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Abstract 

The aim of this paper is to present a new INS/GPS 
sensor fusion scheme, based on State-Dependent 
Riccati Equation (SDRE) nonlinear filtering, for 
Unmanned Aerial Vehicle (UAV) localization problem. 
SDRE navigation filter is proposed as an alternative to 
Extended Kalman Filter (EKF), which has been 
largely used in the literature. Based on optimal control 
theory, SDRE filter solves issues linked with EKF 
filter such as linearization errors, which severely 
decrease UAV localization performances. Stability 
proof of SDRE nonlinear filter is also presented and 
validated on a 3D UAV flight scenario. Results 
obtained by SDRE navigation filter were compared to 
EKF navigation filter results. This comparison shows 
better UAV localization performance using SDRE 
filter. The suitability of the SDRE navigation filter 
over an Unscented Kalman navigation filter for highly 
nonlinear UAV flights is also demonstrated.    

 
Keywords: UAV Localization, Sensor Data Fusion, 
SDRE Nonlinear Filter, SDRE Stability.  

1. Introduction 

Over the last few years, Unmanned Aerial Vehicles 
(UAVs) have attracted attention in a number of civilian 
and military applications. They are able to perform tasks 
in highly hostile environments, where access to humans is 
limited. For these autonomous aerial vehicles, precise 
navigation is crucial in order to achieve high performance 
flights. Several sensing systems are used in UAV 
navigation such as: inertial navigation systems (INS), 
global positioning systems (GPS), air-data dead reckoning 
systems, radio navigation systems, and Doppler heading 
reference systems.  
INS is the most used navigation sensor providing UAV 
position, velocity and attitude. However, it has small bias 
errors, which are continuously increasing with time. 
Hence, additional aerial vehicle position information from 
an accurate navigation sensor, such as GPS system, is 
required. GPS sensor will help to estimate the INS bias 
errors using a navigation filter, which will then give 
improved UAV position.  
Nowadays, fusing data from different sensors to improve 
performance of the overall sensing system becomes 
necessary in various applications. For aerial navigation, 
fusion of GPS measurements with INS measurements by 
means of filtering techniques is vital to deliver the level of 
localization precision required by UAV missions.  

Currently, the most used technique to fuse navigation data 
is Kalman filter [1]. Although Kalman filter is capable of 
providing real time vehicle position updates, it is based on 
linear system models and it suffers from linearization 
when dealing with nonlinear models. In this case, an 
extended Kalman filter (EKF) is adopted [2], where by 
means of Taylor series expansion, the nonlinear system is 
linearized and approximated around each current state 
estimate. Linear Kalman filter is then applied to produce 
the next state estimate. When large deviations between 
the estimated state trajectory and the nominal trajectory 
exist, the nonlinear model is weakly approximated by 
Taylor series expansion around the conditional mean. 
This makes high order terms of Taylor series expansion 
necessary. However, in the EKF, these high order terms 
are neglected.  
Other data fusion techniques based on probabilistic 
approaches were presented and used in the literature. One 
of these techniques is Particle Filter (PF) [3], [4]. The 
main drawback of this filter is its computational 
requirement, which makes it not very suitable for real 
time applications such as aerial navigation problem. 
Approaches based on Unscented Transform (UT) resulted 
in a technique called Unscented Kalman Filter (UKF) [5]. 
This technique preserves the linear update structure of 
Kalman filter. It uses only second order system moments, 
which may not be sufficient for some nonlinear systems. 
In addition, the number of sigma points, used in UKF, is 
small and may not represent adequately complicated 
distributions. Moreover, unscented transformation of the 
sigma-points is computationally heavy, which is not 
suitable and practical for real time aerial navigation 
applications.   
In this paper, we investigate an alternative to EKF based 
data fusion technique for UAV localization problem. This 
alternative is based on INS and GPS data and uses a 
State-Dependent Riccati Equations (SDRE) non-linear 
filtering formulation. SDRE techniques are rapidly 
emerging as optimal non-linear control and filtering 
methods. Over the past several years, various SDRE 
based design approaches have been successfully applied 
to aerospace problems. SDRE based designs have been 
used in advanced guidance [6, 7], in output feedback 
nonlinear H2 autopilot [8], and in full information 
nonlinear H∞ autopilot [9]. Before that, a parameter-
dependent Riccati equation technique was used in a pitch-
yaw autopilot design where the parameter, roll rate, was 
exogenously supplied by a roll autopilot [10]. In addition, 
SDRE based design approaches have been applied to the 
control design for a nonlinear benchmark problem [11, 
12].  



