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ABSTRACT 

The paper provides a comprehensive appraisal of style-integration methods in equity index, fixed 
income, currency, and commodity futures markets. We confront the naïve equal-weight integration 
(EWI) method with a host of ‘sophisticated’ style-integrations that derive the style exposures using 
past data according to utility maximization, style rotation, volatility timing, cross-sectional pricing, 
style momentum or principal components criteria. The analysis, conducted separately per futures 
market and cross-markets, reveals that the EWI portfolio is unrivalled in terms of risk-adjusted 
performance while it sustains a relatively low turnover. The findings are robust to analyses that 
entertain variants of the sophisticated integrations, longer estimation windows, several asset 
scoring schemes, data snooping tests, sub-periods evaluation and equities in place of futures. 
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1. Introduction 

A variety of long-short investment approaches (or styles) have been put forward in the literature 

to capture attractive returns at a relatively low risk, leaving investors somewhat bewildered by 

the possibilities. The task of choosing one style over another is all the more challenging that 

good performance in the past is no guarantee of good performance in the future. Against this 

background, since at least the seminal work of Brandt et al. (2009) various studies have 

suggested to integrate styles instead. The idea is to construct a unique portfolio with multiple 

style exposures that offers a better performance than that of the underlying standalone-style 

portfolios. However, different methods can be adopted to form a style-integrated portfolio and 

to date there has been no attempt to appraise them comparatively in a self-contained paper. 

The present paper fills this gap by providing academics and practitioners alike with a 

comprehensive comparison of style-integration methods: the naïve style-integration that assigns 

time-constant, equal weights to the standalone styles (Equal-Weighted Integration, EWI, 

hereafter) and six other style-integrations that we term “sophisticated” in the sense that they 

allow for time-varying, heterogeneous style weights. The six sophisticated style-integrations 

have in common that the style weights are derived from past style return data but they differ in 

the criteria adopted: utility maximization (Optimized Integration, OI), persistence in risk-

adjusted performance (Rotation-of-Styles Integration, RSI), volatility (Volatility Timing 

Integration, VTI), pricing ability (Cross-Sectional Pricing Integration, CSI), factor momentum 

(Style Momentum Integration, SMI) and principal components analysis (Principal Components 

Integration, PCI). The EWI, OI and RSI methods have already been employed (e.g., Barberis 

and Shleifer, 2003; Brandt et al., 2009; Frazzini et al., 2013; Fischer and Gallmeyer, 2016; 

Fitzgibbons et al., 2016; Ghysels et al., 2016; and DeMiguel et al., 2019), but the VTI, SMI, 

CSI and PCI methods are new to the style-integration literature, to our best knowledge.  
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Our paper takes style integration as a valid proposition1 and contributes to the literature by 

providing a comprehensive appraisal of the above style-integration methods. To put this 

differently, given an investor’s preference for style integration, we aim to find out the most 

effective approach he or she shall adopt; this is done by providing a comparative analysis of the 

out-of-sample performance of various style-integration methods. Our main analysis centers on 

futures markets (equity, fixed income, currency and commodity) as these markets offer the 

advantages of deep liquidity, no constraint on shorting and low transaction costs but we provide 

also robustness evidence from equity markets. 

Our conclusions show that EWI is for two reasons the most appealing style-integration 

method. On the one hand, this approach is very easy to deploy as no parameter estimation is 

required. On the other hand, as borne out by our findings, the EWI portfolio affords a reward-

to-risk profile that is unsurpassed by that of alternative style-integrated portfolios. The inability 

of the sophisticated style-integration portfolios to outperform the EWI portfolio indirectly 

suggests that the benefits from allowing time-varying and heterogeneous style-weights are 

offset by parameter estimation error and representativeness heuristic bias.2 The key finding that 

the EWI approach is unsurpassed by sophisticated style-integration methods stems from 

separate analyses conducted per futures class (equity, fixed income, currency and commodity), 

across-futures classes and in equity markets. Moreover, the finding is not challenged in a battery 

of robustness analyses that entertain variants of the sophisticated style-integrations, different 

                                                                 
1 We assume that our representative investor seeks exposure to multiple styles (hereafter, style 
integration) as opposed to pursuing a single style. This is motivated by recent evidence that 
establishes the benefits of style-integration for equities (Brandt et al., 2009; Frazzini et al., 2013, 
Fischer and Gallmeyer, 2016; Fitzgibbons et al., 2016), currencies (Kroencke et al., 2014; 
Barroso and Santa-Clara, 2015b) and commodity futures (Fuertes et al., 2015). 
2 As defined by psychologists Amos Tversky and Daniel Kahneman in the early 1970s, when 
we rely on a representative heuristic, we often wrongly judge that something is more 
representative than it actually is. In asset management, representative heuristics lead investors 
to think that future patterns in portfolio behavior (or, in the present context, future patterns in 
style ranking) will resemble past ones.   
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asset scoring schemes, data snooping tests, longer lookback windows and different economic 

sub-periods.  

Our article speaks to a recent but quickly growing literature on style-integration in equity 

markets (Brandt et al., 2009; Frazzini et al., 2013; Fischer and Gallmeyer, 2016; Fitzgibbons et 

al., 2016; Ghysels et al., 2016; Leippold and Rueegg, 2018; DeMiguel et al., 2019), currency 

markets (Kroencke et al., 2014; Barroso and Santa-Clara, 2015b) and commodity markets 

(Fuertes et al., 2015). A common denominator to these studies is their focus on one or at most 

two style-integration approaches. By contrast, our article conducts a comprehensive horse-race 

of style-integration methods to inform academics and practitioners alike on their relative risk-

adjusted performance.  

By providing evidence that the EWI strategy is not challenged by sophisticated style-

integration methods, our article speaks to two other literatures. First, it adds to a voluminous 

literature on forecast combination where the equal-weight forecast combination approach has 

become the de facto benchmark against which any newly developed forecast combination is 

appraised (see Timmermann, 2006, for a survey). Second, albeit our paper is concerned with 

style diversification, our key finding is reminiscent of the evidence in the comprehensive N 

assets diversification study by DeMiguel et al. (2009) which advocates the naïve 1/𝑁𝑁 heuristic.  

The rest of the paper proceeds as follows. Section 2 presents the style-integration framework 

as adapted to futures contracts, the standalone styles, evaluation tools and statistical tests. 

Section 3 outlines the data. Section 4 discusses the main results on the out-of-sample 

performance of the style-integrated portfolios. Section 5 discusses various robustness rests, 

before concluding in Section 6.  

