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Abstract

We introduce a general theoretical description of a combination of defences acting sequentially at differ-5

ent stages in the predatory sequence in order to make predictions about how animal prey should best

allocate investment across different defensive stages. We predict that defensive investment will often be

concentrated at stages early in the interaction between a predator individual and the prey (especially if

investment is concentrated in only one defence, then it will be in the first defence). Key to making this

prediction is the assumption that there is a cost to a prey when it has a defence tested by an enemy, for ex-10

ample because this incurs costs of deployment or tested costs as a defence is exposed to the enemies; and

the assumption that the investment functions are the same among defences. But if investment functions

are different across defences (e.g. the investment efficiency in making resources into defences is higher in

later defences than in earlier defences), then the contrary could happen. The framework we propose can

be applied to other victim-exploiter systems, such as insect herbivores feeding on plant tissues. This leads15

us to propose a novel explanation for the observation that herbivory damage is often not well explained

by variation in concentrations of toxic plant secondary metabolites. We compare our general theoretical

structure with related examples in the literature, and conclude that coevolutionary approaches will be

profitable in future work.

Keywords: Sequential defences, predation, herbivory, cost, trade-off.20
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Introduction

All organisms face threats from enemies, be they predators attacking animal prey, herbivores eating plant

tissue, or pathogens and parasites feeding on host tissues. The coevolution between such enemies is a

major driving force in evolution, which has contributed substantially to the diversification of defensive

mechanisms deployed by organisms, and indeed of life’s forms (Vermeij 1987). A major and important25

general biological question here is why organisms often invest in several defensive mechanisms, rather

than putting all their defensive resources into one highly effective “superdefence”. Why, for example,

do most animals and plants not merely invest in toxins, but often invest additionally in physical and

behavioural defences? One answer is that the components of multiple defence suites each target alternative

types of enemy, in which case we could expect a positive association between the number of defences30

deployed and the number of different classes of enemy. A second answer is that multiple defences act

simultaneously and perhaps synergistically, so that a greater total level of protection is achieved per unit

invested when an enemy is assaulted by e.g. physical and chemical defences together. Alternatively

defences may act one after another, presenting predators with a sequence of barriers that enemies must

cross to gain the resources presented to them by the victim. Here we focus on this third explanation, and35

consider the evolution of multiple, sequentially acting defences.

A good reason for assuming that many defences act sequentially - and hence the focus of this paper

- is that interactions between victims and enemies can often be split into a number of stages at which

one or more defences can be deployed. Although a variety of different descriptions of this process have

been suggested (see Caro 2005 for a review), the most commonly used in the context of animal defence is40

that given by Endler (1991) who splits the process up into six sequential stages: (i) spatial and temporal

proximity of predator and prey, (ii) detection of prey by predator, (iii) identification of prey by predator,

(iv) chase or stalking by the predator to close the distance to the prey, (v) subjugation of the prey, and

(vi) final consumption. Attack by herbivores on plants can be similarly described in a sequence of stages,

though here without the behaviour of chase by the predator.45

Defensive traits extend across all phases of attacks. For example, prey can reduce the risks: of spatial

and temporal proximity by avoiding habitats where predators are more common; of detection, through

lack of movement and cryptic appearance; of identification, through mimicry or masquerade; of predators

closing in, through fleeing; of subjugation, through struggle, spines or production of slippery secretions;

and finally, prey can prevent the risk of consumption, through chemical toxins. Hence it is possible for50

prey to employ defences at all stages of the predation sequence in order to curtail attack.

Defences are often thought costly (Ruxton et al. 2004, Caro 2005), and investment in defence acting
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at one stage in the sequence might reduce the benefit of investment in defences that act at later stages.

Hence, it seems logical that investment should be biased towards earlier stages, as was argued by Endler

(1991). However, it is clear that in the natural world sometimes there is investment in later-acting defences.55

Here we ask whether there could be a general framework for understanding investment in defences that

act in sequence (as highlighted by Caro 2005). Our aim in this paper is to introduce a simple but general

theoretical description of a combination of defences acting at different stages in the predatory sequence

in order to make predictions about how prey should best allocate investment across different defensive

stages. The model can, in our view, provide a flexible and predictive framework for understanding strate-60

gies of investment in multiply defensive systems in many biological contexts, including animal prey. We

also explore its application to the evolution of sequentially acting plant defences, proposing a new ex-

planation for the otherwise puzzling lack of effects on herbivory for variation in plant chemical defences

(Carmona et al. 2011).

65

The Sequential Defences Model

We assume that the prey can invest in at most n stages of defence, which the predator experiences sequen-

tially. We denote each defence stage by the order i (i = 1, . . . , n) in which it is encountered (so i = 1 is the

first defence encountered, and i = n the last). We define si (0 ≤ si < 1) as the success probability of the

prey’s i-th defence, i.e. the probability that, if the predator reaches defence i, then it fails to overcome that

defence. The effectiveness of each defence depends upon the level of investment in it. We define Ii as the

(non-negative) investment made in defense i, so

Ii = Ii(si) (1)

is a non-decreasing function (I′i (.) ≥ 0), so a defence with a higher probability of success requires higher

investment by the prey. We also assume that, if the prey invests nothing in a defence, then the success

probability of that defence will be 0: Ii(0) = 0. It would arguably be more natural to consider the

investments Ii as the fundamental variables of the model, and survival si as being a function of Ii, but our70

approach is formally identical (provided Ii(·) is monotonic, so there is a 1-to-1 relationship between Ii and

si) and turns out to be more convenient to analyse.

Note that while predation pressure does not explicitly appear in the model, it is present implicitly

because it affects the survival probabilities (or, more precisely, the relationship between I and s). The

optimal strategy might be quite different among different populations, facing different environments and75
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predation pressures. We are interested in the evolutionary defence strategy for a certain population. It is

quite often observed that many individuals in a certain colony have the similar kind of defence strategies

(e.g. similar level of aposematism or camouflage). We think of this as the optimised defence strategy

averaged across generations and across populations. The form of the model is consistent with a single

attack, but could also be though to represent a number of attacks. The latter are particularly appropriate80

for plants mounting defences against herbivores, where there could be many attackers, each of which

only does a small amount of damage. In that case we still can still think of defences being “breached”

with a certain probability, even though there are many individual attack events. Here, predation pressure

affects the probability that a defence is breached as well as the “tested costs” (because it affects the average

number of times a defence is tested).85

We assume that the prey has a total amount of resource, IT , available for all defences. We define IA as

the investment in all the defences, so

IA =
n

∑
i=1

Ii(si) ≤ IT (2)

We define C(IA) as the fitness cost of making investments across the various defences, in whatever

division, so that this total investment amount is IA. We assume that C(0) = 0 (when there is no investment

in defence, the investment cost is zero). The residual amount of resources left after investment across all the

defences, IT − IA, can effectively then be used as additional investment in non-defensive fitness-enhancing

activities. Thus we assume C(.) is an increasing function of IA (i.e. C′(.) > 0).90