In [13], SDRE nonlinear regulation, SDRE nonlinear H∞ 
and SDRE nonlinear H2 design methodologies were 
defined and the optimality, sub optimality, and stability 
properties of SDRE nonlinear controllers were discussed. 
In [14], the SDRE nonlinear filter formulation was 
introduced and used for a pendulum-tracking problem. 
From the cited references, we notice that SDRE 
formulation was used more for control design problems 
and only a little for filtering problems. Moreover, these 
filtering problems are often related to small order 
systems.  
The SDRE nonlinear filter is adopted here to avoid 
system linearization issues linked with the classical 
Extended Kalman filtering. However, SDRE filter 
stability is still an open research problem. Only very few 
papers introduced results on SDRE system stability 
proofs. These proofs were achieved for low order closed 
loop SDRE controlled systems [15, 16].  
Contributions of this paper are mainly the development 
and validation of an alternative optimal INS/GPS filtering 
scheme based on SDRE technique for aerial (UAV) 
navigation problem and the global stability analysis 
developed for this SDRE nonlinear filtering system. The 
SDRE nonlinear filtering approach proposed in this work 
will present new option to aeronautical engineers for 
precise and real time aerial navigation. As the increase of 
autonomy of unmanned aerial vehicle is our interest, the 
ideal extension of this work is to use the SDRE nonlinear 
filtering in the simultaneous localization and mapping 
(SLAM) problem where navigation precision is crucial 
and where the SDRE stability study could be looked at to 
provide more consistency to SLAM operations.     
 
This paper is organized as follows: Section 2 presents the 
navigation sensors (INS and GPS) used in this aerial 
localization problem. Section 3 describes shortly the 
Extended Kalman Filter. A review of the SDRE nonlinear 
filter, in addition, to its stability proofs are presented in 
Section 4. In section 5, simulation results of the SDRE 
nonlinear filter for the UAV localization problem are 
given and compared with the KF and EKF and UKF 
results. 

2. INS/GPS Navigation 

A. INS/GPS navigation 
A.1. Inertial Navigation System (INS)  
The localization problem of an airborne system is 
formulated using the navigation core-sensing device: 
Inertial Measurement Unit (IMU). This unit measures the 
airborne platform acceleration (ax, ay, az) and its rotation 
rates ( p, q, r) with high update rates. These 
measurements are then processed and transformed, at the 
Inertial Navigation System (INS), to provide the airborne 
platform position ( ), velocity (U, V, W), and 
attitude (

ZYX ,,
, ,φ θ ψ ), fig.1.  

Let us present the INS with the following nonlinear 
model:        
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where x  is the state vector. This latter includes the 
position, the velocity and Euler angles. u  represents the 
IMU outputs (angle rates, and accelerations). 
 

[ ], , , , , , , , Tx X Y Z U V W φ θ ψ=               (2) 

[ , , , , , ]Tu p q r ax ay az=        (3) 
 

The navigation equations require the definition of at least 
two reference frames. One reference frame is for the 
body/inertial (vehicle) representation and the other 
reference frame is for the navigation frame representation. 
Then, system equations of motion can be given by simple 
integrations and frame transformations as presented 
below. 