2. Methodology 

2.1 Style-integrated futures portfolios 
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To set the stage, we begin by laying out the portfolio allocation framework developed by Brandt 

et al. (2009) as adapted to assets in zero-net supply by Barroso and Santa-Clara (2015b). Let 

the available cross-section of futures contracts be denoted 𝑖𝑖 = 1, . . ,𝑁𝑁, the investment styles 

𝑘𝑘 = 1, … ,𝐾𝐾, and the portfolio formation times 𝑡𝑡 = 1, … ,𝑇𝑇; thus, 𝑥𝑥𝑖𝑖,𝑘𝑘,𝑡𝑡 denotes the value of the 

k characteristic or signal for the ith futures contract at time t. Bold font is used hereafter to 

denote matrices and vectors. The investor’s asset allocation at time t in the context of style 

integration is captured by the 𝑁𝑁 × 1 vector 𝛟𝛟𝑡𝑡 which can be obtained as follows  

 𝛟𝛟𝑡𝑡 ≡ 𝚯𝚯𝑡𝑡 × 𝛚𝛚𝑡𝑡 = �
𝜃𝜃1,1,𝑡𝑡 … 𝜃𝜃1,𝐾𝐾,𝑡𝑡
⋮ ⋱ ⋮

𝜃𝜃𝑁𝑁,1,𝑡𝑡 … 𝜃𝜃𝑁𝑁,𝐾𝐾,𝑡𝑡

� �
𝜔𝜔1,𝑡𝑡
⋮

𝜔𝜔𝐾𝐾,𝑡𝑡

� = �
𝜙𝜙1,𝑡𝑡
⋮

𝜙𝜙𝑁𝑁,𝑡𝑡

�      (1) 

where 𝚯𝚯𝑡𝑡 is an 𝑁𝑁 × 𝐾𝐾 matrix of asset scores that reflects in the kth column the relative “ranking” 

of the N assets according to the kth style. For now, the elements of the score matrix 𝚯𝚯𝑡𝑡 are the 

raw signal values appropriately standardized cross-sectionally (e.g. Brandt et al., 2009, Barroso 

and Santa-Clara, 2015b, Fischer and Gallmeyer, 2016, Ghysels et al., 2016); namely, 𝜃𝜃𝑖𝑖,𝑘𝑘,𝑡𝑡 ≡

(𝑥𝑥𝑖𝑖,𝑘𝑘,𝑡𝑡 − �̅�𝑥𝑘𝑘,𝑡𝑡)/𝜎𝜎𝑘𝑘,𝑡𝑡
𝑥𝑥  where �̅�𝑥𝑘𝑘,𝑡𝑡 (𝜎𝜎𝑘𝑘,𝑡𝑡

𝑥𝑥 ) is the cross sectional mean (standard deviation) of the kth 

characteristic at time t. Accordingly, the kth style recommends a long (short) position on asset 

i at time t if 𝜃𝜃𝑖𝑖,𝑘𝑘,𝑡𝑡 > 0 (𝜃𝜃𝑖𝑖,𝑘𝑘,𝑡𝑡 < 0) which we refer to as 𝜃𝜃𝑖𝑖,𝑘𝑘,𝑡𝑡
𝐿𝐿  (𝜃𝜃𝑖𝑖,𝑘𝑘,𝑡𝑡

𝑆𝑆 ) hereafter. Using the 

standardized signals as scores naturally implies identical long and short investment mandates, 

∑ 𝜃𝜃𝑖𝑖,𝑘𝑘,𝑡𝑡
𝐿𝐿𝑁𝑁𝐿𝐿

𝑖𝑖=1 = ∑ �𝜃𝜃𝑖𝑖,𝑘𝑘,𝑡𝑡
𝑆𝑆 �𝑁𝑁𝑆𝑆

𝑖𝑖=1  per style k, with 𝑁𝑁𝐿𝐿 + 𝑁𝑁𝑆𝑆 = 𝑁𝑁.  

The 𝐾𝐾 × 1 weight vector 𝛚𝛚𝑡𝑡 captures the relative importance given to each of the K styles; 

unless noted otherwise, these weights are unrestricted (𝝎𝝎t ∈ RK) to allow for the possibility of 

reversing a style �𝜔𝜔𝑘𝑘,𝑡𝑡 < 0� in the aftermath of a temporary crash. Finally, the 𝑁𝑁 × 1 vector 𝛟𝛟𝑡𝑡 

represents the solution of the style-integrated portfolio allocation problem; namely, the sign of 

the allocation, 𝜙𝜙𝑖𝑖,𝑡𝑡 > 0 or 𝜙𝜙𝑖𝑖,𝑡𝑡 < 0, indicates the nature of the position, long or short, that the 

style-integrated portfolio takes on asset i at time t. The vector 𝛟𝛟𝑡𝑡 is scaled to 𝛟𝛟�𝑡𝑡; i.e., 𝜙𝜙�𝑖𝑖,𝑡𝑡 =
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𝜙𝜙𝑖𝑖,𝑡𝑡/∑ �𝜙𝜙𝑖𝑖,𝑡𝑡�𝑁𝑁
𝑖𝑖=1  to ensure 100% investment of the investor’s mandate, ∑ �𝜙𝜙�𝑖𝑖,𝑡𝑡�𝑁𝑁

𝑖𝑖=1 = 1. It follows 

that, by construction, the final style-integrated portfolio allocates an equal investment mandate 

to the longs and shorts; i.e., ∑ 𝜙𝜙�𝑖𝑖,𝑡𝑡𝐿𝐿𝑖𝑖 = ∑ �𝜙𝜙�𝑖𝑖,𝑡𝑡𝑆𝑆 �𝑖𝑖 = 0.5. The long/short positions taken at each 

portfolio formation time t (month-end, in our analysis) are held for a month on a fully-

collateralized basis; then 𝛟𝛟�𝑡𝑡+1 is obtained which defines a new style-integrated portfolio, and 

so forth. We adopt an out-of-sample (or real time) approach throughout the analysis meaning 

that at each time t the final vector 𝛟𝛟�𝑡𝑡 is determined using a lookback window of data.  

2.2 Standalone styles 

The standalone-style portfolios emerge as particular cases of Equation (1) for a sparse weight 

vector 𝛚𝛚𝑡𝑡 with one specific entry equal to 1 and the K-1 remaining entries equal to 0. For our 

horse race of style-integration methods we focus, without loss of generality, on a few styles or 

factors that have been suggested in the literature as sources of risk premia pervasively across 

asset classes. Appendix A, Panel A lists some representative studies for each style.3  

The momentum style pursues the trend-continuation principle that the past well-performing 

assets (or winners) tend to continue outperforming past losers. In our study, the sorting signal 

for the cross section of front-end futures contracts is the average of their daily excess returns in 

the preceding year; namely, 𝑥𝑥𝑖𝑖,𝑡𝑡 ≡
1
𝐷𝐷
∑ 𝑟𝑟𝑖𝑖,𝑡𝑡−𝑗𝑗𝐷𝐷−1
𝑗𝑗=0  where D denotes the total number of days.  

The value style rests upon the notion of long-run mean reversion. Following Asness et al. 

(2013) inter alia, the signal is defined as the log of the average D daily front-end futures prices 

4.5 to 5.5 years before portfolio formation t over the current front-end futures price; namely, 

                                                                 
3 Following Asness et al. (2013) and Koijen et al. (2018), in order to simplify the exposition we 
define the signals per style identically across all the futures classes. This simplification ought 
not to be a concern since we are not aiming to find the best predictor of returns in each class 
but instead, for a given futures class and a set of styles, we seek to uncover the most effective 
style-integration method. 
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𝑥𝑥𝑖𝑖,𝑡𝑡 ≡ 𝑙𝑙𝑙𝑙
1
𝐷𝐷
∑ 𝑓𝑓𝑖𝑖,𝑡𝑡−𝑗𝑗

𝑡𝑡1𝐷𝐷−1
𝑑𝑑=0

𝑓𝑓𝑖𝑖,𝑡𝑡
𝑡𝑡1  where 𝑡𝑡1 is the maturity of the front-end contract. The idea is to buy (sell) 

currently underpriced (overpriced) futures contracts relative to their long-term mean value.  