We further assume that, if defence i is tested by the predator, then (even if the defence holds) there is

a cost ci (≥ 0), henceforth referred to as ”tested cost”, that can be considered as the injury risk of being

exposed to the predators after defence i − 1 is breached. (Note that ci can be 0, which means that the

tested cost is zero; e.g the tested cost of crypsis in a nocturnal moth might be zero.) In this assumption,

since there is no defence before the first defence, we think that the first defence is always exposed and95

tested by the predators (although the tested cost for the first defence can be zero, c1 = 0). Alternatively, ci

can be thought of as the costs incurred when a predator triggers the defences at stage i. These need not be

solely risk of injury, but might additionally or alternatively be time, energy or other resource spent in the

deployment of the defence. Like the model from Wilkening (1999) discussing layered defences in military

use, we calculate the probability that each defence is tested and holds (i.e. is not breached); and we also100

calculate the corresponding fitness when that defence is tested and holds. Multiplying them together, we

get the expected fitness contribution from the eventuality where that defence is tested and holds. The

overall fitness which we care about is the sum of all these terms. Here, fitness means the average number

of viable offspring that an individual produces, and by assuming that this number decreases as successive
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defences are tested and/or breached we are able to represent many different possible reproductive life105

histories (continuous reproduction, semelparity, etc.). We consider two particular scenarios: (A) the prey

has positive residual fitness (e.g. still alive and can reproduce) when all defences are breached; (B) the

prey has zero residual fitness (e.g. dies before reproducing) when all defences are breached. We wish to

find the defence strategy that maximises R.

For scenario (A), when the prey still has positive residual fitness when all the defences are breached,110

the expression of the overall fitness R of the prey for a given investment strategy S = (s1, s2, . . . , sn) is as

follows.

R(s1, s2, . . . , sn)

= s1(1− C(IA)− c1)

(the fitness when the first defence is tested, but not breached)

+(1− s1)s2(1− C(IA)− c1 − c2)

(the fitness when the second defence is tested, but not breached)

+...

+(1− s1)(1− s2)...(1− sn−1)sn(1− C(IA)− c1 − c2 − ...− cn)

(the fitness when the (n− 1)th defence is tested, but not breached)

+(1− s1)(1− s2)...(1− sn) · (1− C(IA)− c1 − c2 − ...− cn)

(the fitness when all the defences are breached)

= 1− C(
n

∑
i=1

Ii(si))− c1 −
n

∑
j=2

cj

j−1

∏
k=1

(1− sk) (3)

Note that we have assumed that the fitness when all the defences are breached is the same as the

fitness when the (n− 1)th defence is tested, but not breached, since no further tested costs are incurred

after the nth defence is breached.115

In many cases in the real world, the prey dies or effectively dies with 0 fitness left to reproduce when

all the defences are breached. We therefore consider an alternative scenario (B) where the fitness when all

the defences are breached is 0 instead of (1− C(IA)− c1 − c2 − ...− cn). Then the fitness function is as

follows.
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R(s1, s2, . . . , sn) = (1−
n

∏
j=1

(1− sj))
(

1− C(
n

∑
i=1

Ii(si))
)
− c1 −

n

∑
j=2

cj

j−1

∏
k=1

(1− sk) + (
n

∑
j=1

cj)
n

∏
j=1

(1− sj) (4)

120

These two scenarios represent the two extreme possibilities for the fitness that ensues when all defences

are breached: fitness is not decreased further by the nth defence failing in scenario (A), whereas all fitness

is lost in scenario (B) if the nth defence fails. We expect that the results for an intermediate scenario will

lie between those for these two extreme scenarios.

If the organism invests less than the maximum available resources in defences, then those resources125

are available for reproduction and other fitness-enhancing activities. This is represented in the model by

the term −C(∑n
i=1 Ii(si)) in both equations (3) and (4)), which tends to increase fitness if IA = ∑n

i=1 Ii(si)

is decreased. However, due to the other terms in si it is not clear without analysis whether IA is less than

or equal to IT in the optimal strategy.

When testing defences are costly, later defences receive lower investment130

If the investment function is the same for all defences, Ii(·) = I(·), we can show that the optimal solution

S = (s1, s2, ..., sn) maximising the fitness function R in (3) and (4) always satisfies the following relation

when the tested costs ci are strictly positive (ci > 0 ∀i).

s1 ≥ s2 ≥ ... ≥ sn. (5)

This is because, for any i such that si < si+1, we can always make R larger by switching the value of si

and si+1, which will only change the term −ci+1 ∏i
k=1(1− sk) (in the term −∑n

j=2 cj ∏
j−1
k=1(1− sk) in R) to

−ci+1 ∏i−1
k=1(1− sk) · (1− si+1) (larger than −ci+1 ∏i

k=1(1− sk)), with the other terms in R unchanged.

Since the investment function I(si) is increasing, the relation that s1 ≥ s2 ≥ ... ≥ sn means that

I(s1) ≥ I(s2) ≥ ... ≥ I(sn). (6)

This shows that investment in earlier defences should never be less than than investment in later defences.

Note that, if ci+1 = 0, the above argument does not show that si ≥ si+1, but rather than the fitness R135

is unchanged by switching the values of si and si+1. This means that, when one of the tested costs is zero,

either (i) there is a unique optimal strategy, where si = si+1; or (ii) the optimal strategy is not unique, but

the optimal strategy in which sj ≥ sj+1, for all j has equal fitness to the best strategy where sj+1 > sj for

some j. In any biologically realistic situation there will always be a cost — however small — to having a
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defence tested, but this case is still interesting because it shows what might evolve when the tested costs140

are very small.

Investing in multiple defences or in a single defence?

The best strategy for the organism might be to invest in multiple defences, with (according to the above

result) higher investment in earlier than later defences. On the other hand, the best strategy might be to

invest in a single defence, which the above argument shows should be the first one. As we will see later,

either of these outcomes can occur, depending on the details of the investment function I. To show this,

first we find conditions that the optimal solution must satisfy. To find the maximised R constrained by

variable boundaries 0 ≤ si < 1 , and resource boundary ∑n
i=1 I(si) ≤ IT , we write a Lagrange function for

the overall fitness function (3) and (4).

L(s1, s2, . . . , sn; λ1, λ2, . . . , λn) = R(s1, s2, . . . , sn) +
n

∑
i=1

λi(1− si) + h(IT −
n

∑
i=1

I(si)) (7)

The necessary condition to get the maximised value R is given by the Karush-Kuhn-Tucker (KKT)

condition coming from the above Lagrange function,

∂L
∂si

=
∂R
∂si
− λi − hI′(si) ≤ 0, si ≥ 0, si

∂L
∂si

= 0 i = 1, ..., n (8)

∂L
∂λi

= 1− si ≥ 0, λi ≥ 0, λi
∂L
∂λi

= 0 i = 1, ..., n (9)

∂L
∂h

= IT −
n

∑
i=1

I(si) ≥ 0, h ≥ 0, h
∂L
∂h

= 0 i = 1, ..., n (10)

The second necessary condition (9) combined with 1− si > 0, is equivalent to

λi = 0 (11)

The first necessary condition (8) is equivalent to

∂L
∂si

=
∂R
∂si
− hI′(si) ≤ 0, si ≥ 0, si

∂L
∂si

= 0 i = 1, ..., n (12)

(a)When si > 0: we have that ∂L
∂si

= ∂R
∂si
− hI′(si) = 0.

