute the Dyson operator as described above and
determine the Hermitian counterpart. For N = 3 we obtain

h = µ3xxS
3
xx + µ3yyS

3
yy + µ3zzS

3
zz + µ3zS

3
z + µ3xxzS

3
xxz + µ3yyzS

3
yyz + µ3zzzS

3
zzz, (2.24)

where for convenience we introduced a new notation

SN
a1a2...ap :=

N�

k=1

σa1
k σ

a2
k+1 . . . σ

ap
k+p−1, for ai = x, y, z, u; i = 1, . . . , p ≤ N. (2.25)

The coefficients µxx, . . . , µzzz are real functions of the couplings λ and κ. We denote here
σu = I to allow for the possibility of non-local, i.e. not nearest neighbour, interactions. In
fact, they do occur when we increase the length of the chain by one site. For N = 4 we
compute

h = µ4xxS
4
xx + ν4xxS

4
xux + µ4yyS

4
yy + ν4yyS

4
yuy + µ4zzS

4
zz + ν4zzS

4
zuz + µ4zS

4
z

+µ4xxz(S4xxz + S4zxx) + µ4xzxS
4
xzx + µ4yyz(S4yyz + S4zyy) + µ4yzyS

4
yzy

+µ4zzzS
4
zzz + µ4xxxxS

4
xxxx + µ4yyyyS

4
yyyy + µ4zzzzS

4
zzzz + µ4xxyyS

4
xxyy

+µ4xyxyS
4
xyxy + µ4zzyyS

4
zzyy + µ4zyzyS

4
zyzy + µ4xxzzS

4
xxzz + µ4xzxzS

4
xzxz. (2.26)

We observe that the first non-local interaction terms proportional to S4xux, S
4
yuy and S4zuz

emerge in this model. Thus we encounter a very typical feature of non-Hermitian PT -
symmetric Hamiltonian systems, whereas the non-Hermitian Hamiltonian is fairly simple
its Hermitian isospectral counterpart is quite complicated involving non-nearest neighbour
interactions. An additional feature not present for chains of smaller length is the fact that
some of the λ-dependence of the coefficients µxx, . . . , µxzxz is no longer polynomial and
gives rise to singularities.

This models exhibits the basic feature, but clearly there is plenty of scope left for
further analysis. More explicit analytic formulae should be computed for η, ρ and h for
longer chains, models with higher spin values should be considered and further members of
the class belonging to the perturbedMp,q-series of minimal conformal field theories should
be studied. Interesting recent results on other non-Hermitian quantum spin chains may be
found in [29, 30].

3. PT -symmetrically deformed Calogero type models

PT -deformed versions of multi-particle systems of Calogero type have been obtained so
far in three quite different ways, as simple extensions, as constrained field equations or as
genuine deformations.
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3.1 Extended Calogero-Moser-Sutherland models

The most direct and simplest way to obtainPT -symmetrically extended versions of Calogero-
Moser Sutherland models is to add a PT -symmetric term to the original model as proposed
in [31]

HPT CMS =
1

2
p2 +

1

2

�

α∈∆

g2αV (α · q) +
i

2
g̃αf(α · q)α · p, (3.1)

with coupling constants g, g̃ ∈ R, canonical variables q, p ∈ Rℓ+1 for an (ℓ+ 1)-dimensional
representation of the roots α of some arbitrary root system ∆, which is left invariant under
the Coxeter group. The potential may take on different forms V (x) = f2(x) defined by
means of the function f(x) = 1/x, f(x) = 1/ sinhx or f(x) = 1/ sinx. The model in (3.1)
is a generalization of an extension of the Aℓ and Bℓ-Calogero model, i.e. f(x) = 1/x, for
a specific representation of the roots as suggested in [32, 33, 34]. The PT -symmetry of
HPT CMS is easily verified. In [31] it was shown that for f(x) = 1/x one may re-write the
Hamiltonian in (3.1), such that it becomes the standard Hermitian Calogero Hamiltonian
with shifted momenta p→ p+ iµ

