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Abstract

Recent years have witnessed remarkable progress in nanoscience and nonlinear optics
research, paving entry of 2D materials such as graphene, phosphorene, silicene, and so
on. Graphene has extraordinary optical, electrical, mechanical and thermal properties.
The uniqueness of graphene lies in its modulation depth (> 90%) and signal attenuation
(< 5%), achieved by controlling its Fermi level through gate voltage. It is envisioned that
graphene-based modulators would be the ultimate high-speed modulator of the future,
performing at speeds up to 10 times faster than existing ones.

The accuracy of such solutions lies in determining the permittivity (e,) of materi-
als used. Graphene possesses complex conductivity (o(w) = o1 + jog) and permittivity
(e(w) = €1 + jez). Using Kubo formalism, we derived an analytical method for finding
the conductivity of graphene (Ug’interband + O'gyjntraband) and then the complex permittivity
(eg)- The values of e(w) are plotted as a function of chemical potential (u, eV), wavelength
(A, nm) and thickness of graphene layers ().

Benchmarking was carried out using two solvers wviz., complex and perturbation to
ascertain the suitability of the method. Effective mode index (n.g) and absorption («)
are calculated for quasi-TE and quasi-TM guided modes of the waveguide. We found that
the waveguide performance parameters are highly influenced by the position of graphene
layers in the waveguide and the thickness and type of dielectric material that encapsulate
the graphene layers. Two positions viz., graphene-as-top layer and graphene-as-slot layer
were analysed. Three dielectric materials, hBN, AlsOs and HfOs, classified as low-, high-
and very-high index, respectively, are chosen. For operation wavelength range (1.3—1.7um)
and for varying dielectric layer thickness from 5 to 70 nm, the plots for neg and a (dB/pm)
are obtained.

Performance parameters such as extinction ratio (ER) and insertion loss (IL) were
calculated for varying dielectric thickness (5-70nm). ER and IL are achieved within
the ranges 20-70 and 3-4dB/um, respectively. We inferred that to enhance the modal
properties (neg and «), graphene-as-top layer waveguide can have a combination of very
high-index (g, = 25) dielectric material (thickness > 15 — 20 nm) encapsulating graphene
whereas a very high-index dielectric with reduced thickness (< 5 — 10nm) encapsulating

graphene is suitable for graphene-as-slot layer waveguide.
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Chapter 1

Introduction

“Let there be light; and there was light”

Probably, Sunlight is the oldest of all “lights” mankind has ever seen or known after
the Big Bang, just 13.7 billion years ago! Sunlight is the source of energy for all living
beings on Earth. This proves one of the properties of light — it’s a form of energy! On an
average, Sunlight takes 8 minutes and 20 seconds to reach the Earth.

The question “is light a wave or a particle” broadly remained till the dual nature
of light was founded. Light holds both the properties of a wave and of a particle. A
wave is simply an oscillation by which energy is transferred from one point to the other.
Or a uniform disturbance (mechanical) that propagates through matter or space. The
two most important ways of such transferring of energy through waves are classified as
mechanical waves and electromagnetic (EM) waves; sound waves and light waves are
classical examples, respectively. Former requires a medium, for instance air, to travel but
latter do not require a medium for propagation. This thesis is wholly based on study of
modal properties of electromagnetic waves. A propagating EM wave shown in Fig. 1.1
undergoes periodic changes in strengths of electric field and magnetic field.

A propagating light (EM) wave through a material medium can be controlled since it
interacts with the atoms or molecules in the material. Such a medium is termed waveg-
uide and have been a subject of study since the 1890s. Light wave act as a carrier in
a waveguide. Most materials respond to an electric field applied as gate voltage. Only
materials that allow/interact with EM waves and electric/magnetic fields can be used to
design waveguides. Lithium niobate (LiNbOg), lithium tantalate (LiTaOs), potassium
dihydrogen phosphate (KDP) and gallium arsenide (GaAs) are among several materials

that are commonly used to design wavguides. JJ Thomson first proposed the structure
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Figure 1.1: Propagation of a plane electromagnetic wave. Adapted from [1].

for guiding waves in 1893. Then Oliver Lodge (1894) tested it experimentally. In 1897,
Lord Rayleigh derived the first mathematical analysis for electromagnetic waves. In 1964,
Nelson and Reinhart observed phase modulation of light wave due to linear electro-optic
effect. Devices based on electro-optic effect are used for analog/digital signal and infor-
mation processing, optical computing and sensing, etc. Controlling the optical properties
of light is the key aspect in photonics.

Thus the idea in electrooptic devices is to engineer the optical properties of a material
by applying a voltage. Change in permittivity tensor of the material results in modifica-
tion of phase, frequency, amplitude and propagation direction of the light wave. Therefore,
studying propagation of light through such materials is important for designing electroop-
tic devices. An applied electric field affects redistrubition of charges at the atomic level
inside a material. This leads to linear (Pockels) and quadratic (Kerr) electrooptic effects.
Optoelectronic materials are classified on the basis of both these effects. It is observed
that Kerr electrooptic effect is exhibited by almost all crystals.

Combination of elements in groups III-V, II-VI and IV are important for designing
modulator devices. Metals, insulators and semiconductor elements differ with separation
between valence band and conduction band (Fig. 1.2). This is termed bandgap and
denoted by E,. Most elements in these groups respond to injection of electrons and holes
by applying a voltage or through an optical pump. This results in change of absorptive
properties due to change in carrier concentration. Here, the accuracy in determining
the dielectric constant (¢) of the materials holds prime importance. Progress in crystal

growth techniques such as molecular beam epitaxy (MBE), metal-organic chemical vapour
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deposition (MOCVD) and atomic layer deposition (ALD) has led to growing different
layers of materials one above the other with very high degree precision of layer alignment.
Such designs result in heterojunction structures which play major role in optoelectronic

device applications.

CB

| vB

Metal Semiconductor Insulator

Figure 1.2: Energy band separation showing overlapping valence band (VB) and conduc-
tion band (CB) for metal and rest separated with a band gap energy, E,.

Pockels effect denotes linear variation in refractive index (n) of a dielectric medium
(crystal) with respect to applied electric field. A propagating wave through the crystal
becomes dependent on the electric field vector. Such phenomenon is very useful for de-
signing optical modulators using these materials. Modulating the light beam is the core
principle on which these devices operate.

Optical modulators are of following types:
e acousto-optic

e clectro-optic

e electroabsorption

e interferometric

o fibre-optic

e liquid crystal

e micromechanical

1.1 Photonic materials

Photonics is a word coined from photon and electronics. Photons are light particles with

energy F = hv. Electronic devices integrated with light waves for modulation and trans-
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Table 1.1: List of few combinations optical materials

NH4H2PO4 KDQPO4 LiNbOg InP GaAS

ZnSe KHsPOy4 SrTiO3 | GalnAsP | GaAlAs

ZnTe CsHyAsO4 | LiTaO3 | CaFy GaN

BilZSiOQO BaTiO;g KNb03 BaFQ YAG

Zn0O ZnSe 7nS Si—Ge Polymer optic materials

mission results in the birth of photonics. So, materials that are capable of molding the
flow of light and that respond to electrical field are categorized as photonic materials. The
type of atoms and lattice geometry of these materials govern their electrical, electronic
and optical properties. The thickness of these layers are in terms of micrometer (um) and
nanometer (nm). These materials respond to light waves by reflecting or propagating or
confining them. As is well-known, fibre optic cables made of materials that guide light
are extensively used in telecommunications industry. Fibre optics deals with propagation
and interaction of EM waves with material medium. Now the technology is moving to-
wards identifying materials for high-speed computing as electronic devices have bandwidth
limitation.

Photonics materials comprise a wide range of elements viz., semiconductor materials,
nanomaterials, biophotonic materials and polymer materials (Table 1.1). The advent of
2D materials has opened the gates for new materials of one atomic layer thickness or few
atomic layers. One such material is graphene and this thesis is based on it. Integrating
these materials with other materials hexagonal boron nitride (hBN), hafnium oxide (HfO3),
molybdenum disulsulfide (MoSs), etc. offers a huge potential for new range of electronic
devices. Shortcomings observed in silicon photonics could be alleviated by integrating
newly found materials with electronic components, for instance, optical interconnects.

Optical signals sent through optical fibres need to be converted to digital form for
information processing. Therefore the speed of operation of the device that converts is
crucial. Due to bandwidth limitation, electronic components cannot be tuned for high
speed operations. Thus this limitation has led to the birth of 2-D optoelectronic materi-
als. Electronic devices can be replaced with optical devices such as switches, connectors,
receivers, modulators, filters and transmitters.

Materials exhibit weak nonlinearities when exposed to high intensity EM waves. Such
nonlinearities arise form anharmonic motion of electrons with respect to an applied field.

If a material is considered as a pool of charged particles, then an applied electric field will
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induce an oscillation in the pool of electrons. At low intensities, in induced polarisation,
the displacement of the electrons or dipole, P, is directly proportional to the magnitude of
the electric field of the incident light wave given by, P = xE, where y is the linear optical
susceptibility, a function of the refractive index of the material. For instance, laser light
generates very intense fields, which give rise to nonlinear optical effects and the expression

for polarisation is given by,

P=xWE+xPE+x¥E+. .. (1.1)
1.1.1 Photonic crystals

Photonic crystals are materials of which the refractive index (n) that vary periodically in
1, 2 or all 3 spatial dimensions [2]. Multilayers of such materials form two- and three-
dimensional photonic structures that mold the flow of light (Fig. 1.3). The thickness of
these layers are in terms of micrometer (pm) and nanometer (nm). These material respond
to light waves by reflecting or propagating or confining them. As is well-known, fibre-
optic cables made of materials that guide light are extensively used in telecommunications
industry. Now the technology is moving towards identifying materials for high-speed

computing.

Figure 1.3: Photonic crystals of (a) one, (b) two and (c) three dimensions. Different lines
show variation in dielectric constants (1, €2, £3) within the crystal. Adapted from [2].
A crystal possesses long range periodic arrangement of atoms or molecules. An electron
entering a crystal thus passes through a periodic potential. Therefore the type of atoms
and lattice geometry govern the electrical, electronic and optical properties of the crystal.
Similar to a crystal with atoms or molecules and periodic potential, a photonic crystal
has macroscopic constituents with differing dielectric constants and periodic dielectric

function or a periodic refractive index. Here, the photonic band gaps prevent EM wave
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from propagating in particular directions and corresponding frequencies. When a photonic
crystal prevents EM wave propagation in all directions irrespective of its polarization and
source of emission, the crystal is said to have a perfect photonic band gap. Photonic band
gap materials have a periodic dielectric profile, which prevents light of certain frequencies
or wavelengths from propagating in one, two or any number of polarisation directions
within the materials. This is synchronous to the electronic band gap and thus known as

photonic band gap.
1.1.2 Current trends

Recent years have witnessed remarkable growth in nanoscience and nonlinear optics re-
search, paving entry of 2D materials such as graphene [3], phosphorene [4], silicene [5] and
so on. These materials offer exceptional properties which are in need for potential applica-
tions in nanoelectronics. Graphene has extraordinary optical, electrical, mechanical and
thermal properties. Moreover, the optoelectronic and nonlinear properties of graphene
makes it a suitable material for systems requiring extremely high operational bandwidth
(12 THz) [6]. The uniqueness of graphene lies in its modulatoon depth (> 90%) and
signal attenuation (< 5%), achieved by controlling its Fermi level through gate voltage.
Graphene demonstrates strong light—matter interactions. Plasmons in graphene are tun-
able and operate in wide range of frequencies from terahertz to visible. It is envisioned
that graphene-based modulators would be the ultimate high-speed modulator of the fu-
ture, performing at speeds up to 10 times faster than existing ones.

Optical modulation has started getting attention in the recent years due to limitation
imposed by electrical interconnects. On the other hand, optical interconnects have proven
to be viable alternatives for ever growing demands of high speed computing, termed Quan-
tum Computing, using qubits. Exploiting quantum aspects such as fermions of materials
have shown possibilities of building future quantum computers. Recent studies have estab-
lished Majorana Fermions (surface codes and colour codes) as the framework for quantum
computation [7,8] and a strategy to regulate the phase of Majorana state [9].

Intense research is being focussed on developing cost-effective, fast, high-performance
optical modulators for optical interconnects. The 2D materials such as graphene, tran-
sition metal dichalcogenides (TMDs) and phosphorene have proven to be promising for

implementing functions such as generation, propagation, modulation and detection of pho-
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tons for integrated photonic circuits [10].

1.2 Fundamentals

1.2.1 Light waves

Light waves are characterized as wavelength (), frequency (v) and speed (c¢), forming the
simple equation, ¢ = Av. James Clerk Maxwell, in 1865, proposed that light waves are
indeed electromagnetic waves comprising oscillating electric and magnetic fields. Speed
of light was measured to be 299,792,458 m/s. Light particles are defined as photons, a
quantization of EM energy, which behaves like particles as well as waves. Energy equation
of photon is given as E = hv, where h denotes Planck’s constant, 6.62 x 1073*J /s. Figure

1.4 shows the complete chart of electromagnetic spectrum.

< increasing frequency (f)
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Figure 1.4: The continuous spectrum of an electromagnetic spectrum [11].

1.2.2 n and ¢

Refractive index (RI) is the prime property of an optical waveguide which is used to study
propagating modes, intensity distribution, insertion loss and cutoff wavelengths. It is
a dimensionless physical quantity denoted by n. It is actually a complex number with
real and imaginary parts: n = n’ — jn”, where n’ the real part and n” the absorption
coefficient which shows the level of absorption of light wave within the waveguide. In an
ideal transparent material, n = n’, indicating n” = 0. According to Snell’s law light ray
undergoes reflection and refraction when passing from one medium to another (Fig. 1.5),
given by, nisinf; = nesinfy where ni and ne denote indices of refraction in medium 1

and medium 2, respectively.
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Medium 2

Figure 1.5: Light ray travelling from medium 1 to medium 2. n; and ng, refractive indices
of media; k;, k-, and k¢, incident, reflected and transmitted light rays, respectively.

Dielectric constant or permittivity (¢) is square of refractive index, given by, ¢, = n?.

In this study, we deal with materials having a complex dielectric constant, €1 + jea. This

part is dealt in detail with Chapter 3.5.
1.2.2.1 Mode Effective Index

The term “effective index” (neg) is derived from the word “refractive index” (n). It denotes
the measure of overall delay experienced by the guided light wave inside a medium; for
instance, a three-layer waveguide medium. Refractive index (n) is the inherent property
of a material whereas neg refers to the property of the waveguide, which depends on the

refractive indices of the individual materials that make the waveguide.
1.2.2.2 Optical Absorption

Optical absorption occurs when the energy of an incoming photon is transferred to an
electron in the valence band which moves to the conduction band if the photon energy
(Ep) is larger than the bandgap energy (F,). The photon absorbed in this process results
in an electron-hole pair. Photons with energy smaller than the bandgap energy, £, < E,,
are not absorbed and the waveguide is transparent for lights with wavelengths longer than
A = he/Eg. The optical absorption coefficient is denoted by a which is the most important

factor for electro-absorption modulators and photodetectors [2].
1.2.3 Wave mechanics

Mathematically, a wave represents a function that propogates with respect to time. Figure

1.6 shows displacement of a function f(x), moving with  — 2y where xg = 1,2,3. This
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represents a wave moving along positive z-axis whereas x + zo will denote a wave function

along negative x-axis.

Figure 1.6: A 1D wave function: a, f(z); b, f(x —1); ¢, f(x — 2); and d, f(z — 3).

The 1D wave equation for light waves is given by
O*E 0’E
— —pe——5 =10 (1.2)
Ox? ot?
where F(z,t) is the electric field, x4 the magnetic permeability and e the dielectric permit-
tivity. Here, z is the propagation direction.

The electric field of a light wave is then given by

E(z,t) = Acos(kx — wt — 0) (1.3)

where A is the amplitude and 6 the absolute phase of the wave.
Figure 1.7 shows the plot of sinwt with respect to time ¢ and w the angular frequency.
Both w and frequency (v) are related by w = 2wv. Such a propagating optical wave is

expressed as:

E = Epsin(kz £ wt) (1.4)

where the phase is (kz + wt), kz denotes the wave propagation in z direction with &
the propagation constant determining the progression rate of the wave with distance z.

Wavelength and propagation constant are related as A = 27 /k. Below equation addresses
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Figure 1.7: Plot showing sin(wt) and cos(wt).

the mathematical description of a sinusoidal wave:

y(r, ) = yo sin {2;(7» _ vt)] (1.5)

where y(r, t) is the displacement of wave at position r and time ¢, yo the amplitude of the
wave, A the wavelength, v the speed of wave which equals to A X f and ¢ the time.

Phase angle of the wave is given by,

2T

o= T(T —vt) (1.6)

Other aspects of wave are interference, superposition, diffraction and polarization.

These effects are not dealt in this thesis but can be studied from various books [12].
1.2.4 Maxwell’s equations

In electromagnetism, Maxwell’s equations play a pivotal role providing complete descrip-
tion of how electric and magnetic fields behave under space and time constraints [13].
Using divergence theorem and Stokes’ theorem, Maxwell’s equations transform the follow-
ing basic equations from integral form to differential form.

Gauss’ law for electric field:

% ﬁ A da — qﬂ Divergeng;theorem 6 . E—» _ ﬁ (1.7)
S €0 €0

Gauss’ law for magnetic field:
% § A da=0 Divergengi theorem 6 ) B» —0 (1.8)
S

10
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Faraday’s law:
— - — / - — é
7{ Bodi=-4 / Bonvda SO g5 98 (1.9)
c dt Js

Ampere-Maxwell law:

. d ~ Stokes’ th - = > OF
/ B-di = u0 <Ienc+6o/E-ﬁda> rokes Lot G o« B = g <J+50
c dt Js

(1.10)
where E denotes the electric field vector; B the magnetic field vector; p the electric
charge density; J the electric current density; g9 the electric permittivity of free-space,
g0 = 8.854x 107 12F /m, € = ep¢,, &, the relative permittivity; 1o the magnetic permeability

of free-space, pig = 47 x 107"H/m and p = popty-.
Using differential form of Maxwell equations, the wave equation is derived from Fara-

day’s law (1.9) by taking curl on both sides of equation (1.9) as follows:
- - - - OB 0 (ﬁ X E)
E) _ i I A 111
V x (V X V x ( 5 ) 5 (1.11)
Applying vector operator identities and Laplacian to vector field components, yield

the following linear second-order wave equation

o PE
V2E = HO%0 g (1.12)

where E is the electric field vector, denoting an electric field (wave) propagating from one
point to other.
Similarly, Ampere-Maxwell law yields

L 028
V2B = jeo—
Ho€o 012

(1.13)
where B is the magnetic field vector.
As we have seen earlier, waves are actually propagation of energy in the form of electric

and magnetic fields. For an electromagnetic field, the expressions for energy density (Ug)

and energy flux (Up) are derived using Poynting’s theorem and Maxwell’s equations:

1 - 1 =
Up = 55132 Uy = iuHQ (1.14)

where Up and Upy denote energy per unit volume of electric and magnetic fields, respec-
tively. Both vector quantities yield energy associated with an EM wave as S=ExH ,

known as Poynting vector.

11
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Further, the constitutive relations are used to define the properties of the medium
through which the EM wave propagates. Using E the electric field (V/m), B the magnetic
flux density (V-s/m?), D the electric displacement flux density (C/m?) and H the magnetic
field (A /m), following relations are derived:

In isotropic media,

D=¢E B=uH (1.15)

In anisotropic media,

D=¢-E B=j-H (1.16)

where & is the permittivity tensor and  the permeability tensor given by

Exx Exy Euxz Hrx Hzy Hxz
E=| €yz Eyy Eyz o= | fyz fyy fyz (1.17)
Ezx Ezy Ezz Mz Hzy Hzz

1.3 Waveguides

History of communications dates back when scientists attempted to use lens and mirrors to
transmit light waves. It led to the search for appropriate transmission medium. Invention
of laser gave a thrust of optical communications with first laser operating at A = 694 nm
and optical frequency of 5 x 10'4 Hz. But free-space propagation is not a suitable way of
communication as the beam is scattered by atmospheric factors such as rain, fog, snow, etc.
Also, electronic components impose a limitation on bandwidth of optical communication.
Therefore, the need for allowing light to propagate through another medium was identified.

Optical waveguides confine and guide light within a media of higher refractive index
(n) than its surroundings i.e., cladding. Guiding light works according to the principle of
total internal reflection (Fig. 1.8(a)). When a light ray hits the interface of two media
with different refractive indices (n; and ngy), with a certain angle of incidence (6;), a part of
the light is refracted (or transmitted) and other part is reflected back within the medium.
This principle is known as total internal reflection. The reflected ray follows a zig-zag path
within the medium (Fig. 1.8(b)).

If the waves propagate in the z-direction as exp(j5z), then the longitudinal propagation

constant (3 is related to the ray angle ¢ by

B = nikcos ¢ (1.18)

12
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Figure 1.8: Principle of refraction (a) and total internal reflection (b) of light rays in
medium 1 and medium 2 of different refractive indices ny and no, respectively.

The propagation constant 3 is constrained for guided modes by

The aspect of confining, controlling and routing light on nanoscale has gained sig-
nificant attention since the advent of 2-D materials. Light is confined to the order of
sub-wavelength scale in these devices. Through proper choice of materials, mode confine-

ment can be achieved at nanoscale.
1.3.1 Silicon-on-Insulator

Waveguide is the building block of photonic circuits. A 1D waveguide is termed planar
and 2D the channel, which confine light in one-dimension and two-dimension, respectively.
Photonic crystals can confine light in all the three dimensions. Silicon-on-Insulator (SOI)
is the most extensively used platform used in microelectronics industry. Figure 1.9 shows
a conventional SOI waveguide structure. Layer 2 is a buried SiOy with n = 1.46 and layer
3 the crystalline Si with n ~ 3.5. Thickness of these layers are of the order of a micron
but varies according to fabrication methods.

From Maxwell’s equations that govern the light wave propagating through this waveg-

uide (Fig. 1.9) with conductivity o = 0 and magnetic permeability pu = pg:

OH
OE  ,0F
VXH—(‘:E—EQTL E (121)

13
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Figure 1.9: Schematic of a SOI waveguide. Layers 1, 2 and 3 denote Si substrate, SiO»
and crystalline Si, respectively.

where F is the electric field, H the magnetic field, ug the free-space permeability, ¢y the
free-space permittivity and n the refractive index of the medium. Components of electric

field and magnetic field are denoted by (E,, Ey, E) and (H,, H,, H.), respectively.

ns

n;
(a) (b) ()

Figure 1.10: Common types of channel waveguides: (a) rib, (b) strip and (c) buried.
Refractive indices nq, ny and ng denote substrate, core and cladding (air), respectively, in
each of the waveguides.

Figure 1.10 shows the most common waveguide structures in use. Refractive index, na,
of layer 2 is higher than those of substrate (n;) and cladding (ng) such that the light wave
is confined within layer 2. Silicon waveguides are capable of supporting multiple modes

with dimensions even less than the operating wavelength.
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1.3. Waveguides

1.3.2 Waveguide Fabrication

Fabrication involves step-by-step processes of thin film deposition, photolithography and
etching. Thin film deposition is carried out by methods viz., sputtering, chemical vapour
deposition (CVD) and thermal oxidation (SiO3). Waveguide dimensions are controlled
by thickness of thin film and pattern followed for photolithography. Figure 1.11 shows a
micrograph of an actual SOI rib waveguide wherein a deposited oxide layer provides an

upper cladding, and the buried oxide layer providing the lower cladding.

AS0R-8 18.0kv X130, 8k ¢ hien

Figure 1.11: Electron micrograph of a fabricated Si rib waveguide. Reproduced from [14].

Most common farication processes include Separation by IMplanted OXygen (SIMOX),
Bond and Etch-back SOI (BESOI), wafer splitting and silicon epitaxial growth [14]. Other
techniques include electron-beam lithography (EBL), holographic/combination lithogra-

phy and anisotropic dry etching [15].
1.3.2.1 Thin film deposition

Deposition processes are carried out in vacuum chambers evacuated to around 10~6 Torr.
Thermal evaporation is a conventional technique followed for depositing desired material
onto the substrate. Plasma gas is prevalent in all stages of fabrication viz., deposition,
etching, removal of photoresist and ion implantation. Plasma is composed of ionized gas
comprising ions, electrons and neutral particles. It can be achieved by applying AC or DC
voltage to a gas contained in a pressurised chamber. Figure 1.12 shows a plasma setup.
Plasma gas is sent to the evacuated pressurised chamber which is stabilised to the
order of 1073 and 10~2 Torr. Inside the chamber, electrons lose their energy through

collision with gas atoms. In turn, excited gas atoms emits energy with a distinctive glow
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Figure 1.12: Schematic of a plasma genaration chamber: S, sheath; e; and es, electrodes;
p, plasma; AC, power. Adapted from [14].

which varies according to the constituents of gas atoms. Sheath (S) refers to the dark
region which contains very few electrons. In Si processing, plasma is derived from CFy

gas. Using plasma gas, the etch rate can be controlled.

(a) Sputtering: This technique employs inert gas ions (e.g., argon) to strike the target
and eject metallic atoms. Thus, the sputtered atoms migrate to the target wafer. The
inert gas is ionized inside a plasma chamber. This technique uses a 13.56 MHz power and
hence called RF sputtering. Figure 1.13 shows a schematic of sputtering process. The
formed plasma potential makes inert gas ions to strike the target and eject the atoms
which then travels to the wafer layer.

Energetic ions bombard the target element and eject the atoms. These atoms, called
sputtered particles then deposit on thin films onto the substrate. This is called sputter
deposition based on plasma used. Cathode and anode face each other inside a vacuum
chamber. An inert gas (argon) is then introduced into the chamber which reaches a pres-
sure of 1-10 Pa. High voltage to the range of 2keV, applied between the electrodes, ignites
a glow discharge. Argon ions are driven towards the target which ejects free atoms due to

heavy bombardment. Ejected atoms are finally guided to the target wafer.

(b) Chemical vapour deposition: This is the most common technique for epitaxial

growth of silicon. As the name indicates, deposition of desired film occurs due to chemical
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Figure 1.13: Schematic of sputtering technique: (1) anode, (2) cathode, (3) plasma, (4)
shutter, (5) substrate, (6) target and (7) diffusion. Adapted from [14].

reactions. It is a process by which a solid film is deposited onto the surface of Si wafer
by gas phase reactions at the surface. Figure 1.14 shows the schematic of a CVD process.
Here, dichlorosilane (SiH2Cly) is used as source gas. Wafer surface temperature is raised
to the order of > 1000°C which is the driving factor behind the chemical reaction. CVD
processes such as gas transport mechanism and chemical reaction kinetics are explained

in various studies [16,17].

(1)

(2) 69 T (7)

|\<0>L<e>.... ¢

(4) (5) (9)

Figure 1.14: Schematic of CVD process: (1) main gas flow region, (2) transport to surface,
(3) gas phase reactions, (4) adsorption of film precursor, (5) nucleation and island growth,
(6) surface diffusion, (7) redesorption of film precursor, (8) desorption of volatile surface
reaction products and (9) step growth. Adapted from [14].
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Gas phase reactions play vital role here. Deposition takes place due to the chemical
reaction between the reactants on the substrate. Reactant gases are pumped into the
vacuum (reaction) chamber. Under optimum temperature and pressure conditions, the
reactants undergo reactions on the substrate. Conditions vary according to the choice of
film deposition. Finally, products of the reaction are deposited onto the substrate. Key
parameters in this technique include reaction rates, gas transportation mechanism and

diffusion processes. Following steps define the CVD technique:
(a) reactants are transported to the reaction zone
(b) gas phase reactions start
(c) reactants are transported to surface of substrate
(d) physical and chemical adsorption occur
(e) desorption of volatile by-products
(f) moving by-products away from reaction zone

Following are some of the reaction types from this technique:
Pyrolysis : SiH4(g) —  Si(s) + 2Hza(g) at T' = 650°C
Reduction : SiCly(g) + 2Hs —  Si(s) + 4HCl(g) at T'= 1200°C
Ozidation : SiH4(g) + Oz — SiOa2(s) + 2Ha(g) at T' = 450°C
Compounds : SiCly(g) + CHy —  SiC(s) + 4HCl(g)

Major advantage of CVD process is that high growth rates can be achieved and the
possibilities of growing epitaxial films. On the other hand, it is a complex process which
involves high temperatures and emission of toxic and corrosive gases.

(b) Thermal oxidation: The basic model reactions for this technique are as fol-

lows [18]:

Si+2H,O — SiOy + Hy (WGt)

Si+0; — SiO (dry)

18
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Figure 1.15 shows the simple schematic of oxidation technique. Chemical reactions
occur at both the boundaries of oxide layer and diffusion process takes place. Oxygen is
supplied to a quartz oxidation tube which has silicon slices placed flat on a quartz boat.
Silicon slices are usually circular in shape with 22mm diameter and 200 ym thickness.

The oxide thickness after formation are measured using interferometric techniques.

a,

Oxidation

a,

Silicon

Figure 1.15: Schematic of oxidation process. Dotted lines (aj ---a2) denote the Si-SiOq
interface after formation [14].

