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Abstract—Non-destructive-testing (NDT), including active
thermography, has become an inevitable part of composite
process and product verification, post-manufacturing. However,
there is no reliable NDT technique available to ensure the
interlaminar bond integrity during composite laminates
integration, bonding or repair where the presence of thin airgaps
in the interface of dissimilar polymer composite materials would
be detrimental to structural integrity. This paper introduces a
novel approach attempting to quantify the damage thickness of
composites (the thickness of air gaps inside composites) through a
single-side inspection of pulsed thermography. The potential of
this method is demonstrated by testing on three specimens with
different types of defect, where the Pearson Correlation
Coefficients of the thickness estimation for block defects and flat-
bottom holes are 0.75 and 0.85, respectively. This approach will
considerably enhance the degradation assessment performance of
active thermography by extending damage measurement from
currently two dimensions to three dimensions, and become an
enabling technology on quality assurance of structural integrity.

Index Terms—Active thermography, composite damage
detection, bonded repair, nonlinear system identification,
correlation analysis

I. INTRODUCTION

HE effect of bond defects on the strength and toughness of
adhesively bonded composite joints (e.g. due to

contamination, improper surface treatment or shrinkage during
polymer cure) can become considerable, and under severe
circumstances may lead to catastrophic failure of the joints
[1]. Although nowadays non-destructive testing (NDT) is
commonly used to inspect defects/damage of composite
process and product verification during post-manufacturing
and in operation, there is no reliable NDT technique available
to ensure the bond integrity i.e. via detecting nearly zero-
thickness defects that may represent thin airgaps in the
interface of dissimilar polymer composite materials [2]. A
number of researches have recently focused on the
identification and evaluation of unknown interaction between
inspection of bond defects in composite-to-composite bonded
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joints and their effect on the ultimate strength of the joints [1],
[3]. They have observed that the existing NDT techniques
(e.g. ultrasound) are not capable of detecting bond defects and
narrow airgaps caused by improper composite processing
while such defects may result in more than 40% reduction in
the joints strength. This becomes one of the most significant
challenges in structural bonding applications, for instance in
aerospace, where strict certifications (e.g. FAA Advisory
Circular 20-107B) do not allow bonded composite structures
unless a certain level of reliability is achieved via NDT, in
order to ensure the bond effectiveness after composite joining
process. As a result of not having such reliable techniques, the
certification suggests that the primary aircraft structures
considered for bonded integration or repair must be capable of
enduring design limit loads even if the bonded joint fails
completely. Airgap defects may also be introduced during
low-velocity impact damage where instantaneously occurring
interlaminar delamination becomes the dominant mechanism
with more than 60% dissipation of impact energy [4], [5], and
as such while the damage is barely visible via NDT
techniques, it could result in catastrophic failure of the
composite structure if not detected and repaired.

Majority of NDT research focus on measuring the location
and sizes of defects or damages, but limited studies on
characterisation of their thickness. Microwave thermography
has been used to study the effect of corrosion layer thickness
on reinforcing steel bars [6], [7], but has not been applied on
composites. Wang et al. proposed a microwave equiphase
frequency truncation method to detect and evaluate the
thickness of kissing defects in GFRP laminate [8]. Pulsed
Eddy Current technique has been used in thickness evaluation
of aluminium plate [9], and the ultrasonic testing has been
widely used for gauging of the local thickness of a solid
element [10], but very limited related research for the sub-
surface defect or damages. X-ray computed tomography is
able to provide highly accurate 3D inspections of
manufacturing defects of fibre architectures [11], however the
inspection time and equipment is relatively costly.