(b)When si = 0: we have that ∂L
∂si

= ∂R
∂si
− hI′(si) ≤ 0.

For the third necessary condition (10),145

(a)When IT −∑n
i=1 I(si) > 0: we have that ∂L

∂h = IT −∑n
i=1 I(si) > 0, so h = 0 since h ∂L

∂h = 0.

(b)When IT −∑n
i=1 I(si) = 0: we have that ∂L

∂h = IT −∑n
i=1 I(si) = 0; so we still have h ≥ 0.
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To put them together, the necessary condition is equivalent to the following:

(I) When 0 < si < 1,

∂R
∂si
− hI′(si) = 0, h ≥ 0, (13)

(and h = 0, when inside the resource boundary IT −
n

∑
i=1

I(si) > 0)

(II) When si = 0,

∂R
∂si
− hI′(si) ≤ 0, h ≥ 0 (14)

(h = 0, when inside the resource boundary IT −
n

∑
i=1

I(si) > 0)

So far, the analysis has been the same whether we assume that the fitness after all defences are

breached is zero (Scenario (B), equation (4)) or not (Scenario (A), equation (3)). For the following cal-150

culation, we assume scenario (B) only; the calculation for scenario (A) follows along similar lines, and has

the same conclusion, and is presented in Appendix B. Given the fitness function R in (4), the necessary

condition for R is as follows,

(I) When 0 < si < 1,

∂R
∂si
− hI′(si)

=
1

1− si

n

∏
j=1

(1− sj)
(
1− C(IA)−

n

∑
j=1

cj
)
− (1−

n

∏
j=1

(1− sj))
∂C(IA)

∂si
+

1
1− si

n

∑
j=i+1

cj

j−1

∏
k=1

(1− sk)− hI′(si)

= 0 ( with h ≥ 0) (15)

(II) When si = 0,

∂R
∂si
− hI′(si)

=
1

1− si

n

∏
j=1

(1− sj)
(
1− C(IA)−

n

∑
j=1

cj
)
− (1−

n

∏
j=1

(1− sj))
∂C(IA)

∂si
+

1
1− si

n

∑
j=i+1

cj

j−1

∏
k=1

(1− sk)− hI′(si)

≤ 0 ( with h ≥ 0) (16)

Now we have the necessary condition to maximise R— (15) and (16). Next, we are going to explore

whether investment can happen in multiple defences or only in one defence.155

Since the investment functions are the same for all the defences (Ii(·) = I(·)), we have that investment

in earlier defences is always larger than investment in later defences (equation (5), (6)), so for some j(< n),

1 > s1 ≥ s2 ≥ . . . ≥ sj > sj+1 = . . . = sn = 0, (17)
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or

1 > s1 ≥ s2 ≥ . . . ≥ sn−1 ≥ sn > 0. (18)

Note that when j = 1,

1 > s1 > s2 = . . . = sn = 0, (19)

then the investment is concentrated only in the first defence.

We will now find the conditions that determine whether investment is concentrated only in the first

defence, or in multiple defences.

Let us first assume that there are multiple defences (2 ≤ j ≤ n), then for some i ∈ {1, 2, ..., j− 1}, we

will have si ≥ si+1 > 0. Then from equation (15), we have (20) and (21).160

∂R
∂si
· (1− si)− h(1− si)I′(si)

=
n

∏
j=1

(1− sj)
(
1− C(IA)−

n

∑
j=1

cj
)
− (1− si)(1−

n

∏
j=1

(1− sj))
∂C(IA)

∂si
+

n

∑
j=i+1

cj

j−1

∏
k=1

(1− sk)− h(1− si)I′(si)

= 0, (20)

∂R
∂si+1

· (1− si+1)− h(1− si+1)I′(si+1)

=
n

∏
j=1

(1− sj)
(
1− C(IA)−

n

∑
j=1

cj
)
− (1− si+1)(1−

n

∏
j=1

(1− sj))
∂C(IA)

∂si+1
+

n

∑
j=i+2

cj

j−1

∏
k=1

(1− sk)− h(1− si+1)I′(si+1)

= 0 (21)

The term ∏n
j=1(1− sj)

(
1− C(IA)−∑n

j=1 cj
)

in both (20) and (21) is the same, so that we have

− (1− si+1)(1−
n

∏
j=1

(1− sj))
∂C(IA)

∂si+1
+

n

∑
j=i+2

cj

j−1

∏
k=1

(1− sk)− h(1− si+1)I′(si+1)

= −(1− si)(1−
n

∏
j=1

(1− sj))
∂C(IA)

∂si
+

n

∑
j=i+1

cj

j−1

∏
k=1

(1− sk)− h(1− si)I′(si). (22)

Since IA = ∑n
i=1 I(si), the above is equivalent to

− (1− si+1)(1−
n

∏
j=1

(1− sj))C′(IA)I′(si+1)− h(1− si+1)I′(si+1)

= −(1− si)(1−
n

∏
j=1

(1− sj))C′(IA)I′(si) + ci+1

i

∏
k=1

(1− sk)− h(1− si)I′(si). (23)

9



⇒

−(1− si+1)I′(si+1)
(
(1−

n

∏
j=1

(1− sj))C′(IA) + h
)
= −(1− si)I′(si)

(
(1−

n

∏
j=1

(1− sj))C′(IA) + h
)
+ ci+1

i

∏
k=1

(1− sk).

(24)

Since C′(IA) > 0 and also 1−∏n
j=1(1− sj) > 0 and h ≥ 0, we have that

(
(1−∏n

j=1(1− sj))C′(IA) +

h
)
> 0 , so that equation (24) is equivalent to

−(1− si+1)I′(si+1) = −(1− si)I′(si) + ci+1
∏i

k=1(1− sk)(
(1−∏n

j=1(1− sj))C′(IA) + h
) . (25)

The last term in the right-hand side ci+1
∏i

k=1(1−sk)(
(1−∏n

j=1(1−sj))C′(IA)+h
) is positive when ci+1 > 0, therefore

−(1− si+1)I′(si+1) > −(1− si)I′(si). (26)

which is the same to,

(1− si+1)I′(si+1) < (1− si)I′(si). (27)

The analyses for the fitness function (3) (in Appendix B) are similar to the analysis for the fitness

function (4) (from equation 15 to 27). As the relation between si and si+1 for the fitness function (3)

(equation B.11) is the same as the relation (27) for the fitness function (4), the following analyses hold for

both (3) and (4).