Oxidant diffusion and Si/SiO9 interface chemical reaction are the major controlling

factors in this technique. Thickness of oxide deposition varies linearly with time.
1.3.2.2 Photolithography

Photolithography is a technique by which layers of thin films are patterned, etched and
then coated [19]. It is the process of transferring the image of an integrated circuit to
a substrate under controlled conditions. First, substrates are coated with photoactive
material called photoresist. Then a pattern is aligned and projected on the substrate via
UV light. The image is then developed. This process involves mask, photoresist, aligner,
developer and setup for baking.

Geometric shapes are transferred on a mask to a polished surface. Optical radiation is
used to image the mask on a Si wafer with the help of photoresist layers. This technique

involves following steps:
e step 1: surface (wafer) cleaning
e step 2: barrier layer formation
e step 3: spin coating with photoresist
e step 4: soft baking to densify resist

e step 5: mask alignment to register patterns
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e step 6: exposure

step 7: development

step 8: hard baking
e step 9: post process cleaning

In this technique, a mask-defined pattern is transferred onto the wafer surface. A pho-
toresist i.e., a photosensitive polymer, is used to print the pattern on the wafer. Figure
1.16 shows the steps involved in this process.

Preparation of wafer: The wafer should be free from any contaminants and desorbed of

UV light

A

1

Waveguide

(a) (b) ()

Figure 1.16: Steps involved in photolithography technique. (a) Sol wafer coated with thin
polymer (photoresist), (b) exposure of UV light on the wafer covered by a mask and (c)
waveguide pattern obtained after hard bake [14].

moisture. Cleaning is carried out by a wet process and then rinse and dry. Then baking
at T' = 150°C results in surface dehydration, which is done prior to applying photoresist.
Finally wafer is coated with an adhesive such as hexamethyldisilazane.

Photoresist: Wafer is then coated with a liquid photoresist. Coating process involves dis-
pensing the resist (1-10mL) to the center of wafer and spun at a speed 1-5krpm. Resist
is thus distributed throughout the wafer.

Soft bake: It drives off the solvents in the resist and improves the uniformity and adhe-

siveness of the resist. This step is carried out at 7' = 100°C that lasts for few minutes.
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UV exposure: Resist-coated wafer is placed in the mask-aligner with a submicron preci-
sion. Required pattern is defined in the mask. Then UV light is exposed onto the wafer.
Mask has transparent regions through which light passes through and photosensitive ele-
ments of resist are activated which are removed later on. This is known as positive resist.
In a process wherein unexposed areas are removed is called negative resist.

Photoresist developing: At this stage, wafer is treated with a developing solution. Depend-
ing on process (positive or negative), solution dissolves (activated or unactivated resist)
and thus desired pattern is formed in the wafer.

Hardbake: This is the final stage wherein resist solvents are cleared and strengthening the
adhesiveness of resist to the surface of the wafer takes place. Temperature is 90 — 140°C
which lasts for several minutes depending on requirement. Care should be taken such that

pattern deformation does not occur. Pattern is then printed on photoresist.

1.3.2.3 Etching

This is the process of removal of layers from the wafer surface. It involves two approaches
viz., wet and dry. Controlled and monitored material removal is carried out through
physical (mechanical) or chemical (reactive) process. Figure 1.17 shows a wafer with SiOq
on Si. Slanted lines denote hardened resist on SiOg layer. To remove oxide layer uncovered
by resist, the wafer is immersed in a HF or HF+NH4F solution. Chemical reactions do
not affect Si or protected oxide layers but etches away the exposed oxide layer. Chemicals
making up such solution are called etchants. Different etchants are used for different

materials. For instance, a solution of HCl1+ HNO3 + H5O is used for indium tin oxide

(ITO).

- B BN B

(a) (a) ()

Figure 1.17: Schematic of chemical etching process: 1, silicon; 2, SiOq9; 3, photoresist. (a)
Unexposed photoresist after developing stage. (b) Oxide layer is etched in a HF + NH4F
solution. (c) Removal of photoresist with HoSO4 [14].
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1.4. Electro-absorption modulators

Temperature, etching time and etch rate are vital in this process. Types of etching
are wet, dry and plasma. Mechanical ways of etching are ultrasonic agitation or cleaning,

using abrasive compounds for polishing and supercritical cleaning.

1.4 Electro-absorption modulators

An electro-absorption modulator is basically a semiconductor device that introduces changes
in incident light intensity by means of absorption. The materials that make such mod-
ulator are responsible for inducing a change in absorption spectrum due to an applied
electric field. Change in refractive index (n) is caused by the electrical signal which re-
sults in change of real (Re(n)) and imaginary (Im(n)) parts of refractive indices of the
material. Change in Re(n) is termed electro-refraction and change in Im(n) is termed
electro-absorption. An EAM works on the ON-OFF principle thereby encoding informa-

tion on an optical signal, termed modulation. Schematic of a typical EAM is shown in

Fig. 1.18.

M

T « Photon Electrical signal
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Waveguide modulator

Optical pump (laser)

Figure 1.18: Schematic of a typical electro-absorption modulator [14,20].

Our study deals with electroabsorption modulators (EAMs) wherein the modulation
is achieved by controlling the incoming light beam by an applied voltage. In 1958, Franz
and Keldysh developed the theory of optical absorption by crystals when subjected to an
electric field. In 1963, Tharmalingam [21] derived expression for absorption coefficient («)
in the presence of a uniform field. The absorption factor plays a vital role in governing

the performance of an EAM.
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1.4.1 Modulation Mechanism

As already stated, the fundamental principle of an EAM is that the incident light beam
is absorbed by the medium, which is controlled with an electrical signal. Then the nature
of optical output will be based on the electrical signal that modulates the incident light.
The primary E-field effects that apply to semiconductor materials are Pockels effect, Kerr
effect and Franz—Keldysh effect [22,23].

Absorption in a semiconductor waveguide results from inter-band and free carrier ab-
sorption [15]. In the former, photons with energy greater than the band gap (7w > Eg) of
the material are absorbed by the excitation of electrons from valence band (VB) to con-
duction band (CB). The latter is due to concentration of free carriers affecting both real
and imaginary parts of n. Absorption changes in semiconductors are given by following

Drude-Lorentz equation:

e3N\3 Ne Ny
Aw= o — — + — (1.22)
0 /‘Le(mce) /‘Lh(mch)

where e is the electronic charge, ¢ the velocity of light, p the electron mobility, uy the hole

mobility, m?, the effective mass of electrons, m}; the effective mass of holes, N, the free
electron concentration, IV, the free hole concentration, €g the permittivity of free-space
and Ao the free-space wavelength.

Wavelength of incident light also plays a crucial role in absorption. A pure Si shows

an absorption of 2.83dB/cm at A = 1.15 um and 0.004dB/cm at A = 1.52 pm [24].

1.5 Numerical methods

Numerical methods or techniques [25] evolved for designing devices using software that are
based on theoretical methods for predicting the performance and behaviour of a system
before experimentation. Results from theoretical methods have always aided experimental
research in terms of cost and time. Some of the popular names include Newton, Euler,
Lagrange, Gauss, Jacobi, Fourier, Chebyshev and so on. Theoretical methods have roots
in mathematics, for instance, Gauss—Jordan and Jacobi methods. Ordinary differential
equations are used in methods such as Adams and Moulton, Runge-Kutta, Rayleigh—Ritz
for problems in mechanics, aerodynamics and acoustics, respectively. Numerical methods

form a bridge between mathematics and physics, especially. Invention of computers in mid-
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1940s greatly reduced the time involved in working out calculations which were done using
pen and paper. A new branch called “Computational Methods” was born encompassing
physical, chemical and biological sciences, all branches in engineering as well as economics.
Present day software helps research visualize the outcomes in a more advanced way.

On this regard, this thesis is wholly based on the Finite Element Method (FEM)
or Finite Element Analysis (FEA) which is one of the most widely used technique for
design and analysis in engineering. Following are the fields where such methods are most

commonly used to develop software for testing, research and development:

e mechanical, aerospace, civil and automotive engineering
e structural and stress analysis

e flow of fluids

e heat transfer

e electromagnetic fields

e soil mechanism

e acoustics

biomechanics

Numerical methods have been widely used in the study of optical guided-wave devices
due to the availability of faster and cheaper computer power. These methods are con-
cerned with finding numerical solutions to the Helmholtz’s wave equation derived from
Maxwell’s equations. For planar structures, or for structures with 1D index variation, the
approximate methods yield satisfactory results. However, for accurate characterization of
3D structures, a fully numerical method such as finite difference or finite element method
is required.

We will be focussing only on electromagnetic study using FEM. Photonics, a branch
of electromagnetics, is the study of governing light for practical applications, for example,
fibre optics. Lasers and light beams carry energy and information for various applica-
tions. Techniques are grouped under Computational Photonics that employ numerical

methods. Results from computations help us identify pitfalls and optimize design before
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fabrication. This is termed simulation showing the propagation of EM wave in the ma-
terial of study. Nowadays we have a range of customised software especially in photonics
based on FEM, mostly in two-dimensional (2D) domains, categorized as time-domain and
frequency-domain methods. There are numerous methods proposed for both domains till
date. Time-domain techniques study a system and analyse the response with respect
to time whereas frequency-domain study a system’s response with respect to a range of

frequencies. This thesis follows the studies based on frequency-domain.

1.6 Objectives of the thesis

This thesis is devoted to study the following:

1. to benchmark H-field full vectorial FEM (perturbation and complex) with chosen

studies in literature;

2. to derive an analytical method for obtaining complex dielectric constants (g1 + jea,
where €1 and g9 denote real and imaginary parts) of graphene for entire voltage

range 0-2 eV;

3. to study fabrication possibilities and build a model to implement FEM for charac-

terizing proposed waveguide designs;

4. to conduct a detailed investigation of H-field and E-field modal profiles of proposed

rib and slot waveguides;

5. to ascertain the influence of dielectric layers with different (low-, high- and very

high) refractive indices on mode effective index and absorption;

6. to evaluate device performance parameters such as operation wavelength range, mod-

ulation depth and insertion loss;

7. to determine potential trade-offs between these performance metrics for practical

applications;
1.7 Structure of the thesis

This thesis comprises six chapters. Chapters 1 and 2 are devoted to the fundamentals

of light wave propagation, different methods in fabrication of optical waveguides and the
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explanation of Finite Element Method. Chapter 3 explains the significance of graphene,
beginning with physical and unique properties of this wonder material. Our method and
results we obtained in the study of dielectric constants of graphene are also presented in
this chapter. Chapters 4 is devoted for the benchmarking task we carried out as a precursor
for characterising graphene-based waveguides. In Chapter 5 we discuss our results in detail
and propose waveguide designs based on our findings. Chapter 6 concludes this thesis and
provides suggestions for future research.

Chapter 1 provides the recent trends in nanoelectronics with the advent of 1D and
2D materials. The need of these materials and their exceptional properties are given.
Fundamentals such as wave mechanism and Maxwell’'s equations are explained for the
study of light wave propagation in a material medium. We move on to the background
of waveguides and the phenomena behind propagation. Few basic silicon-on-insulator de-
signs were discussed. Waveguide fabrication and the methods involved are explained with
schematic of the processes such as thin film deposition, CVD, sputtering, photolithography
and etching. Finally the modulation mechanism is briefly discussed.

Chapter 2 begins with fundamentals of interaction between light and matter and the
principle of operation in modulators. Planar, slab and rib waveguide theories are discussed.
A brief about plasmonic waveguides is given. Finite element method (FEM) is explained
in detail with an introduction to Maxwell’s equations.

Chapter 3 deals with physical, electrical and optical properties of graphene. The
physical properties of mono-, bi- and trilayers of graphene are explained. The electronic
band structure that gives rise to the Dirac cone is discussed. Optical conductivity (o(w) =
o1 + joo) of graphene is introduced here since it leads to derivation of complex relative
permittivity (e(w) = &1 + jez) of graphene in the next section. We followed two methods
in the literature [26,27] and formed our analytical method for deriving complex dielectric
constants of graphene. We benchmarked the plots of complex dielectric constants of
graphene from three studies [6,28,29]. A brief introduction to plasmonics is given.

Chapter 4 is devoted for benchmarking of modal properties from three studies [6,20,29].
The task of benchmarking is carried out to validate our complex and perturbation solvers
with published results. This helps to debug and identify the limitations in our solvers and

find ways to increase mesh dimensions handled by the solvers. The effective index (neg),
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absorption («) and electric field intensity plots are benchmarked and the results obtained
using our methods are given.

Chapter 5 presents the characterization of waveguides we carried out in this study.
Mode profiles, effective index, absorption and performance parameters (ER, IL) are evalu-
ated. This chapter is divided into three parts. First part discusses the characterisation of
silicon nanowires (strip and rib waveguides). An introduction to influence of positioning
of graphene layers (top wversus slot) in the waveguide is given. Second part deals with
characterisation of waveguides with bilayer graphene. We discuss here the influence of
dielectric layers on modal properties of graphene-based waveguides.

Third part in Chapter 5 deals with characterization of trilayer graphene-based waveg-
uides. Results using low-, high-, and very high-index dielectric materials encapsulating
graphene layers are presented. Our proposed waveguide designs are given. We discuss the
modal solutions of proposed designs in detail in this final part. Conclusion and suggestions

for future research are given in Chapter 6.
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Chapter 2

Finite Element Characterization of
Waveguides

2.1 Introduction

Dielectric waveguides are being studied since the early years of 19th century [30]. Achieve-
ment of lasing action in semiconductors by research groups in 1962 [31-33] led to the
realization of light guidance in p—n junction [34,35]. Further, heterostructure laser was
developed in late 1960s [36]. In 1964, it was found that guiding action of a p—n junction
could be used in a modulator via the electro-optic effect [37]. Such inventions in optical
waveguide research resulted in rapid growth of potential applications in communication
systems. Figure 2.1 shows rapid rise in this field of research between 1964 and 1980.

In this chapter, we discuss the waveguide design, characteristics and numerical method
for characterization. First we discuss the interaction between light and matter. Here,
matter refers to the materials (e.g., silicon, graphene and so on) that are used to design the
waveguide. Next, the optical modulators which is the core study of this thesis. Second,
we move on to the theoretical aspects of waveguides. Here we study the interaction
phenomena of light with material using equations. Finally, we discuss the Finite element
method used for characterization of waveguide. Basic concepts and steps involved in finite

element study are discussed in detail.

2.2 Light—matter interaction

Interaction of light with matter results in following phenomena: reflection, refraction,
emission, absorption and transmission. Light constitutes photons of energy, £ = hv. De-

pending on the structure of matter and wavelength of light, this energy is either absorbed
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Figure 2.1: Number of papers published each year in a few relevant technical journals:
(a) Electronics Letters; (b) Applied Optics; (c) Electronic Letters and Applied Optics and
Bell Systems Technical Journal. Reproduced from Adams (1981) [38].

or reflected. There are other phenomena viz., fluorescence and diffraction. When light is
incident on a surface or traverses a material medium, interactions with electrons of atoms
or molecules that are present in the lattice take place. An electron, upon absorbing a
photon, use the energy to move to an excited state of higher energy and then fall to lower
energy by dissipating it in the form of a photon. Such process happens in few nanoseconds.
The difference in energy between higher and lower states decides the frequency of emitted
photon. A light photon has neither mass nor charge but it interacts with electrons, atoms
and molecules. A light beam is nothing but a stream of photons of well-defined energy

depending on the wavelength of the light. Thus the energy of photon is given by

hc c h
Ep—hy—j—h/,u, V= w = 27v; h—% (2.1)

where E, is the energy of photon in joules, h the Planck’s constant (6.625 x 1073 Js), A
the reduced Plancks constant equals to h/27, ¢ the speed of light (2.998 x 108m/s), A the

wavelength of light and w = 27v the angular frequency.

Interference and polarization phenomena of light proved wave nature of light and

photoelectric effect the particle nature. The “true” nature of light was understood only
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after Maxwell’s formulation of EM theory. Light is made of electromagnetic waves which
are governed by Maxwell’s equations. Electric and magnetic fields at = at time ¢ are
denoted by £ = E(z,t) and H = H(z,t) [39]. These fields are not classical but quantum
in nature. Similar to Schrdinger and Heisenberg treatments for quantization of material

systems, the electric and magnetic fields of light are quantized.

Particle [ ]

Field

(a) (b)

Figure 2.2: (a) Classical representation of a particle and field. (b) Corresponding quantum
representation. In (b), dots mean the probability distribution of particle position; field ¢
at z, ¢(x) [39]

Figure 2.2(b) shows the quantization of light photon. The electric field E(x) is defined

by a functional ¢[E(z)], within a certain range. A quantum field is a field with vector

potential.
2.2.1 Optical modulators

Electrooptic (EO) effect is a widely applied phenomena which forms the working principle
of modulators. Materials that respond to electrical and optical fields are used to make
devices based on EO effect. Most external modulators were made from materials such as
KDP, ADP, BaTiO3 and LiNbOg, InP and polymer materials. The list also includes ZnO,
ZnS and GaAs. Franz—Keldysh effect marked the arrival of electroabsorption modulators.
Initially a high voltage was required to achieve large extinction ratio [23]. Light wave
modulation is carried out by changing the absorption («) or refractive index (n). The

major figures of merit of a modulator are as follows [10]:
e modulation speed
¢ modulation depth
e operation wavelength range
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e energy consumption
e insertion loss

The ability to modulate optical signals at particular data transmission rate (bit/s) is
know as modulation speed. Modulation depth is nothing but extinction ratio (ER) which
is the ratio of maximum to minimum transmittance (Tiax/Tmin).- An ER>7dB is pre-
ferred in most applications especially involving high data rate transfers and ER <4 dB for
short-distance data transfers. Modulators are expected to operate at telecommunication
wavelength, A = 0.85,1.3,1.5 um. Energy consumption is measured with fj/bit. Energy
efficient modulators should operate with few fj/bit for higher data connection speed. In-
sertion loss (IL) refers to the system energy efficiency. Derivations and explanations for

ER and IL are provided in further chapters.
2.2.1.1 Operation Principle

Modulation happens in a waveguide when change in absorption («) or refractive index (n)
occurs. These changes are based on Pockel’s effect, Franz-Keldysh effect, quantum con-
fined Stark effect (QCSE), exciton-bleaching or tunable carrier density effect and plasma
or injected carrier effect [23]. Many reported waveguide structures are single waveguide,
Mach-Zehnder, directional coupler etc. First, the design procedure of a waveguide mod-
ulator is considered. The absolute values of the absorption coefficient () and refractive
index (n) and their change with applied voltage (V) or carrier injection are determined. At
the initial stage, such values are taken from literature. Mixed crystals such as ternary or
quaternary are used for semiconductor waveguides and necessary parameters are obtained
using liear or quadratic approximation of binary materials by extrapolating the fractional
content values.

Waveguide characteristics are strongly dependent on the waveguide core and cladding
materials as the optical confinement factor depends on the refractive index profile. There

are five important factors pertaining to intensity modulators:

e on/off ratio
e voltage required for on/off

e 3-dB bandwidth
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e insertion loss
e chirping

The on/off ratio is an important parameter which is usually 15 or 20dB. It is defined

as the ratio of incident light intensity (Py). It is given as follows:

on Pout
[E] — —10logy, ( o > (2.2)

In electroabsorption materials, the transmitted light intensity is calculated using the ab-

sorption coefficient with the incident light intensity as follows:

P, out
P,

=exp(-I'-Aa-L) (2.3)
where I' is the optical confinement factor, A« the change in absorption coefficient and L
the sample length.

The change in absorption coefficient (Ac«) strongly depends on the applied voltage
(Vin) and wavelength of incident light (\). Normally, the smaller the applied voltage,
the better for operation of electronic circuits. For instance, a 2V peak-to-peak voltage is
needed for high-speed operation (>10Gb/s). The 3-dB bandwidth is determined by the
device capacitance when the device is operated in reverse bias condition, except when it is

operated by carrier injection with very slow speed such as a few nanoseconds. When the

speed is limited by the device capacitance, the 3-dB bandwidth is calculated as follows [23]:

sawly = (24)

where R is the load resistance and C' the capacitance. The device capacitance is propor-

tional to the length of the sample (L, say 5 um) and width W.
2.3 Theory of waveguides

Waveguides are the most basic components of an optoelectronic system. They form the
building blocks of such systems. A suitable combination of active (Si, graphene) and pas-
sive materials (hBN, SiC, SiON) makes an efficient waveguide. For effective propagation
in a waveguide, refractive index (n) of core material should be higher than other layers,

such that ni,ne < ng and ng > ny.
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Materials are chosen based on their optoelectronic properties and response to electrical
and optical signals. An electro-optic modulator requires a nonlinear material that could
modulate optical signal with electrical input at ultrafast rate. Reflecting, propagating
and confining light waves within a specified volume are the fundamental characteristics of
a waveguide. Materials with excellent optical and electrical properties are of particular
interest for designing waveguides. A multilayer rib waveguide is made of layers with
differing refractive indices to reduce leaky modes. In our study, we will be studying modes
that effectively confine EM field within core Si and graphene.

Dielectric slab waveguides have been studied extensively in literature. To begin with,
the standard problem of reflection and refraction at an interface between two isotropic
dielectric media is considered. This results in Snell’s laws, Fresnel’s laws for reflection
and transmission coefficients and the expressions for phase shift on reflection of a plane
wave at a dielectric interface. This leads to derivation of the eigenvalue equation for a
three-layer dielectric interface. Electromagnetic mode treatment of dielectric slab yields

an identical eigenvalue equation.

51"“()

82’1“0

;c;‘/'-

Figure 2.3: Incident (E;), reflected (E,) and transmitted rays (E;) at a plane interface
between two dielectric media.

Figure 2.3 shows a plane interface (z = 0) in the y — z plane between two media char-
acterized by €1, o and €9, ig. A plane wave is incident in the z — z plane from medium q
on this interface. Here we assume that the incident (E;), reflected (E,) and transmitted

(E;) rays are coplanar and corresponding equations are given as follows:
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1. Incident wave: E; = Eje 7t exp[ikni(—z cos 6y + zsin ;)]
2. Reflected wave: E, = Ese™“! explikni(x cos 03 + 2 sin 03)]

3. Transmitted wave: E; = Ege /%! explikni(z cos s + 2z sin 0s)]

where k = w(uoeo)'/? = 2m/X\; ny and ny are the refractive indices in media 1 and 2;

01, 02 and 03 are incident, refraction and reflection angles, respectively.
2.3.1 Planar waveguides

There are various types of waveguides and out of which is the planar waveguide. This two-
dimensional waveguide enables confining light in one direction (y) and allow to spread in
other direction (z). Geometry of simple planar waveguide in shown in Fig. 2.4. For a
3-layer asymmetric planar waveguide, the refractive indices are related as n. < ns < ng4
such that incoming light is confined within the guiding core. When indices of substrate
(ns) and upper cladding (n.) are equal, ns = n.), yields a symmetric guide.

ne

t
ng
x

n,

s

Figure 2.4: A planar waveguide. The refractive indices of guide, upper cladding, and
substrate are denoted by ng, n. and ng, respectively.

In the waveguide shown in Fig. 2.4, refractive index (n) is taken as a constant value
within chosen regions of the waveguide. Many waveguides have graded index since the

refractive index changes gradually.
2.3.2 Dielectric slab waveguide

Consider a three-layer dielectric slab waveguide (Fig. 2.5) with material refractive indices
ni1, no and ng such that ny > no > ng. This variation in refractive indices of the material

results in an asymmetric waveguide for ns # n3 and a symmetric waveguide for ny = ns.
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n, i 2a

x=-2a

Figure 2.5: Ray of light in a dielectric slab waveguide.

As shown in Fig. 2.5, light ray undergoes total internal reflection at each interface,
thus light is trapped within the core layer of the waveguide. This is known as guided mode.
Waves propagate in the z-direction as exp(i3z). The longitudinal propagation constant,
B, is related to the ray angle ¢ by 8 = nikcos¢ and hence it follows the propagation

constant [ is constrained for guided modes as follows:

Here the minimum value of 3 for guided propagation, or the cut-off condition, for the

mode is ngk.
2.3.3 Rib waveguide

Silicon-on-Insulator (SOI) waveguides with dimensions greater than hundreds of nanome-
ters support multiple modes but are not preferred for photonic cirucits as presence of
multiple modes will affect the performance. A simple expression for single-mode condition
(SMC) was first proposed by Soref et. al [40]

w r

where r is the ratio of slab height to overall rib height and W/H is the ratio of waveguide

width to overall rib height.

2.3.3.1 Guided modes

Maxwell’s equations in terms of refractive index n; (j = 1, 2, 3) of the three layers, and
assuming the magnetic permeability is everywhere the same as that of free space pg, are

given by [38],
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Figure 2.6: A SOI rib waveguide with R; (air, n = 1), R (Si, n = 3.477) and R3 (SiO2,
n = 1.444). Here h=rH, for r < 0.5. For computational purposes broken lines denote air
region which covers all around the waveguide.

dE
2

V x H—nj&?()% (27)

dH
E=—uy— 2.8
V x o 7 (2.8)
V-E=0 (2.9)
V-H=0 (2.10)

where cross denotes a vector product, H and E are respectively the magnetic and electric
field vectors and g9 and pg denote dielctric permittivity and magnetic permeability of
vacuum, respectively, n the refractive index of the medium and ¢ the time variable.

To obtain a complete description of all modes supported by dielectric waveguides, the
Maxwell’s equations (2.1)—(2.4) must be solved. Modes of slab waveguide can be classified
as transverse electric (TE) and transverse magnetic (TM). The TE modes have no electric
field component along the direction of wave propagation whereas TM modes have no
longitudinal magnetic field component.

We now move on to plasmonic waveguides made of materials with complex refractive
indices, in other words, complex dielectric constants (¢; 4 jeg), where €1 denotes the real
part and €9 the imaginary part. Chapter 3 deals with complex dielectric constants in

detail.
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2.3.3.2 Plasmonic waveguides

Electromagnetic wave propagating through a material (polarizable) medium is polarized
and couples with the medium. This coupled mode of excitation results in a polariton.
In a cloud of electrons or an electron plasma, such coupled modes are termed plasmon-
polaritons [41,42]. Resulting polaritons in bulk traverse through an unbounded medium
whereas surface polaritons that result due to the coupling of incident radiation with surface
dipole excitation and propagate along the interface between two media. Existence of
surface plasmons is in the boundary of semiconductor layers in the plasmonic waveguide.
Such waveguides are made of semiconductor materials whose electrons behave similar to

a quasifree electron gas.

1
: I

Figure 2.7: A hybrid plasmonic waveguide: (1) metal; (2) dielectric; (3) silicon; (4) SiOs.

Figure 2.7 shows a typical hybrid plasmonic waveguide. In a graphene-based plasmonic
waveguide, usually graphene is sandwiched between dielectric layers. As phonons are
quanta associated with vibration of a crystal lattice, plasmons are quanta of oscillations
of surface charges induced by external electric fields in the boundary.

Surface plasma waves occur in a dielectric-metal interface (Fig. 2.8), where dielectric
has a positive dielectric constant (4+¢;) and metal with negative real part of dielectric
constant (—e1). Properties of plasmonic waves are based on solving Maxwell’s equations
for interface between two semi-infinite and isotropic dielectric media. In such waveguides,
the thickness of metal layer is much lower than the dielectric layer. For example, in

a graphene-silicon hybrid waveguide, the graphene-boron nitride (BN) interface acts as
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metal—dielectric for certain gate voltages; thickness of graphene is 0.33 nm to that of BN

is 10 nm. Strong light confinement can be achieved in a plasmonic waveguide.

interface

dielectric metal
surface .
plasmon
g >0 g <0

v

Figure 2.8: Surfase plasmons originating in a metal-dielectric interface. e; denotes the
real part of dielectric constant.

A waveguide mode that arises in a dielectric couples with the surface plasmon mode
in the metal. This results in an evanescent wave as the wave amplitude exponentially
decreases with increasing distance from the metal-dielectric interface. Figure 2.9 shows

the scheme of coupling of waveguide mode with dielectric mode in a plasmonic waveguide.

—

Waveguide mode in Plasmonic mode in Coupling of waveguide

dielectric metal mode and surface
plasmon mode

Figure 2.9: Coupling scheme of waveguide and plasmonic modes in a metal-dielectric
interface.
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2.3.4 General solution to Maxwell’s equations

Maxwell’s equations govern the propagation of light through optical media and its in-
teraction with the optical media. Thus derived equations are valid for entire frequency

spectrum and differential form are stated as follows:

V x E+ 8713 Faraday’s Law

V x H— 8—? Maxwell — Ampere Law
V-D=p Gauss’ Law

V-B=0 Gauss’ Law Magnetic

Considering a lossless dielectric isotropic material, the electric E and magnetic H field

(2.11)

vectors are related through the constitutive equations
D=¢gE+P

B:/J,()H

where D is the electric flux density (coulombs/m?), B the magnetic flux density (webers/m?),
p the charge density, o the magnetic permeability of vacuum (= 47 x 10~7 F/m) and ¢
the vacuum dielectric permittivity.