We consider the carry style that relies on the roll-yield defined as the difference between 

the logarithmic front- and second-nearest futures prices, 𝑥𝑥𝑖𝑖,𝑡𝑡 ≡ ln�𝑓𝑓𝑖𝑖,𝑡𝑡
𝑡𝑡1� − ln (𝑓𝑓𝑖𝑖,𝑡𝑡

𝑡𝑡2) where 𝑡𝑡1 and 

𝑡𝑡2 denote the corresponding contract maturity. The idea is to buy (sell) those futures contracts 

with negatively (positively) sloped term structure to capture the expected increase (decrease) in 

their price as maturity approaches under the assumption that the futures curve stays the same.  

The liquidity style captures a risk premium that reflects the compensation that investors 

demand for holding less liquid assets. Following prior studies (e.g., Szymanowska et al., 2014), 

we adopt the Amivest liquidity measure which averages the daily dollar volume per absolute 

return of the front-end futures contract over the past two months (D days); in our paper the 

signal is defined as the opposite of this measure, 𝑥𝑥𝑖𝑖,𝑡𝑡 ≡ − 1
𝐷𝐷
∑ $𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖,𝑡𝑡−𝑗𝑗

�𝑟𝑟𝑖𝑖,𝑡𝑡−𝑗𝑗�
𝐷𝐷−1
𝑗𝑗=0  , so that positive 

standardized signals dictate long positions as formalized in the above framework, Equation (1). 

Our final style adopts a skewness signal which is motivated by the notion that investors 

tend to prefer positively skewed assets. Following prior studies (Fernandez-Perez et al., 2018), 

the signal is defined as the third moment of the distribution of daily excess returns of the front-

end futures contracts in the prior year; again, we use the negative of this measure so that positive 

standardized signal values amount to long positions, 𝑥𝑥𝑖𝑖,𝑡𝑡 ≡ − 1
𝐷𝐷

∑ �𝑟𝑟𝑖𝑖,𝑡𝑡−𝑗𝑗−𝜇𝜇𝑖𝑖�
3𝐷𝐷−1

𝑗𝑗=0

𝜎𝜎𝑖𝑖
3  with D days.  

2.3. Style-integration methods 

Now we discuss several style-integration methods that arise from Equation (1) under different 

criteria to determine the style-weights vector, 𝛚𝛚𝑡𝑡. As explained next, the first method is based 

on fixed style weights, whereas the other six style-integration methods are called 
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“sophisticated” in our paper because they allow for time-varying and heterogeneous style 

weights that are estimated using 60 months of prior data at each portfolio formation time t.  

Equal-Weight Integration (EWI). The naïve EWI method assigns fixed homogeneous 

weights to the 𝐾𝐾 signals at each portfolio formation time 𝑡𝑡 = 1, … ,𝑇𝑇; namely, 𝛚𝛚𝑡𝑡 = 𝛚𝛚 =

(1/𝐾𝐾, … ,1/𝐾𝐾)′. EWI is appealing for various reasons. First, it incurs no sampling uncertainty 

or estimation risk as 𝛚𝛚𝑡𝑡 is not derived from past data. Second, it sidesteps concerns related to 

the so-called representativeness heuristic which can bias the sophisticated style-integration 

approaches as they assign more weight to the best styles (where “best” is defined according to 

some criteria) under the presumption that the past relative ranking of the K styles is a good 

guide to their future relative ranking. Third, the simplicity of the EWI approach reduces the 

scope for data mining since it circumvents the choices associated with the pre-ranking of the K 

standalone styles; instances are the specific length of the estimation or lookback period, the 

ranking or estimation criterion (e.g., investor’s utility function) and so forth. 

Optimal Integration (OI). The style-weighting vector 𝛚𝛚𝑡𝑡 at each portfolio formation time 

t is the solution of the investor’s utility-maximization problem 𝑚𝑚𝑚𝑚𝑥𝑥
𝛚𝛚

 𝐸𝐸𝑡𝑡�𝑈𝑈�∑ 𝜔𝜔𝑘𝑘𝑟𝑟𝑘𝑘,𝑡𝑡+1
𝐾𝐾
𝑘𝑘=1 �� with 

𝑟𝑟𝑘𝑘,𝑡𝑡 denoting the month t excess return of the kth standalone-style portfolio. Following 

DeMiguel et al. (2019), the OI style weights are determined under an unconstrained mean-

variance utility assumption; namely, 𝐸𝐸𝑡𝑡�𝑈𝑈�𝑟𝑟𝑃𝑃,𝑡𝑡+1�� = 𝛚𝛚𝒕𝒕
′𝝁𝝁𝑡𝑡 −

𝛾𝛾
2
𝛚𝛚𝒕𝒕
′𝚺𝚺𝒕𝒕𝛚𝛚𝑡𝑡 − 𝛾𝛾𝛚𝛚𝒕𝒕

′𝝈𝝈𝑏𝑏𝑘𝑘,𝑡𝑡 where the 

𝐾𝐾 × 1 vector 𝝁𝝁𝑡𝑡 contains the expected standalone-style portfolio excess returns with the kth 

entry estimated as �̂�𝜇𝑘𝑘,𝑡𝑡 = 1
60
∑ 𝑟𝑟𝑘𝑘,𝑡𝑡−𝑗𝑗,60−1
𝑗𝑗=0  𝚺𝚺𝑡𝑡 is the corresponding variance-covariance matrix, 

and 𝝈𝝈𝑏𝑏𝑘𝑘,𝑡𝑡 is the 𝐾𝐾 × 1 vector of covariances between the benchmark portfolio and standalone-

style portfolios. 𝝈𝝈𝑏𝑏𝑘𝑘,𝑡𝑡 is redundant in the context of futures contracts in zero-net supply but is 

considered when studying equity integration (Section 5.6). We use the closed-form solution 
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𝛚𝛚𝑡𝑡 ≡
1
𝛾𝛾
𝚺𝚺𝑡𝑡−1𝝁𝝁𝑡𝑡 with relative risk aversion coefficient 𝛾𝛾=5. This is essentially the OI approach of 

Brandt et al. (2009) adapted to zero net supply assets as in Barroso and Santa-Clara (2015b). 

Rotation-of-Styles Integration (RSI). At each month-end t, the RSI portfolio adopts the 

jth style with the highest past Sharpe ratio (𝜔𝜔𝑗𝑗,𝑡𝑡 = 1) and ignores the remaining styles, 𝜔𝜔𝑘𝑘,𝑡𝑡 =

0, 𝑘𝑘 = 1, … ,𝐾𝐾 (𝑘𝑘 ≠ 𝑗𝑗). RSI is motivated by the theoretical style-switching model of Barberis 

and Shleifer (2003) and the idea is to exploit any persistence in the performance ranking of the 

styles. 

Volatility Timing Integration (VTI). This method is inspired by the Kirby and Ostdiek 

(2012) volatility-timing allocation of N assets into a portfolio. It defines the relative exposure 

to a style as inversely proportional to the variance of its past excess returns, 𝜔𝜔𝑘𝑘,𝑡𝑡 ≡ 1/𝜎𝜎𝑘𝑘,𝑡𝑡
2  and 

hence, it is a restricted (or extreme “shrinkage”) version of the mean-variance OI approach that 

makes the assumption of equal expected returns for the individual styles and zero covariances.  