As a highly efficient and powerful NDT technique, Pulsed
Thermography is contact-free and offers a rapid inspection
while covering a large area within a short time frame and thus
readily adaptable to in-situ monitoring applications [12]. Other
thermography-based NDTs, such as microwave thermography,
eddy current thermography, lock-in thermography, and
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ultrasonic thermography, takes several measurements using
signals of different frequencies to gain information about
different depths, however it requires a longer inspection time.
Pulsed thermography is more straightforward and faster
because the flash time is a well-defined instant for time
reference. Quantitative characterisation of defects by
extracting shape, size and depth have been well-studied and
proven to be effective by Pulsed Thermography [13], [14].
Most of the existing methods, such as Peak Slope Time [15],
Logarithm Second Derivative [16], Absolute Peak Slope Time
[17], Nonlinear System Identification [18], Least Square
Fitting [19], and New Least Square Fitting [20], are able to
estimate the defect depth (the distance from the inspected
surface to the top surface of a defect) before the three-
dimensional heat conduction takes place. However, currently
characterisation of defects is limited to 2-dimensional
measurement, which represents a collation of all damage
through-the-thickness. None of these method is able to
measure the defect thickness in order that the measurement
can be extended to 3-dimension. A straightforward approach
to tackle this challenge is conducting two inspections, one of
which is applied on the front side and another on the rear side.
The defect thickness can then be quantified by considering the
measured defect depths from both inspections and the sample
thickness. However, the application of this approach is limited
because a) one side of the inspected component could be
inaccessible e.g. an aircraft wing or fuselage, b) the accuracy
of measurement could be compromised if the defect thickness
is very thin due to extreme closed values of defect depth from
two inspections, and c) it introduces extra cost of inspection
time. This paper aims to introduce a novel approach to
quantify the damage thickness of composites based on a single
inspection of pulsed thermography.

II. METHODS

A. Pulsed thermography

In pulsed thermographic inspection working under the
reflection mode, the typical experimental setup of which is
illustrated by Fig. 1(a), a short and high energy light pulse
from the flash lamps is projected onto the sample surface.
Heat conduction then takes place from the heated surface to
the interior of the sample, leading to a continuous decrease of
the surface temperature. An infrared (IR) radiometer
controlled by a computer captures the time-dependent
response of the sample surface temperature. In areas of the
sample surface above a defect/damage (see the point 2 in Fig.
1) the transient flow of heat from the surface into the sample
bulk is wholly or partially obstructed, thus causing a
temperature deviation from the sound areas (see the point 1 in
Fig. 1). Fig. 1(b) plots two typical observed temperature decay
curves of the point 1 (blue) and 2 (red) in the logarithmic
domain. Damage detection methods aims to classify the pixels
based on the cooling behaviour. The time when the
temperature deviation occurs, represented by t* in Fig. 1(b), is
usually used to estimate the defect depth �. On a sufficiently
large time scale, the t* can be viewed as a transition from 1-

dimensional steady state diffusion before incident heat
encounters a subsurface interface to a second asymptotic
steady state [15]. We can also observe a later event t** (see in
Fig. 1(b)), indicating the asymptotic return to 1-dimensional
diffusion. The detection of t* and t** can be achieved through
detecting the peak of the second derivative of TSR [21]. The
cooling behaviour between t* to t** is associated with the size
�, the depth �, the thickness ℎ of damage and the material, as
labelled in Fig. 1(a). Estimation and understanding of the
corresponding between them is the key to characterise the
volume of damage and will be studied in this paper.

B. Estimation of thermal reflection coefficient

The surface temperature dynamics due to the back-wall at
depth � for a homogeneous plate is given by [22]:

�(�) =
�

������
�1 + 2∑ ��exp �−

����

��
��

��� �, (1)

where �(�) is the temperature variation of the surface at time
�, � is the pulse energy, � is the material density, � is the heat
capacity, � is the thermal conductivity of the material, � is the
thermal reflection coefficient of the interface with air, and � is
the thermal diffusivity. For most of research the value of � in
(1) is assumed to be 1, which is true when the thickness or the
size of damage (e.g. air gap) is infinite, where there is no
three-dimensional heat conduction takes place. However, for
most of the real applications (e.g. detecting impact damage of
composite), the thickness and size of damage could be very
small and the heat leakage can be severe. The value of �
therefore can be significantly smaller than 1 [23] if the whole
transient lifetime is considered. By monitoring the cooling
temperature during the period from the flash time to t**, this
paper proposes to characterise the damage thickness through
establishing an empirical model between � and measurable
geometrical parameters.