Assuming a complex time dependence through the factor exp(jwt), where j is an
imaginary unit, w the angular frequency and t the time. Substituting for B and D, the

time derivatives in the above equations may be rewritten as follows:

VxE+ jwpH =0 (2.12)

VX H—jweE =0 (2.13)

Taking curl of above equations and substituting from Maxwell’s equations yields,
VXVxE-—wuE=0 (2.14)
VXV xH-—uwueH =0 (2.15)

Using the following vector identity
VxVxA=V(V-A)-ViA (2.16)
the first terms of equations 2.14 and 2.15 becomes

V(V-E)-V?E —wusE =0 (2.17)
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V(V-H)-V?H —w?ueH =0 (2.18)

These equations can be written as follows:
V2E+KE=0 (2.19)
VZH +kK*H =0 (2.20)

where k = w,/g0.

Equations 2.17 and 2.18 or 2.19 and 2.20 provide the general solution to Maxwell’s
equations using properties of the material and angular frequency of the incoming electro-
magenetic signal. To obtain an optical mode, these equations need to be solved for the

chosen waveguide structure.
2.3.4.1 Basic Equation

Expanding the curl operator in equation 2.17 using rectangular coordinate system results
in
’E  0’E  O°E

2
= — E 2.21
022 + 9,2 + 9.2 w’ e ( )

The field vector E can be separated into the individual components such that there is an

equivalent differential equation for each of the vector components:

O’E, O0°E, O0°E,

02 "o T o = —w peE, (2.22)
&E, O°E,  O°E
52 T 8y2y + 5 = Wi, (2.23)
O’E.  0°E.  O°E

=+ c 4 * — —W?ucE, (2.24)

Ox2 Oy?

2.3.4.2 Analytical solution

Consider the planar waveguide shown in Fig. 2.4, the field quantities are taken to be
varying along only one direction. In this 3-layer (substrate, core, cladding) waveguide
structure, assuming the incoming light is confined along y-axis, the partial derivative

along x-axis is written as 6% = 0. Now we introduce a parameter ¢ such that

| Ex ForTEmode
¢ = { H, For TMmode (2.25)
then equations 2.19 and 2.20 can be written as
82
8y(§ + (k§n* = B*) ¢ =0 (2.26)
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where n = €2 and 3 the phase constant.
For two-dimensional waveguides, the TE mode has no longitudinal component of the

electric field, E, = 0. The non-vanishing field components are defined as follows:

B

H, = —E, 2.27
= (227)
1 OEx

L= 2.28
Jwp Oy (2.28)

6] 1 OE,
E,=—H,— 2.29
we Yjwp Oy (2.29)

For TM modes, there is no magnetic field along the propagation direction, H, = 0.

The only non-vanishing field components are given as follows:

g

1 oH
L= T (2.31)
jwe 0y
1 OE
H, - g, L % (2.32)
wp 7 jwp dy

Solutions to equation 2.26 are either exponential or sinusoidal functions of y in each re-
gions of the waveguide. The particular function is dependent on the factor (k:gn2 — ﬂ2). In
the 3-layered waveguide, for a guided wave, the phase constant 5 will satisfy the condition

kns < p < kny. Equation 2.26 will then have following solution [43]:

Acexp(—acy) 0<y
¢ =1 Apcoskpy+ Bysinky —t<y<0 (2.33)
Ay explas(y +1)] y < —t

where Ay, By, A. and Ay are arbitrary constants determined by boundary conditions

which must be satisfied at the interface of two media. Values a., o and ky are given as:

ae = /% — k?n? (2.34)

as = /3% — k2n? (2.35)

kp = /K2 — p? (2.36)

These are well-confined modes normally referred to as TEg/TMy and TE; /TM; modes.

For 8 > kny, the function ¢ must be exponential in all three regions, which would imply
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infinite energy in the upper and lower cladding of the waveguide [44]. Of course, such a
mode will not exist. A substrate radiation mode is obtained for a value of kng > 8 > kn.
and this mode is confined at the interface of the upper cladding but varies sinusoidally in
the substrate. Such a mode can only be supported over short distances as it losses energy
from the guiding region to the substrate region and hence not very useful in transmission
of signal. It may, however, prove useful in tapered coupler applications. The number of
modes that can be supported by a waveguide depends on the thickness of the waveguiding
layer and on the material properties of the waveguide as well as the frequency. This
implies that for a given waveguide thickness and given refractive indices, there is a cut-off
frequency, w. below which waveguiding cannot occur. In optical waveguide applications,
the wavelength is of fixed value, the problem is therefore to determine the refractive
index values for which a particular mode can be supported. It can be shown that for the

asymmetric waveguide, the refractive indices are related through the following equation,

(2m +1)%\3
An=ng ez e

where m = 0,1, 2, ... is the mode number, )\ the vacuum wavelength and ¢ the thickness
of the waveguiding layer.

The properties of planar waveguides can be thus studied using analytical methods.
Exact analytical solutions can also be obtained for planar guides with stepped refractive
index values but for a continuously graded index guide, it is rather difficult to obtain
exact analytical solutions. Planar waveguides have a limited range of use due to 1-D
optical confinement, whereas in many applications, 2-D optical confinement is preferred
which can be provided by channel or 3-D waveguides. It is not possible to obtain exact
analytical solutions to such waveguides, except in very special cases, and many practical
waveguides have complex structures with arbitrary index distribution. The propagation
mode is often a hybrid mode, E¥ = (the main components of the electromagnetic field being
E, and Hy) or E},, (the main components of the electromagnetic field being E, and H,)
modes, where subscripts m and n refer to the mode order such that m,n = 1,2,3,...,
corresponding to the total number of extrema appearing in distribution of the electric
fields in both z and y directions. In reality, one of the modes is dominant, TEY in the
case of E%, mode and TMY in the case of E},, mode where the existence of such modes

compounds the complexity of obtaining an analytical solution. Amongst the many reasons,
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following factors show the difficulties in obtaining an exact analytical solution to Maxwell’s

equations:

e the electromagnetic field may extend beyond the guiding core

e anisotropic and non-linear optical materials may be used to extend the range of

waveguide applications

e materials with complex refractive index (n; + jnz) such as graphene

2.4 Finite Element Method

The characteristics of light wave propagation in a waveguide are studied using numerical
methods through which modelling and simulations of different waveguides can be carried
out. This reduces time and cost involved in choosing a suitable design before experi-
mentation. These methods are adopted for finding approximate solutions to boundary
value problems using partial differential equations. To name few: Galerkin and moment
methods, Transfer matrix method, Finite-element-based methods, Finite-difference-based
methods, Transmission line matrix method, Monte Carlo method, etc., broadly classified
as computational photonics. The book written by Rahman and Agrawal [45] explains
solving waveguide problems using Finite Element method in detail.

Finite element method is relatively a new and powerful numerical method used in
the analysis of optical waveguide problems. Using this approach, any optical waveguide
cross-section can be divided into triangular elements and the field components within the
elements are approximated by polynomial functions. The versatility of the method ensures
that each element can be of a different dielectric material, anisotropic, non-linear or lossy.
The finite element formulation is usually established using a variational technique [46,47].

Vector variational formulations of Maxwell’s equations provide a means of solving
wave propagation problems where all six electromagnetic field components are required
whereas scalar formulations are inadequate [48]. Such formulation also provides a better
convergence where the natural boundary condition is that of Dirichlet. Using a standard

procedure, a variational formulation can be obtained as follows [49]:

1. Find the variational integral whose first variation is zero for the given boundary

conditions.
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2. Choose an appropriate trial function and expand the field components as a sum of

the trial functions.

3. Substitute the trial fields in the variational integral and find the first variation and

equate it to zero

4. The resulting simultaneous equations from the weak formulation of the boundary
value problem are equivalent to a standard eigenvalue matrix equation of the form
Az — Az = 0. This equation can then be solved by one of several standard matrix

algorithms.

Different variational formulations have been proposed for use with FEM. The simplest
of these is the scalar approximation, which is useful where the field can be said to be
predominantly TE or TM. It has been applied to the analysis of different types of waveguide
problems [50-52|. For practical waveguides, the scalar formulation is not accurate since
the modes are hybrid. To overcome this shortcoming of the scalar approximation, a
vector formulation with at least two field components is used. Both the E and H field
vector variational formulations or combinations of the two have been used. The natural
boundary condition for the E field is that of a magnetic wall. This implies a conducting
electric boundary wall, n x E = 0. Such a condition is however difficult to implement
on arbitrarily shaped guide walls. Therefore, E-field formulation requires special care
in preserving the continuity of the transverse components of the fields. It is difficult to
implement the natural boundary condition using this method for guides with arbitrary
index distribution. However, the two axial components on which the formulation is based
are the least essential of the six vector field components. Also, this method suffers from
spurious modes which can be reduced at the expense of increased computational cost [52].

Vector H field formulation has been extensively used due to its ability to solve generally
anisotropic waveguide problems [46,47]. Since the natural boundary condition is that of
an electric wall there is no need to explicitly enforce this condition. This formulation can
be given as follows [47]:

L
=1 Xf@* : ;*1 : gd?)H) = (2:37)

where ¢ and p are the permittivity and permeability of a loss-free medium. Applying

Raleigh—Ritz procedure to equation 2.37 will yield a similar matrix equation as in the

44



2.4. Finite Element Method

vector E formulation. A serious shortcoming of this equation is the appearance of spurious
solutions which are attributed to the fact that the divergence condition V- H = 0 is
not satisfied. Rahman and Davies, in their study, enforced this divergence condition by
imposing a ‘penalty’ function that could eliminate these spurious modes [46].

Almost all natural phenomena can be described using differential /integral equations.
Deriving such equations may not pose difficulty, however, solving them by analytical meth-
ods is a formidable task. Nowadays many simulation programs are used which has reduced
the time required for calculations to a great extent. Finite element method is a theoretical
method wherein the domain of study is “built” using a finite number of elements. This
method is built using mathematical equations that define field in each element. Therefore,
the shape of elements plays a significant role in this method. In other words, it is a method
by which a complex domain is ”broken” into smaller elements and assigning approximating
functions in each element to solve them mathematically [45]. Elements are chosen such
that the shape and size of each element covers as closely as possible the geometry of the

chosen domain (Fig. 2.10).

(a) (b)

Figure 2.10: Triangular elements used in FEM to cover chosen domain: (a) one element;
(b) two elements with a common boundary. Source: Rahman and Agrawal [45].
Investigation of light wave propagation is of prime importance in the characterization
of waveguides. In this regard, finite element method (FEM) has been established as one of
the most powerful and versatile methods used in the analysis of optical waveguides [46,47,
53-55] in numerical modelling. FEM allows each element to have a different but piecewise-
constant refractive index (¢, = n?) which enables applying FEM to analyse arbitrarily
shaped diffused anisotropic waveguides. Optical waveguides are characterized by solving
Maxwells equations which involves calculating eigenfunctions, or modes of the waveguide,

at a fixed frequency and the eigenvalues that correspond to the axial propagation constant
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of the wave in the waveguide. The graphene/silicon hybrid waveguide has hybrid nodes
and is generally anisotropic [49].

The basic idea of the finite element method is to divide the region of interest into
a large number of finite elements or sub-regions. These elements maybe one, two or
three-dimensional. The idea of representing a given domain as a collection of discrete
elements is not new, it is recorded that ancient mathematicians estimated the value of
7w by representing the circle as a polygon with a large number of sides. FEM has been
used to solve complex engineering problems such as structural analysis in aircrafts, fluid
flow, heat transfer and mass transport. Later on, this method found its way in solving
electromagnetic field problems. Waveguide problems are described by using integral or
differential equations. Then these equations are solved using numerical methods. FEM has
established itself as one of the most powerful and accurate technique for solving problems
associated with integrated optical waveguides and microwave devices. The versatility of
the method allows elements of various shapes to be used to represent an arbitrary cross-

section [49].
2.4.1 Definition

Finite elements, as the name suggests, the domain of study will be divided into smaller
elements of finite size and numbers, with each element having a suitable approximating
function [45]. These elements construct a finite element space comprising field variables
of partial differential equations and integral equations. Elements are of 1D, 2D and 3D
of which 2D denotes a triangular element. The 2D element is mostly used for studying

waveguides. A finite element (K, P, N) is defined as follows [56]:

o K C R" a domain with piecewise smooth boundary — the element domain
e P a finite-dimensional space of functions on K — the shape function

e N ={Ny, No,...,Ni} a basis for P’ — the nodal variables

Let us now see how to form triangular finite elements. Consider K as any triangle, Py

the set of polynomials of degree < k. Dimensions of P, will follow the relation:

dim Py — %(k F1)(k+2) (2.38)
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Let us consider z1,zo and z3 the vertices of triangle K and Li, Lo and Ls linear

functions defining the lines joining the vertices of K (Fig. 2.11).

Z3

2z L 2
3

Figure 2.11: A linear Lagrange triangle.
In Fig. 2.11, k = 1, therefore using equation 2.38, dim P; = 3. Using this equation we
can derive for k = 2, 3,4, .... Apart from Lagrange, we have other elements called Hermite

and Argyris (Fig. 2.12). In quartic Hermite, k¥ = 4 yields 15 dimensions and quintic

Argyris, k = 5 results in 21 dimensions [56].

Figure 2.12: Quartic Hermite and quintic Argyris triangles.

2.4.2 Basic concepts
The major key ideas in FEM are
1 discretization of the region of interest into elements

2 using interpolating polynomials to describe the variation of the field within each of the

elements

Instead of differential equations for the system under investigation, variational expres-

sions are derived and the piecewise continuous function is approximated by a piecewise
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continuous polynomial within each element. From the equivalent discretized model con-
tribution from each element, an overall system is assembled. This can be regarded as a
sub-class of the Ritz—Galerkin method in which the trial functions are replaced with poly-
nomial functions. In the classical analytical procedure where the region is not subdivided
into regions, only the simplest structures with basic material properties can be considered.
The finite difference method is the simplest of all the discretization procedures and in the
traditional version uses a rectangular grid (Fig. 2.13) with nodes at the intersections of
the orthogonal straight lines. Such an approach is not particularly suited to irregular
geometries with curved boundaries and interfaces since the intersections with the gridlines
could be at points other than at the nodes. It is not well suited to the analysis of problems

in which there are steep variations of the field [49].

Figure 2.13: Rectangular grid: domain division; (e) a node.

On the other hand, FEM allows the domain to be subdivided into elements or sub-
regions. These elements can be of various shapes such as triangles and rectangles thus
enabling the use of irregular grid for complex waveguide structures. The method can there-
fore be easily used to analyse problems with steep variations of the field and can be adapted
quite readily to anisotropic and inhomogeneous problems. The accuracy of this method
could be systematically increased by increasing the number of elements. The method does
not rely on the variational method for its establishment; it could be established by using
the Galerkin method, which is a weighted-residual method. The importance of this last
point is that the method could be applied in cses where no variational formulation exists
or cannot be found [49].

The steps involved in FEM can be summarized as follows:
1. discretize the domain under investigation into sub-domains or elements. The accu-
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racy of the method depends on the level of discretization. It is recommended to
use more elements in areas where the field is thought to have steep variations. It
is also not advisable to use elements across physical boundaries or interfaces. For

symmetrical domains, the mesh should follow the same type of symmetry.

. the functional for which the variational principle should be applied for the elements

are then derived. In deciding on the interpolation function, certain continuity condi-
tions must be satisfied by the interpolation function across inter-element boundaries.
These requirements are normally obvious from physical consideration of the prob-
lem. It is however also necessary that the function have to be an admissible member
of the Ritz and Galerkin methods. It follows that the polynomial function has to
remain unchanged under a linear transformation from one coordinate system to the

other.

3. assemble all the element contributions to for a global matrix.

4. solve the system of equations that is obtained, in this case a matrix equation.

ty
nC
I’lg
L
nS
X

>

Figure 2.14: Mesh formation in FEM. Adapted from Rahman and Agrawal [45].

Figure 2.14 shows how FEM discretization can be applied to a waveguide with different

regions, viz., a cladding (n.), guide (ny) and substrate (ny). The elements used in this case

are triangular since it is much easier to represent an arbitrary cross-section with triangles

rather than with rectangles. In 2-D waveguide analysis, the triangles can be of any order
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but the most commonly used triangles are of first and second orders.
2.4.3 Implementation of FEM

Consider the following Helmholtz equation:
V2 + k¢ =0 (2.39)

as the governing equation in a waveguide problem, defined within the domain 2, where ¢
is the electric or magnetic field component V? is a Laplacian operator defined as

o 9* 02

2_7 —_— [
v _8x2+8y2+822

(2.40)

In equation 2.39, k? is a constant related to frequency and given also that 'y and I',
are boundaries within the said domain, then the following boundary conditions may be
defined:

(1) on the boundary I'y (Dirichlet boundary condition)

=3 (2.41)
(2) on the boundary I',, (Neumann boundary condition)

9o B
5, = Vo=1 (2.42)

where m is the outward normal unit vector. The gradient operator, is defined by the

following matrix differential operator
V= %y (2.43)

in the Cartesian system of co-ordinates. Taking into consideration the stated boundary

conditions, the functional for equation 2.39 could be written as (Koshiba, 1990)

F = ;/// [(V§)? — k2p2dQ — // Ppdl (2.44)
Q 1%

The stationary requirement of the above functional, § F' = 0, coincides with the govern-
ing equation of the problem. The Neumann boundary condition is automatically satisfied
in the variational procedure as such it is referred to as the natural boundary condition.

The Dirichlet boundary condition however needs to be imposed and is therefore called the
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forced boundary condition. The functional for each of the elements of the region could

F = ;/// [(V¢)? — k2?)d2 — // ¢ihdl (2.45)
e e

The functional for the whole of the domain can then be regarded as a summation of

then be written as

the element functions
F=)F (2.46)
€

For the n nodes within each element, the field ¢ can be approximated as follows:
n
$=> Nigs (247)
i=1

where ¢; is the ith nodal parameter of the element e and N; is the interpolation or shape

function. The above equation could be written in Matrix form as follows

¢ = {N}{o}e (2.48)

where the component of the vector {¢}. is ¢; and that of the vector {N}* is the interpo-
lation function N;, T denotes a transpose, {-} and {-}7 denotes a column and row vector,
respectively.

For convergence of the solution, the shape function N; must satisfy certain conditions

when the functional contains first order derivatives:

e the variable ¢ and its derivatives must include constant terms, and

e the variable ¢ must be continuous at the interface of two adjacent elements.

The first of the two conditions is also known as the completeness condition and is
simple to satisfy provided complete polynomial expressions are used in each element. The
second of the two conditions is called the compatibility condition. First order elements
are the most fundamental and first order polynomials are used with them but higher order
elements are used with higher order polynomials. Since the number of nodes within each
element coincides with the number of terms in a complete polynomial expansion, the nodes

are simply arranged to satisfy the compatibility condition.
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2.4.4 Element Equations

To obtain the element equations it is necessary to perform a coordinate transformation.
This is because the interpolation function is defined using the local coordinates and hence
it is necessary to find a means of linking the global derivatives in terms of the local
derivatives. Secondly, the element volume over which the integration has to be carried
out needs to be expressed in terms of local coordinates with change of limits as may be
appropriate.

Assuming the local coordinates &1, & and &3 have as a corresponding set, the following

global coordinates z, y and z as follows:

xr = :E(gla 627 53) (249)
y =1y(61,62,83) (2.50)
z = 2(£1,62,83) (2.51)

Using partial differentiation rules, the transformation relation for differentiation can be

written as follows

= Z
822 — 1] 5;2 (2.52)
0&3 0z

where the matrix [J] is a Jacobian matrix defined as

oz Oy 0z
061 061 061
=] & &£ & (2.53)

98 9&2 0%
Oz Oy 9z
03 0& 0%

The global matrix of the derivatives can then be obtained through an inversion of the

Jacobian matrix to give

2 o
Egj = [J]7! 622 (2.54)
9z 23

2.4.5 Line Elements

Line elements (1D) are the most fundamental of all the elements used. These elements

can be of
a) first order

b) second order, and
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c¢) third order

These are normally used for solving 1D problems. It is necessary to introduce the line

coordinates L1 and L2. The relationship between line and Cartesian coordinates is given

H;]:;[_x; EIHH (2.55)

where z; and zo are the Cartesian coordinates of the edge of the line and the length of

by

the element [, is given by

le =29 — 11 (2.56)
If the local coordinate is now defined as &; then
Li=& (2.57)
Lo=1-0L1=1-& (2.58)
The transformation relation for differentiation is then given by

a__1a (2.59)

For integration, the transformation relation is given by

1

[ o =1 [ i (2.60)
e 0

Using equations 2.59 and 2.60 both the differentiation and integration formulae could be

written as
df 1 af af
B R 2.61
dx le( 8L1+8L2 (2.61)
1
LELhde =1, [&F(1 - &)l
—1 k!
e (hti+1)!
The shape function vector for the linear element and its derivative are given as
(N} = [ él ] (2.63)
2
and
d{N} 1] -1
N} = =— 2.64
(e} dx le [ 1 } (2.64)

93



2.4. Finite Element Method

respectively. The modal coordinates (L1, L) of the linear element are given as follows:
node 1: (1, 0) node 2: (0, 1) For the quadratic element, the shape function and its

derivatives are defined as
Li(2L, — 1)

{N} == | Ly(2Ly — 1) (2.65)
ALy Lo

1—4L,
ALy — 1) (2.66)
¢ | 4(Ly — Ly)

| ~

{Nr} =

~

The nodal coordinates for nodes 1, 2 and 3 are given as (1, 0), (0, 1) and (%, %), respectively.
2.4.6 Triangular Elements

In practical, most electromagnetic problems are of the two-dimensional type. This makes
the use of triangular elements a common practice. These elements can be of either first
order, second order or higher order (Fig. 2.15). In applying the first order elements, it can
be seen that nodes occur at the vertices of the triangles while nodes are also defined at
the middle of the edges for second order elements. In this work, only first order triangular
elements are used since the second order elements are costly in terms of the computa-
tional time. Since adjacent elements will have common nodes, it is important to adopt a
numberint system that will assign to this common nodes of the same numbers.

1 1

2 @ ® 3 2
(@

Figure 2.15: First (a) and second (b) order triangular elements.

Triangular elements shown in Fig. 2.15 are used in two-dimensional problems. For such
an element, the area coordinates Ly, Lo and L3 are introduced. The equation relating the

Cartesian coordinates to the area coordinates is given by

1 1 1 1 14
X = r1 T2 I3 L2 (267)
Yy Y1 Y2 Y3 Ls
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or 1
L1 1 1 1 - 1 1 al b1 C1 1
LQ = Tr1 T2 X3 x = a9 b2 (6] X (2.68)
24,
Ls Yy Y2 Y3 Yy az by c3 (]

where (z1,y1), (z2,y2) and (x3,ys) are the Cartesian coordinates of the vertex k, where

k =1,2,3 of the triangle. The coefficients ax, by and c; are defined as

Ak = T1Ym — TmYi (2.69)
b = Y1 — Ym (2.70)
Ck = Ty — Xy (2.71)

The subscripts k, [ and m are cyclical around the three vertices of the triangle. The area

A, of the element is given as

1 1 1
2Ae = xr1 T2 X3 (2.72)
Yyt Y2 Y3

If the local coordinates £ and 7 are defined as

Ly =¢ (2.73)
Ly =1 (2.74)
L3:1—L1—L2:1—f—77 (275)

then the transformation relation for differentiation will be given by the following;:

2 2
[%ﬁ]:m[%ﬂﬂ} (2.76)
an Oy
where
| T1—23 Yy1—Y3
[J] = [ ty— s s — s } (2.77)
or _
2 )
|- [ s (2.78)
oy an |
with
1 1 [ by by |
[J] A [ - (2.79)

The relation for integration is given as
1-¢

1
[[ st wizay = 2a. O/ 0/ F(&,m)de dn (2.80)
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Using equations (2.70) through to (2.77), the formulae for both differentiation and inte-

gration can be given by

of 1 (, of . of . of
or 24, (bl oL, o, T Yo, (281)
of 1 of of of
oy 24, <Cl oL, oL, T “or, (2:82)
1
[f LYY Ly dady = 2A, [ €8] 1760 (1 — € — )™ dn| dg
¢ _ 2;)1 l[c!l(!)m! } (2.83)
= 2Ae Ttltm+2)

We now move on to the vector field formulation that leads to accurate characterisation

of general waveguides.
2.4.7 Vector Field Formulation

This formulation requires at least two field components, namely, E-field and H-field. For-
mer approach was first applied by English and Young [48]. This formulation is suitable for
generally anisotropic and loss-less problems. The natural boundary condition corresponds
to a magnetic wall and as such it is essential to enforce the electric wall as the bound-
ary condition (n x E = 0). Such a condition is quite difficult to impose for an irregular
structure. It also requires an additional integral to ensure the continuity of the fields at
the dielectric interfaces. The H-field formulation, on the other hand, has as its natural
boundary condition the electric wall and the magnetic field is continuous everywhere. As
such it is suitable for dielectric waveguide problems as no boundary conditions need to be

imposed. This formulation is given as

wz_f(VxH)*-é_1~(VxH)dQ
B [H* p= 1 HdQ

(2.84)

The above formulation leads to non-physical or spurious solutions since the divergence
condition V - H = 0 is not satisfied. Various methods exist for detecting these spurious
modes. A simple way is to examine the field profiles, since these modes are characterised
by inconsistency and a random variation of the field they are easy to identify. The math-
ematical idea underpinning the physical solution is that the condition V- H = 0 is obeyed
by the eigenvector. By calculating V - H for each eigenvector, it is possible to identify the
true solutions from the spurious ones. The objective, however, is not simply to detect these
modes, but to eliminate them or at least suppress them. The penalty-function method

proposed by Rahman and Davies [46] is one the best established methods for eliminating

56



2.4. Finite Element Method

these spurious solutions. The method includes an additional term «, the penalty term, a

dimensionless number in the variational formulation, which now is written as:

o J(VxH)* &l (VxH)dY+ (2) [(V-H) (V- H)dQ
w® = TH 5 T H 40 (2.85)

2.4.8 The Matrix Equation

It has been stated that the vector formulation leads to a standard eigenvalue problem of

the form

Az — ABx =0 (2.86)

where = represents the engen vector, which holds the nodal field values. If in equation

2.84, the numerator is written as

al Az = / (Vx H)* 1. (V x H) dQ (2.87)
and the denominator as
xT~Bx:/H*-M-HdQ (2.88)
then the functional
J:/(VXH)*-é1-(V><H)dQ—k(2)/H*-,u-HdQ (2.89)
can be written as
J=2aT Az -\ 27 . Bz (2.90)

To find a stationary solution, it is required that

oJ

5 =0 (2.91)

Applying this minimisation procedure to equation 2.89, the following eigenvalue equation
2.86 is obtained
Ax —ABx =0

which can be solved using any standard matrix routine to obtain the field values at the

nodes.
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#(x,7)

¢3 (xl > J’;l ) ¢Z (xZ > J’;Z)

Figure 2.16: A typical element.
2.4.9 Shape Functions

The shape functions are a set of interpolation functions, defined in terms of complete
polynomials and which are normalised over each element. If a typical element, as shown
in Fig. 2.16 is considered, then the shape function is chosen so that it uniquely defines
the field within the element under consideration.

At the nodal points, they take on values equal to the nodal values ¢1, ¢2 and ¢s3.
It is important therefore that the functions are expressed in terms of their nodal values.

Within the triangle, the field value can be adequately modelled by the expression

p=a+bxr+cy (2.92)

where a, b and ¢ are constants. These constants can be represented in terms of the

coordinates of the nodes. The nodal values of ¢ can then be expressed as

¢=a+bri+cy (2.93)
$2 = a+ by +cyz (2.94)
¢3 = a+brz + cys (2.95)

The above system of equations can be solved to determine a, b and ¢ as

o = O1(z2ys — w3y2) + <752(903y21A— 21y3) + ¢3(21y2 — T2y1) (2.96)
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1(y2 — y3) + d2(y3 — y1) + d3(y1 — y2)

b= A (2.97)
e o1(z3 — x2) + <Z>2(9621A— x3) + ¢3(w2 — x1) (2.98)

where A, is the area of the triangle. Substituting these values into equation 2.92 will yield

o(z,y) = Ni¢1 + Nads + N3os (2.99)

o(z,y) = [N{¢} (2.100)

Ny = 52wy — w59) + (42— 5)a + (s — 22)3] (2.101)
Ny = i[(x?»yl —a1y3) + (ys — y1)z + (21 — 23)y] (2.102)
N3 = i[(&myg — xay1) + (y1 — y2)7 + (22 — 71)Y] (2.103)

The above can be rewritten as

Ny = a1 + asx + azy (2.104)
Ny = a4 + asx + agy (2.105)
N3 = a7 + agx + agy (2.106)

An important property of shape function is that
N1+ No+ N3g=1 (2107)

The H-field components H,, Hy, and H, can be written as

Hx(l',y) = Nlel + NgHwQ + N3H$3 (2108)
H,(z,y) = NyH,, + NoH,, + NsH,, (2.109)
H.(z,y) = N1H,, + N2H,, + N3H, (2.110)

In matrix form, the above equations can be expressed as

[l

—

[l

H, N, 0O 0O Ny O 0 N3 0 0
H=|H,|=|0 N 0 0 N, 0 0 Nj 0
o, 0 0 N 0 0 Ny O 0 N

[V

(2.111)

S ow N

Nm@m Et\tm@m&mt\zm@mﬁm

w
L
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In a simplified form this is equivalent to H=[N]H, where [N] is the 3 x 9 matrix shown
above and H is the 9 x 1 column vector which represents the components of the field.