HPT CMS =
1

2
(p+ iµ)2 +

1

2

�

α∈∆

ĝ2αV (α · q), (3.2)

where µ := 1/2
�

α∈∆ g̃αf(α · q)α and the coupling constants have been redefined to ĝ2α :=

g2s + α2sg̃
2
s for α ∈ ∆s and ĝ2α := g2l + α2l g̃

2
l for α ∈ ∆l, where ∆l and ∆s refer to the root

system of the long and short roots, respectively. This manipulation is based on the not
obvious identity µ2 = α2s g̃

2
s

�
α∈∆s

V (α · q) + α2l g̃
2
l

�
α∈∆l

V (α · q), which is only valid for
rational potentials. Even then it has not been proven yet in a case independent manner,
but verified for many examples on a case-by-case basis [31].

For the rational potential it is straightforward to obtain the Dyson map η = e−q·µ,
which relates the standard Hermitian Calogero model to the non-Hermitian model (3.1) by
an adjoint action HPT C = η−1HCη. The integrability of the rational version of HPT CMS

follows then from the existence of the Lax pair LC and MC obeying the Lax equation
L̇PT C = [LPT C ,MPT C ], which maybe obtained from the standard Calogero Lax pair [35]
as LPT C(p) = η−1LC(p)η = LC(p + iµ) and MPT C(p) = η−1MC(p)η = MC(p + iµ).
Expanding the shifted kinetic term in (3.2) we obtain

HPT CMS =
1

2
p2 +

1

2

�

α∈∆

ĝ2αV (α · q) + iµ · p− 1

2
µ2. (3.3)

By the reasoning provided, it follows that this model is integrable for all of the above stated
potential, whereas the model without the µ2-term is only integrable for rational potentials.

3.2 From constraint field equations to PT -deformed Calogero models

Another more surprising way to obtain particle systems of complex Calogero type arises
from considering real valued field solutions for some nonlinear equations. Making an Ansatz
in form of a real valued field

u(x, t) =
λ

2

ℓ�

k=1

�
i

x− zk(t)
− i

x− z∗k(t)

�
, λ ∈ R, (3.4)
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it was shown more than thirty years ago [36, 37] that this constitutes an ℓ-soliton solution
for the Benjamin-Ono equation

ut + uux + λHuxx = 0, (3.5)

with Hu(x) denoting the Hilbert transform Hu(x) = P
π

�∞
−∞

u(x)
z−xdz, provided the poles zk

in (3.4) obey the complex Aℓ-Calogero equation of motion

z̈k =
λ2

2

�

j �=k

(zj − zk)−3, zk ∈ C. (3.6)

Clearly for different types of nonlinear equations the constraining equation might be of a
more complicated form. However, we may consistently impose additional constraints by
making use of the following theorem of Airault, McKean and Moser [38]:

Given a Hamiltonian H(x1, . . . , xn, ẋ1, . . . , ẋn) with flow

xi = ∂H/∂ẋi and ẍi = −∂H/∂xi i = 1, . . . , n (3.7)

and conserved charges Ij in involution with H, i.e. vanishing Poisson brackets {Ij ,H} = 0.

Then the locus of grad I = 0 is invariant with regard to time evolution. Thus it is permitted

to restrict the flow to that locus provided it is not empty.

Making now the Ansatz

v(x, t) = λ
ℓ�

k=1

(x− zk(t))−2, λ ∈ R (3.8)

one can show that this solves the Boussinesq equation

vtt = a(v2)xx + bvxxxx + vxx a, b ∈ R. (3.9)

if and only if b = 1/12, λ = −a/2 and the poles zk obeys the constraining equations

z̈k = 2
�

j �=k

(zj − zk)−3 ⇔ z̈k = −∂HCal

∂zi
, (3.10)

ż2k = 1−
�

j �=k

(zj − zk)−2 ⇔ grad(I3 − I1) = 0. (3.11)