This paper proposes to use the New Least-Squares Fitting
method proposed by Sirikham et al. [23] to estimate the �
value directly from the observed data. The NLSF method
introduces an analytical model, written as

��(�,�,�,�, ��, �) =
�

�����
�1 + 2∑ ��exp �−

���

����
��

��� �−

�(� + ��),
(2)

where � =
�

�����
, � =

��

�
, �� is the starting time of sampling,

and � is a large number to replace the infinite symbol (∞) in 

(a) (b)
Fig. 1. (a) Experimental configuration of the pulsed thermographic
inspection under the reflection mode. (b) Typical observed time-temperature
decay curves in the logarithmic domain for the point 1 and 2, respectively.
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Eq. (1) for the implementation in Matlab. In this paper � was
chosen as 1000. Values of � larger than 1000 have been
tested and there is no influence on the results. There are five
unknown parameters including ��, �, �, � and �. A nonlinear
least-squares solver in Matlab (lsqnonlin) is then used to solve
this five-parameters optimisation problem. Through initially
setting the lower and upper bounds for each parameter, this
method estimates the optimal parameters to achieve

min
�,�,�,��,�

���(�,�,�,�, ��, �) − �(�)�. (3)

The initial value of the parameter �� is selected as zero and the
lower and upper bounds are selected as -1 and 1 respectively
because it is usually very close to zero. The initial value of �
is selected as 1 and the lower and upper bounds are selected as
0 and 1 respectively. The selection of � depends on the energy
applied on the inspection surface, and the selection of �
depends on the material and thickness of samples. The lower
and upper bounds of � and � are usually selected as 5 times
lower and 5 times higher than the initial values. The lower and
upper bounds of � are selected as -50 and 50, and the initial

value is chosen as 0. Equation (2) introduces two parameters �
and � that consider the three-dimensional heat conduction
effect. It can also incorporate the duration effect of flash by
introducing the parameter ��.

C. Correlation analysis and modelling

It has been mentioned above that the � value could be
related to geometrical parameters including defect size, depth
and thickness. This section aims to introduce an approach to
quantify correlations between � and these parameters and
identify an empirical model to establish their relationship, by
which means the defect thickness can be inferred if � and
other two parameters are measurable. From the system
engineering point of view, to study this multiple-input single-
output correlation, the simplest approach is to fix two inputs
and vary the third input, and then evaluate this input’s
influence on the output (�). The problem is now simplified to
study a single-input single-output system. Least square fitting
approaches, based on either linear or nonlinear models, can be
employed to establish the relationship between � and the third
input. This procedure can then be repeated until the
relationship between � and each geometrical parameter is
studied.

To consider the compound influence of these three
parameters on �, their relationship must be considered as a
multi-input single-output problem. Considering a system with
three inputs ��,��,�� and an output �, to describe their
relationship, this paper proposes to use the Nonlinear Finite
Impulse Response (NFIR) model, written as

� = �(��,��, ��) + �, (4)

where � is some unknown linear or non-linear mapping, which
links the system output to the system inputs; � denotes the
model residual. A commonly employed model type to specify
the function � in (4) is a polynomial function [24], [25]. A
second order polynomial function can be written as

� = �� + ���� + ���� + ���� + ����
� + ����

� + ����
� +

������ + ������ + ������.
(5)

The next step is to estimate the parameters ��(� = 0,1, … ,9)

based on the observations {�,��,��,��}. The procedure begins
by determining the structure, or the important model terms,
using the orthogonal least squares (OLS) estimation
procedures. More detailed description of this method can be
found in the work of Zhao et al. [26].