Cross-Sectional Pricing Integration (CSI). The style-weighting scheme in the CSI method 

reflects the relative ability of the standalone styles (or factors) to explain the cross-sectional 

variation in the 𝑖𝑖 = 1, . . . ,𝑁𝑁 futures contracts. Higher weights are given to the styles or factors 

with superior pricing ability. As in Fama and MacBeth (1973), at each month-end t we estimate 

a univariate time-series OLS regression per futures contract 𝑖𝑖 = 1, … ,𝑁𝑁 and style 𝑘𝑘 = 1, … ,𝐾𝐾 

(a total of 𝑁𝑁 × 𝐾𝐾 regressions) using the preceding 60-month window of data  

                  𝑟𝑟𝑖𝑖,𝑠𝑠 = 𝑚𝑚𝑖𝑖,𝑘𝑘 + 𝑏𝑏𝑖𝑖,𝑘𝑘𝑟𝑟𝑘𝑘,𝑠𝑠 + 𝜀𝜀𝑖𝑖,𝑠𝑠, 𝑠𝑠 = 𝑡𝑡 − 59, … , 𝑡𝑡   (2) 

where 𝑟𝑟𝑖𝑖,𝑠𝑠 is the month s excess return of the ith futures contract, 𝑟𝑟𝑘𝑘,𝑠𝑠 is the month s excess return 

of the kth style, 𝜀𝜀𝑖𝑖,𝑠𝑠 is an error term, 𝑚𝑚𝑖𝑖,𝑘𝑘 and 𝑏𝑏𝑖𝑖,𝑘𝑘 are the estimated coefficients. At step two, we 

estimate in each of those 60 months a cross-sectional OLS regression  

𝑟𝑟𝑖𝑖,𝑠𝑠 = 𝜆𝜆𝑘𝑘,𝑠𝑠
0 + 𝜆𝜆𝑘𝑘,𝑠𝑠

1 𝑏𝑏�𝑖𝑖,𝑘𝑘 + 𝜖𝜖𝑖𝑖,𝑠𝑠, 𝑖𝑖 = 1,2, … ,𝑁𝑁   (3) 
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where 𝑠𝑠 = 𝑡𝑡 − 59, … , 𝑡𝑡 (60 × 𝐾𝐾 regressions). The explanatory power of the kth factor in 

Equation (3) defines the weight of the kth style in the CSI portfolio as 𝜔𝜔𝑘𝑘,𝑡𝑡 ≡
1
60
∑ 𝑅𝑅𝑘𝑘,𝑡𝑡−𝑗𝑗

260−1
𝑗𝑗=0 .  

Style Momentum Integration (SMI). The thrust of this approach is to exploit any 

continuation or momentum over time in the performance of the standalone styles. Accordingly, 

the style weights at each portfolio formation time t are dictated by the average excess returns of 

the standalone-style portfolios over a 60-month lookback period as 𝜔𝜔𝑘𝑘,𝑡𝑡 ≡
1
60
∑ 𝑟𝑟𝑘𝑘,𝑡𝑡−𝑗𝑗
60−1
𝑗𝑗=0 .4 

Principal Components Integration (PCI). This method defines the style weights as a direct 

function of the eigenvectors associated with the first m principal components of the K style 

premia (𝑚𝑚 < 𝐾𝐾); namely, 𝝎𝝎𝒕𝒕 ≡
𝑉𝑉1,𝑡𝑡𝑳𝑳1,𝑡𝑡+𝑉𝑉2,𝑡𝑡𝑳𝑳2,𝑡𝑡+⋯+𝑉𝑉𝑚𝑚,𝑡𝑡𝑳𝑳𝑚𝑚,𝑡𝑡

𝑉𝑉1,𝑡𝑡+𝑉𝑉2,𝑡𝑡+⋯+𝑉𝑉𝑚𝑚,𝑡𝑡
 where 𝑒𝑒𝑗𝑗,𝑡𝑡 is the explanatory power of 

the jth principal component, 𝑳𝑳𝑗𝑗,𝑡𝑡 is the corresponding K-vector of loadings (or jth eigenvector, 

𝑗𝑗 = 1, … ,𝐾𝐾), and m is the number of principal components that explain at least τ of the total 

variation in the standalone-style premia. We use the conservative threshold value τ=90%. 

Appendix A, Panel B lists a few representative studies that deploy the EWI, OI and RSI 

methods; by contrast, to our best knowledge, the VTI, CSI, SMI or PCI methods have not been 

considered in any style-integration study as yet. The discussion has hitherto been implicitly 

geared towards the construction of futures class-specific portfolios; namely, equity index, fixed 

income, currency or commodity futures portfolios. Since investors in futures markets may seek 

diversification across futures classes, we discuss next the construction of “everywhere” style-

integrated portfolios with a view to appraise their relative effectiveness also in this scenario.  

2.4. Everywhere style-integration  

                                                                 
4 We thank an anonymous referee for this suggestion. The former RSI can be seen as an extreme 
shrinkage version of SMI; namely, at each portfolio formation time it assigns all the weight to 
one style. The two methods also differ in their reliance on past risk-adjusted mean returns and 
mean returns, respectively. 
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As argued by Barberis and Shleifer (2003), investors have a tendency to classify decisions into 

categories to facilitate investment decision making. In a cross-market style-integration setting 

such as ours, this translates into two sequential decisions. The first decision pertains to the 

formation of style-integrated portfolios within a given class of futures (as discussed in Section 

2.3). The second decision concerns the weighting of the class-specific integrated portfolios 

which we formalize by writing the excess returns of the everywhere integrated portfolio as a 

weighted combination of the class-specific style-integrated portfolio returns 

𝑅𝑅𝑃𝑃,𝑡𝑡+1 = 𝝋𝝋𝑡𝑡
′𝒓𝒓𝑃𝑃,𝑡𝑡+1 = ∑ 𝜑𝜑𝑡𝑡𝑐𝑐4

𝑐𝑐=1 𝑟𝑟𝑡𝑡+1𝑐𝑐     (4) 

where 𝜑𝜑𝑡𝑡𝑐𝑐, 𝑐𝑐 = 1, . . ,4 are the class weights that capture the desired importance given by the 

investor to the equity index, fixed income, currency and commodity futures markets, 

respectively, at each portfolio formation time t, and 𝑟𝑟𝑡𝑡+1𝑐𝑐 = 𝑓𝑓(𝝎𝝎𝑡𝑡+1
𝑐𝑐 ) is the excess return from 

month t to t+1 of the cth futures class integrated portfolio which hinges on the choice of style-

weighting vector 𝝎𝝎𝑡𝑡
𝑐𝑐. We consider the following three schemes to determine 𝝋𝝋𝒕𝒕. 

Mean-variance weights. The class-weighting vector, 𝝋𝝋𝒕𝒕, is obtained at each portfolio 

formation time t by maximizing the mean-variance utility of the “everywhere” style-integrated 

portfolio; namely, 𝝋𝝋𝑡𝑡 ≡
1
𝛾𝛾
𝐒𝐒𝑡𝑡−1𝐋𝐋𝑡𝑡 where 𝐋𝐋𝑡𝑡 is the 4 × 1 vector of expected excess returns for the 

class-specific style-integrated portfolios over the past 60 months and 𝐒𝐒𝑡𝑡 is the corresponding 

variance-covariance matrix. As before, the relative risk aversion parameter 𝛾𝛾 is set to 5.  

