

City, University of London Institutional Repository

Citation: Favaro, J., Mazzini, S., Popov, P. T. ORCID: 0000-0002-3434-5272 and Strigini,
L. (2018). AQUAS: A project to bridge the gaps between safety and security processes. Ada
User Journal, 39(4), pp. 261-263.

This is the published version of the paper.

This version of the publication may differ from the final published
version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/22211/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral
Rights remain with the author(s) and/or copyright holders. URLs from
City Research Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or
charge. Provided that the authors, title and full bibliographic details are
credited, a hyperlink and/or URL is given for the original metadata page
and the content is not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

 261

Ada User Journal Volume 39, Number 4, December 2018

AQUAS: A Project to Bridge the Gaps between

Safety and Security Processes

John Favaro, Silvia Mazzini

Intecs SpA, Pisa, Italy; email: {John.Favaro,Silvia.Mazzini}@intecs.it

Peter Popov, Lorenzo Strigini

Centre for Software Reliability, City, University of London, U.K.; email: {ptp,strigini}@csr.city.ac.uk

1 Introduction

We report on an approach to the management of the

interplay between the safety and security processes,

currently studied in a recently started collaborative

European project, AQUAS (Aggregated Quality

Assurance for Systems, http://aquas-project.eu/). AQUAS

is experimenting with co-ordinating these processes

through "interaction points", which will be introduced

below, via a set of case studies or "demonstrators". It is

motivated by the problems found by industry in

combining in a cost-effective way the tasks of ensuring

satisfaction of various non-functional requirements

(where "ensuring" means "achieving and demonstrating").

 Most such problems have been reported with the task of

ensuring both safety and security in embedded systems.

Companies with established processes for ensuring safety

would import processes for ensuring security as well, but

problems may arise because on the one hand, the two

need to be considered together (e.g. because security

violations affect safety, and because design trade-offs

may arise between these two sets of goals), but on the

other hand, they are the preserves of different technical

cultures with their own languages, habitual assumptions

in their analyses, etc. It is sometimes said, deprecatingly,

that these specialists of different cultures work in "silos",

with information flowing vertically within a specialism

but not across specialisms. As the SAE J3061

Cybersecurity Guidebook has noted: “A tightly integrated

process for Cybersecurity and safety has the advantage of

a common resource set, thus, requiring fewer additional

resources. However, since both activities require different

technical expertise and both activities are resource

intensive, it may not be feasible to expect a single team of

experts to have the skills to perform both Cybersecurity

and safety tasks simultaneously.” It is for this reason that

the Guidebook, while recognizing the advantages of the

ideal integrated process, makes provisions for non-

integrated safety and security processes that communicate

in more or less well-defined ways – what in AQUAS we

call interaction points (Figure 1).

We call "interaction point" both an activity and the point

in a product life cycle (PLC) at which it occurs. The

activity is "interaction" in that (a) experts in the various

aspects of the system and its properties interact., e.g.

security and safety experts; (b) their analyses are

combined in some way, that may be anywhere in the

range from informal discussion and mutual critique to

using mathematical models to assess various measures of

interest for alternative design options, or even a single,

summary measure to be optimised (e.g., probability of an

undesired event); (c) the need for changes or decisions

may be recognised that require an integrated view, e.g.

because of inevitable trade-offs between desirable

properties, and these trade-offs are discussed between the

various experts to produce recommendations/decisions,

possibly with the aid of the above-mentioned

mathematical models.

2 Static versus dynamic interaction
points

An important question is when these interactions should

take place, to be cost-effective for a given project in a

given company. One viewpoint is that the lifecycle model

used by the developers should identify from the beginning

when interaction points will be needed. These "statically

scheduled" interaction points are so scheduled as to

achieve a reasonable trade-off between

 The cost of too many interactions for those "lucky"

projects that never have conflicts or resulting rework

(for these projects, all interactions may be counted in

hindsight as unnecessary costs) and

Figure 1 Two separate PLCs with interaction points

between them

262 AQUAS: A Project to Br idge the Gaps between Safety and S ecur ity Processes

Volume 39, Number 4, December 2018 Ada User Journal

 The cost of too few interactions for the "unlucky"

projects, in which conflicts between requirements and

unsatisfactory design trade-off are recognised late,

requiring expensive rework or causing project

failures. For these projects, frequent interaction

points would save money by reducing rework.