A.1.1 Equations of motion: 
Euler angle rates , ,φ θ ψ& & &  can be calculated using the 
following equation: 
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Assuming that the IMU is installed at the vehicle centre of 
gravity, the true vehicle acceleration in the body frame is 
given by  as: , ,U V W& & &
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The resulting acceleration vector is integrated with 
respect to time to obtain the velocity of the vehicle in the 
body frame as: 
 

U U
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                                                            (6) 

 
The velocity vector is then integrated to read the position 
of the vehicle in the body frame. If the velocity is 
transformed down to the navigation frame and is 

integrated, we obtain the position vector [ , , ]TX Y Z  in 
the navigation frame as:  
 

( , , )
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where  is the Direct Cosine Transform matrix that 
rotates a vector from the body frame to the navigation 
frame: 

Cbn
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(8) 
The Nonlinear INS state model is given by (9) as follows: 
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 (9) 
The observation model, related to the UAV position, 
based on the INS system is given by: 
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( , ) 0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0
h x u =

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦

             (10) 

 
The problem with the navigation solution given by INS, 
Fig.1, is that it drifts with time as in most other dead 
reckoning systems. The drift rate of the inertial position is 
typically a cubic function of time. Small errors in gyros 
will be accumulated in angle estimates (roll and pitch), 
which in turn misrepresent gravitational acceleration as 
the vehicle acceleration and results in quadratic velocity 
(and cubic position) errors. This makes the development 
of any inertial only based localization solution very 
unsuitable. Therefore, INS requires reliable and effective 
additional information to reduce these errors. The 
additional source, providing aerial vehicle position, used 
in this paper is GPS. 
 

 
Fig.1 INS architecture 
 
A.1.2 INS errors 
Most of INS errors are attributed to the inertial sensors 
(instrument errors). These are the residual errors exhibited 
by the installed gyros and accelerometers following 
calibration of the INS. The dominant error sources of INS 
system are shown in Table 1. 
 
INS errors Impact 

Alignment errors Roll, pitch and heading errors 

Accelerometer bias or offset 
A constant offset in the accelerometer 
output that changes randomly after  
each turn-on 

Nonorthogonality of gyros 
and accelerometers 

The accelerometer axes, gyro 
uncertainty and misalignment 

Gyro drift or bias (due to 
temperature changes) 

A constant gyro output without angular 
rate presence 

Gyro scale factor error Results in an angular rate error 
proportional to the sensed angular rate

Random noise Random noise in measurements 
Table 1: Sensor errors in INS 

 
Due to mathematical integration, errors in the 
accelerations and angular rates lead to steadily growing 
errors in position and velocity of the aircraft. These are 
called navigation errors and there are nine of them - three 
position errors, three velocity errors, two attitude errors 
and one heading error. Gravity model can also cause INS 
errors, since variations, along the earth and with height, in 
the acceleration due to gravity are often not modelled 
accurately. If an unaided INS system is used, these errors 
grow with time and the INS position will largely drift 
from the true vehicle position as can be seen in Fig. 13 
(red trajectory).  
A.2. Global Positioning System (GPS) 
GPS uses a one-way ranging technique from GPS 
satellites, which are also broadcasting their estimated 
positions [17]. Signals from four satellites are used with 
the user generated replica signal and the measured relative 
phase. Using triangulation, the location of the receiver can 
be retrieved (Fig.2.a). Indeed, latitude, longitude, altitude 
and a correction to the user's clock are determined using 
four satellites in an appropriate geometry. The GPS 
receiver coupled with the computer receiver returns 
elevation angle and azimuth angle between the user and 
the satellite. These quantities are measured positive 
clockwise from the true north, geodetic latitude and 
longitude of the user. The GPS ranging signal is 
broadcasted at two frequencies: a primary signal at 
1575.42 MHz (L1) and a secondary broadcast at 1227.6 
MHz (L2). Civilians use L1 frequency, which has two 
modulations, viz. C/A or Clear Acquisition Code and P or 
Precise or Protected Code. C/A is unencrypted signal 
broadcast at a higher bandwidth and is available only on 
L1. P code is more precise because it is broadcasted at a 
higher bandwidth and is restricted for military use. The 
military operators can degrade the accuracy of the C/A 
code intentionally and this is known as Selective 
Availability. If we have a perfect clock in both the 
satellite and the receiver and if the signal is not affected 
by noise then precision in calculating the receiver position 
can be achieved (Fig.2.a). Otherwise an additional 
satellite is needed for time offset of the GPS receiver 
clock (Fig.2.b). 
 