Similarly, the expression for V x H could be written as

VxH=[Q]-H (2.112)
where
0 _ON1 90Ny 0 _ON> 9N _ON3 _ON3

_ 0Ny 0 0z G%Nl ONo 0 0z 8%2 ON3 0 0z 8%’3 2.113
[Q] - "0z T ox 0z, T ox 0z, T oz ( : )

by oy BNy 0N, BNy 0N

0 0 0
dy oz Ay ox Ay ox

The Q-matrix, after evaluation, i.e., finding the derivative of the shape, with j8z being

the z-variation, becomes

0 JBN1 a3 O JBN2 ag O JBN3 ag
Q= | —jBN1 0 —az —jBN2 0 —as jBN3 0 —ag (2.114)
—as a9 0 —Qg as 0 —ayg as 0

The B-matrix can also be calculated in a similar fashion from equation 2.87. Since p

is a scalar quantity, it can be taken outside the integral to give

xT-B‘x:,u/H*-HdQ (2.115)
since H = [N] H
B, = [ [N]*-[N]dQ (2.116)
/

The solution of the above expressions yields a 9 x 9 matrix. The integration is carried out

using equation 2.83 and the resulting B, matrix is as follows:

oy
3
Il

(2.117)

O OO Col© Ol
O © Coln© O ©
S Cole O OO ©
O Col© O © O
Cop© O © Ogh ©
o O OO Ogh O O

The area of each element or triangle is denoted by A.. The coefficients of the A, matrix
can also be calculated using equation 2.83. Making the following substitutions H=[N]H
and V x H = [Q] - {H}, yields

T A a = / (Y - [QI & - [QI{H} S (2.118)
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A simplification of the above will yield an A, matrix of the form

Ae::j/KQTé_l-[Q]dQ (2.119)

For isotropic media, € is a scalar quantity and hence can be factored out of the integral

sign. For anisotropic media, € is a tensor defined by a 3 x 3 matrix as follows:
€11 €12 €13
€= €21 €22 €23 (2.120)

€31 €32 €33

Finding the inverse of €, [P] (Appendix), equation 2.119 can be rewritten as

A= [(@r-1p) Qi (2.121)

Carrying out necessary algebraic calculations yields a 9 x 9 matrix. Using the integration

formula of 2.87, the integrals can be evaluated as

/NfdQ—
/NldQ_

/dQ —A (2.124)

(2.122)

(2.123)

wWikx ol

For instance, the A.,, matrix is given as
A LA LA
Aeyy = P22525 +pasasjfo + ps2asifo + p3za3zA (2.125)
The other 80 elements of the A, matrix can be found in a similar way.

2.4.10 Element Assembly

The next stage in the finite element method is the assembly of the element matrices [A]
and [B.] into global matrices [A] and [B] respectively. An appropriate matrix solver is
then used to obtain the eigenvalues and eigenvectors of the equation. The assembly of
the global matrix is done with respect to the nodes of the domain. Where two or more
nodes are common to more than one element then it is advisable to add the contribution
of each adjacent element to the global matrix when the calculation for the common node

is carried.
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As previously noted, for every element in the discretised variational formulation, there

is an expression of the form

Nip - - - Ny H,y
{H}N{H} ={H:---Ho} | - S : (2.126)
Noi - - - Nog Hy
Each term in the matrix N;; relates to two nodal field values where the indices, 7 and
j, correspond to the nodal field values of the vectors {H} and {H}? according to the
local numbering of an element. If a scalar formulation is considered, then only one field
component need be taken into account H, for example and the expression can be written
as
Ni1 N2 Niz H,

{ Hoy Hay, Hyy } | Nao Nao N Hy (2.127)
N31 N3z N33 Hj

The global matrix G,, may be defined as

G - - - Gis

G=| - . . (2.128)

Gs1 - - - Gss
If P is the total number of nodal points of the structure, the order of the global matrix
is P x P, which defines the size of the matrix when only one unknown field component is
considered for each node. The terms of the global matrix, Gy, are the field contributions
of two nodes, p and ¢ according to the global numbering system. Each term of the global
matrix G, consists of a local contribution from only one element, unless the nodes lie on
a shared boundary. The terms of the global matrix, G11, for the first node with respect
to itself will be defined as

G = N{ (2.129)

where Nﬁ is the term for the element matrix for the element A. The terms of the global
matrix for other nodes which do not lie on a shared boundary can be found in a similar
manner: G = N{%, Goy = N:g, etc. When the nodes are on a shared boundary, then the

contributions of each element are added to the node, for example,

G = Njs + N& (2.130)
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2.5 Summary

This chapter has presented the general formulation of the Finite element method for
optical waveguide problems. Various aspects of implementation of the method have been
explained including domain discretisation, shape functions and field representations. The
development of the vector H-field formulation of eliminating spurious modes has been
reviewed. In addition, this chapter provided the theory behind different waveguide designs

and the guided modes. The operation principle of the optical modulator is also explained.
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Chapter 3

Graphene Photonics

3.1 Introduction

Photonics has shown exotic ways to overcome the speed limitation in electronics. Elec-
tronic interconnections (e.g., copper cables) suffer from bandwidth issues and loss due to
performance restrictions in terms of energy consumption, speed, cross-talk and disper-
sion. On the other hand, optical interconnections have shown promising alternatives with
better performance such as higher bandwidth and lower loss. An optical modulator is a
device that modulates, i.e., varies the fundamental characteristics, of light propagating
through an optical waveguide. Intense research is currently under way in light modulation
to develop cost-effective, compact, efficient, high speed broadband optical modulators for
high-performance optical interconnects [57]. Idea of optical interconnects in the 1970s
arose to overcome the limitation set by electrons moving in the solid. Keyes [58] envis-
aged that optical elements would be much faster than their electrical counterparts due to
greater velocity of optical signals.

An optical interconnect is a dielectric waveguide that operates at optical frequencies.
In a broader picture, an optical fibre (Fig. 3.1(a)) that transmits information using light
is such a waveguide. Fibre optic communications are in the forefront of long distance as
well as undersea data telecommunications (Fig. 3.1(b)). Technology started adopting light
waves for data transmission since 1960s [59]. As it took years and years of research to fully
evolve communications through optical waves, it would take at least a decade of research
to realise ultrafast devices for optical interconnects. Now that a range of two-dimensional
materials such as graphene, phosphorene and silicene have been identified, technology is
slowly adapting to blend such materials with existing ones such as silicon for high-speed

high-performance devices.
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(@)

®)

Figure 3.1: (a) Fibre-optic cables transmitting information through light waves. (b) Map
showing countries connected by undersea fibre optic cables. Source: [60].

Two-dimensional layered materials exhibit a range of physical behaviours from that of
an insulator to a semiconductor with narrow-gap to a semimetal or metal. Such materials
offer numerous opportunities for diverse photonic and optoelectronic applications. For
instance, graphene has been widely used for devices operating at extremely broad spectral
range from ultraviolet, visible and near-infrared to mid-infrared, far-infrared and extend-
ing to terahertz and microwave regions, due to its unique electro-optical properties [10].
These materials have been shown to be compatible with various photonic structures, for
example, well developed fibre and silicon devices. Intense research is now underway to in-
tegrate 2D materials with current optical fibres and CMOS technology. Two-dimensional
materials also provide mechanical flexibility, easy fabrication and integration and robust-
ness. Additionally, generation, propagation, modulation and detection of photons can be
accomplished [61].

In these 2D nanostructures, the sea of electrons or electron gas play pivotal role in
electro-optical properties of the material. For example, applying an electric field per-
turbs the electrons that couple with incoming light wave and that the collective excita-

tions induces surface plasmons. They then confine or trap optical waves into regions
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(metal-dielectric interface) much smaller than their wavelengths. In case of a boron
nitride-graphene—boron nitride (BN) stack, the combined thickness could be 20.7nm,
where graphene is of just 0.7nm thick and BN each 10nm. Such a combination op-
erates within a range of wavelength, A=800-2000nm. Therefore, plasmonic resonances
play a crucial role. Plasmonic circuits tightly confine the electromagnetic waves at the
metal—-dielectric interface which is identified to be a potential solution for electro-optic
modulation. Plasmons in graphene are discussed in Section 3.6.

Graphene has been studied theoretically in depth as early as 1947 [62], however the
monolayer was thought to be unstable. In 1986, Boehm et al. [63] in their study proposed
the first observation of graphene monolayer. They introduced the name “graph-ene” de-
riving it from the combination of “graphite” (graph) and the suffix (ene) that refers to
polycyclic aromatic hydrocarbons. Experimental discovery of graphene happened in an
unusual way — a scotch tape method — whereby Novoselov et al. [3] prepared graphene
films by mechanical exfoliation or repeated peeling from pyrolytic graphite. This acci-
dental discovery led to award of Nobel prize in Physics for Andre Geim and Konstantin
Novoselov in 2010 for their “groundbreaking experiments regarding the two-dimensional
material graphene” [64]. In following sections, we discuss the physical, electrical and

optical properties of graphene in detail.

3.2 Physical Properties

Graphene is precisely a monolayer of carbon atom that forms a tightly packed two-
dimensional (2D) honeycomb lattice. Actually, this lattice is the basic structure of graphitic
materials. In the history of carbon allotropes, graphite is the oldest known allotrope which
was discovered in a mine near Borrowdale in Cumbria, England, around 16th century. Co-
incidentally, graphene, the youngest known allotrope of carbon, was exfoliated firstly by
two British researchers in Manchester, England, in 2004. After this accidental “discovery”,
graphite is seen as a graphene sheet stack that bond the layers together due to van der
Waals interaction. Note that the interlayer distance is 0.335nm. The weaker nature of
van der Waals bonding makes exfoliation of graphene sheets possible. The other allotropes
such as 0D fullerenes (bucky ball) and 1D carbon nanotubes can be termed as graphene

sphere (Cgo) and rolled up graphene sheets, respectively. Another prominent allotrope of
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carbon is diamond which consists of four club-like orbitals forming a tetrahedron.

Figure 3.2: Prominent allotropes of carbon: (a) diamond, (b) fullerene, (c¢) carbon nan-
otube and (d) graphite. Dotted lines in (d) represent the van der Waals bonding (7 bonds).
Adapted from Ref. [65].

Figure 3.2 shows allotropes of carbon. Diamond is one of the hardest natural materials
with all four valence electrons in 2s and 2p, with 2 in each, involved in the formation of
o bonds with other carbon atoms. Diamond is an insulator with large band gap, £,
= 5.47eV. On the other hand, the m bonds in graphite are weaker and responsible for
good electronic conduction properties. Fullerene is a Cgg molecule which has the form of a
sphere (football), wherein some hexagonal bonding carbon atoms are replaced by pentagon
formation that causes crumbling leading to a sphere-like formation. Carbon nanotubes
are further classified as SWNT and MWNT, meaning single wall nanotube and multiwall
nanotubes, respectively.

15.000 Graphene is considered a rising star

16.000 -

oo | amongst the 2D class of materials. Fig-

12,000 ure 3.3 shows a spike in number of papers

1:::2 published on graphene after 2004 and sig-

6000 nificantly increasing afterwards the award

z:zz II of Nobel prize in 2010. Graphene exhibits
-1 1 1 | . l ‘ ‘

exceptionally high crystal and electronic
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Figure 3.3: Publications on graphene [66]. quality [67). Potential applications such as
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optical interconnects, environmental monitoring, medicinal, biosensing and security de-
vices of such material has been proposed by numerous studies [10]. Graphene has a
unusual electronic spectrum that led to start of “relativistic” solid state physics, where
quantum relativistic phenomena is observed. It represents a new class of materials that
are just one atom thick, offering insights to low-dimensional physics which are currently
studied by various research groups for applications. Not only graphene but also other 2D
materials such as transition metal dichalcogenides (TMDs) and black phosphorus have

shown promising applications in electronics, photonics and optoelectronics.

Graphene is basically an allotrope of
Carbon.  Other allotropes include dia-
mond, graphite, fullerenes and carbon nan-
otubes (Fig. 3.4). Of these allotropes of
carbon, the youngest is two-dimensional
graphene which represents a single layer
graphite sheet. Layers of graphene are clas-

sified as mono (0.4nm), bi (0.69nm), tri

@ ®) ©

(1.12nm) and few or multiple layers < 10
[68]. Thickness of Bilayer graphene (BLG) Figure 3.4: Monolayer graphene: basis of
all graphitic forms. (a) 0D bucky balls; (b)
is taken as 0.7 nm by most simulation stud- 1D nanotubes; and (¢) 3D graphite. Source:
Gei dN lov [67].
ies [6,29] as single layer thickness is very ¢im and Novoselov [67]
thin. Further, bilayer is considered the most energetically stable stack of two graphene lay-
ers [69]. Thickness of graphene has been a subject of discussion as atomic force microscopy
(AFM) measurements were proven to be inaccurate [70]. Figure 3.5 shows HRTEM and

TEM images taken by two research groups showing hexagonal lattice formation in graphene

layer.
3.2.1 Carbon Bonds

Graphene is made of chain of carbon atoms which have been extensively studied by various
research groups. We have various studies for carbon and its bonding with other elements.
Therefore, here we present a fundamental part which is needed in understanding the
physical properties of graphene. A ground state carbon atom has six electrons in the

configuration 1s5225%2p?, depicting two electrons in the inner orbital 1s and 4 electrons
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(@

Figure 3.5: Monolayer of graphene: (a) HRTEM image by Ref. [71]; (b) TEM image by
Berkeleys TEAMO5 [72]. C=C bond distance: 0.14nm.

in the outer orbitals 2s and 2p. The 2p orbitals (2p,,2p,,2p.) are approximately 4eV
higher than the 2s orbital. Figure 3.6 shows the ground state and excited state electronic

configurations for a carbon atom.

A

: SR L

~4eV 2p 2py  2p, 2p. 2py 2p;

H -

2s 2s

Energy Ground state Excited state
~4eV

1t al

ls ls

Figure 3.6: Depiction of electronic orbitals of ground state and excited state carbon atom
[73].

Two electrons in the innermost orbital (1s) is close to the nucleus and are irrelevant
for chemical bonding or reactions. Four electrons in 2s and 2p, with two electrons in each,
are responsible for the bonding nature of carbon atoms. As the 2p orbitals are 4eV higher
than the 2s orbitals, it is energetically favourable to place two electrons in the latter and
two in the former. At the time of bonding, one electron from 2s orbital is easily excited
to 2p (2p. to be exact) state for forming covalent bonds with other atoms. Therefore, we

now have four equivalent quantum-mechanical states as follows:

125), |2p2), |2py) and |2p.)
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3.2. Physical Properties

This quantum-mechanical superposition of state |2s) with n |2p;) states is termed as
sp™ hybridisation. In case of graphene, the superposition of the 2s and two 2p orbitals
(12p2), |2p,) states), results in sp? hybridisation. The following represents the 3 quantum-

mechanical states of the sp? hybridisation in graphene [73]:

o 1 /2
|8p1>—ﬁ\28> \/;2py>,

) = —=l25) =3 (?rm + §|2py>> , (31)
) = — =129+ /3 (—?mm + §|2py>> .

These orbitals are oriented along the zy-plane with mutual angles 120° and the re-
maining 2p, orbital remains unhybridised and is perpendicular to the plane. A hexagonal
structure of graphene is akin to the benzene ring which has carbon atoms linked by o
bonds. The C-C bond length in graphene is 0.142nm [74]. Bonding plays a major role in
physical and chemical properties of the metal and a strong bond obviously denotes higher
the material strength or in other words, strength of the thin film of graphene (Fig. 3.7).

It takes an elephant to stand on a pencil to tear a film of graphene!!

“It would take an elephant, balanced on a pencil to break through a sheet of graphene the
thickness of cling film.”

Figure 3.7: Artistic imagination [75] showing strength of graphene monolayer (0.335nm
thick). A layer of graphene has a breaking strength of 42N/m (intrinsic strength of a
defect-free sheet) — 100 times more than that of the strongest hypothetical steel film of
the same thickness [64].

The unhybridised 2p. orbital has one extra electron (because of sp? hybridisation) that

forms m-bonds and is half-filled [76]. Such half-filled bands play major role in the physics

70



3.2. Physical Properties

of strongly correlated systems because of their strong tight-binding character and the large
Coulomb energies [74]. Plasmons in graphene are caused by electron oscillations which is
due to the electronic structure which in turn is the resultant of bonding nature of C=C in
graphene. So the study of basic bonding structure of graphene is required to understand
the unique properties of this wonder material. A detailed discussion on chemical bonding
of graphene is out of scope of this thesis. So we now move on to overview of crystal
structure and stacking or orientation of layers in graphene when its thickness exceeds

0.335nm — the thickness of monolayer [77].

3.2.2 Crystal Structure

In graphene, carbon atoms condense in a honeycomb
lattice due to sp? hybridisation. This honeycomb
lattice, with 2 carbon atoms in the basis (Fig. 3.8),
is not termed a Bravais lattice because two neigh-

bouring sites (A and B) are not equivalent. Each

unit cell contains one lattice point and a two-atom

basis. Any lattice point can be reached by adding
an integral number of primitive vectors. The vec-
tors d4 and dp from a lattice point to an atom in

the basis and are used in calculating the structure

factor as follows: . .
Figure 3.8: Two atom basis super-

imposed forming a hexagonal lat-
; tice. Two carbon atoms (A and B)
la1] = |az| = V3, |da| =|dg| ==, ¢ =120° in each unit cell are shown in differ-
2 ent colours (blue and red) [78].
(3.2)

From equation 3.2, ¢ = 120° denotes the angle between orbitals in sp? hybridisation.
Figure 3.9 illustrates graphene crystal lattice with sublattices A and B. Vectors a; and
ao form the basis vectors of the triangular Bravais lattice. Its primitive lattice vectors
are a7 and a}. The shaded region in Fig. 3.9(b) denotes the first Brillouin zone with
centre I' and two inequivalent corners K and K’. From Fig. 3.9(c), a site on the A
sublattice has its nearest neighbours in the directions (Fig. 3.9(d)) north-east, north-west

and south. Similarly, a site on the B sublattice has nearest neighbours in the directions

north, south-west and south-east. Both A and B form a two-atom basis for a triangular
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3.2. Physical Properties

Bravais lattice [73].

@ A sublattice O: B sublattice

© (d)

W. E

Figure 3.9: Honeycomb lattice of graphene layer: (a) lattice structure depicting Bravais
lattice; (b) reciprocal lattice of the triangular lattice; (¢) atoms (A and B) with nearest
neighbours; (d) directions for reference to nearest neighbours. Adapted from Ref. [73].

The distance between nearest-neighbour (nn) carbon atoms is 0.142nm. The three

vectors that connect a site on A with a nn in B is given by

0 = g <\/§ez +ey> ,
= g (—\/gex + ey> ,

03 = —aey

and the basis vectors a; and as,

a;] = \/§aex

ag = \/ja <ex + \/gey) .

Modulus of basis vectors |a;| and |as| yields the lattice spacing

a= \/ga =0.24nm
and the area of the unit cell is
3~2
Aunit cell = \/;a = 0.051 nm?

Therefore, the density of carbon atoms is

2

— = —=39nm 2 =3.9 x 10" ¢cm 2
Aunit cell

ng =
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From Fig. 3.9(b), the reciprocal lattice is spanned by the vectors given by

*

N ;; <ez B \e/%> (3.8)

a [ —
2 3a

€y

Actually, all sites of the reciprocal lattice represent equivalent wave vectors, such that,
any wave (vibrational lattice excitation or quantum-mechanical electronic wave packet)
propagating on the lattice with a wave vector differing by a reciprocal lattice vector has

the same phase up to a multiple of 27, given by
a; a;',‘ = 271'(5@' (3.9)

where 6;; =1 if i = j and 6;; = 0 if 7 # j.

From equation 3.9, the reciprocal vectors are calcu- (a) o b
lated as follows: K
L lH'
ags X as
aj = 2mr————,
a; -az X ag *
agz X a1
at =2 3 - (3.10) K ~dst Brillouin Zone i
a] -ag X ag - ’
a] X ag e
ay =2n———, -
al -ag X ag - -
£
where a; and ay are primitive vectors of the crystal and (b)

ag the 2 unit vector. The first Brillouin zone which is

the unit cell of reciprocal lattice and the behaviour of

relativistic particle are shown in Fig. 3.10. In the figure,
by and by denote a7 and a, respectively. Closer to the

points K and K’, the energy of electrons in graphene

depend linearly on their wavenumber. This behaviour is
Figure 3.10: (a) First Brillouin
zone. (b) Dirac cone. Adapted

is governed by the Dirac equation, from Ref. [78].

similar to that of a relativistic particle whose behaviour

4
—7;, 6 = 60° (3.11)

|b1| = [ba| = 3

The crystallographic points play a major role in defining the electronic properties of
graphene as their low-energy excitations are centred around the two points, K and K.

Electronic properties are discussed in detail in Section 3.3.
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3.2. Physical Properties

3.2.3 Mono-, bi- and trilayers

A single atomic plane is a 2D crystal. In case of graphene, the atomic plane is made of car-
bon atoms. The thickness of monolayer graphene (MLG) is 0.335 nm. As seen in previous
sections, a single layer of graphene is where the carbon atoms are arranged on a honey-
comb lattice. Whereas in a bilayer, the second layer is shifted over one carbon—carbon
bond length (0.142 nm) with respect to the first layer. MLG are zero-gap semiconductors
with the low-energy electrons behaving as massless Dirac fermions. They are chiral as
their wavefunction has two components — pseudospin with direction pinned to the electro
momentum [74]. Bilayer graphene (BLG) are distinct 2D systems — zero-gap semiconduc-
tors with low energy chiral electrons but with quadratic low-energy dispersion. Applying
a perpendicular electric field to the bilayer opens a gap between valence and conductions

bands and transforms charge neutral bilayers to insulators [79].

(a)

© i @
® A sitesin lower layer A Bsitesinupperlayer
O A sitesin upper layer /\ B sitesinlower layer

Figure 3.11: Bilayer stacking of graphene layers: (a) upper layer translated by §; with
respect to the lower — the A’ sites on top of B sites; (b) upper layer translated by —d;
with respect to the lower — the B’ sites on top of A sites. Source: Ref. [73]

Let us consider the case of bilayer graphene (BLG) of thickness 0.69 nm [68]. Inter-
layer spacing is roughly d = 2.4a = 0.34nm. In a bilayer stack, the layers are arranged
such that the upper layer atoms are placed at the hexagon centres of lower layer. The
layers are translated with respect to each other with displacement given by either §; or
—0d;, where ¢ = 1,2 0r 3. Figure 3.11 shows two possibilities of stacking bilayer graphene.

Now we move on to trilayer graphene of thickness 1.12nm [68]. From the bilayer
graphene wherein the second layer is translated with respect to first by ¢;, the third layer
may be considered to be translated with respect to second either by §; or —d;. Former

leads to ABA stacking and latter the ABC stacking. It is generalised as follows:
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3.2. Physical Properties

e Layers translated with respect to their lower neighbour by d; leads to rhombohedral
stacking, also called ABC stacking, which has 6 atoms per unit cell. However,

structural defects are often present in domains with ABC stacking [69].

e In alternate translation (9;, —d;,d;, —0d;,...), such stacking results in a hexagon or
ABA or Bernal stacking. This is the most common stacking found in natural graphite

crystals [69].

In 2011, three research groups [80-82] reported experimental findings that ABC-
stacked trilayers are distinct from all other graphene multilayers. Measurements of quanti-
zation sequence of Hall conductance confirmed that low-energy electrons in ABC trilayers
exhibit a cubic dispersion unlike mono- and bilayers. Applying a perpendicular electric
field in ABA trilayers, increases the overlap between valence and conduction bands which
enhances the conductivity [83]. Figure 3.12 shows trilayer ABA and ABC stacking order

with layers shifted to one C—C distance (0.142nm) with respect to the next layer.

a ABA trilayer b ABC trilayer
Q O
~0 a2 S 0 ® G o0
. = Q: (_JO: k‘)o .,..\?O \__)O
B It A
% 5® Qe 26 o
C D :\_‘O & L{)-- C?’O @,
o c¢® % o &° Y%
e o %% o %%
® O @ O
€ A3 B3 d A3 Os3
A2 O B2 Azg B2
A1Q Bl AID B

Figure 3.12: Trilayer graphene stack: (a) ABA, (b) ABC, (c¢) and (d) next layer moved
one C—C bond distance, 0.142nm. Reproduced from Ref. [80].

In a layer of graphene, one s-orbital (2s) and two p-orbitals (2p,,2p,) hybridize
leading to sp? hybridisation, forming o-bond between carbon atoms which are separated
by 0.142nm. The o-band provides robustness to the lattice. Based on Pauli principle,
these bonds form a deep valence band since they have a filled shell. The remaining p-
orbital (2p,) stands perpendicular to the planar structure and forms covalent 7-bonds
with nearest neighbouring carbon atoms. This 7w-band has only one electron from each

atom and thus half-filled.
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3.3. Electronic Band Structure

Mono- and bilayer graphene have simple electronic spectra and both are zero-gap
semiconductors. For three layers and beyond, the spectra becomes complicated since
several charge carriers appear and valence and conduction bands start overlapping [67].
Therefore, graphene layers are distinguished as single-, double- and few- (3 to < 10 layers).

Increasing layers of graphene approaches the 3D limit of graphite at 10 layers [84].

3.3 Electronic Band Structure

Given the electronic configuration of carbon (1s22s22p?), three electrons are involved in
forming strong covalent ¢ bonds and one electron per atom forms the 7 bonds. At low
energies, the 7 electrons are responsible for electronic properties whereas the o electrons
form energy bands far away from the Fermi energy [73]. Charge carriers in graphene
constitute a 2D gas of massless Dirac fermions (i.e., carrier transport is governed by the
relativistic Dirac equation). Fig. 3.6, there is an energy difference (~ 4eV) the 2s and
2p orbitals, which leads to hybridisation of these orbitals. Of the four valence electrons
in carbon atom, one electron in each of 2s, 2p, and 2p, orbitals form o bonds with three
nearest neighbours and the remaining one electron in 2p, forms m bond with nearest
neighbours. The electrons forming m bonds determine the energy spectra of graphene

represented using the tight binding model.
3.3.1 Tight Binding Model

A free-electron model defines how charge carriers be-
have in a metallic solid and thus represents the elec-
tronic structure. In case of materials with closed shell

atoms (e.g., graphene), the free electron model may not

be appropriate. A tight binding model (Fig. 3.13) brings

together the wavefunctions of atoms and their interac- Figure 3.13: Representation

of tight binding model in

tion to represent the electronic structure of such systems. .
graphene lattice. Source: [73].

The simplest model is the system with one atom per unit
cell with one valence orbital ¢(r).

The general form of Bloch wave function is used in this model:

=Y e*Fer - R) (3.12)
R
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3.3. Electronic Band Structure

where R represents the set of lattice vectors a; and as and ¢(r) the envelope function.
Since there is a overlap of atomic wave functions, ¢ is approximated by a linear combination
of set of atomic wave functions.

Using equation 3.12, the wave function for an atom in an unit cell is given by

i (r) = \/IN ; exp(jk. R )p(r — Ryy,) (3.13)

This idea is extended to two atoms in an unit cell system. As seen in previous sections,
long range order of hexagonally arranged carbon atoms make up a layer of graphene. This
arrangement is seen as a lattice with a two-atom basis in a unit cell. Lattice vectors are

given as

a1 = g(g, V3), ap= %(3, —V3) (3.14)

and vectors for reciprocal lattice are given by

b = 2—2(1,\/5), by = (1, —V3) (3.15)

where the carbon—carbon bond distance, a ~ 0.142nm. The Bravais lattice vectors are
given by

Rj =mj a; + njaz (3.16)

where m; and n; are integers. Each ion on site R; yields an electrostatic potential and the
overall potential energy is given as %V(Rl — R;) where N is the number of lattice sites
and R; and R; the lattice sites. Thzs is a periodic function with respect to an arbitrary
translation by lattice vector R;.

The points K and K’ at the corners of Brillouin zone (see Fig. 3.10) in graphene
are important for the electronic spectra and are called Dirac points. Their positions in

momentum space are given

2r 27 27 2T
K=|— """+, K=(— —""— 3.17
<3a 3\/3@) <3a 3\/§a> ( )

the three nearest neighbour vectors are
a a
01 = 5(17 \/g) 02 = 5(17 —\/5)7 03 = —a(l,O) (318)
and the six nearest neighbour vectors are located at
(5/1 = :|:CL1, 5é = :|:a2, 5{:, = :f:(ag — al). (3.19)
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3.3. Electronic Band Structure

From the orbital representation of graphene (Fig. 3.6), we understand that electron

in 2p, orbital forms ¢ bond, which is taken into account in this model. Therefore, in a

unit cell, we have two 2p, orbitals denoted by ¢; and ¢o. The total wave function is then
given by

¢ = b1¢1 + b2 (3.20)

|2

where b; and by denote constants, |bl]2 + |b2|* = 1. The nearest-neighbour atoms exert

atomic potential on these two electrons and the Hamiltonian is given by

V2
H = % + (Vatom(r — Iy — R) + Vatom(r — I — R)) (321)
R

where r; and ro denote positions of the two atoms. The constants b; and by are obtained

by solving the Schrdinger equation,
Hy = Ey (3.22)

For the total wave function with constants (b and b2) and states (¢1 and ¢1), using

bra and ket vectors, above equation becomes

(95| H ) = E (5] ¢) (3.23)

where j =1, 2.