As a feasibility study, this paper focuses on inspecting
commonly studied defects including flat bottom holes and
block defects. Considering a block defect as shown in Fig.
1(a), the defect size �, depth � and thickness ℎ are considered
as the system inputs, and the value of � is considered as the
output. Through establishing a NFIR model, the influence of
�, � and ℎ on � will be evaluated initially. An inverse model,
written as

ℎ = �(�,�, �), (6)

can then be inferred to reconstruct ℎ based on �, � and �.

III. EXPERIMENTS

A. Sample design

Flat plates of carbon fibre reinforced polymer (CFRP)
material were used in this study. The plates were made of
unidirectional Toray 800 carbon fibres pre-impregnated with
Hexcel M21 epoxy resin and manufactured in a traditional
autoclaving process. Based on this material, three samples
were designed to simulate different type of defect. The
dimension of the Sample 1 is 75 mm × 230 mm × 8 mm. As
illustrated by Fig. 2, it includes five block defects with a
thickness (ℎ) of 0.5 mm, 1.0 mm, 2.0 mm, 3.0 mm, and 4.0
mm respectively. The width (�), length, and depth (�) for all
defects are 10 mm, 75 mm, and 2 mm respectively. The
distance between two adjacent defects is 30 mm, which aims
to reduce the influence from the adjacent defects on the
thermal behaviour. A side view of the produced sample is
shown in Fig. 2(b). It should be noted that these defects are
not fully closed because two sides of the defects are open. It is
called as “semi-closed defect”. This sample is aimed at
studying the relationship between � and ℎ when � is fixed.
The Sample 2 also include five semi-closed defects, as
illustrated by Fig. 3, which have the same defect thickness ℎ
of 1.5 mm but different defect depth of 1.0 mm, 1.5 mm, 2.0
mm, 2.5 mm, and 3.0 mm respectively. Other parameters are
same as the Sample 1. This sample is aimed at evaluating the
relationship between � and � when ℎ is fixed. The Sample 3,
with the dimension of 155 mm × 155 mm × 8 mm, includes 16
flat-bottom holes. As illustrated by Fig. 4(a), the holes were
drilled with four groups of diameters (5 mm, 10 mm, 15 mm,
and 20 mm) and four groups of thicknesses (7 mm, 6 mm, 5
mm, and 4 mm). It can be inferred that the defect depths are 1
mm, 2 mm, 3 mm, and 4 mm respectively. The distance
between the centre of two adjacent holes is 31 mm. This
sample is aimed at studying the relationship between �, ℎ, �
and � for “open defect”. It should be noted that for this sample
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the parameters ℎ and � are dependent and the sum of them is a
constant (8 mm).

B. Experiment setting

The experiments were conducted using the Thermoscope®
II pulsed-active thermography system that comprises of two
capacitor banks powered Xenon flash lamps mounted in an
internally reflective hood and a desktop PC to capture and
store data. The scheme of the experimental set-up is illustrated
in Fig. 1(a). A FLIR SC7000 series infrared (IR) radiometer
operating between 3-5.1 µm and a spatial resolution of
640×512 pixels was used to perform the inspection. The
samples were placed with their surface perpendicular to the IR
camera’s line of sight at 250 mm from the lens. The apply
energy was approximately 2 kJ over an inspection area of 250
mm × 200 mm. The pixel pitch is 0.32 mm. The Sample 1 and
the Sample 2 were inspected from the top side of Fig. 2 and
Fig. 3. The sample 3 was inspected from the surface opposite
to the drilled side. Considering the thickness of the samples
and the low thermal diffusivity of CFRP, a sampling rate of 10
Hz was used, and totally 900 frames, equally 90 s data length,
were captured. Due to the large width of the Sample 1 and the
Sample 2 (230 mm), the defects of both samples suffer non-

uniform heating for a single inspection, which could lead to
unreliable results [27]. In this study, to reduce this effect, each
sample has been inspected for five times, where each defect
was placed on the centre of the camera’s view once. A region
of interest of the centralised defect with the size of 160×120
pixels for five data files was then cropped and merged into one
file with a size of 160×600 pixels for easier analysis.