Here I3 =
�ℓ

j=1[ż
3
j /3 +

�
k �=j żj(zj − zk)2] and I1 =

�ℓ
j=1 żj are two conserved charges

in the Aℓ-Calogero model. Thus in comparison with the previous example (3.4)-(3.5) we
have to satisfy an additional constraints (3.11) besides the equations of motion of the Aℓ-
Calogero model. However, according to the above theorem this is still a consistent system
of equations, provided the equations (3.10) and (3.11) possess any non-trivial solution.
Only very few solutions have been found so far. The simplest two-particle solution was
already reported in [38]

z1 = κ+
�

(t+ κ̃)2 + 1/4, z2 = κ−
�

(t+ κ̃)2 + 1/4. (3.12)
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In this case the Boussinesq solution acquires the form

v(x, t) = 2λ
(x− κ)2 + (t+ κ̃)2 + 1/4

[(x− κ)2 − (t+ κ̃)2 − 1/4]2
. (3.13)

Note that v(x, t) is still a real solution. However, without any complication we may change
κ and κ̃ to be purely imaginary in which case, and only in this case, (3.13) becomes a
solution for the PT -symmetric equation (3.9) in the sense that PT : x→ −x, t→ −t and
v → v. A three particle solution was reported in [39], which exhibits an interesting solitonic
behaviour in the complex plane. In that case no real solution could be found and once
again one was forced to consider complex particle systems. For more particles, different
types of algebras or other types of nonlinear equations these investigations have not been
carried out yet.

3.3 Deformed Calogero-Moser-Sutherland models

Let us now consider the CMS-models with an additional confining potential

H′PT CMS =
p2

2
+
m2

16

�

α∈∆s

(α · q̃)2 +
1

2

�

α∈∆

gαV (α · q̃), m, gα ∈ R, (3.14)

and also deform the coordinates q → q̃. Considering at first the A2-case for a standard
three dimensional representation for the simple A2-roots α1 = {1,−1, 0}, α2 = {0, 1,−1},
we deformed the coordinates as

q1 → q̃1 = q1 cosh ε + i
√

3(q2 − q3) sinh ε (3.15)

q2 → q̃2 = q2 cosh ε + i
√

3(q3 − q1) sinh ε (3.16)

q3 → q̃3 = q3 cosh ε + i
√

3(q1 − q2) sinh ε (3.17)

such that the relevant terms in the potential become

α1 · q̃ = q12 cosh ε− i√
3

(q13 + q23) sinh ε, (3.18)

α2 · q̃ = q23 cosh ε− i√
3

(q21 + q31) sinh ε, (3.19)

(α1 + α2) · q̃ = q13 cosh ε+
i√
3

(q12 + q32) sinh ε, (3.20)

with the abbreviation qij := qi − qj. We observe for this example the following antilinear
involutory symmetries

S1 : q1 ↔ q2, q3 ↔ q3, i→−i, (3.21)

S2 : q2 ↔ q3, q1 ↔ q1, i→−i. (3.22)

At this stage this deformation appears to be somewhat ad hoc. In fact, it arose [40, 41]
from the physical motivation to eliminate singularities in the potential when solving the
separable Schrödinger equation for the Hamiltonian H′PT CMS . It was noted that the new
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non-Hermitian model could be defined on less separated configuration space. Whereas in
general one had to restrict the models to distinct Weyl chambers and analytically continue
the wavefunctions across their boundaries with the inclusion of some chosen phase, this
is no longer necessary in the deformed models. In addition, the new models possess a
modified energy spectrum with real eigenvalues, which we attribute to the fact that the
theory is invariant with respect to the antilinear transformations S1 and S2. Motivated by
this success one may attempt to find a more direct systematic mathematical procedure to
deform the coordinates rather than the indirect implication resulting from the separability
of the Schrödinger equation. In any case, the latter approach would be entirely unpractical
for models related to higher rank Lie algebras.