Considering only nearest neighbours R = 0,a;,as terms in |¢)),
(@1 [1) = b1 +b2(9 [g2) (1 + e~ 4 ek (3.24)

(Do |90) = b + bi(dy |d1) (1 4 e7hd1 4 gmikeaz) (3.25)

Here (¢, [¢p2) = (¢, |¢1). From equation 3.21, the atomic Hamiltonian for two atoms, a;

and a9 is given by

v2
Hy = ot Vatom (r — 11) (3.26)
V2
Hy = om T Vatom (T — 12) (3.27)
Therefore,
H = H, + AH, = Hy + AH, (3.28)

We now use a simple relation as ¢; are eigenfunctions of Hj,

Hj|pj) =¢€j9;) (3.29)
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where ¢; represents the energy of 2p. orbitals. As we have only carbon atoms in a layer

of graphene, €1 = &9, which is now denoted by ¢y. Setting g = 0,
(p1| H [¢p) = (¢1| Hy + AHy [¢) = (¢1| AH |[) (3.30)

(o] H [Yp) = (¢o| Hy + AHs [9p) = (¢o| AH |1)) (3.31)

As we are studying a two-atom basis, so only the nearest neighbours are relevant for atoms
1 and 2 when calculating the terms of (¢;| AH, [1). So the terms for above two equations

are given as follows:

(P11 AH: ) = b1B + bami f* (k) (3.32)
(¢2| AHs [¢p) = 28 + biv1 f (k) (3.33)

where

B = {(¢1| AHy |¢n)
Y1 = (¢1| AH1 |p2) = (2| AH2 1) (334
f(k) =1+ elk-al + ezk_32

Using equations (3.25) through (3.33), transforming the Schrdinger equation (3.23 ) into

an eigenvalue equation as

iy ") () -2(0) o

where [ is the variation in energy of 2p, orbital, exerted by carbon atoms in a graphene
layer. The above equation leads to the dispersion relation £ = E(k). From Schrdinger

equation (3.23) and Bloch equation (3.13), the two basis wave functions are assumed as

Yoz =)L e Moug(r —R) (3.36)

The energy variation, (5, is considered negligible as it corresponds to a minor rigid shift on
the energy band. Using this fact, equation (3.35) is simplified further since the hopping

parameter, v, is small. Then the dispersion relation becomes

E(k) = +7 [f (k)]

k ks ke (3.37)
==+v1,|1+4cos ( y\/§a> oS (a) + 4cos? <2a>

2 2

where k, and k, are components of k. The above equation leads to the energy band
structure of graphene shown in Fig. 3.14(a), which can be obtained using MATLAB

codes.
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Figure 3.14: Representation of electronic band structure in graphene. (a) Dirac cone; (b)
cones at Dirac points K and K’; (¢) Brillouin zone in a graphene layer; and (d) unit cell
of two-atom basis. Adapted from Refs [85,86].

The electronic band structure shown in Fig. 3.14(a) represents how the valence and
conduction bands cross each other at six points in the corners of the 2D hexagonal Brillouin
zone (BZ) in Fig. 3.14(c). Both these bands meet at K and K’, called Dirac points. Each
BZ has three K and three K’ points. Fig. 3.14(b) depicts the cones at K and K’ separately
and each carbon atom contributes an electron (2p,) each for conduction. The electrons
and holes behave like relativistic particles near the Dirac points with half-spin due to the
linear dispersion relation in equation (3.37). So the charge carriers of graphene are termed
as Dirac Fermions that make graphene a zero-gap semiconductor. Importantly, the Fermi
level in graphene can be controlled by applying a gate voltage (Vgate), which is an unique
property. The electronic and optical properties vary with respect to change in chemical
potential. This variation and its influence on material properties such as dielectric constant
() is discussed in the next section.

The region close to K and K’ is termed a low-energy region where the Hamiltonian
is approximated by a first-order expansion. Firstly, around K point, k = x + K, and by

first-order expansion of f(k), equation (3.35) becomes,

() (5)e(s) e
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3.4. Optical Conductivity

Secondly, above dispersion relation simplifies to
e(k) = Fhor |K| (3.39)

where vp is termed the Fermi velocity and it is given by

\/371(1
Vp = ——(——

AL (3.40)

As the two-dimensional energy spectrum is linear, the electrons always move at a constant
speed, vp. Using literature values for v; = 2.9eV [87] and a = 0.426 nm [88], the Fermi
velocity is calculated to be, vp ~ 10% m/s. This shows the charge carriers in graphene
move in a similar manner of light, as if they are relativistic particles with zero mass.

The Hamiltonian in terms of Fermi velocity at K is

H=h—vpk- o (3.41)
where
. . .0 0
k=—iV =—i (max + y8y> (3.42)

and o the Pauli matrices are given by o = (04, 0y).

3.4 Optical Conductivity

We have seen the electron band structure
of graphene in previous section. It is very
simple, near the energy ¢ = 0, the energy
bands form cones at Dirac points K and K’
in the two-dimensional Brillouin zone (Fig.
3.15) with Fermi velocity, vp ~ 10m/s.
One of the unique properties of graphene
is that the quasiparticles such as plasmons
and fermions obey a linear dispersion re-

lation. As a consequence, an additional

symmetry that is chiral in nature exists for

Figure 3.15: Graphene electron spectrum
these quasiparticles. This chiral symmetry (Dirac cones) at K points of the Brillouin
zone.

fixes the direction of pseudospin — parallel

or antiparallel — to the directions of motion of electrons and holes, respectively, which
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3.4. Optical Conductivity

also has an immediate and dominant effect on the electronic and optical properties of
graphene [89].

Modulation mechanism in a graphene modulator is wholly based on electron—photon
interaction. Charge carrier density or carrier concentration (n4) levels play a major role
in this phenomena, which is unique in graphene, as this levels can be adjusted through

doping or by applying an external gate voltage.

E0Er
n prnd
g te

Ve =1V (3.43)

where g9 2 8.854 x 1072 F/m is the permittivity of free space, ¢, the relative permittivity
of substrate (SiOs, &, = 3.9), t the thickness of SiOs (e.g., 300 nm) and e = 1.602x 10719 C
the electronic charge. Using these values, the proportionality coefficient v between charge
carriers and applied gate voltage is v = 7.3 x 109 cm=2V ! [90].

Studies based on conductivity of

(@ 34

graphene (o) gained prominence when it is
found that this property “never falls below
a minimum value” [90], even when ny tends 2 A

10 K
to zero. Adjusting the chemical potential

o (k&)

with electric field thus provides unique ef-
fects which can be exploited in realising

electronic devices at the nanolevel. An-

other important phenomena, unusual half- 0

integer quantum Hall effect, has been ob- V. (V)
:]
served in graphene which is also due to the

effect of electric field on both electron and

hole carriers [92]. Figure 3.16(a) shows ¢
variation of optical conductivity (o) as a N C K i
function of gate voltage (V;). For both po- \ \ \
larities, o linearly increases with increas-

1 II I

ing V. The Pauli blocking mechanism is

Figure 3.16: (a) Optical conductivity wver-
sus gate voltage. Reproduced from Ref. [90].
band transitions occur as graphene absorbs (b) Pauli blocking mechanism. Adapted from

Ref. [91].
incident light. In stage II, the carriers relax

shown in Fig. 3.16(b). In stage I, inter-
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3.4. Optical Conductivity

and redistribute given by Fermi-Dirac distribution. Stage III shows saturable absorption
when further absorption is blocked, which is termed Pauli blocking, as no two electrons
can be in the same quantum state. At this stage, no light will be absorbed and graphene
is transparent.

Optical absorption in graphene occurs from two transitions or contributions viz., intra-
band and interband. Former happens within cones and latter between the lower (valence
band) and upper (conduction band) cones. The term transitions refer to the production
of electron—hole pairs. The intraband transitions exists even at zero energy, € = 0. When
Fermi energy is at the Dirac point, the Fermi surface shrinks to a point, so the intraband
transitions disappear and only interband transitions between the lower and upper cones
exist [93]. The change in optical conductivity of graphene under excitation arises from
both intra- and interband contributions. Kubo formula is used for describing the complex

conductivity of graphene including both the transitions [91,94, 95]:
0 = Ointra + U/inter + jo-”inter (344)

where “intra” denotes the transitions within valence bands whereas “inter” the electron

transitions between valence and conduction bands.

4u 1

Ointra = 0'0? 1 — ihw (345)
1 Aw — 2 1 hw + 2
0'inter = 00 | 1 + — arctan W 728 2 aretan fw + 20 (3.46)
T Aty T hto
! Ly e+ 20"+ 127 (3.47)

0 inter = _UO% (hw . 2#)2 + hQTQQ

where p is the chemical potential (in eV), o9 = €2/4h = 60.8uS is the universal optical
conductance, i = h/2m, h the Planck’s constant (6.626176 x 10~3* joule-seconds), w = 27v,
v the frequency of optical pump and 71 = 8.3 x 10 s~ and 7 = 10'3s™! the relaxation
rates of intra- and interband transitions, respectively [96]. The complex conductivity of

graphene takes the final form,
o(w) =o1(w) + joz(w) (3.48)
where 01 (w) and o2(w) denote the real and imaginary parts of o(w).
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In the next section, we discuss a very important parameter, dielectric constant or
permittivity, of graphene. It is denoted by ¢ and this parameter plays a very crucial role

in the electro-optic modulation phenomena on which this thesis is mainly based on.

3.5 Dielectric Constants

Optical properties of a material are mostly based on their electronic band structure and
dielectric screening factors. The dielectric function £(q,w) is dependent on wave vector q
and frequency (w = 27v). The uniqueness of graphene is that the chemical potential can
be controlled through external voltage, i.e., tuning Fermi level (Er) by electrical gating
(V). The dielectric function (e(w)) of graphene is a complex term since it is derived from
conductivity (o(w)), which is also a complex term as seen in previous section. Both e and
o consist of interband and intraband contributions.

To obtain e(w), we need to calculate o(w) first. Stauber et al. [27] has presented a
detailed study on optical conductivity of graphene. They used Kubo formula and intro-
duced a correction to the real part of o(w). Their study has included the following cubic

term in the density of states (p(E)) with usual Dirac cone approximation,

2F 2F3 10E°
P(E) = V372 + 337t * 27+/37t6 (349)
A graphene layer confines electrons in a two-dimensional
system which results in quantum-mechanical phenomenon E
such as Landau levels. These quantized behaviours of Dirac :Ej:: ;:::: (a)
2ho :

fermions in graphene are studied experimentally in infrared o Shen

1w

spectroscopy experiments [99] as well as using scanning tun-
nelling microscopy (STM) and scanning tunnelling spec-

troscopy (STS). The measurements show Landau-level spec-

tra and rich level-splitting in graphene layers of varying thick- .
ness. Based on these results, the presence of number of layers
and stacking order (random or ABA or ABC) in graphene k

sample can be identified. In graphene, Landau levels are not Figure 3.17: (a) Landau

levels [97]. (b) Schematic
of Landau levels in Dirac
different from each other. The optical transitions are of two cone [98].

equidistant, therefore all optical transition frequencies are

types:
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a) intraband: transition between electron (hole) states;

b) interband: transition between electron and hole states, i.e., valence and conduction

bands.

For calculating the dielectric constant of graphene layers, it is very important to know
the number of layers present in the sample as it will impact the dielectric constant values
which are very crucial for electro-optic modulation. Next section we will discuss the
method we used in this study to obtain the complex dielectric constant values (e1 + jeo)
for various voltage levels (u = 0 — 1eV). The concept of electro-optic modulation using
graphene layer is based on its uniqueness on controlling of Fermi level (chemical potential,

©) by applying a gate voltage (V;).
3.5.1 Method

Several studies have obtained the conductivity equation [26,27,94,100], o(w), from Kubo
formula and identified the range of complex dielectric constants, e; + jeg, for graphene
6,28,29]. Here 1 and e3 denote the real and imaginary parts of e(w). The factors such
as angular frequency (w), chemical potential (1), scattering rate (I') and temperature (7')
influence the conductivity as well as the permittivity of graphene. So the first step is to
derive the equation for optical conductivity o(w) and then calculate the permittivity e(w)
at various voltage levels (in eV).

Under an external electric field, a material polarize (P = x.E) or carry a current
j = oE, where x. is the electric susceptibility and ¢ the conductivity. In case if the
electric field (E) is not strong enough, both these parameters are independent of E. They
then depend only on the material properties which is termed linear response since y. and
o are independent of the electric field [101].

An electric field varies in space and time sinusoidally given by
E(t) = E cos(wt) (3.50)
In a solid, the response will be a first order with an electric current given by
Ja(t) = 0B cos(wt) + 0 ) By sin(wi) (3.51)
In terms of complex notations, equation (3.51) is equivalent to

§(t) = Re[o(w)Ee™ ] (3.52)
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with complex conductivity ¢ = o) + jo@ where real part denoting the in-phase or
dissipative and imaginary part the out-of-phase or reactive response to the E field.
Optical conductivity of a material is studied through the material’s response to an

external electric field given by

p—twt

E(r,t) = Ege'” (3.53)
Conductivity is calculated from following relation, within this linear response:
Jo(r,t) = 0ap(q,w)Es(r,t) (3.54)
To find expression for conductivity, we start with the Hamiltonian of the system,
i = [ | gl )~ A (o) - o6 @00l + H (355)

From above equation, the current is found by

. O0H
ITT5A

—ieh e? 3.56

= 8 (V@) Vi) - @)V @) - S Avt @) (35

m ' m
Jp Jd
where j, is the paramagnetic current and jq the diamagnetic current.
The observed current is the expectation value of current operation given by,
) ne?
J(I’,t) = <.]P(ra t)> - FA(r’t) (357)

where n denotes the electron density which is a vital parameter.

We have seen in previous sections that the 7 electrons in graphene are responsible for
conduction. Therefore, the dispersion of such electrons in the first Brillouin zone is given
by

E(k) = shop |K]| (3.58)
where A is the reduced Planck’s constant and vp the Fermi velocity, ~ 10°m/s; here,
s = +1 refers to the conduction band and s = —1 the valence band; |k| = 0 refers to the
Dirac point, thus, E(|k| =0) = 0eV.

The uniqueness in graphene is the tuning of Fermi level by electrical gating or exter-
nal voltage. This applied gate voltage (V) alters the carrier density, n, = C(V + V).

Accordingly, the Fermi level gets shifted by

EF = ﬁ’UFu /T Ng (3.59)
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where Vj is the offset voltage; C refers to the capacitance estimated from a simple capacitor
model (especially for devices involving two layers of graphene separated by a dielectric)
given by

. E0Ed

— f0&d 3.60
o= (3.60)

where g9 = 8.854 x 10712 F/m is the permittivity of free space, eq the permittivity of
dielectric and t4 the thickness of dielectric between two graphene layers [6].

In an undoped graphene, under thermal equilibrium, the mobile (7) electrons in CB
and holes in VB act similar to intrinsic carriers in a semiconductor. Therefore, in terms
of density of states (DOS), the sheet carrier density p, of such intrinsic carriers is given
by

(D) = s 1) (3:61)

where g5 refers to the two-fold spin degenerate and g, the two valleys in the first Brillouin
zones (K and K'); gs = g, = 2 [102]. The charge carrier density is given by,

o

n= [ dEoy(E) £(E) (3.62)

0

where f(E) is the Fermi-Dirac distribution given by

f(BE) = (1 + exp [Ek;fFD_l (3.63)

where kg is the Boltzmann constant, 7' the absolute temperature and Er the Fermi level.
Using dimensionless variables u = E/kgT and n = Ep/kgT, equation (3.62) can be

rewritten as,

2 kBT 20
.64
n = < VF) 3 (+n) (3.64)

Similarly, the symmetric hole density is given by,

p= i(lgi)gl(—ﬁ) (3.65)

where 3(n) is termed the Fermi-Dirac integral with j = 1.

The Fermi level, under no external bias and no optical illumination, is unique and

exactly at the Dirac point, Er = 0eV, and the intrinsic carrier concentration is derived

_ o _7T k‘BT 2
n=p=ni=g () (3.66)

using above equations as,
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The above equation is an ideal equation which has carrier concentration (n) dependent
only on Fermi velocity (vp). At room temperature, this value is n; ~ 9 x 10!% em~2 taking
into account the intrinsic electron and hole sheet densities [102].

In previous sections, we have seen that modulation in a graphene-based waveguide is
carried out by tuning Fermi level in graphene through electric gating and the Fermi level
shift is given by

AEp = hvpy/7 |n| (3.67)

where h the Planck constant (h) divided by 27 and vp the Fermi velocity (~ 10° m/s).

Using Kubo formula, the derived equation for conductivity is given as follows [26]:

o hw +2p hw —2u
= — | tanh ———— + tanh ———
o(w) 5 <an T + tan WonT

Vv
interband

70 1, (hw + 2p)?
® | — 20 + 2hT)’

(3.68)

interband

4
Lo n
T hw + ihy
—_—————
intraband
where p is the Fermi level, v the intraband scattering rate, og the universal conductivity
defined by e€2/(4h), kg the Boltzmann constant (1.38 x 10~**m?kgs 2K ~!), w the angular

frequency (= 27v) and T the temperature in kelvin.

Using equation (3.68), the complex dielectric function can be obtained as follows [6]:

o(w)

ew)=1+j (3.69)

wE()tg
where ¢, is the thickness of graphene layer, ¢¢ the permittivity of free space (8.8542 x
107 2m—3kg~1s*A?) and w = 27v with v = ¢/)\; (velocity of light, ¢ = 3 x 10®ms™! and

A the wavelength of incident light in pm).
3.5.2 Results and Discussion

We have seen in previous sections the uniqueness of graphene layer is that the Fermi level
(Er) can be tuned by applying a gate voltage (V). This property makes graphene layers
most suitable for electro-absorption modulators. In simple terms, electrons in graphene
couple with photons and thus light modulation is achieved by tuning the Fermi energy of

graphene with electrical gating. Equations (3.68) and (3.69) shows expressions for o(w)
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and e(w), respectively. From equation (3.69), it is obvious that the dielectric constant
e(w) depends on wavelength (\) and t, the thickness of graphene layer. In this section,
we present our results on change in dielectric constant (¢(w)) with respect to Fermi level
or chemical potential, layer thickness and wavelength of incident light.

We have chosen the thickness of graphene layers from

T
=10 layers

an experimental study [68] as follows:
a) Monolayer: 0.4nm
3 layers
1.12nm

b) Bilayer: 0.69 nm

c¢) Trilayer: 1.12nm

Raman intesity (arb. units)

Figure 3.18 shows Raman spectra of graphite with

mono-, bi- and trilayers. Technically, graphene is a mono-

layer of carbon atom of diameter 0.3nm, so a thickness

Rarman shift (omi')

of monolayers graphene taken as 0.33-0.4 nm is agreeable.

As yet, a broad consensus has not been reached among Figure 3.18: Raman spectra
of graphitic layers. Source:

research groups in treating the thickness of monolayer or [68].

bilayer graphene as given above. Most theoretical stud-

ies [6,29,103] used bilayer thickness of graphene as 0.7nm. Studies [103-105] have taken

thickness of graphene layer as 1 nm. In case of 2D materials, thickness measurement is

very crucial as their electronic and thermal conduction properties heavily depend on layer

thickness and difference of 0.1 or 0.01 will influence the results.

Novoselov et al. [3] used 1-mm-thick platelets of highly-oriented pyrolytic graphite
(HOPG) as starting material to prepare single, double and few layer graphene. They
found that thin flakes of this material with thickness, d<10nm attach strongly to SiO,.
This is an important finding when thickness of graphene required for electronic devices
is still unclear. At d <= 1.5nm, graphene films are not visible to the naked eye. Also,
single-layer graphene has rarely been observed to be flat so some areas of film are ruptured

or folded back. The step heights for single and double folds are found to be 0.4 and 0.8 nm,

respectively (see Supplementary Material in Ref. [3]).
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0.5- ! fayer Figure 3.19 shows the contrast spectra
—— 2 layers
R 3 \azers taken for varying thickness of graphene lay-
0.0 -~ —— 4 Jayers
7 :;::ﬁ:ﬁ ers. Samples a—f are more than 10-layer
5 0.5 —a
6 B thick. Contrast spectra is calculated as fol-
o
-1.04 —d
¢ lows:
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I—— Ro(\) — R(A
C(\) = Rod) = R(Y (3.70)
201 , . r : ; Ro(A)
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Wavelength (nm) where Rp(A) is the reflection spectrum

Figure 3.19: Contrast spectra of graphene from SiOy/Si substrate and R()) the re-
sheets of varying thickness. Source: [77]. flection spectrum graphence sheet. The con-
trast peak position as shown in the figure remains steady at A = 550 nm for layers up to
10. Beyond 10-layer thickness, the contrast spectra peak shifts towards higher wavelength
(a and b), and negative contrast starts occurring for increasing number of layers (c—f).
It is obvious that when samples become thick that the reflections from surface is more
intense than that from the substrate leading to negative contrast [77].

We now move on to our results from the analytical expression (equations 3.68 and 3.69)
we derived for calculating the dielectric constants of graphene [26,27,94]. Using equation
(3.69), we can obtain a range of dielectric constants for varying thickness of graphene layers
(tg), chemical potential (1) and wavelength (\). Permittivity or dielectric constant (e(w))
depends on conductivity of the material which is derived using Kubo formula. First, we
benchmarked our analytical expression with studies [29], [6] and [28]. Plots from equation
3.69 are plotted against theirs as shown in Figs 3.20, 3.21 and 3.22, respectively.

Plots in the figure show similar trend with Re(e;) peaks at u = 0.4eV and becomes
negative beyond p = 0.5eV. When the electric gating (V) causes Re(e1) to negative
values, the corresponding effect is termed “epsilon near zero” (enz) effect. For instance,
1(0.52eV) = —0.4998 4 j0.5340 is one such enz value, where TM mode attenuation peaks.
The enz effect is that when the fundamental TM mode starts attenuating rapidly, which
will be discussed in Chapters 4 and 5. An interactive MATLAB code was written (Ap-
pendix A) for the analytical expression (3.68 and 3.69) to obtain range of complex di-
electric constants (1 + jeg) for varying chemical potential i, wavelength A and thickness
of graphene layer ¢,. Thickness of graphene layer was taken as 0.7nm. Using equation

(3.69), the values obtained were plotted against the chemical potential, 4 =0 — 1.0eV.
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Figure 3.20: Benchmarking with Lu and Zhao [29]. A = 1550nm; ¢, = 0.7nm; “theirs”
refers to e(w) plots of Lu and Zhao [29] and “ours” the (w) plots from our study.
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Figure 3.21: Benchmarking with Gosciniak and Tan [6]. A = 1550nm; t; = 0.7nm;
“theirs” refers to e(w) plots of Gosciniak and Tan [6] and “ours” the £(w) plots from our

study.

We will now move on to the discussion of dielectric constant plot in detail, which is
crucial for electro-optic modulation. Figure 3.23 shows the plot obtained using analytical
expressions (3.68) and (3.69) derived for bilayer graphene (0.69nm) at the telecommuni-
cation wavelength, A = 1550 nm.

In this plot, we have varied only the Fermi level (Er) or chemical potential (x), keeping

A and t, constant. The applied gate voltage alters the carrier density (ng) in graphene
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Figure 3.22: Benchmarking with Kwon [28]. A = 1550 nm; ¢, = 0.7nm; “theirs” refers to
£(w) plots of Kwon [28] and “ours” the £(w) plots from our study.
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Figure 3.23: Complex dielectric constants of bilayer graphene (t, = 0.69nm) at A =
1550 nm calculated and used in our study.

and shifts the Fermi level accordingly. This change in Fermi level influences the optical

property (refractive index, n) of graphene which undergoes a range of variations. Plots

shown in Figs 3.20, 3.21, 3.22 and 3.23 show variation of complex dielectric constant

(€1 + jez2), which is the square of refractive index, €, = n°.

2

The chemical potential (u) varies from 0 to 1eV. Real part of dielectric constant,

Re(e1), reaches a peak at €(0.4eV) = 4.7592 + j4.4441. Beyond 0.50, the Re(e1) gate-

dependent dielectric constant becomes negative, €(0.51eV) = —0.0839 + j0.5728. This is
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a transition point for transformation of graphene from dielectric to metallic. The attenu-
ation of fundamental TM mode increases rapidly when g is between 0.5eV and 0.52eV,
showing the enz effect. Altogether, huge variations in waveguide parameters such as mode
effective index (neg) and mode absorption (« in dB/um), can be observed from £(0.4eV)
to £(0.7eV), which will be discussed in further sections. We interpolated 55 voltage levels
from 0 to 1.0eV for calculating the variations in complex dielectric constants €1 + jeo.
The range of values we calculated using derived method are given in Appendix A.

Next we shall study the variations of e(w) with respect to change in graphene layer

thickness (tg).

-_—
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Figure 3.24: Complex dielectric constants deduced using Kubo formula for mono-, bi- and
trilayer graphene of thickness (ty) 0.4, 0.69 and 1.12nm, respectively.

Equation (3.69) shows the dependence of €(w) on tg. For the plot shown in Fig. 3.23, we
used bilayer graphene of t; = 0.69 nm to deduce the complex values for e(w). Figure 3.24
shows variations of complex e(w) for mono-, bi- and trilayers of graphene as a function
of Fermi level. Graphene layer thickness (mono, bi and tri) values are taken from an
experimental study [68]. Plots show similar trend with all three layers showing a peak at
= 0.4eV. As the layer thickness increases the amplitude of peaks for Re(e(w)) decreases.
Both real and imaginary parts of €(w) undergoes rapid change in the chemical potential
window between 0.3 and 0.5eV. In this region of change, the waveguide properties such as
neg and a undergoes drastic changes which are discussed in detail in next section. These
changes are very unique of graphene that form the basis for electro-optic modulation —

ON/OFF condition.
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Both inter- and intraband transitions contribute to the trend of e(w). The sign of
Re(e(w)) beyond 0.4eV changes due to intraband absorption. The interband transitions
do not happen when p > 0.4eV and intraband dominates beyond this Fermi level [28,29].
Since the drop of Re(e(w)) is drastic and due to enz effect, it is quite difficult to pinpoint
the voltage level where graphene crosses the transition point () to metallic. For instance,
Ref. [29] has py = 0.515eV with e(w) = —0.048 4 j0.323, whereas Ref. [6] has u; =
0.51eV with e(w) = —0.50 + j0.50. Note the difference in Re(e(w)) for both studies. Our
calculations yield py = 0.5070eV with e(w) = —0.0839 + j0.5728.

Kwon [28] has discussed in his study the reason for these variances which arise due
to the analytic expression used for conductivity (og). In their study, py = 0.513eV with
£(w) = —0.202 + 51.32 and has pointed out py = 0.514eV with e(w) = —0.026 + 50.212
in another study (see Ref. [22] in [28]). However, owing to the steep fall in Re(e(w))
beyond p = 0.4eV, these variations are not critical when considering the enz effect.
Similarly, irrespective of layer thickness, the Im(e(w)) shows a steady trend from 0eV,
starts decreasing beyond 0.36 eV, drops rapidly from 0.4 to 0.507 eV and steadies thereafter

(see plot of Im(e2) in Fig. 3.23).
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Figure 3.25: Complex dielectric constants of e(w) for two Fermi levels, p = 0.4 and
p = 0.509 eV representing conditions ON and OFF, respectively; t; = 0.69 nm.

Operation wavelength range is an important parameter in assessing performance of
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a modulator. For use in optical data transmission systems, modulators are required to
operate in one or more of the major telecom windows: ~ 0.85, 1.3 and 1.5pm [10].
Graphene optical modulators have been found to accommodate extremely broad operation
bandwidth covering from visible to microwave regions [20, 106]. Figure 3.25 shows the
variations in €(w) as a function of wavelength (), calculated using equation (3.69).

Figure 3.25 is plotted over a wavelength range 1000-2000 nm for a bilayer graphene.
This covers the typical fibre optic communication bandwidth, 1300-1600 nm. Both plots
show similar trend but Re(e(w)) has absorption peaks at different wavelengths:

ON:pu=04eV;Re(e(w)) =4.4944 at A = 1500 nm
OFF : = 0.509eV;Re(e(w)) = 4.3328 at A = 1200nm

For a lower potential, u = 0.4eV, the peak in Re(e(w)) moves towards longer wave-
lengths, A=1500nm and vice versa for higher potential. Even though the e(w) varies
for u and A, graphene layer has a constant absorption of mra = 2.293% from visible to
infrared wavelengths; o = e€?/hc ~ 1/137, c is the speed of light [87]. The fine struc-
ture constant, «, describes the coupling between light and relativistic electrons (7). Fur-
ther we benchmarked our code with a study [6]. We chose their voltage levels, u =
0.42,0.46,0.512,0.54 eV and obtained their plots. Then we used same voltages in our code
and the plots yielded are shown in Fig. 3.26; inset shows theirs [6].