IV. RESULTS

A. Results of the Sample 1

Fig. 5 shows a snapshot of the raw thermal image at time 10
s where the colour represents the temperature. It should be
noted that the exported data of the used IR camera is in the
unit of ‘digital intensity’, which was used for the analysis
below instead of temperature. To reduce the influence of the
heat leaked to each opened side on results, ten pixels on the
centre of each defect were sampled, as marked in Fig. 5, and
then were averaged to reduce spatial noise. The defects are
labelled as “(1)”, “(2)”, “(3)”, “(4)”, and “(5)” to represent the
defect thickness of 0.5 mm, 1.0 mm, 2.0 mm, 3.0 mm, and 4.0
mm respectively, and the sampled sound area is marked as ‘S’.
Ten pixels (1×10) for each defect and the selected sound area
were sampled, and the temperature decays are plotted in the
logarithmic domain, as shown in Fig. 6. Considering that the
thermal behaviour of sound area around the centre has a very
limited variation for the five tests, in this paper the sound area
was selected on the first test only. It can be clearly observed
that the time of the temperature deviation from the curve of
the sound pixel occurs for each defect (t*) is similar since they
have the same depth. The thermal cooling behaviours before
t* are almost identical, while after t* they start to exhibit
difference. Quantification of the influence of the defect
thickness on thermal cooling behaviours purely based on the
observation of these plots is almost impossible.

(a)

(b)
Fig. 2. An illustration of the Sample 1, where the defect size, depth and
thickness are defined. (a) sample design; (b) the side view.

(a)

(b)
Fig. 3. An illustration of the Sample 2. (a) sample design; (b) the side view.

(a) (b)
Fig. 4. An illustration of the Sample 3. (a) sample design; (b) the side view.

Fig. 6. The average temperature decay, plotted in the logarithmicdomain,
for the sampled pixels of each defect and a sound region of the Sample 1.
The sampled total data length is 24 s.

Fig. 5. A snapshot of the captured thermal image of at time 10 sfor the
Sample 1, where the unit is digital intensity, a representation of temperature.
The markers illustrate the 10 sampled pixels of eachdefect and sound area.
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The NLSF method was then applied on each time-
temperature decay data to estimate the unknown parameters.
The thermal diffusivity � was chosen as 0.5×10-6 m2/s, and the
measured values of � and � are shown in Table I. It can be
calculated that the average measured depth is 1.989±0.098
mm and the average percentage error is about 5% against the
reference of 2 mm, which suggests a fine performance of
depth estimation. Table I also indicates that the value of �
increases following the increase of defect thickness, although
the relationship is not linear. This interesting observation is
probably caused by that the heat is more difficult to be leaked
through the 3D conduction if the volume of airgap is larger.
The variation of � therefore can be considered as an indicator
of the variation of the damage thickness if the diameter is the
same. To further analyse the relationship between � and ℎ,
Fig. 7 plots the scatters between them, which suggests that the
relationship is not linear but approximately exponential. An
exponential fitting was applied on the measurements and the
relationship can be described by

� = −0.29��
�

�.�� + 0.6. (7)

The fitting error is quantified by calculating the Pearson
correlation coefficient (PCC), denoted by �, between the
measured � and reconstructed � based on (7) using the known
ℎ. If PCC equals to 1, it indicates a perfect fitting. The fitting
curve is represented by the red plot of Fig. 7, and the
calculated PCC value is 0.999. Both observations suggest that
the identified model (7) can well represent their relationship.
To estimate the value of ℎ using the measured �, the model
(7) can be rewritten as

ℎ = −0.93ln
���.�

��.��
. (8)

It should be noted that the empirical model (8) is established
only for this specified defect depth, size and material, any
change of which requires to re-calculate the coefficients.
However, it is expected that the model structure is similar.