 
Fig.2.a Ideal case, 3 intersection spheres 

GPS solution (Ideal 
Case). intersection of 
3spheres 

 



In this paper, good precision of GPS signals is assumed.  
GPS ranging errors, [17], are assumed minimised using 
additional satellites, if necessary, to correct user's (UAV) 
clock. Thus, GPS signals are suitable to use in the sensor 
fusion process with the INS system by means of a 
navigation-filtering scheme, as illustrated in Fig.3.  

 
Fig.2.b Non ideal case, additional satellite is needed for 
time offset of the GPS receiver clock 
 

 
Fig.3 INS aided GPS sensor fusion 

3. Extended Kalman Filter  

Based on different estimation models, navigation filters 
are adopted as a sensor fusion scheme to obtain aerial 
vehicle states. One of these models, proposed in [1] and 
[2], is a linear model based on the error navigation model 
with assumptions on Euler angles (small Euler angles). In 
this case, a linear Kalman Filter is enough to use. 
However, those assumptions are generally not valid, 
which makes nonlinear filtering approaches, such as 
Extended Kalman Filter (EKF) as detailed below, 
required [2][18][19]. 
Our system, defined in (9) and (10), is converted to a non-
linear discrete time state transition equation using the 
Zero-Order Hold (ZOH) function: 

( , ,1
( , )

)x f x u wk k k k
y h x vk k k

= −

=
   (11) 

kx is the state at time step , is some additive noise, 

is the observation made at time ,  is some 

additive observation noise. We assume that and  
are uncorrelated zero mean Gaussian with known 
covariance  and . The objective of the filtering 

technique is, then, to estimate  using available 

observation . 
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ky k kv
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kQ kR
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ky
The non-linear vehicle model and observation model 
maybe expanded around the filtered and predicted 
estimates of   and . kx̂ 1ˆ −kxGPS solution (2D case). 
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where  ( )kf x∆  is the Jacobian of evaluated at , f 1−kx
( )wf x∆  the Jacobian of  evaluated at  and 

 is the Jacobian of evaluated at  and 

/ kf w 1−kx
( )kh x∆ h 1−kx 3,..1=∆ i  

represents higher order terms of the Taylor series 
expansion. 
The filter state error is defined as:  

                                          (14) ˆ/ /x x xk k k k k= −%

The prediction error can be determined by subtracting the 
true state  from the prediction estimate as: kx

    1/1/ ˆ~
−− −= kkkkk xxx                        (15) 

Neglecting the high order terms of the Taylor series, the 
sate and observation models can be rewritten as: 

1x F x wk k k k
y H x vk k k k
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= +

k
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where: Fk= ,Γ =  ˆ( )/f xk k k∆ ˆ( )/f xwk k
EKF final form is written as a predictor-corrector scheme:  
Predictor: 

ˆ ˆ( , , 0)1/ /x f x uk k k k k=+                            (17) 

1/ /
T TP F P F Qk k k k k k k k k= + Γ Γ+                  (18) 
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                        (20) 

Unfortunately, when higher order terms of Taylor series 
are large, the nonlinear model in (11) is poorly 
approximated by (15), and EKF based estimation gives 
poor performances. 

4. SDRE Nonlinear Filter 

State-Dependent Riccati Equations (SDRE) techniques 
are used as control and filtering design methods based on 
State Dependent Coefficient (SDC) factorization [14]. In 
[20] and [21], infinite-horizon nonlinear regulator 
problem is shown as a generalization of time invariant 
infinite-horizon linear quadratic regulator problem where 
all system coefficient matrices are state-dependent. When 
these coefficient matrices are constant, the nonlinear 
regulator problem collapses with the linear regulator 



problem and the SDRE control method collapses with the 
steady-state linear regulator. Filtering counterpart of the 
SDRE control algorithm is obtained by taking the dual 
system of the steady-state linear regulator and then 
allowing coefficient matrices of the dual system to be 
state-dependent [21]. The dual of the steady-state linear 
regulator is the steady-state continuous Kalman observer, 
which, in the absence of control, reduces to the steady-
state continuous Kalman filter [21].  
A. State Dependent Coefficient (SDC) Form: 
Consider the nonlinear system: 

( , )
( , )

x f x u w
y h x u v
= +
= +

& Γ      (21) 

w  and v  are white noises with covariance matrices  
and 

Q
R , respectively. 