These chosen voltage levels lie between 0.4 and 0.6 €V, where the Re(e(w)) drops rapidly
and the attenuation of fundamental TM mode drastically increases (enz effect) leading to
OFF condition. As seen from these results, when compared to the layer thickness (t5),
graphene do not show a strong dependence on wavelength. This finding will be discussed
further with the results of waveguide performance parameters. This weak wavelength
dependence enables graphene-based modulator for broadband operation that can process
hundreds of channels from different systems in the same device [6].

To summarise, in this section, we have discussed in detail the method to obtain com-
plex dielectric constants (¢(w) = €1 + jea) of graphene and its dependence on thickness of
graphene layer and wavelength of incident light. We studied the two important contribu-
tions, viz., interband and intraband, that leads to complex conductivity (o(w) = o1+ jo2)
which in turn results in complex e(w). This property is unique in graphene which threw
light on other quantum-mechanical effects such as generation of surface plasmons, which

is broadly classified as Plasmonics. Before moving on to the next chapter where we begin
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Figure 3.26: Complex e(w) as a function of A, values derived using our code. Inset:
Gosciniak and Tan [6] for comparison.

discussing our first part of results on the study of waveguide characteristics, we would like

to present a brief note on plasmonics in the following section.
3.6 Plasmonics

The understanding of the optical response of graphene is very important for fabrication
and device design for photonic and opto-electronic applications. Our study is based on
characterization of electro-optic modulator wherein light—matter interaction is crucial.
Electromagnetic field interacts with free electrons in metal and the study of such inter-
actions is broadly classified as Plasmonics. As seen in previous section, the role of inter-
and intraband absorptions plays a vital role in the effects that lead to modulation of
electromagnetic wave transmitted through the thin layer of graphene, which has a sea of
electrons and holes in the valence band (VB) and conduction band (CB), respectively.
Electromagnetic wave composed of photons transfer its energy to electrons in CB, or holes
in VB, raising those to a higher energy. Thus band transitions occur. The number of free

conduction electrons and band transitions determine the optical response of metals. The
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Drude model defines the optical response of the metals. A high frequency conductivity of
monolayer graphene has a Drude form as follows:
D
Y = — 3.71
oW =T Em (871)
where w is the frequency, I' the scattering rate and D the Drude weight that has following

value when neglecting electron—electron interactions,

. (the2) JaT

where vp is the Fermi velocity (= 1.1 x 10m/s) and |n| the carrier density.

The electron is treated as a forced damped harmonic oscillator with angular frequency
wp = 0 and the following equation provides solution to the motion of an electron with

harmonic time-dependence for both E and x given by
E(t) = Ege~ ™! z(t) = xpe~ ! (3.72)

The polarisation (P) caused due to the electron oscillation is given by P = —nex, where n
is the carrier concentration and e the charge of an electron. Using the relation D = eggE,

the equations (3.72) are solved as follows:

w2
D= 1—-—P* | E 3.73
=0 ( w? — i’yw) (3.73)

where D is the electric displacement, E the electric field, v the damping constant and wy
the plasma frequency. The dielectric function, e(w), of the free electron medium is given

by

w?

=1- 3.74
fw) =1 g (3.749)

which is derived from the constitutive relations of Maxwell’s equations; D = egE.
Plasmons are quantized plasma oscillations of free electrons. This phenomena of elec-
tronic charge density oscillations occur in the bulk and at the surface of metals. When
such occurring at a metal-dielectric interface are called surface plasmons. Precisely, a
photon passing through a material medium couples strongly with the internal degrees of
freedom inside the material and is termed as a polariton. In case of graphene, as plasmons
are generated at the metal-dielectric interface, they are called surface-plasmon-polaritons

(SPPs). The characteristic relationship between energy and plasma frequency is given by,

4Amne?

E,=hw, =h (3.75)

Me

97



3.6. Plasmonics

where n is the density of conduction electrons, e the charge of an electron, m. the mass
of an electron; wy, is termed the plasma frequency [107]. Also, electronic oscillation is a

simple harmonic function with plasma frequency,

2
ne (3.76)

w =
P meo

Plasmon polaritons are collective excitations of photons and electrons that has the
ability to confine energy of long wavelength radiation (e.g., A = 1550nm) at the sub-
wavelength /nanoscale dimensions. For instance, in a typical waveguide with dielectric—
metal—-dielectric sandwich, the thickness of hBN (dielectric) and graphene are 10 and
0.7 nm, respectively. A surface plasmon polariton (SPP) is an EM wave that propagates
along the surface showing a strong sub-wavelength energy confinement at metal—dielectric
interface [108].

We will now move on to the next chapter discussing our results benchmarked with
prominent studies.The calculated complex dielectric constants (e(w)) from equations (3.68)
and (3.69) were used to ascertain the waveguide characteristics such as mode effective index
(neg) and absorption loss (). The key figures of merit viz., modulation depth or extinction

ratio (ER), operation wavelength range and insertion loss (IL) are calculated.

98



Chapter 4

Benchmarking Graphene-based
Optical Waveguides

4.1 Introduction

An electro-optic modulator is a device that allows to control the amount of light passing
through the material, depending on an applied electric signal. Here, light acts as carrier of
electric signal, which is coded with information, for instance ‘0s’ and ‘1s’. When a voltage
is applied to a graphene—dielectric waveguide, charge carriers accumulate in the interface
resulting in a chemical potential, which can be tuned with a gate voltage. Figure 4.1(a)
shows a waveguide with two graphene layers separated by a dielectric material. When
voltage is applied, positive and negative charges accumulate along the interfaces. This
chemical potential can be tuned such that the incoming light across the material can be
absorbed or allowed due to interband or intraband absorptions. When light passes through
a material it perturbs the chemical potential leading to absorption, which is nothing but
a quantum-mechanical effect. An artistic illustration of an EOM using light as carrier
wave modulated by electrical signal is depicted in Fig. 4.1(b). Input light modulation by
electrical signal carrying digital information is shown. Output is seen as light pulses i.e.,
Os and 1s.

The 2D material (graphene in our study) performs the function as a self-amplitude
modulator enabling ultrafast pulse generation [10]. A research group at the University of
California, Berkeley, demonstrated that a waveguide could break the current speed limits
in digital communications using graphene as top layer. The researchers placed graphene
on top of a silicon waveguide and were able to achieve a modulation speed of 1 GHz. The

speed of such modulator could theoretically reach as high as 500 GHz [20]. Many material
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graphene
+++++ ++

+++++++

—— dielectric

‘ graphene

@

Figure 4.1: (a) Accumulation of charge carriers in graphene—dielectric interface upon
applying a voltage. (b) Depiction of light modulation using electrical signal. Source: IBM
T.J. Watson Research Center video.

combinations, such as cadmium sulfide (CdS), lithium niobate (LiNbOs3), ammonium di-
hydrogen phosphate (ADP), potassium dihydrogen phosphate (KDP), potassium titanyl
phosphate (KTP), quartz (SiOz), gallium arsenide (GaAs), indium phosphide (InP), bar-
ium titanate (BaTiO3) and lithium tantalate (LiTaOs), are available and can be chosen
based on application. In this list, LiNbOg modulators possess many attractive features
for modulation of visible and NIR light, making them the prime choice in many applica-
tions [109]. These modulators have several advantages over the other EOMs such as low
drive power, high intrinsic modulation bandwidth and stable operation over a reasonable
temperature range.

As discussed in previous chapters, the

(b)
electronic band structure of graphene is re- @
Jl s
sponsible for the ultrafast modulation of — |
incoming light. The interaction between
charge carriers and ultrafast optical pulses G
produces a non-equilibrium charge carrier (© .

accumulation in VBs and CBs, which re-
Figure 4.2: Schematic of graphene based

laxes at an ultrafast timescale. This en- waveguide: (a) electric signal, (b) incident
light and (c¢) modulated light pulse. Source:

sures wideband and ultrafast saturable ab- 20]

sorption from Pauli blocking. Due to such
nature in 2D materials, combinations of different 2D heterostructures, such as graphene—
hexagonal boron nitride (hBN), graphene-black phosphorus, TMD-hBN, TMD-graphene

and TMD-TMD combinations are currently explored. Of all graphene—dielectric combi-
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4.1. Introduction

nations, the hBN—graphene-hBN stack outperforms other 2D material combinations with
its remarkable carrier transport properties [110].

In Chapter , we have discussed about photonic materials and experimental methods
for exfoliating graphene layers and Chapter 2 explained the numerical method adopted to
characterize the waveguide under study. Chapter 3 was devoted to discussion of graphene
and its unique properties. In this chapter, we discuss the ways we adopted for studying
graphene—silicon hybrid waveguides. We used two in-house solvers viz., perturbation and
complex, which were written using FORTRAN codes, and were already in use for obtaining
modal solutions. Firstly, we used these codes to benchmark with chosen published studies.
After validation of results, we studied modal solutions of a silicon nanowire (1D and
2D) and then moved on to graphene-based waveguides in Chapter 5. In this chapter,
we present the results of benchmarking and analyse the plots obtained for optimizing
waveguide parameters such as effective index and absorption.

The vector H-field formulation is one of the most accurate and versatile methods for

studying optical waveguide problems [47]. The formulation is written as follows [45]:

o [ (VxH) &1 (VxH)dQ+ (2) [(V x H)(V-H)dQ
B [[H* p=t-HdAQ

w (4.1)

where ¢ and [ are the general anisotropic permittivity and permeability of the loss-free
medium, respectively, a the dimensionless penalty coefficient and €2 the cross-section of
the waveguide. Equation 4.1 has electric wall as natural boundary condition, expressed as
n-H = 0.

Waveguides are the most basic components of an optoelectronic system. They form
the building blocks of such systems. A suitable combination of active (Si, graphene) and
passive materials (hBN, SiC, SiON) can make an efficient waveguide. For effective prop-
agation in a waveguide, refractive index (n) of core material should be higher than other
layers, such that nq,n9 < ng and ng > ny. Materials are chosen based on their optoelec-
tronic properties, response to electrical and optical signals. An electro-optic modulator
requires a nonlinear material that could modulate optical signal with electrical input at
ultrafast rate.

Reflecting, propagating and confining light waves within a specified volume are the

fundamental characteristics of a waveguide. Materials with excellent optical and electrical
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4.2. Benchmarking

properties are of particular interest for designing waveguides. A multilayer rib waveguide
is shown in Fig. 4.3. Layers with differing refractive indices reduce leaky modes. EM wave
traversing through such a polarizable medium is modified by the polarization it induces
and couples to it of which the coupled mode of excitation is termed a polariton. As shown
in Fig. 4.3(b), optical absorption in graphene can be controlled by means of shifting its

Fermi energy level through electrical gating, V, [111,112].

4. Cladding(A) Ns

3.Core(A) n,
@ ©

(b)

“w| alv o

2. Buffer (P) n,

1. Substrate (P) 1

Figure 4.3: (a) Waveguide with active (A) and passive (P) materials. (b) A rib waveguide
with graphene in layer 5. Layer 3 forms the core (Si), layers 1 and 2 are dielectric materials
(e.g., SiO2) and layers 4 and 6 are termed buffer materials such as hBN, SizNy or Al,O3
that encapsulate graphene; V, denotes applied gate voltage.

4.2 Benchmarking

The objective of this stage is to benchmark our results (g, neg, o) with published studies
as well as choosing the suitable solver, either perturbation or complex, for further study.
For this we need to simulate the chosen waveguide using both the solvers and benchmark

them with published results. This stage is carried out in steps as given below:

a) understanding the theory of calculating conductivity (o) and permittivity (&) from

Kubo formula
b) writing an analytical method to calculate o and ¢ based on equations
c¢) writing a MATLAB program for the analytical method

d) benchmark MATLAB permittivity values obtained
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4.2. Benchmarking

e) simulating waveguide design, using both complex and perturbation codes, as given

in chosen studies from literature
f) plot all results (e(w), neg, ) for chosen waveguides

g) benchmark results with chosen studies

For benchmarking dielectric constants, the studies of Gosciniak and Tan [6], Kwon [28]
and Lu and Zhao [29] are chosen. These plots are discussed in detail further. For bench-
marking the solvers, studies [6], [29] and Liu et al. [20] are taken. Results on calculating
and benchmarking effective indices and propagation loss values are presented. Studies [6]
and [29] were benchmarked using in-house solvers as well as commercial package, COM-

SOL.
4.2.1 Study 1: Graphene-based Rib Waveguide

Initially, both solvers were subjected to analysis of a bulk waveguide, taken from Gosciniak
and Tan [6], as shown in Fig. 4.4. We have adapted our solvers to represent the test
structure effectively and dimensions are given in the figure. This is to analyse which
solver would be accurate for studying graphene-based waveguides as graphene possesses a

wide range of complex dielectric constants, £(w).

. 0.4 um
s Thickness (jm)
hBN 2ir 05
Graphene - 026
Si02 0.005
oo
0.005
oo
0.005
B o
1
Total 1.85566

Figure 4.4: Waveguide redrawn from Ref. [6] for validating complex and perturbation
solvers. Since the waveguide is symmetric, half-structure was chosen as marked.

In their study, thickness of graphene layer was taken as 0.7nm, denoting bilayer
graphene. Each graphene layer is sandwiched between dielectric materials so as to en-
hance dielectric optical confinement. We have discussed in previous chapters that di-

electric constant of graphene, e(w), is complex with real and imaginary parts, €1 + jeo.
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Using perturbation and complex solvers, modal effective index (neg) and absorption («)

are obtained.
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Figure 4.5: Mode effective index (neg) for validating perturbation and complex solvers.

Figures 4.5(a) and (b) show neg calculated using complex and perturbation solvers
and validation against chosen points from Gosciniak and Tan [6]. Plots from both solvers
show similar trend and beyond 0.45eV, results from perturbation starts deviating from
other two beyond 0.49eV. For high-index dielectric, this deviation is prominent as shown

in Fig. 4.5(b).

7 12
Low index dielectric, n = 1.98 ; High index dielectric, n = 3.47 !\
64 \
Ref. [8] / A\ 101 | —— Retig) ,’ \
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0.40 0.42 0.44 0.46 048 0.50 0.52 0.40 0.42 0.44 0.46 0.48 0.50 0.52
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Figure 4.6: Mode absorption («) for validating perturbation and complex solvers.

Figures 4.6(a) and (b) show mode absorption («) calculated using both the solvers.
In both high- and low-index dielectric, results from complex solver is close to that of the
chosen study [6]. Results from perturbation solver varies drastically beyond 0.49 eV similar
to the trend observed with neg plot in previous figure. The underlying reason is that when
Re(e(w)) becomes lesser in magnitude than Im(e(w)), the results from perturbation solver
starts deviating from the actual. Whereas, the complex solver follows the trend of reported

results [6] since it remains unaffected due to the variations in real and imaginary parts of
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4.2. Benchmarking

g(w). On the other hand, perturbation solver could accommodate a 500x500 mesh but
complex solver could only reach up to 100x100 for a 2D waveguide for a given computer
resources. Even though the complex solver could consider only smaller mesh divisions
when compared to the perturbation code, it was taken for further benchmarking as it
yields accurate results.

Figure 4.7 shows the electric field plots of quasi-TM mode. The dielectric constants
chosen are as follows: €low, €highs Eenz and Emetallic; referring to the voltages 0, 0.4, 0.51

and 0.7eV, respectively.
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Figure 4.7: Electric field of quasi-TM E, mode for chosen dielectric constants of graphene
from Ref. [6], simulated by using the complex solver.

In above plots, the electric field in graphene layer undergoes drastic changes within
the voltage range, 0-1eV. A sharp peak is observed in all plots which represents the
graphene—dielectric interface. A high degree of dielectric confinement enables good light—
matter interaction. A sharp peak at eqp, denotes the epsilon-near-zero (enz) effect, plot

(c), where the absorption reaches the maximum and the real part of e(w) turns negative.
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After 0.6 eV, graphene becomes metallic as shown in plot (d). These electric field plots
are obtained using complex mode solver. A major drawback was noticed at this stage.
As we have chosen a bulk waveguide (8 layers), the computation time for complex solver
took to almost 40-50 minutes when the mesh size was set to 100x100. For each step, it
become time consuming to use complex solver. Therefore, COMSOL was used to obtain
the modal solutions, since it is also based on FEM.

First, a template for 2D waveguide was created using COMSOL. Next, four plots
from Gosciniak and Tan [6] were chosen for benchmarking the template. The flexibility in
COMSOL is that once a template is built and a structure is benchmarked, the template can
be reused for studying various structures. Also the computation time is only few minutes
even for an “extremely fine” mesh which is a major advantage. The bulk waveguide from
the chosen study was then built in COMSOL. Figures 3(a and b) and 4(c and d) were

chosen from Ref. [6]. Each of these figures shows the results of both n.s and o for TE ad

TM modes.
5
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Figure 4.8: TM mode: Re(neg) and « for high- and low-index spacers between Si slab and
Si ridge (A = 1550 nm). Inset shows Fig. 3(a) in Ref. [6].

Figure 4.8 shows mode effective index and absorption of TM mode for the bulk waveg-

uide having bilayer (0.7 nm) graphene as slot layers separated by hBN. We benchmarked
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our results with that of Gosciniak and Tan [6]. Our results agreed with theirs, thus
validating our template and understanding of bulk waveguides using graphene as slot lay-
ers. Core silicon in the waveguide has a width of 400 nm and height 260 nm. Low-index
(n = 1.98) and high-index (n = 3.47) are taken. The latter outperforms in both nes and
a as obviously a higher index will result in higher absorption.