Risk-parity weights. At each portfolio formation time t, the weight of the cth class-specific 

style-integrated portfolio is inversely proportional to its expected volatility, 𝜑𝜑𝑡𝑡𝑐𝑐 ≡ 1 𝜎𝜎𝑡𝑡𝑐𝑐⁄ . This 

heuristic seeks to achieve identical contributions of each class-specific style-integrated 

portfolio to the risk of the “everywhere” style-integrated portfolio, ignoring correlations. 

Following Natixis (2015) and Moskowitz et al. (2012) inter alia, we obtain 𝜎𝜎𝑡𝑡𝑐𝑐 using the 

forward-looking Exponentially Weighted Moving Average (EWMA) model of Riskmetrics, a 

specific case of GARCH(1,1) model that does not require parameter estimation  
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𝜎𝜎𝑡𝑡𝑐𝑐 = �(1 − 𝜆𝜆)∑ 𝜆𝜆𝑗𝑗(𝑟𝑟𝑡𝑡−𝑗𝑗𝑐𝑐 − �̅�𝑟𝑡𝑡𝑐𝑐𝑉𝑉−1
𝑗𝑗=0 )2                                      (5) 

where �̅�𝑟𝑡𝑡𝑐𝑐 is the average excess return over the past 𝑚𝑚 = 60 months. We use the smoothing 

parameter 𝜆𝜆 = 0.97 as recommended by the Riskmetrics framework for monthly data.  

Constant weights. Inspired by Jacobs et al. (2010) and Asness et al. (2015) inter alia, the 

weights assigned to the equity index, fixed income, currency and commodity style-integrated 

portfolios are predetermined, 𝝋𝝋𝒕𝒕 ≡ 𝝋𝝋, and rebalanced to that level at each portfolio formation 

time t; specifically, we adopt the fixed weights 40%, 40%, 10% and 10%, respectively.5  

In each of the above three settings, the weights assigned to the everywhere portfolios are 

standardized to ensure full investment and the performance appraisal is conducted over a 

common sample which acknowledges the fact that 120 months of past data are consumed in the 

mean-variance and risk-parity approaches: 60 months to determine the asset allocations within 

the class-specific style-integrated portfolios, and another 60 months to obtain the class weights. 

Finally, we consider a direct approach to constructing the everywhere style-integrated 

portfolio which is a one-step version of the above risk-parity approach as deployed by 

Moskowitz et al. (2012). At each portfolio formation time t, we apply the methods discussed in 

Section 2.3 to the entire cross section of futures contracts to obtain the style-integrated 

allocations, 𝜙𝜙𝑖𝑖,𝑡𝑡, 𝑖𝑖 = 1, … ,𝑁𝑁 (𝑁𝑁 = 131) and scale each by the expected volatility of the 

corresponding futures contract using the EWMA model. Thus, the final allocations in the direct 

“everywhere” style-integrated portfolio are 𝜙𝜙�𝑖𝑖,𝑡𝑡 = 𝜙𝜙𝑖𝑖,𝑡𝑡
𝜎𝜎𝑖𝑖,𝑡𝑡

, 𝑖𝑖 = 1, … ,𝑁𝑁 (𝑁𝑁 = 131) which, to ensure 

full investment for consistency with the rest of the analysis, are subsequently standardized.6  

                                                                 
5 We also considered 50%, 30%, 10% and 10% weights for equity index, fixed income, currency 
and commodity futures, respectively, or equal class weights. The key findings remain 
unchallenged. 
6 The two-step and direct risk-parity approaches to constructing everywhere style-integrated 
portfolios differ primarily in that the former controls for differences in volatility among the 
class-specific style-integrated portfolios while the direct approach accounts for differences in 
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2.5. Evaluation criteria and statistical tests 

We begin by appraising the portfolio strategies using the well-known Sharpe ratio. To make 

statistical inferences, we deploy the Opdyke (2007) test for the null hypothesis 𝐻𝐻0: 𝑆𝑆𝑅𝑅𝑃𝑃𝑎𝑎 ≥ 𝑆𝑆𝑅𝑅𝑃𝑃𝑏𝑏 

versus the alternative 𝐻𝐻𝐴𝐴: 𝑆𝑆𝑅𝑅𝑃𝑃𝑎𝑎 < 𝑆𝑆𝑅𝑅𝑃𝑃𝑏𝑏where 𝑃𝑃𝑎𝑎 and 𝑃𝑃𝑏𝑏 denote two alternative portfolios.7 As 

in DeMiguel et al. (2009, 2019), we also test the null hypothesis above using the Jobson and 

Korkie (1981) test with the correction in Memmel (2003) and the Ledoit and Wolf (2008) test. 

In order to account for non-normality, we further gauge the risk-adjusted performance of 

the different portfolios by means of the Sortino ratio which scales mean returns by the downside 

standard deviation, and the Omega ratio which uses as risk measure the probability-weighted 

ratio of gains versus losses for a threshold excess return target of zero  

In addition, we calculate the certainty equivalent return (CER) of each portfolio strategy 

which represents the risk-free return that an investor is willing to accept instead of engaging in 

the risky investment. Adopting the mean-variance utility, the CER of portfolio P is calculated 

as the annualized average realized utility over the evaluation period; namely, 𝐶𝐶𝐸𝐸𝑅𝑅𝑃𝑃 = 𝜇𝜇𝑃𝑃 −

𝛾𝛾
2
𝜎𝜎𝑃𝑃2 where 𝜇𝜇𝑃𝑃 and 𝜎𝜎𝑃𝑃2 denote the first two moments of the portfolio excess returns distribution. 

Following DeMiguel et al. (2009), we test the superiority of the portfolio 𝑃𝑃𝑎𝑎 over another 

portfolio 𝑃𝑃𝑏𝑏, namely 𝐻𝐻0:𝐶𝐶𝐸𝐸𝑅𝑅𝑃𝑃𝑎𝑎 ≥ 𝐶𝐶𝐸𝐸𝑅𝑅𝑃𝑃𝑏𝑏  versus 𝐻𝐻𝐴𝐴:𝐶𝐶𝐸𝐸𝑅𝑅𝑃𝑃𝑎𝑎 < 𝐶𝐶𝐸𝐸𝑅𝑅𝑃𝑃𝑏𝑏, by exploiting the 

asymptotic properties of functional forms of the estimators for means and variances. To account 

for higher order moments (non-normality), we also obtain the CER measure and corresponding 

tests for the above 𝐻𝐻0 versus 𝐻𝐻𝐴𝐴 hypotheses under a power utility assumption.  