The standards tend to identify static interaction points,

partially through the very nature of the standard as a static

text. But the potential improvements through dynamic

interaction points are significant. Pre-planned, statically

scheduled interaction points are akin to scheduled

maintenance of equipment: they happen at predictable

times, their cost is factored into the total cost from the

beginning, and they are frequent enough to avoid nasty

surprises. However, a regime of scheduled maintenance

does not necessarily avoid ALL surprises and there is a

need to have a design that can deal with failures occurring

between maintenance points. If components of a system

fail during operation, the system typically needs: means

for failure detection; means for diagnosis; means for

repair or reconfiguration, recovery and restart. In the

case of the co-engineered lifecycle, examples of failures

and their detection mechanisms might be the following:

 Initial requirements from a client are found to be in

conflict during the implementation phase (for

instance encryption of data for a particular security

standard takes too much time to meet a performance

requirement). This may trigger interaction points in

the current phase of the PLC, and/or in previous

phases (that is, undoing some refinement activity for

some system part, going back to change and re-

analyse a higher-level design, so as to make the

satisfaction of the requirements feasible; or even

going back to renegotiate these requirements).

 Inadequate performance may lead to a safety related

issue. For example, a machine vision component in

an automated system may turn out to be insufficiently

robust to adequately recognize a sufficiently large set

of risky scenarios and may need to be upgraded for

performance. The introduction of new, redundant

mechanisms to deliver the needed performance might

open up a new attack surface that was previously

unanalysed.

 in the process of refining an aspect of design, the

design team discovers that they violated some

'contract' established at a previous stage of refinement

(e.g., they agreed to implement a certain message

encryption as a security control in less than a certain

fraction of the main control loop period of a system;

but they discover that when implemented it takes

longer).

 the safety specialists realise that they may have

missed out something important in communicating

their proposed architecture to the security team; so,

the analysis by the latter that gave the 'all clear' to the

architecture may be wrong.

 independently of an on-going development effort (or,

alternatively, after deployment), a new vulnerability

has been discovered in a component or algorithm.

The security team wishes therefore to introduce new

controls, which might violate some assumption made

by the other teams (e.g. about timing, or about

possibility of communication between two

components, or authority given to a component) on

the basis of the currently specified controls.

In all these cases, the "detection" amounts to some team

member becoming aware of something potentially being

wrong. Triggering an interaction point (possibly delayed,

just as responsive maintenance can be delayed) then

serves to perform diagnosis: to decide whether something

is indeed wrong, possibly through intermediate steps of

more extensive analysis. The interaction point may in turn

trigger more extensive analyses (e.g., if our trust that a

deadline would not be violated was built simply on

extensive statistics of the delays observed in off-line

testing, it may trigger another similar round of offline

testing), just for the purpose of reaching a diagnosis, and

then possibly some rework/redesign, again possibly

requiring new analyses on the redesigned system.

Analyses of the results of the rework/redesign would be

subjected to another interaction point, to check that

indeed the problem is resolved. The combination of

statically scheduled interaction points and dynamically

scheduled ones might prove more cost-effective than a

more frequent series of statically scheduled ones.

3 System Design vs. Safety/Security/
Performance Analyses

The evolution of the system through the PLC is captured

by models, chosen by the developers. In AQUAS the

system models of most of the demonstrators will be based

on the OMG SysML/UML formalisms. A significant part

of it may be created directly from these models, including

by e.g. automatic code generation. Should the system be

changed (e.g. fixing faults/vulnerabilities in development

or post-deployment), the system model will be modified

too, so that the “real system” and the model of it are kept

consistent throughout the phases of the PLC.