Figure 4.9 shows plots for neg and « of TE and TM modes. This plot differs from the
previous with width and height of silicon core taken as 400 and 200 nm, respectively. Note
that the height of the core has been reduced by 60 nm from the previous and the dielectric
with high-index, n = 3.47.
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2.5 —%— TM Re(neff)
— <+ — TE Re(neff)
—&— TM Loss L 4

~~~

—@— TE Loss e

3.

T 241 0 e )

© ()25 o

i ridge - w=400nm, h=200nm L

S/ 2451 gi hg?fev-wgggm 200 3 ~

()] 2.40 4 spacer: n=3 47 = o]
_ TEmode  TM mode 40 3

0’ % 2351  ...Refng) - - Relng) » d

£ 2304 —MPA —wPa ELI <

€ 2254 20 g o

2.3 - L 2 =

22

Chemical potential, u (eV)

Figure 4.9: Re(neg) and « for two supported modes, TM and TE, for high-dielectric
spacer. Inset shows Fig. 3(b) in Ref. [6].

Gosciniak and Tan [6] has stated that a 60 nm decrease in height of core results in
significantly larger absorption for TM mode than that of the TE mode. All plots in both
the figures denote a steep fall after 4 = 0.51eV, where the “dielectric” to “metallic”
transition of graphene occurs. This dip in absorption is attributed to the enz effect.

Figure 4.10 shows the wavelength dependence of n.g and a of TE mode for the bulk
waveguide with high- and low-index dielectric. Waveguide dimensions are the same as

those mentioned for the plots in Fig. 4.8. The chemical potential is set as y = 0.512eV,
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which refers to the OFF voltage, resulting in maximum absorption for both TE and TM

modes.
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Figure 4.10: Re(neg) and « for high- and low-index spacers between Si slab and Si ridge
for TE mode; p =0.512€eV. Inset shows Fig. 4(c) in Ref. [6].

Figure 4.11 shows the waveguide characteristics of TM mode for waveguide with di-
mensions as mentioned above. Comparing both TE and TM plots, the latter has shown a
significant higher absorption reaching close to 5dB/um. Gosciniak and Tan [6] have cal-
culated the f3qp bandwidth to be 16.5 THz for both high- and low-index dielectric spacers.
This shows the strength of broadband operation of the modulator to accommodate hun-
dreds of channels due to weak wavelength dependence.

All four plots benchmarked with Ref. [6] have shown a very good agreement with our
results thus validating our understanding of a bulk waveguide with graphene as a slot layer.
Graphene layer possesses high carrier mobility and high saturation velocity and therefore,
the operating bandwidth is likely to be limited by the transit time of carriers. On this
regard, the relaxation time (7) is inversely proportional to the degree of crystalline disorder
in graphene. Ideally, a high quality graphene layer can operate with a modulation speed
in picoseconds timescale at 500 GHz [113]. Next, we consider another benchmarking study

which we have considered for the understanding of graphene-based optical modulators.
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Figure 4.11: Re(neg) and « for high- and low-index spacers between Si slab and Si ridge
for TM mode; 1 =0.512¢V. Inset shows Fig. 4(d) in Ref. [6].

4.2.2 Study 2: Graphene-based Slot Waveguides

This study explores the electro-optic properties of slot waveguide in which graphene layer is
sandwiched between silicon nitride (SizN4) as buffer layers (Fig. 4.12). Here the thickness
of buffer layers (10 nm) remained same whereas the thickness of Si layer was varied in each
structure.

Lu and Zhao [29] used different structures for simulations with a 3D FDTD code.
Each waveguide comprises graphene sandwiched between dielectric layers and core as Si.
Thickness of graphene layer was taken as 0.7nm. Two dielectric constants of graphene
are chosen as follows: £(0eV) = 0.985 + j8.077; £(0.515eV) = —0.048 + j0.323, denoting
€enz, representing ON and OFF voltages, respectively. Dielectric constants of rest of the
materials are as follows: €(Si) = 12.0409; £(SizsN4) = 3.9204; £(SiO2) = 2.0736; £(Cu) =
—67.86 + j10.01. Dimensions of the waveguide (Fig. 4.13) are taken as given in Fig. 2
from Ref. [29].

First, we used our complex solver to study each of these waveguides and obtained
electric field plots for the waveguides chosen. As shown earlier, the complex solver has

the ability to provide accurate results even with high variations in the real and imaginary
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Figure 4.12: Waveguides (a), (b), (c) and (d) represents figures chosen from Fig. 2a, 2b,
2e and 2f, respectively, from Ref. [29] for benchmarking task.

parts of dielectric constant which was found lacking with perturbation solver. So we used
only complex solver to obtain further results. The electric field plots of TM FE, mode
are obtained for four structures (waveguides a, b, ¢ and d shown in Fig. 4.13) with two
dielectric constant values at p = 0 and p = 0.515eV are chosen.

Figure 4.14 shows a drastic change in the electric field plots between ON and OFF
states. An absorption of o = 0.183dB/um is obtained for low-loss state and in the
high-absorption state, « = 4.603dB/um. Figure 4.15 shows the case of an asymmetric
slot waveguide, which shows only a slight change in performance. This proves that high
absorption can be achieved if graphene is encapsulated with a buffer material (ABN, SigNy).

Figures 4.16 and 4.17 show plots obtained for waveguides with Cu as bottom layer and
cladding, respectively. Here, the dielectric constant of Cu is taken as —67.86 + j10.01. Cu
is a CMOS compatible metal and is used in all plasmonic modulators. In all these studied
waveguides, the thickness of buffer layer (Si3Ny) is fixed at 10 nm; and A = 1550 nm.

Table 4.1 displays the mode effective index and absorption values for all waveguides
benchmarked with Ref. [29]. Our results agree very closely with waveguides (a) and (b)
but shows similar trend with waveguides (c) and (d). The reason is attributed to the
presence of very high dielectric constant of Cu in the latter two waveguides and also the
mesh limitation imposed in this solver (110x110). Complex solver needs to be tweaked
for handling high complex dielectric constants and high mesh (500x500 and 1000 1000).

We further benchmarked two more plots from Lu and Zhao, using COMSOL. Waveg-

uide (a) in Fig. 2 of Ref. [29] is chosen for benchmarking. Obtained mode profile and
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Figure 4.13: Waveguides redrawn from Fig. 2 of Ref. [29] for benchmarking using our
complex code.

electric field of TM mode are shown in Fig. 4.18. These results validated our understand-
ing and methods we followed for the analysis of graphene-based hybrid waveguides. The
electric field plots for ON and OFF voltages are shown in Fig. 4.18(a) and (b), respectively.

Next, we benchmarked another waveguide of Fig. 2(b) in Ref. [29], which is shown in
Fig. 4.19. The electric field plots for ON and OFF voltages are shown in Fig. 4.19(a) and
(b), respectively. Tables in both Figs 4.18 and 4.19 show the values obtained for neg and
a. The values show a very close agreement between theirs and ours.

On comparing the two waveguides, one having graphene layer in the slot of the core

and the other with graphene layer in the slab, there is only a slight shift observed in their
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Figure 4.14: Electric field plots of TM E, mode for waveguide (a) shown in Fig. 2(a) of
Ref. [29]; Si—(graphene/dielectric)—Si.
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Figure 4.15: Electric field plots of TM E, mode for waveguide (b) shown in Fig. 2(b) of
Ref. [29]; Si—(graphene/dielectric)—Si, dielectric strip waveguide.
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Figure 4.16: Electric field plots of TM E, mode for waveguide (c) shown in Fig. 2(e) of
Ref. [29]; Si—(graphene/dielectric)—Cu, width = 400 nm.

effective indices, for instance, 2.075 and 2.079 of ON and OFF levels, respectively. On the

other hand, absorption values for these two levels are 0.166 and 4.184 dB/um, respectively.
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Figure 4.17: Electric field plots of TM E, mode for waveguide (d) shown in Fig. 2(f) of
Ref. [29]; Cu—(graphene/dielectric)-Si, width = 200 nm.

Table 4.1: Benchmarking of results with Lu and Zhao [29], obtained by using our complex
code

Effective index, neg Absorption, « (dB/pm)
e(w) Waveguide Ours Theirs Ours Theirs
0.985+58.077 (a) 2.01695 2.03200 0.15873 0.18300
(b) 2.08159 2.03200 0.15873 0.18300
(c) 2.35352 2.27600 2.28571 2.38800
(d) 2.59330 2.20500 2.31846 2.21200
—0.0484-50.323 (a) 2.01913 2.03400 4.01960 4.60300
(b) 2.08509 2.02200 4.12432 4.59900
(c) 2.44142 2.25000 14.63280 12.07100
(d) 2.56851 2.17600 11.39110 9.35400

Similar trend is observed in the other waveguide shown in Fig. 4.19. Absorption values for
both levels are 0.176 and 4.176 dB/pum, respectively, whereas the neg values are 2.129 and
2.132, respectively. Our results from these simulations have shown very good agreement
with those of Lu and Zhao [29].

Finally, we concluded benchmarking of study 2 with plotting of absorption values as
a function of wavelength and chemical potential for waveguide as shown in Fig. 4.20 and
4.21, respectively. Inset in both figures shows the plots taken from Lu and Zhao [29].
Our plots follow similar trend with theirs but shows a significant difference in absorption
peak. This reason is attributed to the chosen dielectric constants at u = 0.515eV with
A = 1550nm. Our plot has absorption peak at p = 0.515eV with A = 1530nm. Due to
the difference in the analytical method followed for calculating the dielectric constants of

graphene, such variations are observed in both plots. For instance, from their method,

113



4.2. Benchmarking

\____\‘
—
)
\
L
———
i s 10 15 2 )

Electnc faid naem (v

Lu and Zhao, 2012 This study
Waveguide (a)
u=0eV
Effective index 2.032 2.075743
Attenuation, dB/um 0.183 0.16569
n=0.515eV
Effective index 2.034 2.079092
Attenuation, dB/um 4.603 418373

Figure 4.18: Mode profile and electric field of TM mode for waveguide in Fig. 2(a) of Lu
and Zhao [29]. Table shows the comparison of n.g and « values of theirs and ours.

at u = 0.515eV, the enz e(w) = —0.048 + j0.323; in our method, at u = 0.515eV, the
enz e(w) = —0.0967 + 70.5405. In Table 4.1, we used their dielectric constants for p =0
and p = 0.515eV. The effect of these variations have already been discussed in previous
chapter.

To summarise, in this section, we explained our results obtained for benchmarking the
waveguide taken from literature. The results and plots of ours have shown a very good
agreement with that of theirs. With this understanding, we will now move on to the third

study we took for benchmarking the electric field plot.
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Figure 4.19: Mode profile and electric field of TM mode for waveguide in Fig. 2(b) of Lu
and Zhao [29]. Inset shows the comparison of n.g and « values of theirs and ours.

4.2.3 Study 3: Top Layer Graphene Waveguide

Liu et al. [20] reported the first waveguide-integrated graphene-based electroabsorption
modulator wherein the modulation is achieved by tuning the Fermi level of a monolayer
graphene sheet. Width of the Si waveguide is 600 nm and dielectric spacer (AlsOg3) is
7nm. Wavelength (\) in their study was 1.53 um. Figure 4.22(a) shows the waveguide
design used in their study.

Their study has not explicitly given complete details of the waveguide parameters,
especially the dielectric constants of graphene. So we have used &(w) values from our
study and followed their design specifications. Using complex solver we obtained the

electric field, shown in Fig. 4.22(b). Our plot shows the same trend with their curve of
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Figure 4.20: Absorption versus wavelength plot as shown in Fig. 4(a) of Lu and Zhao [29].
Inset shows their plot.
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Figure 4.21: TM mode absorption as a function of chemical potential (u) for waveguide
in Fig. 4(c) of Lu and Zhao [29]. Inset shows the plot from their study.

magnitude of electric field shown in Fig. 4.22(b).

In their next study, Liu et al. [114]

proposed a bilayer graphene separated by dielectric material (Fig. 4.23). This study

provides a complete description of experimental steps adopted to synthesize sheets of
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Figure 4.22: (a) Three-dimensional illustration of the modulator. Source: Ref. [20]. (b)
electric field plot obtained using our complex solver for their waveguide dimensions. Inset
shows the electric field plot from their study [20].

graphene. The optimized wavelength used in this study is A = 1537nm. A modulation

depth of ~ 6.5dB was achieved in their study.
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Figure 4.23: Study of Liu et al. [114] showing 2D (a) and 3D (b) models of double layer
graphene modulator. Steps for fabrication is shown from (c) to (f). Source: [114].
Possible fabrication process of double-layer graphene is shown in Fig. 4.23(c)—(f). It
can start with preparation of Si waveguide from a SOI wafer (c). A sheet of graphene
prepared by CVD method can be transferred mechanically onto the waveguide (d). E-
beam lithography is used at this stage and oxygen plasma removed unwanted regions. A
thin layer of aluminium is deposited by thermal evaporation and AloOs by ALD method
(e). Second, graphene sheet is mechanically transferred and EBL and oxygen plasma
are used to define the active region (f). Metal electrodes are deposited. Here, graphene

layers are separated by a 12nm thick AlsOgs layer, thus forming a parallel plate capacitor
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structure. A switching voltage of Vp =6V for this device was determined by dielectric

constant and thickness of gate oxide.

—
]
|
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graphene m  dielectric Core (Si)

Figure 4.24: Waveguide designs taken from literature: (a) Liu et al. [114]; (b) Phatak et
al. [96]; (c) Koester et al. [115], Hu and Wang [103]; (d) Lu and Zhao [29].

Figure 4.24 shows few structures of graphene-based waveguides proposed by different
studies. Here, the placement of graphene is prominent as it is the active layer which in-
teracts with incoming light and modulation is based on graphene’s switching behaviour.
So, graphene layer should be made to interact with maximum light intensity to achieve
effective modulation. Plasmons or surface plasmons (SPs) which are quantisation of collec-
tive surface excitation of charge carriers play a major role in graphene-based modulators.
Graphene contains intrinsic plasmons that results in high quantum efficiency of light-
matter interaction [89]. Plasmons couple strongly with incoming EM waves leading to
plasmon-photon coupling due to which a great amount of EM energy is confined within
waveguide at subwavelength scales. Therefore, encapsulating graphene with dielectric ma-
terial or having a dielectric layer between core and graphene enhances TM mode due to

dielectric confinement of the EM wave.

4.3 Conclusion

We discussed the results from perturbation and complex solvers used for benchmarking
with studies from the literature. Our results showed that perturbation solver may not be
accurate when the real part (¢1) of complex e(w) is smaller in magnitude than the imagi-
nary part (¢2). Whereas results from complex solver showed a very close agreement with
the literature but imposes restriction on mesh dimension. Upon validating our understand-
ing of graphene-based waveguides with literature studies, we now move on to proposing

our designs and discussion of results. From benchmarking, we inferred that placement of
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4.3. Conclusion

graphene layer as either slot or top layer, affects TE and TM mode absorptions, whereas
effective index (neg) undergoes a minor change as a function of wavelength (\) or gate
voltage V,. Therefore, graphene layer is the most suitable for electro-absorption modula-
tors. Taking fabrication factors into account, in the next chapter we discuss the waveguide

designs we propose and present their results.

119



Chapter 5

Characterization of
Graphene—Silicon Hybrid
Waveguides

5.1 Introduction

Light—matter interaction at nanoscale level is the unique property observed in 2D optical
materials viz., graphene, phosphorene and so on. This forms a separate branch in nanopho-
tonics termed Plasmonics. Due to growing state-of-the-art techniques in nanofabrication,
applications such as ultrafast electro-optical modulator are envisaged. Plasmonics allow
strong interaction between the free electrons and incoming light wave, breaking the diffrac-
tion limit and thus light is confined in deep-subwavelength volumes. In a graphene-based
waveguide, at A = 1550 nm, plasmonic modes are obtained in the graphene—dielectric
interface, wherein thickness of bilayer graphene is just 0.7 nm.

The modal solutions of graphene-based waveguides will be discussed in this chapter
beginning with finite-element characterization of a silicon nanowire. An Si nanowire waveg-
uide is a semiconductor structure based on concept of silicon-on-insulator technology. It
consists of a layer of single-crystalline silicon separated from the substrate by a layer of
insulator. Here the substrate is silicon. The insulator is called buried oxide viz., SiOq,
hBN, AlyO3, SisNy, etc. These layers are made into a simple optical waveguide (Fig. 5.1)
that guides EM wave. So waveguides are the building blocks of any photonic circuit. In
earlier chapters, light confinement within waveguides based on Maxwell equations were
discussed.

An expression for single-mode condition (SMC) for a rib waveguide shown in Fig. 5.1
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s h=rH

Si

Figure 5.1: A rib waveguide in silicon-on-insulator. The refractive indices (n) air, Si and
SiO9 are 1, 3.477 and 1.444, respectively.

is given by [40]

W ocoss "
H = V1—r2

where r is the ratio of slab height to overall rib height, and W /H is the ratio of waveguide

(for 0.5 <r<1) (5.1)

width to overall rib height.

5.2 Characterisation of Optical Waveguides

Waveguides form the basic building blocks of optical modulators through which the elec-
tromagnetic waves are guided. The study of guided modes, TE and TM, is of prime
importance to ascertain the characteristics of modulators prior to fabrication. These
characteristics depend on properties of materials used in the waveguide design. A mate-
rial capable of changing its optical property such as refractive index (n) is used in such
waveguides. Depending on the optical property of the material which is changed for
light modulation, modulators are primarily classified as absorptive or refractive modula-
tors. In the former, the absorption coefficient (Im(n)) of the material is controlled by an
absorption-related effect viz., electro-absorption, Franz—Keldysh effect and the quantum
confined Stark effect.

Optical waveguides are characterized by obtaining TE and TM mode profiles and cor-

responding plots for effective index (neg), absorption (), extinction ratio (ER), insertion
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loss (IL) and so on.

We have discussed the step-by-step

200 nm
>
characterization procedure using Finite El- ’ :
ement Method [45] in Chapters 2 and NP 1500 am
4. We already carried out benchmarking si 260
n=3.47
results of our perturbation and complex
solvers. It is observed that perturbation
Sio, 1500 nm
results are not accurate when the mag- n=lass
nitude of Re(e(w)) is less than Im(e(w)). ; ,
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So, complex solver was used for obtaining
modal solutions of graphene-based waveg- Figure 5.2: A silicon nanowire.
uides. As a first step, a silicon nanowire (Fig. 5.2) was studied using both solvers. In

the figure, due to one-fold symmetry, the block as marked by solid line is considered for

simulation.
5.2.1 Silicon Photonic Waveguides

In silicon photonics, a silicon nanowire is a basic waveguide structure of silicon on a
substrate. This Si waveguide, prepared from a silicon-on-insulator (SOI) wafer, forms the
start of fabrication process of multi-layered Si optical waveguides. The SOI waveguiding
structures are more popular due to the possibility of much stronger optical confinement.
These modulators have undergone significant transformation since early 1980s. Silicon is a
potential material in the class of photonics materials, and also a platform for 2D materials
such as graphene to realize ultrafast modulation devices for quantum computers.

TE and TM mode profiles of Si strip and rib waveguides are shown in Figs 5.4 and
5.5. The waveguide dimensions are chosen based on an earlier design optimization shown
in Fig. 5.2; width, 0.4 ym; thickness, 0.3 um. For the strip waveguide, the effective indices
of TM and TE modes are obtained as 2.159484 and 2.412079, respectively, whereas for rib
waveguide, these values are 2.755377 and 2.812342. The mode is effectively confined in rib
than the strip waveguide. The reason is attributed to the presence of Si slab introduced
in the rib waveguide.

Comparing TE modes in Fig. 5.4(c) and 5.5(c), the mode is moved down by the slab.

This phenomena was exploited by Gosciniak and Tan [6] who placed bilayer graphene in
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Figure 5.3: Rectangular silicon waveguides: (a) strip and (b) rib. Dimensions of Si core
are width 0.4 pm and thickness 0.3 um. In (b), the Si slab is of thickness 0.15 ym and
width 1 pm.

the slab and ridge interface. In their study, the slab is mentioned as a low or high index
buffer material with n = 1.98 or n = 3.47, respectively. Thus introducing a slab moves
the maximum of the mode electric field closer to the graphene layers, thereby enhancing
graphene—light interaction which is crucial for electro-optic modulation.

The optical properties of graphene namely the optical conductivity (p) and permittivity
(¢) are highly influenced by the chemical potential () which is fine tuned by applying a
gate voltage (V). This is studied in the next section. This unique property of tuning of
Fermi level using applied voltage forms the principle of graphene-based electro-absorption

modulators.
5.2.2 Top- versus Slot-layered Graphene Waveguides

Positioning graphene layer(s) as a top-layer or slot-layer in the waveguide influences its
modal properties. Experimental studies [20,96,114] proposed graphene as top layer. Step-
by-step fabrication process was explained in [114]. Lu and Zhao [29] stated that effect of
change in dielectric constant of graphene is not very manifest when graphene is placed as
top layer. Gosciniak and Tan [6] discussed the benefits of positioning graphene as slot,
since it increases graphene’s interaction with maximum light intensity. Effect of graphene
conductivity (p,) change is not very pronounced if graphene is placed far from the electric
field maximum of the propagating mode. On this regard, we study the TM mode properties
in both of these waveguides.

We begin characterisation of graphene-based waveguides with two designs as shown in

Fig. 5.6. Dimensions of waveguide are core width 0.4 ym and height 0.3 gm which showed
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Figure 5.4: Mode profiles of Si strip waveguide: (a) TM; (b) TM contour; (¢) TE; (d) TE
contour.

good confinement at A = 1550 nm. Figures 5.7 and 5.8 show neg and « variations of TM
mode as a function of chemical potential ().

Plots in above figures show electrically tunable variations of neg and a of the TM mode
in both the waveguides. These variations are due to change in complex dielectric constant,
£(w) = €1 + jeg, of the graphene layer. Between 0.4 and 0.55¢V, the magnitude of e(w)
varies more than 30 times [6]. This is the reason for high modulation depth achieved in
graphene-based modulators. The TM mode in slot-waveguide shows a steady rise and
fall in both neg and a. This is attributed to the reason that graphene layer is placed at
maximum light intensity of the waveguide.

Next, we consider only the waveguide with top-layer graphene in Fig. 5.6(a). The
dielectric material between graphene layer and silicon chosen as one with high-index
(e(Aly03)=9.1) and other with low-index (¢(hBN)=3.9204). Dielectric (buffer) materi-

als for graphene-based waveguides are chosen such that they have lattice matching with
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Figure 5.5: Mode profiles of Si rib waveguide: (a) TM; (b) TM contour; (c) TE; (d) TE
contour.
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Figure 5.6: Waveguides with graphene as top (a) and slot (b) layers. tg . = 0.69nm;
A = 1550nm; refractive indices (n) of Si, SiO2 and ABN are 3.4777, 1.444 and 1.98,
respectively.
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Figure 5.7: TM mode effective index plots of top-layer and slot-layer graphene.
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Figure 5.8: TM mode absorption plots of top-layer and slot-layer graphene.
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graphene which is of hexagonal lattice. Use of this isolated layer prevent carrier injec-
tions between graphene and silicon. Also, growing graphene layer directly on silicon is not
preferred due to lattice mismatch between both. The first graphene EOM proposed exper-
imentally by Liu et al. [20] has Al;O3 as buffer layer between single layer graphene and sil-
icon, which showed electroabsorption modulation of 0.1 dB/um. In their next study [114],
the same authors, proposed experimentally a double layer graphene modulator that has
bottom graphene layer directly on silicon and the other top graphene layer separated by
5nm thick AlpOs, which showed ~ 0.16 dB/pm. This improvement in absorption from pre-
vious design is due to the dielectric confinement of electromagnetic wave which generates
surface plasmons in the dielectric interface.

Figures 5.9 and 5.10 show TE and TM mode effective index results, respectively,
obtained for Si nanowire, Si-hBN—graphene and Si—AloOs—graphene waveguides, where
£(hBN)=3.9204 and £(Al203)=9.1. In both modes, the high-index dielectric shows dis-
tinct variation in neg while that of the low-index is marginal. The TM mode is significantly
affected by change of dielectric material whereas TE does not. This task is carried out
to find out the suitable dielectric material if graphene layer is placed on top of silicon
core. Here, we infer that a high-index dielectric material is appropriate for waveguides
with top-layer graphene. We will be discussing this finding in further sections in detail.

The increase in n.g for the waveguides with dielectric materials is attributed to the
dielectric confinement and that is why graphene is encapsulated by dielectric layers when
used in such hybrid waveguides. In the next section we will discuss modal solutions of
waveguides with graphene as slot layers. In the waveguides we discussed above, only
graphene possesses a complex dielectric constant (e(w) = &1+ jeg) which is responsible for
absorption phenomena. Therefore, the absorption phenomena in graphene-based waveg-
uides is highly influenced by the thickness of graphene as well as the refractive index of

dielectric material used as isolation or buffer layer.

5.3 Characterisation of Slot Waveguides with Bilayer Graphene

Slot waveguides are suitable designs for enhancing optical confinement within the slot re-
gions. In a plasmonic waveguide, a dielectric-metal interface generates surface plasmons

in the slot which are ideal for electro-absorption phenomena. In a graphene-based waveg-
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Figure 5.9: TE mode effective index plots of Si nanowire and waveguides with graphene
as top layer; height-to-width ratio, w/a.

uide, absorption arises due to varying £(w) of graphene. Therefore, the objective in such
a waveguide is always to enhance interaction between graphene and incoming light wave
by placing graphene—dielectric stack in a region of maximum light intensity. Based on
results presented above, we infer that graphene as a horizontal slot serves for application
requiring high TM mode absorption.

Fabrication procedure for these waveguides are explained in Ref. [114]. Such design is
classified as a horizontal slot waveguide. The slot layer is first deposited onto a silicon layer
and then second silicon layer is grown. E-beam lithography (EBL) and oxygen plasma are
used to remove unwanted region and define the active region.

In this section, we present the results of two horizontal slot waveguides, one with
graphene—dielectric sandwich and the other with two graphene layers separated by a di-
electric, placed in core silicon. The latter waveguide design was taken from Ref. [103].
This is to study the influence of dielectric layers on waveguide parameters such as effective
index and absorption. These waveguides are shown in Fig. 5.11. Waveguide (a) is termed
as the one with dielectric-encapsulated graphene and the other waveguide (b) as the one
with graphene-on-graphene configuration, even though it is separated by a thin layer of

dielectric material. Thickness of each layer of graphene is taken as 0.69nm and that of
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Figure 5.10: TM mode effective index plots of Si nanowire and waveguides with graphene

as top layer.
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Figure 5.11: Silicon rib waveguides with graphene as slot layer: (a) graphene with en-
capsulated dielectric and (b) graphene directly on silicon and separated by a dielectric.
Refractive indices of Si, SiOs, hBN and Al,Og3 are 3.477, 1.444, 1.98 and 3.017, respec-

tively.
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5.3. Characterisation of Slot Waveguides with Bilayer Graphene

dielectric layers is set as 10 nm throughout the study.

The unique property of graphene is the tunable Fermi level (Er) through which ab-
sorption of light wave can be controlled. The Fermi level is adjusted by applying a gate
voltage. We study the modal properties n.g and « for the voltage range from 0 to 1eV.
The dielectric constants, e(w), of graphene are obtained by interpolating 0-1eV with 55
discrete voltage levels each having a complex e(w) = €1 + jea. The variations of neg and

«a for each of e(w) and plotted against the Fermi level, u, as shown in Figure 5.12.
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Figure 5.12: TM and TE mode effective index (a, ¢) and absorption (b, d) for waveguides
with dielectric layer encapsulated graphene and graphene-on-graphene configuration; (a)
and (c) show the change in real part of neg; A = 1550 nm.

Plots shown in the figure show a distinct variation between 0.4 and 0.5V irrespective
of the type of modes. This is where peak absorption and maximum absorption occurs
as shown in (b) and (d), respectively. It can be seen that waveguide (b) outperforms
waveguide (a) in terms of neg. At p = 0.51eV, a peak in TM mode absorption is achieved
for both waveguides, which agrees with that of Gosciniak and Tan [6]. Due to the enz
effect, the o undergoes rapid rise and fall within this voltage range. The change in TE

mode absorption after 0.35¢eV is similar to that noticed in the study by Phatak et al. [96].
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Next we carried out the study of mode profiles of both the waveguides and their
variations in neg and « as a function of w/a ratio. Height (w) of the waveguide is varied
from 0.4-1.0 pm and corresponding width (a) varies from 0.3-0.9 ym and the w/a ratio is
calculated accordingly.

Two voltage levels, 0.4 and 0.52eV, corresponding to ON and OFF, respectively, are
chosen. The dielectric constants (e(w)) of graphene with A=1550nm at these levels are

given by,
£(0.4eV) = 4.7592 + j4.4441

£(0.52eV) = —0.4998 + j0.5340
We have used these £(w) values to characterize waveguides (a) and (b) in the next sections.
The reason why these voltages are chosen is that between 0.4 and 0.52eV, the magnitude
of e(w) of graphene varies more than 30 times [6]. This is the stage where graphene’s
behaviour changes from dielectric to metallic such that the electrons behave like massless
Dirac fermions [90]. Mode profiles, effective index and optical absorption are studied for

the TE and TM guided modes of these waveguides.
5.3.1 Dielectric-encapsulated bilayer graphene waveguide

In this section, we study the waveguide (a) shown in Fig. 5.11 wherein each of the graphene
layers are encapsulated with dielectric materials such as hBN and AlyOj3 of low- and high-
index, respectively. We used both dielectric materials separately and the mode profiles
are shown in following figures. Plots for effective index and optical absorption are shown.
For mode profiles, hBN is taken for ON condition whereas AlsO3 for OFF condition.

TE and TM mode profiles of waveguide (a) are shown in Fig. 5.13. Mode profile (a)
shows effective dielectric confinement of TM mode. Here ;=0.4 eV refers to the beginning
of transition state (from dielectric to metallic) where absorption in graphene undergoes
drastic changes. Figure 5.14 show TM and TE mode profiles, nes and «, for waveguide
(a) at ©=0.52eV. This is where the enz effect is observed that leads to drastic rise and
fall in absorption, . A high-index dielectric (e(w) = 9.1) is used to obtain these results,
since a high-index dielectric induces high TM mode absorption as seen in the figures.

The influence of high-index dielectric material on absorption phenomena of graphene-
based waveguide is shown in above figures. The TE nes has shown an increase from

2.300564 to 2.401029 which is attributed to the high-index dielectric between the bilayer
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Figure 5.13: TM and TE mode profiles of low-index dielectric-encapsulated graphene
layers. (a) TM; (b) TM electric field; (c¢) TE; (d) TE electric field. e(hBN) = 3.9204; ON:
£(0.4eV) = 4.7592 + j4.4441; X\ = 1550 nm.

graphene. Similarly, TM mode neg increases from 2.016236 to 2.383794. In case of optical
mode absorption, the TM mode undergoes drastic increase in « due to the enz effect. It
reaches an absorption («) of 4.585dB/um at 0.52eV from 0.236 dB/um at 0.4 eV. This is
again attributed to the change in chemical potential as well as the high-index dielectric
acting as buffer layer between graphene layers.

Next we analyse the changes in neg and o with respect to aspect ratio (w/a). Figures
5.15 and 5.18 show the effective index (neg) and absorption («) results for TM and TE
modes of low- and high-index dielectric-encapsulated graphene layers for ON and OFF
£(w) at A = 1550 nm.

In plots shown above, the influence of high-index dielectric material is distinct in case
of TM mode neg and a. In case of TE mode, both these parameters are very close to
each other for ON (0.4e¢V) and OFF (0.52eV) conditions, showing TE mode neg and

a remain unaffected by the index of the dielectric material. The absorption («) of TM
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Figure 5.14: TM and TE mode profiles of high-index dielectric-encapsulated graphene
layers. (a) TM; (b) TM electric field; (c) TE; (d) TE electric field. £(AlaO3) = 9.1; OFF:
£(0.52eV) = —0.4998 + ;j0.5340; A = 1550 nm.

mode is significantly larger than that of the TE mode. Therefore, the change in chemical
potential (u), from 0.4 to 0.52eV has a stronger influence on TM mode. In this study,
the thickness of dielectric material was maintained at 10 nm. To bring in a change in TE
modal properties, we infer that the dielectric thickness needs to be increased, which will be

dealt in later sections. We have now studied the influence of 1 and index of the dielectric

material on modal properties of dielectric-encapsulated graphene-based waveguides.
5.3.2 Graphene-on-Graphene slot waveguide

Graphene-on-graphene configuration was first experimentally proposed by Liu et al. [114].
Their design had two layers of graphene separated by 5nm thick AlyOs which acted as
isolation layer, placed on top of silicon core. Graphene directly on silicon is not preferred
due to lattice mismatch between both. For this study, the waveguide design adapted from
Ref. [103] was chosen. We follow their design of graphene-AlyOs—graphene stack placed

as slot as shown in Fig. 5.11(b).
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Figure 5.15: Mode effective index and absorption of TM and TE modes in a dielectric-
encapsulated bilayer graphene waveguide. Plots (a) and (c) show the change of magnitude
in real part of neg.

Figures 5.16 and 5.17 show TM and TE mode profiles and electric field distribution in
the waveguide. The waveguide with high-index dielectric outperforms in terms of both neg
and o when compared to that of low-index dielectric stack. An absorption of 4.98dB/um
is obtained in graphene—dielectric—graphene stack, whereas in the dielectric-encapsulated
graphene waveguide, @ = 4.58 dB/um. This difference is attributed to the dielectric
absorption that takes place in the latter, even though the difference is only marginal. On
the other hand, in the latter waveguide, the dielectric layer encapsulation prevents carrier
injection into silicon that arises when gate voltage is increased.

Figure 5.18 show the effective index and absorption plots obtained for graphene-on-
graphene design as a function of w/a ratio. Plot (a) shows a marked difference from
previous design (Fig. 5.15(a)) where ng variation for both dielectric materials are signifi-
cant. In graphene-on-graphene configuration, the neg of ON-AlsO3 and OFF-hABN are too
close. Similarly, in plot (c), neg for both dielectric materials irrespective of ON or OFF