B. Results of the Sample 2

This sample aims to evaluate the dependence between � and
� when ℎ is fixed. Fig. 8 shows a snapshot of the raw thermal
image at time 10 s after the flash. The defects are marked as
“(1)”, “(2)”, “(3)”, “(4)”, and “(5)” to represent the defect
depth � of 1.0 mm, 1.5 mm, 2.0 mm, 2.5 mm, and 3.0 mm
respectively, and the sampled sound area is marked as ‘S’. The
sampling procedure was identical as that for the Sample 1. The
temperature decay for each defect and selected sound region,
plotted in the logarithmic domain, are shown in Fig. 9. It is
expected that the time of the temperature deviation occurs for

each defect (t*) is different and increases following the
increase of defect depth, which is caused by the difference of
defect depth.

The measured values of � and � by applying the NLSF
method are shown in Table II. The absolute error of measured
depth is 0.040±0.050 mm and the average percentage error is
2.2%. It has been observed that the value of � decreases
following the increase of defect depth. Fig. 10 plots the
scatters between � and �, which suggests the relationship is
approximately linear. A linear fitting process was applied on
the measurements and the relationship can be written by

� = −0.27� + 1.07. (9)

The red plot of Fig. 10 illustrates the fitting and the PCC value
is 0.993, both of which suggests the identified model (9) can
well represent the relationship. It should be noted that the
empirical model (9) is established only for the specified defect
thickness, size and material, any change of which requires to
re-calculate the coefficients. However, the linear model
structure is expected.

Fig. 7. The scatter plot between the defect thickness and the measured R
with the corresponding exponential fitting for the Sample 1.

TABLE I
ESTIMATED PARAMETERS OF THE SAMPLE 1

Defect thickness (mm) � � (mm)

0.5 0.431 1.896
1.0 0.498 2.079
2.0 0.565 1.985
3.0 0.588 2.072
4.0 0.591 1.866

Fig. 8. A snapshot of the captured thermal image of at time 10 s for the
Sample 2. The markers illustrate the 10 sampled pixels of each defect and
sound area.

Fig. 9. The average temperature decay, plotted in the logarithmic domain,
for the sampled pixels of each defect and a sound region of the Sample 2.
The sampled total data length is 24 s.
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The above results show that the value of � depends on both
the defect depth and thickness. The dependence on depth is
linear, and the dependence on thickness is nonlinear. The
models (7) and (9) have a single input and single output,
which has limited applications due to the rigorous assumption.

To analysis how � and ℎ together affect the value of �, the
NFIR model (4) with two inputs was employed and the data in
Table I and II were sampled. The identified model is written
as

� = −0.37� + 0.07�ℎ − 0.02ℎ� + 1.11 (10)

with a PCC value of 0.98. This result suggests that the � value
can be well explained by the defect thickness and depth. To
construct a model for predicting ℎ based on the values of �
and � measured by the NLSF method, ℎ is considered as the
system output of the NFIR model and � as the system input.
The results produced from both samples, presented in Table I
and II, were sampled, and the predictive model is identified as

ℎ = 170.72 − 33.96� − 81.3� + 163.81�� + 9.44��

+ 82.56�� (11)

with a PCC value of 0.75. To validate its performance of
prediction, Table III shows the predicted values of ℎ based on
Eq. (11) using the estimated � and �, against the ground truth
for the 10 defects in the Sample 1 and the Sample 2. Although
the prediction is not perfect, the result clearly demonstrates the
potential to predict the defect thickness using the introduced
approach. There are a few potential reasons of the relatively
large error: 1) the material properties of the Sample 1 and the
Sample 2 are not identical due to the manufacturing deviation,
which is usually greater for inhomogeneous materials (e.g.
composites); 2) the second order polynomial model structure
cannot fully represent the mechanism; 3) there are some other
parameters apart from � and � to be included in model (11) to

better estimate ℎ. It is expected that the prediction
performance will be further improved by including the size of
defect in this model.