We notice first that the Hamiltonian (3.14) also results from deforming the roots
involved. For the A2-case we may take the simple roots

α̃1 = α1 cosh ε+ i
1√
3

sinh ε(α1 + 2α2), (3.23)

α̃2 = α2 cosh ε− i
1√
3

sinh ε(2α1 + α2). (3.24)

and re-write (3.14) equivalently as

H′PT CMS =
p2

2
+
m2

16

�

α̃∈∆̃s

(α̃ · q)2 +
1

2

�

α̃∈∆̃

gα̃V (α̃ · q), m, gα̃ ∈ R. (3.25)

Now the symmetries (3.21)-(3.22) can be identified equivalently for the roots. We note

σε
1 : α̃1 ↔−α̃1, α̃2 ↔ α̃1 + α̃2 ⇔ q1 ↔ q2, q3 ↔ q3, i→−i, (3.26)

σε
2 : α̃2 ↔−α̃2, α̃1 ↔ α̃1 + α̃2 ⇔ q2 ↔ q3, q1 ↔ q1, i→−i. (3.27)

This observation has been taken as the basis for the formulation of a systematic construction
procedure leading to antilinearly invariant, and therefore potentially physical, models [42,
43, 44]. The dynamical variables, or possibly more general fields, appear in the dual space
of some roots with respect to the standard inner product. Since these root spaces are
naturally equipped with various symmetries due to the fact that by construction they
remain invariant under the action of the entire Weyl group W, it is by far easier and
systematic to identify the antilinear symmetries directly in the root spaces rather than in
the configuration space. Once they have been identified they can be transformed to the
latter.

The aim is therefore to construct complex extended antilinearly invariant root systems
which we denote by ∆̃(ε). The proposed procedure consists of constructing two maps,
which may be obtained in any order. In one step we extend the representation space ∆ of
the standard roots α from Rn to Cn = Rn ⊕ iRn. This means we are seeking a map

δ : ∆ → ∆̃(ε), α �→ α̃ = θεα, (3.28)

where α = {α1, . . . , αℓ}, ∆ ⊂ Rn, ∆̃(ε) ⊂ Cn and n is greater or equal to the rank ℓ

of the Weyl group W. The complex deformation matrix θε introduced in (3.28) depends
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on the deformation parameter ε in such a way that limε→0 θε = I. The deformation
is constructed to facilitate the root space ∆̃ with the crucial property for our purposes,
namely to guarantee that it is left invariant under an antilinear involutory map

̟ : ∆̃(ε) → ∆̃(ε), α̃ �→ ωα̃. (3.29)

This means the map in (3.29) satisfies ̟ : α̃ = µ1α1 + µ2α2 �→ µ∗1ωα1 + µ∗2ωα2 for µ1,
µ2 ∈ C and also ̟ ◦ ̟ = I. In order to facilitate the construction we make the further
additional assumptions:

(i) The operator ω decomposes as

ω = τω̂ = ω̂τ , (3.30)

with ω̂ ∈ W, ω̂2 = I and τ being a complex conjugation. This will guarantee that ̟
is antilinear.

(ii) There are at least two different maps ωi with i = 1, . . . , κ ≥ 2. This assumption
simplifies the solution procedure.

(iii) There exists a similarity transformation of the form

ωi := θεω̂iθ
−1
ε = τω̂i, for i = 1, . . . , κ ≥ 2. (3.31)

(iv) The operator θε is an isometry for the inner products on ∆̃(ε), such that

θ∗ε = θ−1ε and det θε = ±1. (3.32)

This assumption is motivated by the desire to keep the kinetic term of the Calogero
model undeformed.

(v) In the limit ε→ 0 we recover the undeformed case

lim
ε→0

θε = I. (3.33)

Clearly one could modify or entirely relax some of the constraints (i)-(v), e.g. it might
not be desirable in some physical application to preserve the inner products etc. However,
it turns out that this set of constraints is restrictive enough to allow for the construction
of solutions for θε with only very few free parameters left.