condition, lie on the same line which is similar to that of previous design. In terms of
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Figure 5.16: TM and TE mode profiles of waveguide with graphene—hBN—graphene stack.
(a) TM; (b) TM electric field; (c¢) TE; (d) TE electric field. e(hBN) = 3.9204; ON:
£(0.4eV) = 4.7592 + j4.4441; X\ = 1550 nm.

absorption shown in plot (b), G-on-G design shows higher absorption (o = 4.9797dB/um)

than the dielectric-encapsulated graphene waveguide (o = 4.5856 dB/pm).
5.3.3 Summary

We have now analysed the modal properties of both designs viz., dielectric-encapsulated
graphene and graphene-on-graphene configuration. Plots from both designs show the
chemical potential () dependence of Re(neg) and o on TM and TE modes. The change
in complex dielectric constant of graphene, e(w) = &1 + jeg, affects the modal properties
of the waveguides. Therefore, the e(w) of graphene plays a crucial role in the electro-
absorption phenomena. Electric field plots for OFF condition, shown by sharp peaks in
plot (b) for both designs indicate very strong confinement within graphene layers.
Polarization-dependent loss is noted from both TM and TE mode absorption plots
(b) and (d), respectively, shown in Figs 5.15 and 5.18. At dimensions of height 0.3 nm
and width 0.4nm, at 0.52eV, TM achieves a loss of 4.9797dB/um whereas that of TE

is 0.0201 dB/pm, which proves a very strong absorption in the former. At 0.25eV, the
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Figure 5.17: TM and TE mode profiles of waveguide with graphene—AlsOs—graphene
stack. (a) TM; (b) TM electric field; (¢) TE; (d) TE electric field. £(AlsO3) = 9.1; OFF:
£(0.52eV) = —0.4998 + 50.5340; A = 1550 nm.

absorption in both modes are 0.2697 and 0.2566 dB/um, respectively. Such strong polar-
ization dependence could be utilized to realize a compact polarizer [103]. Variations in
modal properties were not significantly different in both designs. In fabrication point of
view, dielectric-encapsulated graphene is preferred since it eliminates performance deteri-
oration due to carrier injections between layers.

Both waveguide designs are termed bulk since they have more than two to three layers.
Fabrication of such structures possesses challenges in terms of layer alignment. Encap-
sulating graphene layers is inevitable as it enhances dielectric confinement and generates
surface plasmons which are crucial for modulation. Graphene-dielectric—graphene layers
form a parallel plate capacitor model and the maximum operating bandwidth is limited by
the RC constant of the device. In terms of speed of modulation, a high quality graphene
layer can operate on the timescale of picoseconds which implies that graphene-based elec-

tronics have the ability to operate at 500 GHz [6].
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Figure 5.18: Mode effective index and absorption of TM and TE modes in a graphene-on-
graphene slot waveguide. Plots (a) and (c) show the change of magnitude in real part of

Neff.

5.4 Characterisation of Trilayer Graphene-based Waveguides

Single layer graphene has shown a relatively small absorption of Ta = 2.293% of incident
light [87,116]. Many experimental and theoretical studies [6,29] have proposed devices
with graphene layer thickness as 0.7 nm, equivalent of bilayer graphene (BLG). Stacking
of graphene layers plays an important role as the layers of graphene are shifted over the
length of one C—C bonding with respect to the other. In BLG, Bernal stacking or AB is
considered the most stable structure [117,118].

In 2011, three groups have experimentally shown that ABC stacked trilayers are unique
among multi-layers of graphene [81,82,119]. Zhang et al. [82] showed experimentally
the quantum Hall effect in trilayer graphene. Shih et al. [119] demonstrated a solution-
phase technique for producing large area trilayer graphene with controlled stacking. Wu
[120] showed trilayer graphene with complex interlayer transitions have a rich electronic
structure when compared to SLG and BLG. Sun et al. [121] have successfully synthesised

large area of bi-, tri- and tetra-layers of graphene with Bernal stacking.
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Very recently, Fan et al. [122] proposed a four-layer graphene electroabsorption mod-
ulator. Therefore, two- to four-layer thickness of graphene layers prove to be ideal for
future electronic devices. Recently, few studies have considered thickness of graphene as
1nm for their designs [123-125]. Simulation results are similar for graphene thickness 0.3
or 1nm [126]. In this study, we have chosen thickness of graphene layers to be 1.12 nm [68]

which is equivalent to a trilayer graphene (TLG) stack.
5.4.1 Top- and slot-graphene waveguides

We begin the study of trilayer graphene waveguides with a comparison between top and
slot-layered graphene-based waveguides, which was earlier discussed in Section 5.2.2. We
use similar waveguide designs as shown in Fig. 5.6, with thickness of graphene taken as
1.12nm. Here. trilayer graphene is encapsulated with high-/low-index dielectric materials
as shown in Fig. 5.19. We consider orientation is graphene as random but not confined to

ABC or ABA stacking, which will be discussed in the next section.

2.35

: : 2,327
|l - s 2.3
2'3_ T N NN I NI NN NI NN NN I NN NN I NN EN NN NN EE NN NN ENEEENEEEEEE L] 2'28_
2,267 .
2.257 ey Si
2,227

2.27] 221 . aai b
’ Si 2.187] H

3 L 2,167 :
2.15 Sl EEEEEe e H
2,127
217 - 217 i

2,087 Si
E L 2,067
2.05 o

1@ 2.0271 ®
2 2
T T T - T T 1,98 T " T T T T —
0.8 0.9 1 1.1 1.2 0.8 0.9 1 1.1 1.2

Figure 5.19: Top (a) and slot (b) waveguides with trilayer (1.12nm) graphene, encapsu-
lated with dielectric materials. Dotted lines indicate dielectric—graphene—dielectric stack.

In Section 5.2.2, we studied mode profiles of top versus slot-layered graphene waveg-
uides, for p = 0 — 1.0eV. In this section, we use the same waveguide designs but with
trilayer graphene encapsulated with dielectric materials and calculate the mode effective
index and absorption for 4 =0 —2.0eV.

The Fermi level is extended to 2.0eV (Fig. 5.20) to observe any distinct variations
in neg and « beyond 1.0eV. It is interesting to note that real and imaginary parts e(w)
do not show any distinct variation beyond 1.0eV, other than the dielectric to metallic

transition stage at 0.4-0.53 eV. The dielectric layer thickness was kept constant at 10 nm.
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Figure 5.20: Complex dielectric constants of trilayer graphene for Fermi level up to 2.0eV.

Width and height of the waveguide are 0.4 and 0.3 um, respectively. Low-index dielectric
is taken as hBN with ¢ = 3.9204 whereas high-index dielectric is taken as AloOg with

e=09.1.
5.4.1.1 Top layer graphene

Here, the dielectric-graphene—dielectric stack is placed as a layer on top of 0.3 um thick
silicon core as shown in Fig. 5.19(a)). In Section 5.2.2, we discussed the guided modes in a
graphene layer on top of silicon with a buffer material (dielectric) in between. Now we are
considering another dielectric film on top of graphene thus forming dielectric—graphene—
dielectric stack. Figure 5.21 show plots obtained for effective index (neg) and absorption
() as a function of chemical potential (u =0 —2.0eV).

In the neg plot for TM (Fig. 5.21(a)), first peak occurs at 0.39eV (2.804635), falls and
next peak occurs ar 0.53eV (2.805636). Such a trend is observed in the graphene as top
layer waveguide with only one dielectric material with first peak at 0.4eV (2.515052) and
next at 0.52eV (2.514053) as shown in Fig. 5.7. We note that adding a dielectric layer on
top of graphene shifts the high peak magnitude from first to second.

The TM mode profile in Fig. 5.22 shows a sharp peak at the dielectric—graphene
interface due to enz effect. The waveguide is in OFF condition which occurs at yu =

0.5300eV with g(w) = —0.1099 + 50.3190.
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Figure 5.21: Waveguide with trilayer (1.12nm) graphene as top layer. Plots (a) and (c)
show variations of real part of neg as a function of chemical potential, u.

5.4.1.2 Slot layer graphene

In this waveguide, trilayer graphene is placed as a horizontal slot layer in the core Si (Fig.
5.19(b)). Waveguide dimensions are as shown in Fig. 5.6(b). Figure 5.23 shows plots of
neg and « for TM and TE modes of waveguide with trilayer graphene as slot layer.

TM mode absorption undergoes drastic rise, reaching up to 9.3dB/um at p = 0.53eV
(e(w) = —0.1099 + j0.3190). This rise is attributed to the enz effect as the magnitude
of Re(e(w)) approaches —0.1099. For both TE and TM modes, the neg of the waveguide
with high-index dielectric is larger than the one with low-index. In case of TM mode, neg
shows a steady trend after the rise and fall at 0.53 eV, whereas for TM mode, n.g steadily
falls after the peak at 0.4eV. Only absorption («) shows a huge difference between TM
and TE modes. Even with high-index dielectric (¢(AlpO03)=9.1), the TE mode absorption
peaks only up to 0.11 dB/um even though the dielectric—graphene—dielectric stack is placed
where there is maximum field intensity in the waveguide.

The TM mode profile and electric field intensity plots are shown in Fig. 5.24 which
shows a strong peak in the graphene—dielectric interface. The waveguide with high-index
dielectric achieves maximum absorption of 9.3dB/um whereas the waveguide with low-

index dielectric, the absorption is 6.4 dB/um.
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Figure 5.22: TM mode profile (a) and corresponding electric field, TM E, (b) for trilayer
graphene as top layer waveguide.
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Figure 5.23: Slot waveguide with trilayer (1.12nm) graphene. Plots (a) and (c) show
variations of real part of neg as a function of chemical potential, p.

5.4.1.3 Summary

We have now studied the modal properties of dielectric-encapsulated graphene stack,
placed as top layer and as a slot layer in the waveguide. We infer that only TM mode shows
a high absorption in a horizontal slot waveguide with dielectric-encapsulated graphene as
slot layer. In terms of fabrication, the latter design is comparatively easier than the for-

mer. Graphene—dielectric stack as slot suffers from layer alignment. On the other hand,
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Figure 5.24: TM mode profile (a) and corresponding electric field, E, (b) for trilayer
graphene as slot layer waveguide.

graphene layers interact with maximum field intensity only when placed as a slot. This
aspect is dealt in further sections and we suggest a dielectric material combination for
improving TE mode absorption with graphene as top layer waveguides.

In case of effective index, the TE mode at graphene-as-top design with high-index
dielectric is higher (2.93718) than that at graphene-as-slot design (2.90638). Only in
terms of absorption, the latter design outperforms the former by several magnitudes. We
observe that to improve modal properties in graphene-as-top layer design, it required a

high-index dielectric encapsulated graphene layer placed on top of silicon.
5.4.2 ABA and ABC Stack Waveguides

Monolayer graphene is a honeycomb lattice of carbon atom with C-C bond distance
1.42nm. Bilayer graphene is of AB or Bernal stacking with inter-layer spacing dg ~ 0.334 nm.
In AB stacking, the atoms in top layer are shifted to one C—C bond distance with respect
to the other. In case of trilayer graphene, similar trend is followed in ABC (rhombohe-
dral) stacking. Here A, B and C refer to the first, second and third layers of graphene,
respectively. In bi and trilayers, the inter-layer coupling leads to drastic changes in the
electronic band structure of graphene. Section 3.2.3 explains the different stacking possi-
bilities observed in bi and trilayers.

Bao et al. [127] have shown 7-band dispersions for AAA; ABA and ABC stackings and
suggest that mono- and bi-layer graphene are not suitable for electronic devices due to

the absence of bandgap even under an applied electric field. Monolayer graphene has zero
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density of states (DOS) at the Dirac point whereas trilayer has high density of states due
to the formation of flat band at the K point near Fermi level.

In this section, after conducting a detailed study on waveguides with graphene-as-top
and graphene-as-slot, we propose waveguide designs with suitable combination of dielectric
materials for desired performance parameters such as extinction ratio (ER) and insertion
loss (IL). So far we have presented results for graphene-based waveguides with low-index
(hBN) and high-index (AlzO3) dielectric material combinations. Here we introduce an-
other dielectric material, hafnium oxide (HfO3), which is getting attention recently for use
with graphene-based waveguides [128,129]. Hafnium oxide is classified under materials
with very high dielectric constant; ¢ = 25.

We carried out a brief study of two waveguides using HfOs as dielectric material. The
objective of this study is to observe the TE (TE1, TE2, TE3) and TM (TM1, TM2, TM3)
guided modes when increasing the width of the core from 0.4 to 2.0 um at a constant
height of 0.3 um. Here we studied only neg as optical mode absorption () is studied in
further sections in detail. The results are presented as follows.

3.2
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Figure 5.25: Effective refractive indices (Re(neg)) of quasi-TE and quasi-TM modes of
waveguide with HfOs-encapsulated trilayer graphene as top layer.

Figures 5.25 and 5.26 presents Re(neg) results of guided modes for waveguide with
very high-index dielectric (¢ = 25) encapsulating graphene as top layer and slot layer,
respectively. Both TM and TE modes show similar increasing trend and after width

0.8 um the increase is very minimal. This trend is different from the one observed for w/a
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Figure 5.26: Effective refractive indices (Re(neg)) of quasi-TE and quasi-TM modes of
waveguide with HfOs-encapsulated trilayer graphene as slot layer.

ratio where the increase in neg was exponential since there is change in both width and

height of the core.
5.4.2.1 Proposed waveguide designs

Figures 5.27(a) and (b) shows the waveguide designs proposed in this study. Dielectric—
graphene—dielectric layers are denoted by 2tp +tg representing two dielectric layers encap-
sulating trilayer graphene. Sandwiching graphene within dielectric layers enables effective
dielectric light confinement at nanoscale level and generate surface plasmons at the in-
terface. In the energy bands of mono, bi and trilayers of graphene the conduction band
(CB) and valence band (VB) meets at Dirac point. For bi and trilayers, a bandgap ap-
pears when applying gate voltage. The reason why we have chosen trilayer graphene in
this study is that as monolayer graphene absorbs only 2.3% of incident light, so few layer
graphene will be beneficial for electrooptic devices wherein absorption gains prominence.

Fabrication of both the proposed slot- and top-layer graphene waveguides is compar-
atively easier as it starts with conventional silicon-on-insulator pattern. Production of
large area trilayer graphene with controlled stacking is discussed by Shih et al. [119]. Very
recently, Sugawara et al. [130] has demonstrated selective fabrication of ABA and ABC
stacking of trilayer graphene. hBN—graphene sheets are obtained through a two-step chem-
ical vapour deposition (CVD) process [131]. Deposition of AloO3 is carried out using ALD

technique [114]. Formation of hafnium oxide—graphene hybrid was discussed by Ansell et
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Figure 5.27: Proposed designs for trilayer graphene with ABA Bernal and ABC rhombo-
hedral stacking order in as a dielectric-encapsulated layer placed as slot (a) and as top
(b); tp, thickness of dielectric layer; tg, thickness of graphene.

al. [128]. Currently, various fabrication techniques are available so our designs have high

degree of fabrication possibilities [114,128].
5.4.2.2 Results and Discussion

Figures 5.28 and 5.29 show effective index and absorption plots for TE and TM modes
of top- and slot-graphene (trilayer) waveguides. Here the thickness of dielectric is fixed
as 10nm throughout the study. The mode effective index follows similar trend in both
designs with a peak at 0.5eV which is clearly seen in slot-graphene (n.g = 2.55) waveguide
but a slight increase in top-graphene (n.g = 2.41) waveguide, in case of HfOq buffer. This
is due to 0.15um silicon encapsulating the graphene—dielectric sandwich in the former. On
the other hand, in slot-graphene, optical absorption shows a distinct peak (12.5dB/um)
for HfOy. Whereas, for top-graphene, it reads a meagre 0.6 dB/um even with a very
high-index dielectric such as HfOy (¢ = 25). This is due to the fact that, in slot design,
graphene is placed at the centre of the waveguide. Many studies proposed slot waveguide
placing graphene at the location of maximum light intensity [6,105,132].

Dielectric constants of materials used for above plots are as follows: ¢(hBN) = 3.9204,;
£(Al203) =9.1; e(HfO2) =25. TM effective index in (a) of both figures show a significant
difference in neg of very high-index dielectric. TE mode absorption in (d) of both fig-
ures, the waveguide with very high index dielectric is significantly ahead in the top-layer

waveguide than that of the slot-layer. This suggests the point which we put forward for
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Figure 5.28: TE and TM mode effective index and optical absorption of waveguide with
graphene—dielectric stack as top layer.
graphene—dielectric stack as top layer that TE mode can be enhanced to a good extent
with HfOo—graphene-HfO5 combination on top of silicon core.

Designs proposed by Phatak et al. [96] and Liu et al. [114] have graphene as top layer.
In the former study, their design involves two graphene layers separated by AlsOs which
involves removal of buried oxide (BOX) through hydrogen fluoride (HF) etching. This
design deliver a bulk waveguide with complex fabrication steps. Therefore, in this study,
we adopted a pattern of high-index dielectric (HfO2) and trilayer graphene in our designs
which is relatively simple and straightforward. By varying the dielectric layer thickness,
we have shown ways to enhance TE mode absorption which is lagging in their designs.

Mode profile in Fig. 5.30(c) show the mode shifts towards graphene-dielectric stack
which enhances the TE mode absorption. Our design, with HfOy as dielectric of thickness
50 nm achieves a TE absorption of 0.18um which was only 0.14um in Ref. [96] with complex
design process. Recently, Aznakayeva et al. [129] proposed low voltage modulators using
graphene and hafnium oxide. So, in this study, we aim to propose simple designs for

graphene as slot and top layer designs and deliver ways to tune performance parameters
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Figure 5.29: TE and TM mode effective index and optical absorption of waveguide with
dielectric—graphene—dielectric stack as slot layer.

2,35
2.3
225
2.2 F
215
21F
2,05 -

(a)

1.85

1.9
0.8

0.9

1 1.1 1.2

(b)

(€)

Figure 5.30: Mode profiles of dielectric-encapsulated trilayer graphene waveguide: (a)
hBN; (b)Aly0s3; (¢) HfOs. In (c) mode moves towards the graphene—dielectric stack.

by varying thickness of different dielectric materials with low- (hBN), high- (AlyO3) and

very high-index (HfOs). Steps for fabrication can be taken from experimental studies

[81,82,114, 120).

We now present and discuss the results obtained for varying dielectric layer thickness

(tp) encapsulating the graphene layers and the variations as a function of change in wave-

length (A). Performance parameters such as extinction ratio (ER) and insertion loss (IL)

of two proposed waveguides (slot-graphene and top-graphene) are discussed in this section.
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Figure 5.31: TM (a) and TE (b) mode optical absorption for varying dielectric thickness
in a graphene-as-top layer waveguide.

Figure 5.31 shows optical absorption of top-graphene waveguide at 1 = 0.25eV, which
refers to ON voltage; £(w) = 1.3335 + j5.1690. In both TM and TE plots, high-index
dielectric shows significant rise when compared to the other two. The reason is attributed
to the very high dielectric constant of HfOs. Waveguide with HfO4 shows a peak absorption
of @ = 0.18 dB/pm within ¢tp =50-55 nm range. This design shows a good enhancement
of TE mode from the absorption of @ = 0.14 dB/pm shown in Ref. [96]. Therefore, we
propose, for a top-graphene waveguide, a high-index buffer with trilayer graphene is a
suitable combination. A combination of trilayer graphene and high-index buffer proves to
be a potential design for electro-optic modulation especially for low power consumption
applications [129].

Next we analyse the broadband response of the waveguide and the results are shown
in Fig. 5.32. Operation wavelength range is another important parameter of a modulator.
Modulators are expected to operate in three major telecom windows viz., 0.85, 1.3 and
1.5 ym. Our plots have covered the wavelength from 1.3 to 1.7 pm.

Both designs show a peak at A = 1550 nm which is in accordance with results in
Ref. [6]. In top-graphene design, the TM mode absorption of high-index dielectric with
a = 0.62dB/pm significantly outperforms other two (o = 0.2dB/pum and o = 0.1dB/um
for Al;O3 and hBN, respectively). In slot-graphene waveguide, peak absorption reaching
12dB/pum was achieved by high-index dielectric. This is attributed to the fact that the
graphene—dielectric stack is positioned at the maximum field intensity region in the waveg-
uide. Therefore, using a high-index dielectric as buffer layer between graphene and silicon

results in a very high absorption waveguide. In Fig. 5.32, the dielectric layer thickness is
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Figure 5.32: Optical absorption for TM modes of top-graphene (a) and slot-graphene (b)
waveguides; p = 0.53eV.

taken as 10 nm throughout.

Most experimental studies [114,115] have proposed waveguide designs with graphene as
top layer, as it has high fabrication possibilities. In line with their results, here we propose
a simple design using trilayer graphene (1.12nm) and high-index dielectric (HfOy, e = 25)
combination that enhances the TE and TM mode confinements. Top-graphene achieves
nes = 2.868 which is higher than that of a TE rib (2.798) and TM rib (2.530) designs in
Ref. [96].

Broadband response of top- and slot-graphene waveguides at 4 = 0.4 eV are shown
in Fig. 5.33. Mode effective index has shown a steady decrease for increasing wave-
length in both waveguides. In slot-graphene, low- and high-index dielectrics have a high
effective index of 2.38 and 2.60, respectively. Whereas in top-graphene, both have 2.60
and 2.63, respectively. Large variation in slot design is due to the reason that dielectric—
graphene—dielectric layers are in the region with maximum light intensity. So the influence
of dielectric layers on waveguide performance is more in slot-graphene when compared to
top-graphene design. This imposes a thickness limitation of dielectric layers in slot waveg-
uides wherein bilayer graphene layers are separated with a dielectric [6,103] because it
leads to increase in capacitance which degrades mode propagation.

The performance parameters such as insertion loss (IL) and extinction ratio (ER) are

calculated as follows:

Tm X
IL = —10logyo(Timax) ER = 10log, <T 2 > (5.2)

min

ER is obtained for both designs between the major telecom windows, 1.3—1.7 um. The
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Figure 5.33: TE and TM mode effective index of graphene-slot waveguide for varying
wavelength (\): ON, 0.4eV (a, c¢); OFF, 0.53¢eV (b, d).

formula for ER is explained as below:

T eXp—47roc0N L
ER = 10log, ( Tma"> = 10logy (expzmw

min
where apn and appr denote the imaginary parts of neg at ON and OFF states of the

waveguide, respectively, and L the length of graphene sheet.
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Figure 5.34: Top-graphene: TM mode (a) extinction ratio and (b) insertion loss for varying
dielectric layer thickness.

Next, the influence of dielectric layer thickness (tp = 5—70nm) on ER and IL is stud-
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ied. Figure 5.34(a) and (b) show ER and IL for graphene as top layer design, respectively.
Length of graphene active layer is taken as 5 pm. Design with very high-index has shown a
steady increase in both designs whereas high- and low-index have shown a steady decrease
apart from ER. Therefore, by controlling the thickness of dielectric layers, desired waveg-
uide performance can be achieved, say ER 40-60 dB and IL 2-3 dB/um. Broken marked
lines in those figures show optimum ER and IL that can be obtained using high-index
dielectric. This is very important as using high-index dielectric such as HfOo can be used
for modulation around 1V [128]. In case of high- and low-index, ER and IL variation
is modest up to a thickness of 40nm. Even after, up to 70 nm, both dielectrics vary in
performance slightly. Therefore, in case of top-graphene design, the influence of high-
or low-index on propagation is only minimal. This leads to the need of very high-index

dielectric material to encapsulate graphene in a top-graphene design.
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Figure 5.35: Slot-graphene: Extinction ratio (a) and insertion loss (b) for varying dielectric
thickness.

Figure 5.35(a) and (b), respectively, show ER and IL for varying ¢p from 5 to 70 nm.
Very high-index has shown a sharp increase from 5nm thickness whereas high- and low-
index have shown a steady decrease. Also, the ER and IL variations for high- and low-index
are placed apart. This proves the influence of dielectric layer being more in slot-graphene
when compared to top-graphene design. Therefore, using a very high-index, tp=5nm will
achieve a high ER of 80dB. On the other hand, high- and low-index dielectric materials
provide optimum ER and IL within the range 20-70 and 3—4 dB/um, respectively. Based
on these results, we infer that very high-index dielectric materials are not suitable for slot-
graphene design. Also, using our results, we can ascertain the optimum dielectric thickness

needed for high- and low-index to achieve desired performance that can be decided for top-
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graphene and slot-graphene waveguides.

5.5 Summary

In this chapter, we presented a detailed analysis of tasks carried out in this study of
graphene—silicon hybrid waveguides. Starting with characterization of silicon nanowires,
we analysed the optimum dimensions of silicon on insulator will be height 0.3nm and
width 0.4 nm. Position of graphene layer in the waveguide is crucial for performance, so
two designs (top- and slot-layer graphene) were studied. Then we moved on to the study of
importance of dielectric layer encapsulating graphene. We observed the minute variations
in mode effective index (nmeg) and absorption («) with respect to low- and high-index
dielectric materials.

We proposed two waveguide designs based on these results. We characterised the de-
signs we proposed and found suitable dielectric—graphene combinations for graphene-as-top
layer and graphene-as-slot layer waveguides. Our results were based on recent experimen-
tal findings on trilayer graphene [119,120,128,130,131] and the fabrication possibilities of

proposed waveguide designs are straightforward.
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Chapter 6

Conclusions and Suggestions for
Future Research

6.1 Conclusions

In the last few decades, a new frontier has emerged in the field of optoelectronics. The
advent of 1D and 2D materials such as carbon nanotubes and graphene [67] has resulted
in a wide range of applications hybridising them with existing designs, for instance, op-
toelectronic modulators [20, 114]. Graphene is expected to play a major role in silicon
nanophotonics reducing costs significantly and in increasing the communication band-
width. Its inherent switching ability as a function of varying gate voltage makes graphene
a potential material in the field of optoelectronics. Owing to its thickness (monolayer,
0.4nm; bilayer, 0.69nm; trilayer, 1.12nm) [68], graphene is not a stand-alone material.
Therefore, the remarkable optical properties of graphene can be utilized by integrating it
with existing silicon (Si) waveguides by forming a hybrid structure.

The objectives of this study is to design and characterise graphene-based hybrid waveg-
uides using Finite Element Method. The objectives outlined in this thesis have been suc-
cessfully accomplished and a detailed analysis of waveguide designs undertaken for this
study are presented. We focussed on the study of influence of dielectric materials encap-
sulating graphene layers in the waveguide. The positioning of this dielectric-graphene—
dielectric stack is of prime importance as graphene is an active layer in the electro-optic
modulation process. Benchmarking is an essential task in research as it is necessary to val-
idate our method with published results. Theoretical and experimental studies [6,20,29]
were chosen and using our models and understanding, we obtained their results through

our mode solvers viz., complex and perturbation.

153



6.1. Conclusions

In Chapter 1, the recent trends in nanophotonics and fundamentals behind light wave
propagation are explained. Thin film fabrication methods and processes involved are
explained in detail. Mechanism of modulation is given a brief introduction. Study of
experimental methods helped us in designing waveguides with high degree of fabrication
possibilities. The designs we proposed at the end of this study are CMOS compatible and
can be effectively integrated with on-chip optical interconnects. Study of waveguides is
the primary objective of this research. So, in Chapter 2, we provided the fundamentals
behind light—-matter interaction and types of waveguides such as planar, slab and rib.
Plasmonic waveguides are given a brief introduction. This thesis is based on Finite element
method [45].

Graphene is an wonder material which has an inherent ability of tuning the Fermi
level by applying a gate voltage. This phenomena makes graphene an unique material for
designing electro-optic modulators. The speed of modulation is in picoseconds timescale
[20]. Therefore a detailed study of physical, electrical and optical properties of graphene is
given in Chapter 3. Graphene possesses a complex conductivity (o(w) = o1 + joz2) which
is used to derive the complex dielectric constant (e(w) = €1 + jea) values as a function
of Fermi level or chemical potential (). The enz effect in graphene causes rapid rise
in absorption of TM mode between 0.4 and 0.55eV; for example, in a bilayer graphene
of thickness 0.69nm, £(0.51eV)= —0.0839 + j0.5728. The thickness- and wavelength-
dependent e(w) are calculated.

Dielectric constants of graphene depend on thickness of graphene layer (¢,), chemical
potential (u) and wavelength (A). Therefore, a detailed study on physical properties of
mono-, bi- and trilayers of graphene and the electronic band structure are discussed in
Chapter 3. Optical conductivity (o(w)) and electrical permittivity (e(w)) are complex
quantities in graphene. So the interband and intraband transitions are presented in this
chapter. Our analytical method derived for calculating (w) was benchmarked with three
studies [6,28,29] which proved the validity and accuracy of our derived method. Through
the MATLAB code written for the derivation, we obtained 1 + jeo for 55 discrete voltage
levels from 0 to 1.0eV and further extended up to 2.0eV.

Benchmarking task was carried out for validating and improving our perturbation

and complex mode solvers. Limitations are identified for both codes. In Chapter 4,
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we have presented our results of benchmarking with three published studies [6, 20, 29].
We successfully benchmarked the effective index (neg), absorption («) and electric field
intensity plots using our in-house solvers as well as COMSOL. The aspect of benchmarking
helped us validate and improve our understanding before proposing new waveguide designs
in line with fabrication possibilities.

We proposed two novel waveguide designs for electro-absorption modulator that forms
a hybrid structure of graphene and silicon. We observed that the positioning of graphene
sheets as well as the layer thickness plays a vital role in influencing the modal properties
of the waveguide. Our results of performance parameters such as ER and IL will help
designing waveguides for required applications. We finally proposed a combination of
high-index dielectric encapsulated graphene for waveguides with graphene as top layer.
For waveguides with graphene as slot layer, reduced thickness, say 5nm, of high-dielectric

material yield good results.

6.2 Suggestions for Future Research

a) Benchmarking task exposed the limitations in our perturbation and complex mode
solvers. Results from our codes indicated a close agreement with published studies.
For accurate determination of modal properties, the perturbation code has to be
debugged to be able to handle e(w) values with real part (¢;) smaller than the

imaginary part (£2).

b) Complex code, even though it can handle any values of £(w), it needs to be improved
further so that it accommodates mesh dimensions beyond 110 x 110. The ability to

handle mesh dimension of at least 500 x 500 is required using complex code.

¢) Computation time is another factor noticed while using our codes but it can be
overcome by using latest versions of computers with at least 16GB RAM. Even
then, both codes need to be debugged for reducing computation time when studying

bulk waveguides of more than three layers.

d) Graphene-based waveguides rely on light-graphene interaction so efficient designs

are required that would position graphene stack in the field of maximum intensity.

e) Through our findings, it is shown how dielectric materials with graphene influence
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6.2. Suggestions for Future Research

modal properties of the waveguide. Now we have a range of 2D materials such as
phosphorene, TMDs, silicene, etc. which can be integrated with graphene to enhance
performance. Graphene—polymer combination is also a prospective combination for

high speed electro-absorption modulators.
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Appendix A

To calculate complex (w) of
graphene

Section 3.5.1 explains the analytical method we adopted for calculating the complex di-

electric constants of graphene, e(w) = 1 + jeo. From equation 3.69, it is noted that e(w)

depends on wavelength (\) and thickness of graphene layers. Figures 3.24 and 3.26 show

the variations in values of ¢(w) as a function of thickness of graphene layers and wave-

length, respectively. Table A.1 lists the complex £(w) values obtained using our MATLAB

code shown in Box A.1l.

u(eV) Ree(@)|ime(a@) i (eV) [Ree(@)|ime(@) uev) [Reg(@)|ime(@)
0 0.9946 8.1958 0.44 2.7704 1.83213 0.517 -0.4063 0.5409
0.05 0.9993 8.2397 0.45 2.2358 1.4276 0.518 -0.4376 0.5384
0.1 1.0245 8.2834 0.46 1.7479 1.1346 0.519 -0.4688 0.5362
0.15 1.0954 8.3268 0.47 1.3016 0.9234 0.52 -0.4998 0.534
0.2 1.2476 8.3676 0.475 1.0921 0.8425 0.53 -0.8016 0.5179
0.25 1.5413 8.3903 0.478 0.9703 0.8006 0.54 -1.09 0.5096
0.3 2.0973 8.2907 0.438 0.8906 0.7752 0.56 -1.6329 0.5077
0.35 3.2126 7.4656 0.49 0.5093 0.6737 0.58 -2.139 0.5162
0.36 3.5534 7.0707 0.5 0.1528 0.6058 0.6 -2.6158 0.5296
0.37 3.9392 6.5616 0.507 -0.0839 0.5728 0.62 -3.0687 0.5452
0.38 4.3438 5.9377 0.508 -0.1169 0.5689 0.64 -3.5019 0.5619
0.39 4.6763 5.2183 0.509 -0.1498 0.5651 0.66 -3.9185 0.579
0.4 4,7592 4.4441 0.51 -0.1825 0.5616 0.68 -4.321 0.3963
0.41 44779 3.6702 0.512 -0.2473 0.5549 0.7 -4,7114 0.6138
0.415 4,2318 3.301 0.513 -0.2754 0.5518 0.75 -5.6443 0.6576
0.418 4.0652 3.0887 0.514 -0.3114 0.5489 0.8 -6.5292 0.7014
0.42 3.9492 2.9517 0.515 -0.3432 0.5461 0.85 -7.3782 0.7452
0.43 3.3501 2.3291 0.516 -0.3748 0.5434 0.9 -8.1992 0.7891
1 -9.7791 0.8767

Table A.1: Complex dielectric constant values, e(w) = &1 + jeo, for p=0—1.0eV.
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The interactive MATLAB code written for calculating these complex values of e(w)

are given as follows:

%$Calculation of dielectric constant
clc
p_vac = 8.8542e-12; 10
e = 1.6022e-19; .
c = 299792458;
$h = 1.0546e-34;
h p = 6.626070040e-34;
h = h_p/(2*pi);
= 6.582le-16;
0 = 60.85e-6;
1 1.2e-12;
- le-14;
L 1 = 8.3ell;
L 2 = lel3; ‘ .
sqrt(-1);
1.3806503e-23; O chamical potentiar rtgy) .
B = 8.617e-5;
300;
g = 54e-3*e;
lambda = 1.55;
mu = 0.507;
g_layer = 0.7;

)]
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%a = 'Wavelength = ';
%$lambda = input(a);

= 2*pi*c/(lambda*le-6) ;

b = 'Chemical potential =';
mu = input(b) ;

mu_c = mu*e;

$c = 'graphene layer =';
%g_layer = input(c);

g = g_layer*le-9;

o %

oP

sig inter a = (sig 0/2)*(tanh((h*w+2*mu_c)/(4%*k B*T))+
tanh ((h*w-2*mu_c) / (4*k_B*T)))

sig_inter b =
j*(sig_0/(2*pi)) *log( (h*w+2*mu_c)*2/ (( (h*w-
2*mu_c) ~2) +(2%k_B*T) A2))

sig_intra = j*((4*sig_0)/pi)*((mu_c)/ (h*w+i*h_qg))

sig_total = sig _inter a - sig_inter b + sig_intra
eps = 1+ (j*sig_total/ (w*p_vac*g))

n = sqrt(eps)

Abs=abs (eps)

Box A.1: Code for deriving complex values of e(w). Inset shows the plot obtained for e(w)
varying within the voltage range, u =0 — 1.0eV
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