C. Results of the Sample 3

This sample aims to investigate how the geometrical
parameters of flat-bottom holes affect the thermal reflection
coefficient. It should be noted that the definition of “defect
thickness” for this case is slightly different with the previous
two cases since the defects are open on the back-side. We can
consider this parameter as a representation of defect volume
when the diameter is fixed, which is applicable to the Sample
1 and the Sample 2. A snapshot of the raw thermal image at
time 10 s is shown in Fig. 11, where nine holes on top right
side can be easily spotted while the holes with 4 mm depth
and 5 mm diameter cannot be clearly detected due to low
diameter to depth (aspect) ratios. Beemer and Shepard [28]
acknowledges the difficulty in detecting flat-bottom holes if
the aspect ratios is smaller than 5. For this reason, in this
experiment, only the nine marked holes in Fig. 11 were
studies. Fig. 12(a) plots the temperature decay of the sampled
pixels “1”, “2”, and “3” which have the same defect depth of 1
mm but with different defect size (20 mm, 15 mm, and 10 mm
respectively). The point “10” was randomly sampled from the
sound region. As expected, the values of t* for the considered
three defects are similar, and the cooling behaviours between
t* and t** are different due to the difference of size. Fig. 12(b)
plots the temperature decay of the sampled defects “1”, “4”,

Fig. 10. The scatter plot between the defect thickness and the measured R
with the corresponding linear fitting for the Sample 2.

TABLE II
ESTIMATED PARAMETERS OF THE SAMPLE 2

Defect depth (mm) � � (mm)

1.0 0.783 0.999
1.5 0.685 1.572
2.0 0.562 2.113
2.5 0.410 2.496
3.0 0.249 2.991

Fig. 11. A snapshot of the captured thermal image of at time 10 s for the
Sample 3.

TABLE III
THE DEFECT THICKNESS COMPARISON OF 10 STUDIED DEFECT IN THE SAMPLE

1 AND THE SAMPLE 2 BETWEEN THE GROUND TRUTH AND PREDICTION USING

THE MODEL (11).

Defect ID Ground Truth (mm) Prediction (mm) Error (mm)

Sample 1-1 0.5 1.34 0.84
Sample 1-2 1.0 1.23 0.23
Sample 1-3 2.0 1.56 0.44
Sample 1-4 3.0 3.68 0.68
Sample 1-5 4.0 2.54 1.46
Sample 2-1 1.5 1.47 0.03
Sample 2-2 1.5 1.95 0.45
Sample 2-3 1.5 1.25 0.25
Sample 2-4 1.5 1.53 0.03
Sample 2-5 1.5 1.45 0.05
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and “7” which have the same defect size of 20 mm but with
different defect depth (1 mm, 2 mm, and 3 mm respectively).
Both the value of t* and the cooling behaviours of [t*, t**] are
different due to the difference of size and depth.

The measured values of � and � by applying the NLSF
method are shown in Table IV. It can be observed that the
depth can be estimated satisfactorily with an absolute error of
0.033±0.025 mm, and the average percentage error is 2.3%. It
has also been observed that the larger diameter of defects
leads to higher value of �, and the deeper defect leads to the
smaller value of �. This observation is similar as that of the
Sample 2. To further understand their relationship, Fig. 13(a)

plots the � value against the defect diameter for three defect
depths, where the relationship was observed as approximately
linear. Fig. 13(b) plots the � value against the defect depth for
three defect diameters, where the relationship was also
observed as approximately linear. This observation is very
similar with that shown in Fig. 10 for the Sample 2. The
sensitivity of the � value on the defect depth increases
following the increase of defect size. The � values are almost
same for the defects with the diameter of 10 mm. To fully
reveal their relationship, an NFIR model was identified and is
written as

� = 0.043� − 0.079� − 0.062, (12)

which confirms the relations between � and �, and � and �
are approximately linear. The calculated PCC value is 0.965,
which suggests an excellent performance of the model. The
prediction of ℎ, equivalent to the prediction of �, can be
written as

ℎ = 3.14 − 37.18� + 1.77� − 1.67�� − 0.06�� + 1.65�� (13)

with a PCC value of 0.85. To evaluate the performance of the
model (13), Table V shows the predicted values and the
ground truth of ℎ for the 9 defects in the Sample 3. The result
clearly demonstrates that the measured � value has a potential
to predict the defect thickness for flat-bottom holes through
considering the defect diameter.