If (1− s)I′(s) is a monotonic decreasing function of s, (27) is inconsistent with si ≥ si+1 > 0, so we

conclude that si+1 = 0. That is, investment can not be in multiple defences but only in the first defence

(example see in Figure 3),

1 > s1 > s2 = . . . = sn = 0. (28)

However, multiple defence can occur when the function (1− s)I′(s) is an increasing function, at least165

for some range of values of s, in which case si ≥ si+1 > 0 (i ∈ {1, 2, ..., j − 1}) is consistent with (27)

(we give examples in Figure 1). Note that multiple defences are impossible if (1− s)I′(s) is a decreasing

function, but that (1− s)I′(s) being an increasing function does not guarantee that the optimal solution

has investment in multiple defences (see Figure 1).

Note that, if ci+1 = 0, as mentioned before in the section ”When testing defences are costly, later170

defences receive lower investment”, the optimal solution either (i) has the relation si = si+1 or (ii) is not

unique, with one optimal solution having si > si+1 and the other being obtained by swapping the values
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of si and si+1. When the function (1− s)I′(s) is an increasing function, we can prove that only si = si+1

occurs (Appendix A (i); for an example see in Figure 2). Similarly, when ci+1 = ci+2 = 0, the optimal

solution will have the relation that si = si+1 = si+2. In biologically realistic situations, tested costs will175

usually be nonzero, so since the fitness function R is continuous in ci+1, we will have si being slightly

larger than si+1.

When the function (1− s)I′(s) is a decreasing function, we can prove that only c2 = 0 changes the re-

lation (28), and that si = si+1 is not possible in the optimal solution, and that the same amount investment

will be concentrated only in the first or only in the second defence (1 > s1 > s2 = s3 = s4 = ... = sn = 0180

or 1 > s2 > s1 = s3 = s4 = ... = sn = 0) (Appendix A (ii)(iii)). Similarly, when c2 = c3 = 0, investment

will only be in one of the first three defences. However, a small tested cost will drive the investment to be

only in the first defence (For example see in Figure 3, 4).

Examples of investment in defences

We will give numerical examples for the cases when (1) investment happens in multiple defences, (2)

only in one defences, and also (3) the investment functions are different, so that the investment in earlier

defences can be either higher or lower than in later defences. The investment functions for all the three

cases are given in the examples below. To show a numerical result of the optimal defence strategy, we

further specify the expression for the cost function C(IA) as follows,

C(IA) = IA
a, a ≥ 1 (29)

We assume that a ≥ 1, since we expect that the marginal investment cost in defences is non-decreasing185

in respect to the defence investment (no less additional investment cost for additional amount of invest-

ment when the total amount of investment becomes larger). For simplicity, we consider scenario (B)

(where the fitness is zero if all defences are breached), and assume that IT is large enough that, in the

optimal strategy, the organism does not need to invest all of its resources in defences (IA < IT), so that we

do not need to consider IT when maximising the fitness function (4).190

We use a heuristic search algorithm to find the optimal investment strategy. The search starts at an

initial point S0 = (s10, s20, s30, s40). First, we calculate the value of R at this point, and then search whether

there exists higher value of R in the positive direction of the first axis, through calculating the value of R

at (s10 + δ0, s20, s30, s40), where δ0 is initial search step. If the value is higher, then we double the search

step value and and do the search again, and repeat it until we find the maximum value of R and the195

corresponding value S1 = (s11, s20, s30, s40); If however the value is not higher, we do the same procedure
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in the negative direction of the first axis to find the the maximum value of R and the corresponding value

(s11, s20, s30, s40). We then do the same process in all the axes, and after that we get the corresponding

value S1 = (s11, s21, s31, s41). Second, we do the same as the first to find S2 = (s12, s22, s32, s42) except that

we shorten the initial search step to be δ
u (where u > 1). Third, we let the initial search step to be δ

u2200

and do the same. We repeat this process until (e.g. at the n-th time, we find Sn = (s1n, s2n, s3n, s4n)) the

initial search step is less than a threshold ε1 and the distance between the last two corresponding points

d(Sn−1, Sn) is less than a threshold ε2, then stop.

Note that the above process might only find a local, rather than global, maximum. To solve this

problem, we divide each of the interval (0, 1] (note that each probability si ∈ (0, 1]) in each axis into m205

equal subintervals, and since we have four levels of defences, altogether, we have m4 subareas. Then we

do the same process as above to find all the m4 local maxima. Theoretically, if m were large enough, we

would have the global maximum in one of our searched results, and the largest local maximum is the

global maximum. Due to computational limitations, we only devide into 34 = 81 subareas. However,

in all cases we found that, the 80 out of 81 subregions did not hold the largest local maximum, because210

those local maxima were on the boundaries of the subregions. This suggests that R does not have multiple

stationary values, and that the largest local maximum we found is indeed the global maximum.

In our example specifically, the initial start point S0 is given by s1i = 0.3, 0.6, 0.9 in the three subinter-

vals respectively (i = 1, 2, 3, 4) (34 = 81 start points for the 81 subareas in total), and δ0 = 0.35, u = 1.5,

ε1 = ε2 = 0.0001.215

Example of investment in multiple defences

As described above, when (1 − s)I′(s) is an increasing function, investment could happen in multiple

defences. As an example for this relation, we use the investment function of the form

I(s) = k(
1

1− s
− 1)b, i = 1, ..., n, k > 0, b > 1. (30)

For this function, (1− s)I′(s) = kb( 1
1−s − 1)b−1 1

1−s , which can easily be shown to be an increasing function,

when k > 0, b > 1.

Specifically we let a = 2, b = 2, k = 0.2, and the total number of defences be four.

Figure 1 gives that the optimal investment is concentrated in the only the first defence/ the first two220

defences/ the first three defences/ in all the four defences.

Figure 2 gives that for a specific i (i = 1, 2..., N − 1), if ci+1 = 0, then the investments in the i-th and

(i + 1)-th defence are the same (si = si+1).
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Figure 1: For investment functions I where (1− s)I′(s) is an increasing function, prey can invest

in multiple defences but always invest more in earlier defences. Here, the investment function

is given in (30) and the cost function is given in (29). The vertical axis is s, the probability that

a defence is not breached when tested, and is zero when investment in that defence is zero.

Depending on the tested costs, the prey can invest in: all defences (ci = 0.2∀i, green rhombus);

the first three defences only (ci = 0.3∀i, red cross); the first two defences only (ci = 0.4∀i, yellow

triangle); or only the first defence (ci = 0.5∀i, black cross). Other parameter values: number of

defences=4; a = 2, b = 2, k = 0.2.