With our applications to physical models in mind, i.e. exploiting here the equivalence
of (3.14) and (3.25), we would also like to construct a dual map δ⋆ for δ acting on the
coordinate space with q = {q1, . . . , qn} or possibly fields. We therefore define

δ⋆ : Rn → ∆̃⋆(ε) = R
n ⊕ iRn, x �→ x̃ = θ⋆εx, (3.34)

denoting quantities in and acting on the dual space by ⋆. Thus assuming θε has been
constructed from the constraints (i)-(v), we may obtain θ⋆ε by solving the ℓ equations

(α̃i · x) = ((θεα)i · x) = (αi · θ⋆εx) = (αi · x̃), for i = 1, . . . , ℓ, (3.35)
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involving the standard inner product. This means (θ⋆ε)−1αi = (θεα)i. Note that in general
θ⋆ε �= θ∗ε. Naturally we can also identify an antilinear involutory map

̟⋆ : ∆̃⋆(ε)→ ∆̃⋆(ε), x̃ �→ ω⋆x̃, (3.36)

corresponding to ̟ but acting in the dual space. Concretely we need to solve for this the
κ× ℓ relations

(ωiα̃)j · x = αj · ω⋆
i x̃, for i = 1, . . . κ; j = 1, . . . , ℓ, (3.37)

for ω⋆
i with given ωi.
In [42, 43, 44] many solutions to the set of constraints (i)-(v) were constructed. A

particular systematic construction can be found when we take κ = 2 in the requirement
(ii) and identify ω1 = σ− and ω2 = σ+. The maps σ± factorize the Coxeter element in a
unique way

σ := σ−σ+, with σ± :=
�

i∈V±

σi, (3.38)

where the σi are simple Weyl reflections σi(x) := x−2(x·αi/α
2
i )αi associated to each simple

root for 1 ≤ i ≤ ℓ ≡ rankW. The two sets V± are defined by means of a bi-colouration
of the Dynkin diagrams consisting of associating values ci = ±1 to its vertices in such a
way that no two vertices with the same values are linked together. The consequence of
this labeling is that [σi, σj] = 0 for i, j ∈ V+ or i, j ∈ V− such that the factorization in
(3.38) becomes unique. Clearly σ2± = I as required by for our construction. An immediate
consequence of (iii) is that σ and θε commute, such that the following Ansatz captures all
possible cases based on the assumption stated before (3.38)

θε =
h−1�

k=0

ck(ε)σk, with lim
ε→0

ck(ε) =

�
1 k = 0

0 k �= 0
, ck(ε) ∈ C. (3.39)

The upper limit in the sum results from the fact that σh = I, with h denoting the Coxeter
number. Invoking also the remaining constraints allows to determine the functions ck(ε).
For the A3-Weyl group invariant root system this yields for instance the following three
deformed simple roots

α̃1 = cosh εα1 + (cosh ε− 1)α3−i
√

2
√

cosh ε sinh
�ε

2

�
(α1+2α2+α3) , (3.40)

α̃2 = (2 cosh ε− 1)α2 + 2i
√

2
√

cosh ε sinh
�ε

2

�
(α1 + α2 + α3) , (3.41)

α̃3 = cosh εα3 + (cosh ε− 1)α1−i
√

2
√

cosh ε sinh
�ε

2

�
(α1+2α2+α3) . (3.42)

In some cases we were even able to provide closed formulae for entire subseries. For instance
for A4n−1 we found a closed expression for the deformation matrix in the form

θε = r0I+ (1− r0)σ
2n + i

�
r20 − r0

�
σn − σ−n

�
. (3.43)

A possible choice for the function r0 is r0 = cosh ε. It was also shown in [42] that it is
impossible to construct solutions for (i)-(v) for certain Weyl groups based on the factor-
ization (3.38), such as for instance B2n+1. However, in [43, 44] it was demonstrated that
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one can slightly alter the procedure by choosing different factors instead and constructing
solutions based on an Ansatz similar to (3.39). For B2n+1 we found closed expressions of
the form

α̃2j−1 = cosh εα2j−1 + i sinh ε



α2j−1 + 2
ℓ�

k=2j

αk



 for j = 1, . . . , n, (3.44)

α̃2j = cosh εα2j − i sinh ε




2j+2�

k=2j

αk + 2
ℓ�

k=2j+3

2αk



 for j = 1, . . . , n− 1,

α̃ℓ−1 = cosh ε(αℓ−1 + αℓ)− αℓ − i sinh ε (αℓ−2 + αℓ−1 + αℓ) ,

α̃ℓ = αℓ. (3.45)

In this case the dual deformation matrix which acts on the coordinates (3.35) takes on a
very familiar form and turns out to be composed of pairwise complex rotations

θ⋆ε =






R

R 0
. . .