                                                                 
volatility of the futures contracts within (and across) classes; for instance, natural gas versus 
gold in the commodities class.  
7 Opdyke (2007) provides an expression for the asymptotic distribution of differences in Sharpe 
ratios that is valid under quite general conditions (stationary and ergodicity of returns) thus 
permitting time-varying conditional volatilities, serial correlation, and other non-iid return 
behavior.  
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Finally, even though futures contracts are cheap to trade and therefore transaction costs 

are unlikely to influence the outcome of the horse-race of style-integrated portfolios, for 

completeness we account for their trading intensity. For this purpose, we measure portfolio 

turnover (TO) as the average of all the trades incurred over the sample evaluation period 

𝑇𝑇𝑇𝑇𝑃𝑃 = 1
𝑇𝑇−1

∑ ∑ ��𝜙𝜙�𝑃𝑃,𝑖𝑖,𝑡𝑡+1 − 𝜙𝜙�𝑃𝑃,𝑖𝑖,𝑡𝑡+��𝑁𝑁
𝑖𝑖=1

𝑇𝑇−1
𝑡𝑡=1                  (5) 

where 𝜙𝜙�𝑃𝑃,𝑖𝑖,𝑡𝑡 is the allocation to the ith asset at month-end t in the portfolio and 𝜙𝜙�𝑃𝑃,𝑖𝑖,𝑡𝑡+ ≡

𝜙𝜙�𝑃𝑃,𝑖𝑖,𝑡𝑡 × 𝑒𝑒𝑟𝑟𝑖𝑖,𝑡𝑡+1 is the actual portfolio weight immediately before the next rebalancing is due at 

month-end 𝑡𝑡 + 1, where 𝑟𝑟𝑖𝑖,𝑡𝑡+1 denotes the realized monthly excess return of the ith futures 

contract from 𝑡𝑡 to 𝑡𝑡 + 1. Thus, the above TO measure captures the mechanical evolution of the 

futures contracts allocations in the style-integrated portfolio due to within-month price changes.  

3. Data  

We collect daily settlement prices, volume and open interest from Thomson Reuters Datastream 

for 131 US-exchanged futures contracts on 45 equity indices, 22 fixed income and interest rates, 

21 foreign currencies and 43 commodities, as detailed in Appendix B. The time-series start in 

April 1982 for equity indices, October 1975 for fixed income, January 1979 for currencies and 

January 1979 for commodities. All the time-series end in December 2017.  

We deploy the strategies by taking positions on the first nearest-to-maturity contracts as 

these are the most liquid.8 Specifically, excess returns are changes in logarithmic prices of the 

front-end contract up to one month before maturity, then we roll to the second-nearest contract 

to mitigate the confounding impact of erratic prices and volumes as maturity approaches.  

                                                                 
8 For the same reason, at each portfolio formation time t we exclude the futures contracts with 
zero open interest. Qualitatively similar results, shown in Table A.I of the Internet Appendix, 
are obtained when we restrict our sample to a more liquid universe (the 90% or 80% of contracts 
with the highest open interest). The Internet Appendix is available as supplement material with 
the online version of this paper. 
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To ensure a reasonable level of diversification across futures contracts in the long-short 

portfolios held, the initial portfolio formation time in our exercise is dictated by the requirement 

that any subsequent long-short portfolio formed includes at least six futures contracts; this 

number is arbitrary but conservative. Thus, the first monthly excess return commonly available 

across the standalone-style portfolios and style-integrated portfolios pertains to September 2001 

for equity index futures, December 1991 for fixed income futures, August 1989 for currency 

futures, July 1989 for commodity futures and September 2006 for the “everywhere” futures.  

Following Fleming et al. (2001, 2003) or Moskowitz et al. (2012) inter alia, we implement 

most of our analysis in futures markets. We see futures contracts as the implementation vehicle 

of choice for several reasons: relatively high liquidity, low transaction costs and no restriction 

on short selling. Besides, standard no-arbitrage arguments under the cost-of-carry model imply 

that fully-collateralized futures positions provide similar exposure to the underlying spot assets 

as the spot positions themselves and thus, the use of futures can be seen as a fair substitute to 

that of spot assets.9 These points notwithstanding, we also provide evidence pertaining to U.S. 

equity markets in the robustness section.  

4. Results 

4.1. Ranking and correlation structure of standalone-style portfolios  

We begin by summarizing the performance of the standalone-style portfolios over the entire 

sample period to provide a static picture of their relative standing. The results are presented in 

Table 1 per class of futures: equity indices (Panel A), fixed income (Panel B), currencies (Panel 

C) and commodities (Panel D). The results confirm the stylized fact that the momentum and 

                                                                 
9 In line with Moskowitz et al. (2012), we find that front-end futures returns are highly 
correlated with spot excess returns on the same underlying; e.g., 99% correlation between the 
monthly S&P500 (CME) futures returns and the underlying cash index excess returns, 99% 
correlation between the Euro vs US dollar (CME) futures and its underlying, or 97% between 
the Gold (CMX) futures and its underlying. 
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carry premia are very pervasive across asset classes. However, the ranking of styles differs 

across futures classes; e.g., the momentum and skewness premia stand out in commodity futures 

markets, while the value and carry premia stand out in currency futures markets.  

[Insert Table 1 around here] 

We observe also that, although a few of the styles – liquidity (equity index futures), value 

(fixed income futures), and skewness (currency futures) – rank bottom as shown in the static 

snapshot provided by Table 1, the relative standing of a given style can be subject to dramatic 

swings over non-overlapping 5-year sub-periods as the results in Table 2 show. For instance, in 

fixed income markets the momentum strategy switches from best (rank 5) in the 1996/12-

2001/11 period to worst (rank 1) in the 2001/12-2006/11 period (Panel B), in equity futures 

markets the value strategy switches from worst (rank 1) in the 2001/09-2006/08 period to best 

(rank 5) in the 2006/09-2011/08 period (Panel A). Such fluctuations in the relative performance 

of the standalone-style portfolios pose a challenge for an investor seeking to choose one style, 

which further motivates style integration. The idea is that, by constructing a style-integrated 

portfolio with exposure to multiple styles, the investor ought to gain some protection against 

occasional crashes of the individual styles which are difficult to predict in real time; see e.g., 

Barroso and Santa-Clara (2015a) and Daniel and Moskowitz (2016) for a discussion of 

momentum crashes. 

[Insert Table 2 around here] 

Finally, to grasp the extent of the overlap across the five styles we examine the correlation 

structure of their excess returns. As shown in Table 3, the pairwise Pearson correlations across 

styles per futures class are fairly small with average values ranging from -0.06 (commodities) 

to 0.16 (fixed income). The value style typically correlates negatively with the other styles, 

confirming its contrarian nature. The mild correlation structure across individual styles 

additionally motivates the notion of style integration; namely, the idea is that, by aggregating 
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the information from multiple signals at asset level, the investor obtains a composite signal that 

ought to be more reliable, leading to a better allocation.  

 [Insert Table 3 around here] 

4.2. Performance of class-specific style-integrated portfolios  

What is the most effective way for an investor to construct a unique portfolio that is exposed to 

multiple styles? Table 4 answers this question by summarizing the seven style-integrated 

portfolio strategies discussed in Section 2.3 per futures class. The results suggest that 

pervasively across equity index, fixed income, currency and commodity futures markets the 

naïve EWI portfolio is a strong competitor to the sophisticated style-integrated portfolios as 

suggested by various risk-adjusted performance measures – Sharpe ratio, Omega ratio, Sortino 

ratio and CER. In each futures class, the EWI portfolio is also well positioned vis-à-vis the 

sophisticated style-integrated portfolios regarding trading turnover, as Figure 1 illustrates. 