13



first defence second defence third defence fourth defence
0.2

0.25

0.3

0.35

0.4

0.45

0.5

P
ro

ba
bi

lit
y 

th
at

 a
 d

ef
en

ce
 h

ol
ds

Figure 2: For investment functions I where (1− s)I′(s) is an increasing function, prey can invest

the same amount in two successive defences if the later defence has tested cost zero. Here, the

investment function is given in (30) and the cost function is given in (29), and the tested costs

are ci = 0.2 for all values of i except one. Optimal strategy is to invest the same in: first and

second defences when c2 = 0 (red circles); second and third defences when c3 = 0 (orange

triangles); third and fourth defences when c4 = 0 (green diamonds). Other parameters: number

of defences=4; a = 2, b = 2, k = 0.2.
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Example of investment only in the first defence

As described above, if (1 − s)I′(s) is a decreasing function, then investment only happen in the first225

defence (when c2 > 0). As an example for this relation, we use the investment function

I(s) = −k(ln(1− s) + ds k > 0, d > 0. (31)

For this function, (1− s)I′(s) = k+ d(1− s), which is a decreasing function. Then we set the parameter

values a = 2 to do the simulations as in the above example. Figure 3 shows that the optimal investment is

concentrated only in the first defence. Figure 4 shows that, when c2 = 0, there are two optimal solutions

with one optimal solution having s1 > s2 = s3 = s4 = 0 (investment concenrated only in the first defence),230

and the other being the swapped values of s1 and s2 (investment concenrated only in the second defence).

Example of different investment functions among defences

When the investment functions are different among defences (e.g. the value of k might be different in the

investment function (30), which correponding to the efficiency to make resources into defences might be

different among defences),

Ii(s) = ki(
1

1− s
− 1)b, i = 1, ..., n, k > 0, b > 1, (32)

it is possible that investment in the later defences are higher than in the earlier defences. When the

investment is more efficient to make resources into defences, in the later defences than in the earlier

defences (ki > ki+1), the investment in later defences might or might not be higher than in the earlier235

defences (see the black cross or the red cross in Figure 5). However, when the investment in earlier

defences is more efficient or equally efficient to make resources into defences than in the later defences

(ki < ki+1), investment will be higher in the earlier than in the later defences (see the yellow triangle or

the green rhombus in Figure 5).

Discussion240

Endler (1991) argued that prey should generally invest preferentially in defences that act early in the

predation sequence, in part because defences met earlier in a sequence will on average be deployed more

frequently and in part because he expects late acting defences to be less efficient (higher ki values in (32)).

We have shown however that the skew will occur when the investment function is the same for all the
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Figure 3: For investment functions I where (1 − s)I′(s) is a decreasing function, the optimal

strategy is to invest in one defence only; this will be the first defence when the second defence

has nonzero tested cost, c2 6= 0. Here, the investment function is given in (31), the cost function

is given in (29), and the tested costs are ci = 0.2∀i. Different symbols correspond to different

values of parameters d and k: (d, k) = (0.1, 0.1) (green rhombus); (d, k) = (0.2, 0.1) (red cross);

(d, k) = (0.1, 0.2) (black cross); (d, k) = (0.2, 0.2) (yellow triangle). Other parameters: number of

defences=4; a = 2.
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Figure 4: For investment functions I where (1 − s)I′(s) is a decreasing function, the optimal

strategy is to invest in one defence only, but is degenerate when the second defence has tested cost

zero (c2 = 0): the fitness is the same whether the prey invests in the first defence only, or invests

the same resources in the second defence only. Here, the investment function is given in (31), the

cost function is given in (29), and tested costs are c2 = 0, ci = 0.2 for i 6= 2. Different colours

correspond to different different values of parameters d and k: d = k = 0.1 (red); d = k = 0.2

(green). Different symbols distinguish the two optimal solutions: investment in first defence (red

circle and green diamond); investment in second defence only (red cross and green cross). Other

parameter values: number of defences=4, a = 2.
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Figure 5: The optimum strategy might be to invest more in later defences, if the different defences

do not have the same investment functions. Here, the investment function is given in (30) and

the cost function is given in (29). The prey should invest more in earlier defences when defences

have the same cost functions (ki = 0.2∀i, green rhombus) or when later defences are more costly

((k1, k2, k3, k4) = (0.2, 0.4, 0.6, 0.8), yellow triangle). However, when later defences are less costly,

the optimal strategy might be to invest more in earlier defences ((k1, k2, k3, k4) = (1.6, 1.4, 1.2, 1.0),

red cross) or more in later defences ((k1, k2, k3, k4) = (0.8, 0.6, 0.4, 0.2), black cross). Other param-

eters: number of defences=4; a = 2, b = 2, ci = 0.2∀i.
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defences (so the efficiency ki is equal across defences) provided there is a risk-of-injury (ci) and other245

cost (C(IA)) associated with implementing each in a set of sequentially organised defences. Also, we

found that under some conditions defence investment will concentrated only in the first defence, while,

under other conditions, investment can be distributed in several defences with more investment in earlier

than in later defences. We suspect such costs will be common. We also suspect that Endler (1991)’s

assumption that later-acting defences will be inherently more expensive for a given level of effectiveness250

(ki increases with i) might hold generally (though it needs to be demonstrated), and this would more likely

to further exaggerate the skew towards earlier-acting defences (yellow triangle in Figure 5). However, if the

effectiveness of later defences is much higher, investment in later defences could be higher than in earlier

defences. Our general theory and predictions allow us to synthesize previous more system-specific work

on multi-component defences, and we now consider its application in specific biological and theoretical255

contexts, starting with plant defence against insect herbivores.

Application to Plant Defences

It is common, when a victim is an animal prey, that it is killed and eaten (so has zero fitness, if it has not

already reproduced) if the predator overcomes all of its defences (scenario (B)). Our model can also apply

to many plant-herbivore interactions in which a small insect damages, but does not kill, the plant on which260

it is feeding (Speed et al. 2015 also described a related model for these). In scenario (A), breaching the

final defence does not cause further fitness cost on the prey, so the fitness keeps the same between when

the final defence is tested but not breached and when the final defence is breached. We have done the

analyses for both this extreme case and the the other extreme case –scenario (B), when all the remaining

fitness are gone when the final defence is breached. The results are the same for these two extreme cases,265

so can be extended to the other intermediate cases when the prey still can reproduce (positive remaining

fitness) but the remaining fitness is diminished when the final defence is breached.

If plant defences do offer sequential barriers to herbivores, what can our model tell us about variation

in investment in these defences? Some insight is possible here from the notable meta-analysis of studies in

herbivore damage reported by Carmona et al. (2011). They report that variation in concentrations of plant270

secondary metabolites is a poor predictor of herbivore damage overall. In contrast, variation in physical

defences, such as hairs and spines, provided better overall prediction of damage. The most consistent

predictor of herbivore damage was however in life history traits, such as varied phenology which allow

growth and flowering at times that enemies are rare - effectively hiding in time. One interpretation of these

results is that it supports the sequential nature of plant defences, with the earlier acting defences (hiding,275
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then physical defences) having much stronger influence on vulnerability than the last line of defence, of

plant tissues by toxic secondary metabolites. If this interpretation has general validity, then it suggests

that our framework can have widespread application in plant-animal interactions. Several items need

to be measured for parameterised evaluation of the model’s predictions including; costs of generating

and deploying defences, survival benefits of each defence. In principle however, the model is open to280

empirical testing, and in the right systems may even be open to testing through experimental evolution.