0 R

1






with R =

�
cosh ε i sinh ε

−i sinh ε cosh ε

�

. (3.46)

Having constructed various deformed root spaces which by construction are equipped
with an antilinear involutory symmetry, we may then consider various models formulated in
terms of roots, such as H′PT CMS defined in (3.25). We then encounter several interesting
new features in these models. Since many of the key identities needed for the solution
procedure are identical in terms of roots or deformed roots, we may adopt similar solution
techniques as in the undeformed case, such separating variables. As a crucial new feature we
find that the energy spectrum is modified and admits new real solutions when compared
to the undeformed model. For instance, for the G2-case the undeformed energies En =

2 |ω| (2n+ λ+ 1) with n ∈ N0 and λ ∈ R+ become

E±nm = 2|ω|
�
2n+ 6(κ±s + κ±l +m) + 1

�
for n,m ∈ N0, (3.47)

with κ±s/l = (1±�1 + 4gs/l)/4.
For the B2n+1-case we can support these observations with the explicit construction of

Dyson maps as introduced in (2.18) and the metric operators (2.17). For the models based
on the deformed roots (3.44)-(3.45) the Dyson map is simply η = η12η34 . . . η(ℓ−2)(ℓ−1) with
ηij = e−ε(xipj−xjpi), such that the metric operator becomes ρ = η2.

A further novelty in the deformed models is that the wavefunctions are regularized by
means of the deformation such that many singularities disappear. In particular this means
that these models can be defined usually on the entire space Cn, whereas the undeformed
models could only be defined in certain Weyl chambers. The continuation from a chamber
to its neighbouring one was achieved by introducing a phase factor by hand, thus selecting
a particular statistics. The deformed models on the other hand have these phase factors
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already built in as a property of the model. For instance in the A3-case we find that the
four-particle wavefunction obeys

ψ(q1, q2, q3, q4) = eıπsψ(q2, q4, q1, q3). (3.48)

These properties can be read off easily from the action of the generalized PT -symmetry
on the deformed roots, translated to the dual space that is to the coordinates and then to
the parameterization of the wavefunction. We note that the phase factor emerges as an
intrinsic property rather than as an imposition. We illustrate the relation (3.48) as follows

� � � �
w x y z

q1 q2 q3 q4
= eiπs � � � �

w x y z

q2 q4 q1 q3

In the deformed models we can even allow some of the particles to occupy the same place
and scatter them with single particles

� �� �
x y z

q2 = q3q1 q4
= eiπs � �� �

x y z

q2 q1 = q4 q3

We can also scatter pairs of particles resulting in the exchange of one of the particles

�� ��
x y

q1 = q2 q3 = q4
= eiπs �� ��

x y

q1 = q3 q2 = q4

and we may even scatter triplets with a single particle

��� �
x y

q1 = q2 = q3 q4
= � ���

x y

q4 q1 = q2 = q3

It is clear that these models have very interesting new properties and there are still
various open issues left worthwhile to investigate. More explicit solutions for spectra and
wavefunctions should be constructed; the important questions of whether the deformed
models are still integrable should be settled; Dyson maps, the metric operators and Her-
mitian counterparts should be constructed such that more observables of the models can
be studied. The constructed root systems could be used to formulate entirely new models
of different kind than Calogero systems.