Assurance about the required non-functional properties of

the designed system is achieved by dedicated methods of

analysis (i.e., Safety, Security, Performance – SSP

analysis), focused on assessing whether the system has

the required non-functional properties or not. Each one of

the various methods used for analysing security, safety

and/or performance relies on its own models. In some

cases, these models coincide with parts of the design

documentation: e.g., some verification methods are

applied directly to source code or to state machine

diagrams used in specifications. But for many SSP

analyses, the models they need rely on formalisms that are

very different from SysML/UML. E.g., performance

modelling might use Petri nets or queuing networks. The

important point here is that whenever an SSP analysis is

needed, a model suitable for it must be extracted or

derived from the model of the designed system, available

at that particular point in time. Two further important

points are worth making here:

J. Favaro, S. Mazzin i , P. Popov, L. Str igin i 263

Ada User Journal Volume 39, Number 4, December 2018

 Some methods of analysis (and their respective

models) may not be applicable at all before the

system model has matured enough (e.g. a tool might

need the availability of source code for analysis).

 Some analyses may ignore some details of the

designed system even if such details are available.

For instance, if one uses a probabilistic state-based

model such as Stochastic Petri Nets (SPN) one may

be unable to benefit fully from having the full source

code of the designed product.

 The design models or design documentation are

normally incomplete descriptions. For instance,

designers may specify the type of a microcontroller

or memory chip to use in the system, and so to

facilitate verification, appropriate data sheets for

these products can be used. But implementation

details inside these components may have major

effects on non-functional properties. E.g., chip mask

changes may have undocumented performance

implications, or add/remove design faults; the much

publicised "Spectre" and "Meltdown" vulnerabilities

result from vendor-controlled chip design details that

a system designer would typically ignore; and the

new security/performance trade-offs required by the

fixes for these vulnerabilities were arranged by

vendors with limited communication to users. So,

analyses for security, safety etc. may require adding

extensive "annexes" to system design documentation.

4 Tool Support

Interaction points occur within the context of a number of

questions:

 Why an interaction point would be needed (e.g. a

potential conflict may arise)

 When an interaction point should take place (e.g.

statically or dynamically determined)

 What will take place during the interaction point (e.g.

joint examination of a design artefact, trade-off

analysis of conflicting design decisions)

 How it will take place (e.g. manual observation and

discussion, automated tool support, semi-automated

tool support)

As challenging as the first two questions are, it is equally

challenging to address the second two questions. That is,

when an interaction point does occur, there must be a

viable set of artefacts (at whatever level of abstraction or

lifecycle phase) available.

 What. The procedures of e.g. the security and safety

analysts can be run independently without difficulty.

But they may use different models that are difficult to

relate to each other; or, simply, the kind of questions

that need to be asked to identity gaps left by the

independent analyses are non-obvious. Or e.g. the

security analyst may propose a design addition – a

subsystem implementing a security control, but

specify it in a formalism that makes it hard for the

other specialists to analyse. This may create practical

difficulties that make a complete analysis too onerous

in practice.

 How. Even if two artefacts have been created with the

same formalism (e.g. SysML), there may be a lack of

adequate tools to support the needed analyses (e.g.

tools for worst-case performance analysis). More

critically, even if the tools are individually available,

they may not be able to interact due to poor planning

of the overall toolchain framework.

Efficiency of interaction is also an important factor here.

People might limit themselves to simpler analyses if it is

too time/effort-consuming to do deeper analyses, such as

the combined analyses for SSP. Inadequate tool

interoperability and inconsistencies of modelling

formalisms can severely hamper efficiency, but they can

be addressed through emerging interoperability standards.

In the end, tool interoperability and judicious automation

will improve not only the economics of the work, but also

the quality of the result.