[Insert Table 4 and Figure 1 around here] 

To add statistical significance to these findings, we assess the statistical superiority of the 

EWI strategy relative to the sophisticated portfolios through the Opdyke test. The null 

hypothesis is 𝐻𝐻0: 𝑆𝑆𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸 ≥ 𝑆𝑆𝑅𝑅𝑗𝑗 where j denotes a sophisticated style-integrated portfolio. The 

test p-values are large and imply that the Sharpe ratio of the EWI portfolio is statistically at least 

as attractive as that of a sophisticated style-integrated portfolio. These results are confirmed by 

alternative Sharpe ratio tests suggested in the literature as shown in the Internet Appendix Table 

A.II. Consistent with this finding, the p-values of the counterpart tests based on the CER 

measure, 𝐻𝐻0:𝐶𝐶𝐸𝐸𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸 ≥ 𝐶𝐶𝐸𝐸𝑅𝑅𝑗𝑗, uniformly fail to reject the null hypothesis and hence, suggest 

that the EWI portfolio is unsurpassed by sophisticated style-integrated portfolios.10  

                                                                 
10 These key findings are not challenged under a power utility assumption, that is, by measuring 

𝐶𝐶𝐸𝐸𝑅𝑅 = �12
𝑇𝑇
�∑ �1+𝑟𝑟𝑃𝑃,𝑡𝑡+1�

1−𝛾𝛾
−1

1−𝛾𝛾
𝑇𝑇−1
𝑡𝑡=0  with 𝑟𝑟𝑃𝑃,𝑡𝑡+1 the portfolio excess return on month t+1; we use 

𝛾𝛾 = 5. The test for differences in CERs with power utility is based on the Politis and Romano 
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Table 5 reports the Sharpe ratios, and corresponding Opdyke test p-values, over 5-year non-

overlapping rolling windows. With only one exception, the Sharpe ratio of the EWI portfolio 

remains superior to that of sophisticated style-integrated portfolios as borne out by large 

Opdyke test p-values across all the sub-periods. A dynamic comparison of the style-integration 

methods is also conducted by ranking their performance. Specifically, we begin by assigning a 

rank of 7 (1) to the style-integrated portfolio with the highest (lowest) Sharpe ratio in each of 

the 5-year non-overlapping periods and for each futures class (Panels A to D). We then average 

the ranks thus obtained per style-integrated portfolio and calculate the standard deviation of 

these ranks, as well as the ratio of the mean rank to its standard deviation. The results, presented 

at the bottom of Table 5, show that the naïve EWI portfolio stands out with a relatively high 

volatility-adjusted expected rank consistently across sub-periods and futures classes.  

[Insert Table 5 around here] 

Leaving aside the EWI method, just for now, to draw a comparison across the remaining 

style integrations over the full sample period (Table 4) and sub-periods (Table 5) we observe 

that the CSI portfolio strategy inspired by the two-step Fama-MacBeth methodology fares quite 

well. Both the OI and PCI methods lie at the other extreme with the least attractive performance. 

It is interesting also to compare the Sharpe ratios of the standalone styles and EWI portfolio 

over the full sample period (Tables 1 and 4), as well as over 5-year non-overlapping periods 

(Tables 2 and 5). As Table A.IV of the Internet Appendix shows, the test p-values for 

𝐻𝐻0: 𝑆𝑆𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸 ≥ 𝑆𝑆𝑅𝑅𝑗𝑗 indicate that the Sharpe ratio of the EWI portfolio is not surpassed by that of 

the standalone styles. Moreover, the sub-period analysis suggests that the volatility-adjusted 

expected rank of the EWI strategy is the highest at 4.26 and compares very favorably to that of 

                                                                 
(1994) bootstrap method. We obtain bootstrap time-series of excess returns for the EWI 
portfolio and a given style-integrated portfolio, {𝑟𝑟𝐸𝐸𝐸𝐸𝐸𝐸,𝑡𝑡

∗ , 𝑟𝑟𝑗𝑗,𝑡𝑡
∗ ,}, by pooling random blocks of 2 ×

𝑙𝑙 dimension sampled from the original time-series of excess returns. The block-length l is 
geometrically distributed with expected value 1/𝑞𝑞. We use 𝑞𝑞 = {0.2, 0.5} and B=10,000 
iterations. Table A.III of the Internet Appendix shows the results. 
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the best standalone style (carry) at 2.65. These findings serve to reinforce prior studies that 

advocate style integration (e.g., Brandt et al., 2009; Barroso and Santa-Clara, 2015b; 

Fitzgibbons et al., 2016 to name only a few).11  

4.3. Do common factors drive the class-specific style-integrated portfolios? 

Is the performance of the four class-specific style-integrated portfolios (constructed according 

to each of the methods described in Section 2.2) driven by common forces? To address this 

question, we begin by examining the correlation structure of their excess returns over the 

available common period from September 2001 to December 2017. As Table 6, Panel A, shows 

the correlations are small; namely, the average of the absolute correlations equals 0.12 for the 

EWI method and ranges from 0.07 to 0.16 for the sophisticated integration methods. This weak 

correlation structure does not support the notion that the style-integrated portfolio excess returns 

of the four futures classes are compensation for exposure to common risk factors.  

[Insert Table 6 around here] 

Next we conduct a principal component analysis (PCA). For each of seven style-integration 

methods studied, we extract the PCs of the class-specific style-integrated portfolio excess 

returns. As Panel B of Table 6 shows, on average the first principal component merely explains 

32.1% of the total variation in the excess returns of the class-specific style-integrated portfolios. 

This result further indicates that the style-integrated portfolio excess returns do not compensate 

investors for exposure to some underlying factors that are common across futures classes.  

                                                                 
11 The volatility-adjusted expected rank of EWI is much higher in commodity futures markets 
(15.5) than in currency or fixed income futures markets (3.41 and 4.90, respectively). Thus 
while style-integration seems to be a valid proposition across classes of futures, its benefits are 
stronger in commodity futures markets. Additional unreported results suggest that the superior 
style-integration benefits of EWI in commodity markets stem both from its ability to capture a 
larger mean excess return and a more attractive risk profile (e.g., lower downside volatility, 
99% VaR). Corroborating the evidence in Fitzgibbons et al., (2016) the latter relates to the 
lower correlations observed across styles in Table 3, Panel D.   
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Finally, focusing on four possible global risks that might drive the excess returns of the 

style-integrated portfolios we address the initial question with a regression analysis. Following 

Asness et al. (2013) and Koijen et al. (2018) inter alia, we consider innovations to: i) Kilian 

(2018) index of global real economic activity, ii) global market liquidity 𝐿𝐿𝑡𝑡, iii) global funding 

liquidity 𝑇𝑇𝐸𝐸𝑇𝑇𝑡𝑡 and iv) global volatility 𝑣𝑣𝑡𝑡.12 The results shown in Table 6, Panel C, do not reveal 

a common reaction of the four class-specific style-integrated portfolios to those global factors. 

Altogether, there is no evidence to suggest that the excess returns of the style-integrated 

portfolios of the four classes reflect compensation for exposure to common risk factors. 

4.4 Performance of “everywhere” style-integrated portfolios 

The weak correlation structure of the style-integrated portfolios per futures class is appealing 

from a broad diversification perspective; namely, it motivates the “everywhere” (cross-class) 

style-integrated portfolios. Hence, using the construction approaches described in Section 2.4, 

we obtain everywhere style-integrated portfolios, and conduct the horse race of style-integration 

methods in this additional setting. Table 7 presents in Panel A the cross-class portfolios based 

on the two-step construction approaches while Panel B pertains to the direct (pooling) method. 