Key predictions could then be tested, for example that chemical defences never have more investment

than earlier acting physical defences. We note the complexity of ontogenetic choice by plants makes the

area all the more interesting (see Barton and Boege 2017), and suggests developments of our approach to

incorporate developmental plasticity.285

Relation to Other Theoretical Work on Sequential Defences

We present here a general model to predict the optimal investment in sequential defences. We now

consider our model’s relevance to other, often more specialised models of defence. Our work here can be

seen as a generalisation of the work of Broom et al. (2010), who presented a simple model of investment

across two sequentially encountered anti-predatory defences. A predator must overcome both defences to290

capture the prey, and probability of overcoming a defence declines linearly with increasing investment in

defences. However there are costs every time a defence is used and these increase linearly with investment

in a particular defence. On top of that there is an initial outlay in the construction of a defence, with the

fecundity of the prey being a decreasing decelerating function of investment across both defences.

Broom et al. (2010) provide predictions for circumstances where there is investment in only one defence295

or investment spread across both defences. When the ratio of the constitutive costs to the effectiveness

of defences is generally similar and low for both defences, then investment across both defences can be

optimal. Increasing rate of attack also increases the likelihood of investment across both defences. How-

ever investment in both defences was only predicted for relatively narrow combinations of circumstances,

where investing heavily to produce one very effective defence was prohibitively expensive and the best300

solution was to offer two modestly effective defences that must be overcome. Our model further solves the

problem where there are more than two defences, and gives the conditions under which investment are

applied in multiple defences or only one defences, and the relation between investment in the sequential

defences.
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Strategy Blocking305

The host reed warbler Acrocephalus scirpaceus is often found to have an egg-rejection defence strategy but

not a chick-rejection defence strategy against the parasite cuckoo Cuculus canorus. Britton et al. (2007)

uses a concept called “strategy blocking” to explain this phenomenon. Strategy blocking describes the

situation in which a strategy which would be adaptive in isolation ceases to be adaptive in the presence

of a second strategy. Strategy blocking explains this phenomenon in terms of the different pay-offs for310

each defence, but it is not framed as a sequential defences scenario, so it does not explain the effect of the

sequence on defence strategy. Our sequential defences model provides an alternative explanation for why

the reed warblers are found more likely to have defences in the earlier stage (rejecting the eggs) than in

the later stage (rejecting the chicks). We particularly consider the condition under which the investment

will be concentrated only in the first defence (egg-rejection). The rate that the warblers fail or succeed in315

rejecting the cuckoos’ eggs (which corresponds to s1 in our model) is dependant on the investment in the

egg-rejection defence, which could explain why warblers are sometimes found not to reject eggs.

Although the concept of strategy blocking is raised in a population dynamics model (Britton et al.

(2007)), its idea that one defence will often reduce the benefits of a second defence can be explained

otherwise through probabilities. Let us assume that if a predator encounters a prey then it is repelled with320

probability a if defence A only is expressed by the prey, with probability b if defence B only is expressed

and with probability 1− (1− a)(1− b) if both are expressed. This implies that the two defences work

independently and the predator must overcome all defences expressed in order to be successful. The

benefit of defence B is the increase in the probability of an predator being repelled when defence B is

expressed relative to when B is not expressed. This is a function of a, the higher the value of a (the more325

predators would have been repelled without B being expressed by defence A), the less often investing

in B makes a difference to the prey and so the less the benefit of investment in B. This was a situation

where the two defences worked independently, but it may also be the case that expression of one defence

reduces the effectiveness of another, in our case that increasing a causes a decrease in b. As an example,

if an animal invests in a heavy armoured shell, then its ability to outrun predators is compromised. The330

work of Britton et al. (2007) can be seen as a more general examination of earlier modelling by Brodie et al.

(1991) that reached essentially similar conclusions in a more restricted setting.

In contrast Kilner and Langmore (2011) introduce the concept of strategy-facilitation as the complement

to the concept of strategy-blocking. Here they imagine that the evolution of one defence makes the evolution

of another defence easier. As an example of this they cite the modelling work of Svennungsen and Holen335

(2010) who demonstrated that in avian brood parasite systems it can sometimes be advantageous for hosts
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to reject a randomly-selected egg if they know that they have been parasitised but are unable to identify

the parasitic egg. Kilner and Langmore (2011) argue that if the strategy of such random rejection evolves

then this will allow subsequent evolution of egg recognition to facilitate non-random targeting of the alien

egg. As well as facilitating cognitive changes in the host it could trigger physiological change in egg340

appearance to improve such recognition.

This means that sometimes an inefficient defence is worth employing/investing in; in our model

example (equation (32)) this is a defence with a high value of ki. Given this defence is invested in, its cost

has an effect on the fitness function R, which if it was not invested in (si = 0) would be absent. There is

thus evolutionary pressure to improve the efficiency (lower ki) if this were possible, which there would345

not be in the absence of investment.

Kilner and Langmore (2011) also argue that defences can operate at levels of organisation greater than

the individual that are often overlooked. They give as an example workers of the ant genus Temnothorax

that can be enslaved by the species Protomognathus americanus, but which selectively destroy the slave-

making pupae in their care. As a result P. americanus colonies are unusually small for a slavemaker350

and are less effective at conducting slave raids on neighbouring Temnothorax colonies. Since Temnothorax

populations are highly kin-structured then there is a kin-selected benefit to this defence. Kilner and

Langmore (2011) speculate that as a generality kin-structuring in a host population will select for a more

extensive portfolio of defences. They also predict that a high parasitic virulence will also select for more

extensive portfolios. The last of their predictions is that where a parasite exploits more than one host,355

competition between the hosts to shift their parasite’s attention toward the others should again select for

complexity of defensive portfolio.