There are an infinite number of ways to transform this 
nonlinear system into an SDC form as: 
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= +
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                        (22) 

 
where:  ( , ) ( , )f x u F x u x=    ( , ) ( , )h x u H x u x=
We note that the INS estimation model in (9) and (10) 
falls, by some equation manipulations, into an SDC form. 
This makes the SDRE filtering a very appealing technique 
to use for this sensor fusion based UAV localization 
problem.   
B. SDRE Filter Equations: 
SDRE filter uses system the SDC form and is given in 
[15] by: 

ˆ ˆ( ) ( , )ˆ ˆ ˆ ˆ( , ) ( ) y x H x u xx F x u x K xf ⎡ ⎤−⎣ ⎦= +&             (23) 

where 
1ˆ ˆ( ) ( , )TK x PH x u Rf
−=                     (24) 

and P is the positive definite solution of the algebraic 
Riccati equation: 
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  (25) 
Properties of SDRE techniques and their proofs are 
presented in [20] and [13] respectively. Nonlinear 
functions  and , in (21), are considered as 

k-continuously derivable (i.e. belonging to . In 
SDC parameterization,  and  are assumed to 

be smooth ( . . This assumption is valid in our 
navigation problem since our SDC state parameters are 
reasonably slowly varying.  

( , )f x u ( , )h x u

, 1kC k ≥ )
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C. SDRE Stability: 
Global stability of the SDRE nonlinear filter, as opposed 
to local stability of linear systems, is more difficult to 
demonstrate since getting stable eigenvalues of the 
discrete SDRE system at each sampling time does not 
guarantee global asymptotic stability. To the best of our 
knowledge, no formal stability proofs of the SDRE 
nonlinear filter were proposed in the literature. In the 
following, a method based on Lyapunov approach is 

developed to provide, with all necessary conditions, the 
stability region of the SDRE nonlinear filter. 
From equation (23), (24), we can write: 
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(27)  
By proposing a definite positive Lyapunov function 

1ˆ ˆ ˆ( ) 0TV x x P x−= > , the SDRE filter stability is 
guaranteed iff ˆ( ) 0V x <& ,[22].  
Using this Lyapunov function we get: 

. As  (steady-state 
problem), then: 

1ˆ ˆ ˆ ˆ( ) T TV x x P x x P x−= +& && 1 ˆ−

ˆ

ˆ

01 =−P&

1ˆ ˆ( ) 2 TV x x P x−= &&                                                            (28) 
Replacing (27) in (28), we obtain: 
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Thus, 1ˆ ˆ ˆ ˆ( ) 0 ( , ) 0T TV x x F x u P x−< ⇔ <&  and 
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Let us start by proving, under which conditions, the first 
term is defined negative. 
1) 1ˆ ˆ ˆ( , ) 0T Tx F x u P x− <                                                  (30)  
Proof 
This inequality is equivalent to have 1ˆ( , )F x u P−  as 

definite negative.  and 1 0P− > ˆ( , )F x u  is the SDC form 
of  and as mentioned earlier in the paper, SDC 
forms of a nonlinear function are not unique. In the 

following, we propose to derive 
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also an SDC form of  since f

1 2ˆ ˆ ˆ ˆ ˆ ˆ( , ) (1 ) ( , ) ( , ) (1 ) ( , )1 2
ˆ ˆ( , ) (1 ) ( , ) ( , )