4. PT -symmetrically deformed nonlinear wave equations

The prototype integrable system of nonlinear wave type is the Korteweg-deVries equation
[45]

ut + βuux + γuxxx = 0, β, γ ∈ C, (4.1)

resulting from a Hamiltonian density

HKdV[u] = −β
6
u3 +

γ

2
u2x. (4.2)

The system admits two different types of PT -symmetries

PT ± : x �→ −x, t �→ −t, i �→ −i, u �→ ±u for β, γ ∈ R, (4.3)
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which have only been exploited recently in [46, 47, 48, 19]. According to the deformation
prescription (1.3) we can now deform the Hamiltonian density (4.2) in two alternative ways

δ+ε : ux �→ ux,ε := −i(iux)ε or δ−ε : u �→ uε := −i(iu)ε, (4.4)

respectively, depending on whether we assume u(x, t) to bePT -symmetric or PT -antisymmetric.
The deformed models, suitably normalized, are then defined by the densities

H+ε = −β
6
u3 − γ

1 + ε
(iux)ε+1, and H−ε =

β

(1 + ε)(2 + ε)
(iu)ε+2 +

γ

2
u2x, (4.5)

with corresponding equations of motions

ut + βuux + γ(ux,ε)xx = 0, and ut + iβuεux + γuxxx = 0. (4.6)

The PT -symmetry can be exploited to ensure the reality for expressions such as the energy
on a certain interval [−a, a]

E =

� a

−a
H [u(x)] dx =

�

Γ
H [u(x)]

du

ux
. (4.7)

One would expect this expression to be real for the unbroken symmetric regime. However, in
[19] also some unexpected cases with real energies were found for which the PT -symmetry is
entirely broken (4.3), i.e. for the Hamiltonian and for its solutions. This possibly indicates
the existence of a different realization for the PT -symmetry operator.



PT-symmetric deformations of integrable models

The branch cut at −∞− i/4 to (1 − i)/4 is passed from above in panel (a) to below
in panel (b). The trajectories for the PT -symmetric and broken PT -symmetric case look
qualitatively very similar, the major difference being that the fixed point has moved away
from the real axis, thus leading to a loss of the symmetry.

Viewing the systems as two dimensional models, the nature of the fixed points has
been investigated systematically by exploiting the fact that their characteristic behaviour
is completely classified in dependence on the different types of eigenvalues for the Jacobian.
In [19] it was found that they may even undergo Hopf bifurcations in these systems, passing
form a star node over a centre to a focus. This feature was derived for the PT -symmetric
as well as for the broken PT -symmetric regime. In particular this also means that we
encounter closed trajectories despite the fact that the PT -symmetry is broken. We depict
an examples in figure 3 for different values of c, β and γ.



PT-symmetric deformations of integrable models

for the quartic harmonic oscillator of the form

Hquartic = Ex =
1

2
p2 + τx+

ω2

2
x2 +

g

4
x4. (4.12)

One may now directly translate some of the properties of the system (4.8) to the quantum
mechanical model (4.12). The special choice κ1 = τ = 0 for the integrations constants
imply that one is considering asymptotically vanishing waves with limζ→∞ u(ζ) = 0 and
with Neumann boundary condition limζ→∞ ux(ζ) =

√
2Ex where Hquartic = Ex. Accord-

ingly, the energy in the classical analogue of a complex classical particle corresponds to an
integration constant in the nonlinear wave equation context multiplied by one of the cou-
pling constants in the latter model. This is of course different from the energy as defined
in (4.7), which also leads to different conclusions regarding the reality of these quantities
resulting from the various PT -symmetric scenarios.

In a similar way, the complex seminal [1] cubic harmonic oscillator

Hcubic =
1

2
p2 +

1

2
x2 + igx3, (4.13)

treated also in [50] simply results from the integrating the KdV-equation twice with the
identification κ1 = 0, κ2 = γEx, β = −i6cg and γ = −c.

It appears to be unlikely that the models are still integrable as in general they do not
pass the Painlevé test [51, 52]. Similar studies have also be carried out for other types of
nonlinear wave equations as for instance for deformed Ito systems in [19]. It was even shown
that one can PT -symmetrically deform the supersymmetric version of the KdV-equation
(4.1) while still preserving its supersymmetry [48].

Evidently many features remain still unexplored and it would be very interesting to
extend these studies to a larger range of values for the deformation parameter, to other
nonlinear field equations such as Burgers, Bussinesque, KP, generalized shallow water equa-
tions, extended KdV equations with compacton solution, etc.
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