Coevolutionary Considerations in Sequential Defence Suites

Jongepier et al. (2014) argue that for sequential lines of defence, later lines will be more expensive. Thus

arms races between prey and predators would have started with the prey using a cheap defence acting360

early in the predation sequence, but as the predator evolved to overcome this defence there would then

have been selection pressure for investment in later-acting more costly defences. Thus over evolutionary

time there will have been a shift towards investment in more costly defence that act later in the sequence

of the interaction between prey and predator. To put this a different way, the temporal order in which

defences are employed will reflect the order in which they evolved. Gilman et al. (2012) argue theoretically365

that there are co-evolutionary advantages to a multi-dimensional defence against any type of antagonist

(parasite, predator or pathogen). Using a modelling framework, they argue that a prey is more likely to
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evolve a way to neutralise the predator as the number of defences increases or as the correlation between

values across traits increases. Essentially each additional trait provides the prey with an additional oppor-

tunity to evolve an effective escape mechanism. A key point here is that sequential layering of defences370

is not necessary for these general conclusions, rather it is the use of multiple defences per se that mat-

ters. This is illustrated in the Gilman et al. (2012) model itself, and in a subsequent extension modelling

plant toxicity by Speed and Ruxton (2014). Sasaki (2000) considers the multiplicative interaction among

the effect of defence genes, and finds that the cost of resistance and virulence values can influence the

coexistence of multiple defences in static equilibria or coevolutionary cycle.375

In contrast, Bateman et al. (2014) introduce population dynamics into the discussion of investment

across defences. They use a two-prey, one-predator Rosenzweig-McArthur model of predator-prey in-

teraction. Prey can invest in each of two defences, one of which acts before the other in the predation

sequence, and defences have costs as well as anti-predatory benefits. The system is allowed to come to

equilibrium with only a single prey before a different prey with a different investment strategy across380

defences is introduced at low population density. Bateman et al. (2014) then explore whether this second

prey increases in population size. They conclude that the invasion of a given defence strategy is depen-

dent on the fine detail of traits of the predator and the existing prey type, and the nature of the costs

and benefits of the different defences; and so general conclusions are difficult to draw. However they do

conclude that on the basis of their simulations “there exists no exclusive ecological or evolutionary ad-385

vantage to defending early in the predation sequence”. The word “exclusive” seems important here they

mean there is nothing fundamentally beneficial about easy disruption of attacks per se from a population

dynamic perspective. We agree with this, but there are mechanisms (like risk of injury or time lost to other

beneficial activities) that may be correlated with early disruption, are not considered in their model, and

bring benefits.390

Conclusions

In our view the sequential organisation of defences has received relatively little rigorous examination in

the literature. This is explained in part by expertise focusing on the mechanisms of individual defensive

types (e.g. camouflage or chemical defence), rather than their integration into suites of defences. A

valuable predictive aspect of our model, is to make a general argument that explains why earlier defences395

may gain higher investment than later acting defences. Suppose that a victim could biologically generate

a suite of ten equally effective sequential defences, but it is optimal to only invest in five, then which
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five should it invest in, and how much in each? Our model predicts that the solution is to concentrate

in earliest five defences rather than in the other five defences. Moreover, regarding the trade-off of the

investments among each defence, a victim will invest no less in earlier defences than later defences, given400

that the investment functions among defences are the same (e.g. converting resources into defences is

equally efficient across the sequential defences). In our Discussion section, we have shown that the model

can be applied to animal, plant and other defensive systems. Our model can replicate and add quantitative

rigor to the question of strategy-blocking, in which the effectiveness of early-acting defences makes the

deployment of later acting defences redundant. In relating it to other theoretical works in the field,405

we note that coevolutionary approaches to the general question we examine here would add predictive

sophistication.
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A Appendix

The relation between si and si+1 when ci+1 = 0445

(i) We will prove that when ci+1 = 0, and when (1− s)I′(s) is an increasing function, only si = si+1

can happen.

(a) When both si > 0 and si+1 > 0, and from (25) and ci+1 = 0 we would have (1− si+1)I′(si+1) =

(1− si)I′(si) and so si = si+1.

(b) and when both si = 0 and si+1 = 0, we have si = si+1.450

(c) If si > si+1 = 0, from the necessary condition (15) and (16), we have

∂R
∂si
· (1− si)− h(1− si)I′(si)

=
n

∏
j=1

(1− sj)
(
1− C(IA)−

n

∑
j=1

cj
)
− (1− si)(1−

n

∏
j=1

(1− sj))
∂C(IA)

∂si
+

n

∑
j=i+1

cj

j−1

∏
k=1

(1− sk)− h(1− si)I′(si)

= 0, (A.1)

∂R
∂si+1

· (1− si+1)− h(1− si+1)I′(si+1)

=
n

∏
j=1

(1− sj)
(
1− C(IA)−

n

∑
j=1

cj
)
− (1− si+1)(1−

n

∏
j=1

(1− sj))
∂C(IA)

∂si+1
+

n

∑
j=i+2

cj

j−1

∏
k=1

(1− sk)− h(1− si+1)I′(si+1)

≤ 0 (A.2)

Then following are the similar deduction as (22)-(27), we have

− (1− si+1)(1−
n

∏
j=1

(1− sj))
∂C(IA)

∂si+1
+

n

∑
j=i+2

cj

j−1

∏
k=1

(1− sk)− h(1− si+1)I′(si+1)

≤ −(1− si)(1−
n

∏
j=1

(1− sj))
∂C(IA)

∂si
+

n

∑
j=i+1

cj

j−1

∏
k=1

(1− sk)− h(1− si)I′(si). (A.3)

Since IA = ∑n
i=1 I(si), the above is equivalent to

− (1− si+1)(1−
n

∏
j=1

(1− sj))C′(IA)I′(si+1)− h(1− si+1)I′(si+1)

≤ −(1− si)(1−
n

∏
j=1

(1− sj))C′(IA)I′(si) + ci+1

i

∏
k=1

(1− sk)− h(1− si)I′(si). (A.4)
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⇒

− (1− si+1)I′(si+1)
(
(1−

n

∏
j=1

(1− sj))C′(IA) + h
)

≤ −(1− si)I′(si)
(
(1−

n

∏
j=1

(1− sj))C′(IA) + h
)
+ ci+1

i

∏
k=1

(1− sk). (A.5)

Since C′(IA) > 0 and also 1−∏n
j=1(1− sj) > 0 and h ≥ 0, we have that

(
(1−∏n

j=1(1− sj))C′(IA) +

h
)
> 0 , so that equation (24) is equivalent to

−(1− si+1)I′(si+1) ≤ −(1− si)I′(si) + ci+1
∏i

k=1 sk(
(1−∏n

j=1(1− sj))C′(IA) + h
) . (A.6)

The last term in the right-hand side ci+1
∏i

k=1 sk(
(1−∏n

j=1(1−sj))C′(IA)+h
) is positive when ci+1 > 0, therefore

−(1− si+1)I′(si+1) ≤ −(1− si)I′(si). (A.7)

which is the same to,

(1− si+1)I′(si+1) ≥ (1− si)I′(si). (A.8)

(35) together with that the function (1− s)I′(s) is increasing violate that si > si+1 = 0. So si > si+1 = 0

is not possible.

(d) si+1 > si = 0 is not possible either for the same reason as (c).455

Therefore, when ci+1 = 0 and when (1− s)I′(s) is an increasing function, we have si = si+1 (Example

see in Figure 2).

(ii) We will prove that when c2 = 0, and when (1− s)I′(s) is a decreasing function, only s1 > s2 = 0

or s2 > s1 = 0 can happen.460

(a) When both s1 > 0 and s2 > 0, and when c2 = 0, from (25),

(1− si+1)I′(si+1) = (1− si)I′(si). (A.9)

so we have si = si+1.