F x u F x u x F x u x F x u x̂

ˆf x u f x u f x u

α α α α

α α

⎡ ⎤
⎣ ⎦+ − = + −

= + − =
ˆ( , , )F x u α  represents an infinite SDC parameterization 

family. α  is proposed as an extra parameter that can be 
used to build a suitable SDC from an infinite SDC form 
candidates ˆ( , , )F x u α . Using the SDC parameterization 
form ˆ( , , )F x u α  in (30), the parameter α  should be 
chosen to comply with the first three statements, 
following, to achieve (30): 

1 2ˆ ˆ( , ) 0 ( , ) 0

ˆ0 1 ( , )

if F x u and F x u

then if F x uα

< <

< < ⇒ < 0

0

0

 

1 2ˆ ˆ( , ) 0 ( , ) 0

ˆ1 ( , )

if F x u and F x u

then if F x uα

< >

> ⇒ <
 

1 2ˆ ˆ( , ) 0 ( , ) 0

ˆ0 ( , )

if F x u and F x u

then if F x uα

> <

< ⇒ <
 

1 2ˆ ˆ( , ) 0 ( , ) 0

ˆ( , ) 0

if F x u and F x u

then F x uα

> >

∀ ∈ℜ ⇒ >
 



Thus, a good choice of α  with two possible SDC forms 

1 ˆ( , )F x u and 2 ˆ( , )F x u assures (30) to be definite negative.  
Worth to mention that for a more general case of 1+k  
distinct SDC parameterizations, the dimension of α  will 
be of order k and ˆ( , , )F x u α  will have the following 
form: 

1 1
1 1

( , , ) (1 ) ( , ) ( )(1 ) ( , )
kk

k k j i i
i j

F x u F x u F x uα α α α+ −
= =

= − + −∑ ∏  

(31) 
Let us examine, now, the second term, in (29), and see, 
under which conditions, its definite negative property 
holds: 

2) 1 ˆ ˆ( ) ( )ˆ ˆ( ) 0T T y x H x xx H x R− ⎡ −⎣ ⎤⎦ <                                (32) 
The covariance matrix  is assumed 
diagonal . Since system 

observation is the GPS signal , 
which is used by the observation matrix in (10), the 
inequality (32) becomes: 

R
2 2 2( , ,R diag x y zσ σ σ= )

( ) [ ]T
gps gps gpsy x x y z=

2 2 2
1 1 1

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )gps gps gps
x y z

x x x y y y z z z
σ σ σ

− + − + − < 0          

2 2 2

2 2 2

ˆ ˆ ˆ( ) ( ) ( )
2 2 2
gps gps gpsx y z

x y z
D

x y zσ σ σ

− − −
+ + >                  (33) 

where  

2 2( ) ( ) ( )
2 2 2

gps gps gps 2

x y z

x y z
D

σ σ σ
= + +                     (34) 

This inequality defines the outside region of an ellipsoid 

centred at 
2 2 2

Tx y zgps gps gpsC  and with semi-

majors: 

⎡ ⎤
⎢ ⎥
⎣ ⎦

=

Dxr ,x .σ= .yr y Dσ= , Dzz .σ=r .  
If α is chosen properly assuring the definite negative 
property of the first term of V  in (30), we can claim that 
the region, specified by (33) defines the stability region of 
our SDRE nonlinear filter, as shown in Fig.4. 
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Fig.4 Ellipsoid region of stability (outside the ellipsoid) 
 
Let us now evaluate the stability of the SDRE nonlinear 
filter if the states of the navigation system get inside the 
ellipse, which implies thatV . In this case and from 
(28), we get: 

0≥&

≥&1 1ˆ ˆ ˆ ˆ 0T Tx P x x P x− −=&                         (35) 
Then, for small values of , we can use numerical 
derivative to obtain:     

t∆

1 1ˆ ˆ
ˆ ( )T k k

k
x x

x P
t

− + −
≥

∆
0

0
1 ˆk

                          (36) 

                                   (37) 1
1ˆ ˆ ˆ( )T

k k kx P x x−
+ − ≥

1
1ˆ ˆ ˆT T

k k kx P x x P x−
+ ≥ −                           (38) 