V. CONCLUSIONS

Different with most of degradation assessment research
focusing on damage/defects detection and depth measurement,
this paper addresses the challenge to measure the damage
thickness based on a single-side inspection of pulsed
thermography under the reflection mode. This paper proposes
to use the thermal reflection coefficient (�) and measurable
geometrical parameters of the damage, including size and
depth, to predict the thickness using a Nonlinear Finite
Impulse Response (NFIR) model. Applications of the
proposed approach on three CFRP laminates show that:
a. The proposed method considerably improves the

(a)

(b)
Fig. 12. The temperature decay, plotted in the logarithmic domain, for the
selected defects and sound pixel. (a) the defects have the same depth but
different size, (b) the defects have the same size but different depth.

(a)

(b)
Fig. 13. Results of the Sample 3. (a) The scatter plot between the defect
diameter and the measured R, (b) the scatter plot between the defect depth
and the measured R.

TABLE IV
ESTIMATED PARAMETERS OF THE SAMPLE 3

Defect
depth
(mm)

�: 10 mm �: 15 mm �: 20 mm

�
�

(mm)
�

�
(mm)

�
�

(mm)
1.0 0.224 0.926 0.512 1.011 0.792 1.072
2.0 0.214 1.974 0.396 1.991 0.666 2.029
3.0 0.210 2.968 0.359 3.005 0.487 2.962

TABLE V
THE DEFECT THICKNESS COMPARISON OF 9 STUDIED DEFECT IN THE SAMPLE

3 BETWEEN THE GROUND TRUTH AND PREDICTION USING THE MODEL (13).

Defect ID Ground Truth (mm) Prediction (mm) Error (mm)
Sample 3-1 7 6.17 0.83
Sample 3-2 6 5.96 0.04
Sample 3-3 5 5.87 0.87
Sample 3-4 7 7.24 0.24
Sample 3-5 6 5.63 0.37
Sample 3-6 5 5.13 0.13
Sample 3-7 7 6.91 0.09
Sample 3-8 6 6.09 0.09
Sample 3-9 5 5.00 0.00
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degradation assessment performance by extending the
measurement of damage/defects from two dimensions to
three dimensions.

b. For a specific material, the � value is strongly correlated
with the defect size, depth and thickness. It has been
observed that the relationship of � with the defect depth

and the relationship of � with the defect size are
approximately linear, while that for � and the defect
thickness is approximately exponential. This observation
allows deriving an empirical model to establish their
independence, which enables the quantification of defect
thickness using a single-side pulsed thermographic
inspection.

c. The identified NFIR models demonstrated the potential to
predict the defect thickness using � and other measurable
physical parameters. The Pearson Correlation Coefficients
of the prediction for block defects and flat-bottom holes
are 0.75 and 0.85, respectively.

With this developed approach, the interlaminar bond
integrity of composite joints can be better evaluated through
accurately measuring the thin airgaps in the interface of
dissimilar polymer composite materials. The single-side
inspection not only reduces the inspection time, but also
extends the application on components where one side is not
accessible. A potential disadvantage of this approach is that
the air gap thickness is a function of multiple correlated
parameters, which may limit its application on irregular
airgaps. One potential solution is to use the Principle
Component Analysis to select the most important parameter to
simplify the model or convert to a function of multiple
independent parameters.

It should be noted that this paper is a feasibility study and
the performance of the identified models is limited on the
produced specimens. The change of materials or defect shape
may have influence on the results. To fully explore its
potential and improve the versatility of the identified model, a
further study is required by considering different materials
with a variety of defect shape, size, thickness and depth.
Furthermore, this paper neglects the influence of adjacent
defect on results, although which has been mitigated during
the sample design by leaving a relatively large space between
defects. Full industrialisation of the proposed technique
requires examination of it in actual applications.
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