However, when s1 = s2 = 1− m, for some specific m ∈ (0, 1), we can always increase the value of

R by decreasing the value of s1 and increasing the value of s2, given that (1− s1)(1− s2) = m2 and the

values of the other sj (j > 2) fixed (e.g. let s1 = 1− m
1
2 and s2 = 1− m

3
2 ). This is because, the solution

that s1 = s2 = 1−m < 1 is the maximum solution of I(s1) + I(s2) given that (1− s1)(1− s2) = m2 and465
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therefore the minimum solution of R (see in (4)) given that (1− s1)(1− s2) = m2 and the values of the

other sj (j > 2) fixed.

To prove this, we only need to see the necessary and sufficient condition for the question

Max I(s1) + I(s2) s.t.(1− s1)(1− s2) = m2 (A.10)

that is

Max F(s1) = I(s1) + I(1− m2

1− s1
), (A.11)

where m2 is a constant value.

The necessary condition (the first derivative of F(s1) equals 0) is that

F′(s1) = I′(s1) + I′(1− m2

1− s1
)(− m2

(1− s1)2 )

= I′(s1) + I′(s2)(−
1− s2

1− s1
)

= 0 (A.12)

which is equilalent to

(1− s1)I(s1) = (1− s2)I(s2), (A.13)

so when (1− s)I′(s) is decreasing,

s1 = s2 (A.14)

The sufficient condition (the second derivative of F(s1) larger than 0) is that

F′′(s1) = I′′(s1) + I′′(1− m2

1− s1
)

m4

(1− s1)4 − 2I′(1− m2

1− s1
)

m2

(1− s1)3

=
1

(1− s1)2

(
(1− s1)

2 I′′(s1) + (1− s2)
2 I′′(s2)− 2(1− s2)I′(s2)

)
=

1
(1− s1)2

(
2(1− s2)

2 I′′(s2)− 2(1− s2)I′(s2)
)

(since s1 = s2)

< 0 (since (1− s)I′(s) is decreasing function) (A.15)

So s1 = s2 > 0 is the local maximum solution of I(s1)+ I(s2) and therefore the local minimum solution

of R.470

(b) When both s1 = 0 and s2 = 0, we can follow the proof below in (iii)(b)(c), and then all rest si = 0

(i > 2), which is not the optimal solution for R.
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Therefore, when c2 = 0, and when (1− s)I′(s) is a decreasing function, only s1 > s2 = 0 or s2 > s1 = 0

can be the optimal (Example see in Figure 4).475

(iii) We will prove that when (1− s)I′(s) is a decreasing function, for any i 6= 2, ci = 0 but c2 > 0 does

not change the relation 1 > s1 > s2 = ... = sn = 0 (equation (28)).

(a) c1 = 0 does not change the relation in (25), therefore the relation (28) still holds.

(b) If c3 = 0 but c2 > 0, we would have s1 > 0 and s2 = 0 since c2 > 0. If however s3 = m > 0, since480

the symmetric relation between s2 and s3 in R when c3 = 0, we would have s2 = m > 0 and s3 = 0 to be

another optimal solution, which violates the fact that s2 = 0. So s3 can only be 0.

If c3 > 0, s3 can still only be 0 due to the asymmetric relation between s2 and s3 in the R function and

that we can only have s2 ≥ s3.

Therefore, no matter c3 > 0 or c3 = 0, we can only have s3 = 0485

(c) For the same reason, no matter c4 > 0 or c4 = 0, we can only have s4 = 0; and so is for any ci = 0

(i > 2).

Therefore when for any i 6= 2, ci = 0 but c2 > 0 and when (1− s)I′(s) is a decreasing function, the

relation (28) still holds.

490

B Appendix

When the residual fitness when all the defences are breached is positive (scenario (A)), the fitness function

is (3) as follows.

R(s1, s2, . . . , sn) = 1− C(
n

∑
i=1

Ii(si))− c1 −
n

∑
j=2

cj

j−1

∏
k=1

(1− sk). (B.1)

The analysis for (3) is similar to when the fitness function is (4) (scenario (B)– when the residual fitness

is zero when all the defences are breached). The necessary conditions to maximise R– (15) and (16) in this

case can be written as follows,

(I) When 0 < si < 1,

∂R
∂si
− hI′(si) = −

∂C(IA)

∂si
+

1
1− si

n

∑
j=i+1

cj

j−1

∏
k=1

(1− sk)− hI′(si) = 0

(with h ≥ 0) (B.2)

(II) When si = 1,495
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∂R
∂si
− hI′(si) = −

∂C(IA)

∂si
− 1

1− si

n

∑
j=i+1

cj

j−1

∏
k=1

(1− sk)− hI′(si) ≤ 0

(with h ≥ 0) (B.3)

Now (B.2) and (B.3) together is the necessary condition. The following analyses are similar to the

scenario (B). Similar to the equations (20) and (21),

∂R
∂si
· (1− si)− h(1− si)I′(si) = −(1− si)

∂C(IA)

∂si
+

n

∑
j=i+1

cj

j−1

∏
k=1

(1− sk)− h(1− si)I′(si) = 0, (B.4)

∂R
∂si+1

· (1− si+1)− h(1− si+1)I′(si+1) = −(1− si+1)
∂C(IA)

∂si+1
+

n

∑
j=i+2

cj

j−1

∏
k=1

(1− sk)− h(1− si+1)I′(si+1) = 0

(B.5)

Then we have

−(1− si+1)
∂C(IA)

∂si+1
+

n

∑
j=i+2

cj

j−1

∏
k=1

(1− sk)− h(1− si+1)I′(si+1) = −(1− si)
∂C(IA)

∂si
+

n

∑
j=i+1

cj

j−1

∏
k=1

(1− sk)− h(1− si)I′(si).

(B.6)

Since IA = ∑n
i=1 I(si), the above is equivalent to

−(1− si+1)C′(IA)I′(si+1)− h(1− si+1)I′(si+1) = −(1− si)C′(IA)I′(si) + ci+1

i

∏
k=1

(1− sk)− h(1− si)I′(si).

(B.7)

⇒

−(1− si+1)I′(si+1)
(

C′(IA) + h
)
= −(1− si)I′(si)

(
C′(IA) + h

)
+ ci+1

i

∏
k=1

(1− sk). (B.8)

Since C′(IA) > 0, we have that
(

C′(IA) + h
)
> 0 , so that equation (B.8) is equivalent to

−(1− si+1)I′(si+1) = −(1− si)I′(si) + ci+1
∏i

k=1(1− sk)(
C′(IA) + h

) . (B.9)

The last term in the right-hand side ci+1
∏i

k=1(1−sk)(
C′(IA)+h

) is negative since ci+1 > 0, C′(IA) > 0 and h ≥ 0,

therefore

−(1− si+1)I′(si+1) > −(1− si)I′(si). (B.10)
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which is equivalent to,

(1− si+1)I′(si+1) < (1− si)I′(si). (B.11)

Therefore we have the same relation between si and si+1 as (27). The later analyses are the same as in

the section ”Investing in multiple defences or in a single defence?”.
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