To well understand the meaning and the use of these 
equations, let us represent the inequality (38) by vectors, 
i
r

of coordinates 1ˆ T
kx P− , of coordinates ker ˆkx  and 1ke +

r  

of coordinates 1ˆkx + . Then equation (38) becomes: 

1ki e i e+ k⋅ ≥ ⋅
r rr r                               (39) 

On the other hand and because and  
then: 

1 0P− > 1ˆ ˆ 0T
k kx P x− >

0ki e⋅ >
r r                                    (40) 

This later inequality signifies that , which 

means that the angle between and

cos( , ) 0ki e >
r r

i
r

ker , is stuck 
between ] [/ 2, / 2π π−  as shown in Fig.5. Thus, we can state 

that the vector i
r

 diverges from the origin and tries to get 
out of the ellipse.  
Combining this result with the inequality (39), we can 
conclude that the projection of   on 

r
 is larger than 

the projection of  
1+ker i

ker  on i
r

, which implies that the vector 

1+ker  diverges from the origin more than . We obtain, 
then, the following final result: 

ker

ˆ( )k ke x∀
r , such that || ||ke D<r , then  attempts to 

diverge from the origin, i.e. tries to return back 
(attraction) to the stability region. 

1 1(k ke x+ +
r r )

 

 
                   Fig.5 Stability inside the ellipse 
  

z(m) This result shows that, whenever the SDRE filter provides 
state estimates that bring the system at the frontiers of the 
inside ellipsoid region, which implies V , and thus no 
guarantees of the global filter stability, the SDRE 
nonlinear filter will bring back the system to the region of 
stability shown on Fig.4. This way, we showed that the 
inequality in (32) is globally verified and for the SDRE 
nonlinear filter stability, a good choice of the parameter 

0≥&

α  is sufficient to assure it. In Fig.6, we illustrate 
graphically the main steps of the SDRE filter stability 
proof presented above. 

y(m) x(m) 

 
 



 
 
 

 
 
Fig.6 Proof of stability scheme 

5. Simulation Results 

We present our simulation results to validate the proposed 
nonlinear SDRE filter for the autonomous airborne 
navigation problem. The results of our approach are 
compared with other navigation filtering approaches. 
Following are the simulations conducted:  firstly, we 
apply Kalman Filter to an INS error model, which is 
linear under the assumption that Euler angles are small. 
Then, an Extended Kalman Filter (EKF) is applied to a 
nonlinear INS model. Last simulations are based on the 
proposed SDRE nonlinear filter. Comparison of SDRE 
with UKF navigation results is also highlighted. The 
sampling rates used for each sensor and filter, in this 
study, are as follows: 

100INSf Hz= , 10SDREf Hz= , 10EKFf Hz= 1GPSf H= z .  
Simulation results shown in Fig.7, Fig.8, and Fig.9 
represent the estimated UAV position obtained by KF, 
EKF and SDRE filters respectively, for the 3D trajectory 
given by Fig.13. 
KF estimation is adequate only for small airborne angular 
rates. However, if this assumption does not hold, and that 
is generally the case, then the estimation performance is 
poor as presented in Fig.7.  
From Fig.8 (a, b), EKF is shown to perform much better 
than KF for a smooth trajectory. Unfortunately, EKF 
performance degrades when facing strong nonlinearities. 
In this case, the Jacobian matrix is ill conditioned, which 
causes undesirable bumps in the estimated coordinates as 
shown in Fig.8 (c) (z variable presents nonlinearities). 
Fig.9 presents the airborne position estimated by SDRE 
nonlinear filter, which is based on two appropriate SDC 
forms ,  and a suitable value of 1F 2F 0.5α = . It is clear 
that the estimation results are improved with SDRE filter 
in comparison to KF and EKF filters. We can observe that 
for strong nonlinearities, the SDRE estimation error 
increases slightly but it is still within the tolerance for the 
localization problem in comparison to KF and EKF 
estimation methods.  

Table.2 shows, for a number of simulation tests, a 
comparison in terms of standard deviation between the 
true state and the filter (KF, EKF, UKF and SDRE) 
outputs. A better precision of UAV position in the 
navigation frame is obtained by the SDRE filter with 
standard deviations 4.0513mxσ =  1.2580myσ =  

3.0705mzσ =  after  of navigation. Similar to 
results in few recent research on vehicle navigation [23, 
24], Table 2 shows that EKF could lead in few cases to 
similar results than UKF navigation results. However, 
UKF is very much more precise than EKF when UAV 
trajectory is highly nonlinear as in the z-channnel of the 
proposed simulation example. 

min50

Table.2 and Fig.10 present a comparison between 
Unscented Kalman Filter (UKF) and the non-linear SDRE 
filter. As can be seen from Fig.10, both UKF and SDRE 
provide good and similar estimations of the UAV z 
position. Although SDRE results showed a minor 
improvement over UKF results in Table.2, this similarity 
in performance between SDRE and UKF generally holds. 
However, UKF filter as expected and as mentioned in the 
introduction of this paper is computationally heavier 
(Table.3) because of the unscented transformation applied 
on each sigma-point. From Fig.10 and Fig.13, we can 
definitely notice that SDRE estimated trajectory is 
smoother than the UKF estimated trajectory. This is 
expected as we are dealing with a highly nonlinear 
navigation system and a sharp UAV trajectory.   
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Fig.7 Estimated position of the airborne, with Kalman 
Filter (Linear error model) 
 

 )(mxσ  )(myσ  )(mzσ  

KF 59.0247 23.8104 49.2331 
EKF 3.4187 2.9710 7.8191 
UKF 3.1234 3.1995 3.5681 

SDRE 4.0513 1.2580 3.0705 

Table.2 Comparison of the standard deviation between 
KF (linear error model), EKF (linearized model), UKF 
(Non-linear system) and SDRE (Non-linear system). 
 

 EKF UKF SDRE 
Required time for 100 

iterations (s)  0.5670 8.4500 1.5000 

Table.3 Comparison of the computation time between 
EKF, UKF and SDRE  
In the second part of the simulation, we validate the 
theoretical stability results obtained in section 4.C. These 
results define the exterior of an ellipsoid, (Fig.4), as the 
safe and stable flight navigation region for the UAV. As 
shown in Fig.11, whenever the UAV is inside or attracted 
to the GPS ellipsoid (inside the sphere), it is pushed back 
to remain outside of the ellipsoid to guarantee the stability 
of the SDRE nonlinear filter. Fig.12, presents SDRE 
(blue) and GPS (red) sphere radiuses for the entire 
simulation time. The convergence of the two radiuses 
validates the results shown in Fig.11. Finally, GPS, INS, 
true and estimated (EKF, UKF and SDRE) 3D UAV 
trajectories are shown in Fig.13. 
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Fig.8 Estimated position of the airborne, with Extended 
Kalman Filter (Linearized model) 
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Fig.9 Estimated position of the airborne, with the SDRE 
Nonlinear filter (Non-linear model) 
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Fig.10 Estimated of the airborne z position, comparison 
between UKF and SDRE. 
 

 
Fig.11 UAV position and Stability region in the 
navigation frame 
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Fig.12 GPS and SDRE Sphere radius during the time of 
simulation 
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Fig.13 UAV trajectory, and estimated positions 

 

Conclusion 

In this paper, we proposed a State-Dependent Riccati 
Equation (SDRE) nonlinear filter to estimate the location 
of an unmanned aerial vehicle (UAV), using INS/GPS 
data. The proposed method solves issues related to 
linearization, which poses problem for the classical 
filtering techniques like the Extended Kalman Filter 
(EKF). We have compared the performances of our filter 
with other filters (KF, EKF) performances. Good results 
were obtained with the SDRE nonlinear filter particularly 
in the case of strong nonlinearities. Formal proofs of the 
SDRE nonlinear navigation filter stability were proposed 
and a stability attractive region was determined.  
In our future work we will use the SDRE nonlinear filter 
to solve the Simultaneous localization and mapping 
problem of unmanned aerial vehicles with real time 
experiments. 
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