The appraisal is conducted over the largest common period of portfolio returns available from 

September 2006 to December 2017. Figure 2 shows the turnover measures.  

[Insert Table 7 and Figure 2 around here] 

Two observations can be made. First, the EWI method is not challenged by any of the 

sophisticated style-integrations in an everywhere setting either. This is borne out by the large 

                                                                 
12 The index of global economic activity is obtained from Killian’s website. Global market 
liquidity 𝐿𝐿𝑡𝑡 is an average of the Amivest liquidity measure 𝐿𝐿𝑖𝑖,𝑡𝑡 (as described in Section 2.2) 
across all futures i=1,..,N (N=131). Funding liquidity is proxied by the monthly TED spread (3-
month interbank LIBOR minus 3-month T-bill rate) from the Federal Reserve Bank of St. 
Louis. Global volatility 𝑣𝑣𝑖𝑖 is the square root of an average across all futures contracts of their 
monthly realized variance (measured as the sum of daily squared excess returns). As in Asness 
et al. (2013) the innovations or shocks to these variables are defined as the residuals from an 
AR(2) model; similar results are obtained with an AR(3) model. 
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p-values of the Opdyke test (𝐻𝐻0: 𝑆𝑆𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸 ≥ 𝑆𝑆𝑅𝑅𝑗𝑗) and CER test (𝐻𝐻0:𝐶𝐶𝐸𝐸𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸 ≥ 𝐶𝐶𝐸𝐸𝑅𝑅𝑗𝑗) together 

with the relatively low turnover of the EWI portfolio. Second, although comparing among the 

four methods used to construct everywhere portfolios goes beyond the scope of the paper, we 

observe that the mean-variance class-weights and the constant class-weights (40% Equity; 40% 

FI; 10% FX; 10% Commodities) are quite effective in terms of performance and turnover.  

5. Robustness tests 

This section assesses the robustness of our key finding that the EWI method is highly effective. 

We consider reformulations of the sophisticated style-integration methods, different scoring 

schemes, data snooping tests, longer estimation windows, different economic sub-periods, as 

well as equities in place of futures. 

5.1. Reformulations of the “sophisticated” style-integration methods 

We entertain other OI strategies where the style-weighting vector, 𝝎𝝎𝑡𝑡 in Equation (1), is derived 

by maximizing: i) the mean-variance utility as in the main section of the paper but with 

covariance matrix estimator based on the shrinkage approach of Ledoit and Wolf (2004) to 

reduce estimation error, ii) the power utility 𝑈𝑈�𝑟𝑟𝑃𝑃,𝑡𝑡+1� = �1+𝑟𝑟𝑃𝑃,𝑡𝑡+1�
1−𝛾𝛾

−1
1−𝛾𝛾

, iii) the exponential 

utility 𝑈𝑈�𝑟𝑟𝑃𝑃,𝑡𝑡+1� = − 𝑉𝑉−𝜅𝜅�1+𝑟𝑟𝑃𝑃,𝑡𝑡+1�

𝜅𝜅
, and iv) the power utility with disappointment aversion (Gul, 

1991) 𝑈𝑈�𝑟𝑟𝑃𝑃,𝑡𝑡+1� = �1+𝑟𝑟𝑃𝑃,𝑡𝑡+1�
1−𝛾𝛾

−1
1−𝛾𝛾

 if 𝑟𝑟𝑃𝑃,𝑡𝑡+1 > 0 and �1+𝑟𝑟𝑃𝑃,𝑡𝑡+1�
1−𝛾𝛾

−1
1−𝛾𝛾

+ �1
𝐴𝐴
− 1� ��1+𝑟𝑟𝑃𝑃,𝑡𝑡+1�

1−𝛾𝛾
−1

1−𝛾𝛾
� if 

𝑟𝑟𝑃𝑃,𝑡𝑡+1 ≤ 0. 𝛾𝛾 and 𝜅𝜅 are the relative and absolute risk aversion parameters, respectively, and 𝐴𝐴 ≤

1 is the coefficient of disappointment aversion that controls the relative steepness of the value 

function in the gains/losses regions; we use 𝛾𝛾 = 𝜅𝜅 = 5 and 𝐴𝐴 = 0.6.13 

                                                                 
13 The power utility with disappointment aversion embeds the behavioral notion that investors 
are more sensitive to losses than to gains of equal size. A=1 implies the standard power utility 
function without loss aversion. We solved the OI problem using A=0.8 and the main insights 
also hold.  
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We also consider an OI investor that is only concerned about risk (measured by the 

variance); accordingly, she derives the style weights by minimizing 𝛚𝛚𝒕𝒕
′𝚺𝚺𝑡𝑡𝛚𝛚𝑡𝑡 where 𝚺𝚺𝑡𝑡 is the 

variance-covariance matrix of the K style portfolio excess returns. We impose the restriction 

∑ 𝜔𝜔𝑘𝑘
𝐾𝐾
𝑘𝑘=1 = 1 to avoid the trivial solution 𝜔𝜔𝑘𝑘 = 0. For each of the above reformulations of the 

OI strategy, we deploy a restricted (𝝎𝝎t ∈ R+) version and an unrestricted (𝝎𝝎t ∈ RK) version. We 

also study a restricted (𝝎𝝎t ∈ R+) version of our earlier mean-variance utility OI approach, for 

completeness.  

Inspired by the cluster combination approach of Aiolfi and Timmermann (2006), we deploy 

a smoother version of the RSI strategy based on the three styles with the best past performance. 

Specifically, at each month-end the resulting RSI(3) portfolio has equal exposure to the top 

three styles according to the Sharpe ratio (𝜔𝜔𝑘𝑘 = 1/3) and no exposure to the remaining styles.  

Next, our earlier VTI strategy inspired by Kirby and Ostdiek (2012) is reformulated in two 

ways; first, we deploy a more general VTI(𝜂𝜂) strategy with style weights ω𝑘𝑘,𝑡𝑡 = �1 𝜎𝜎𝑘𝑘,𝑡𝑡
2⁄ �

𝜂𝜂
 

where timing aggressiveness14 is dictated by the parameter 𝜂𝜂; second, we deploy a reward-to-

risk timing integration (RRTI) strategy with style weights 𝜔𝜔𝑘𝑘,𝑡𝑡 = �𝜇𝜇𝑘𝑘,𝑡𝑡
+ /σ𝑘𝑘,𝑡𝑡

2 �
𝜂𝜂
 where 𝜇𝜇𝑘𝑘,𝑡𝑡

+ =

max�0, 𝜇𝜇𝑘𝑘,𝑡𝑡�, and 𝜇𝜇𝑘𝑘,𝑡𝑡 is the mean excess return of the kth style. We use 𝜂𝜂 = 4.  

As a variant of the earlier CSI approach, we formulate a time-series pricing integration 

(TSI) that solely focuses on the first-stage of Fama-MacBeth (1973). Accordingly, at each 

portfolio formation time t, the TSI strategy estimates 𝑁𝑁 × 𝐾𝐾 predictive OLS regressions of the 

monthly excess returns of each asset 𝑖𝑖 = 1, … ,𝑁𝑁 on the past-month style premium 𝑘𝑘 = 1, … ,𝐾𝐾  

𝑟𝑟𝑖𝑖,𝑠𝑠 = 𝑚𝑚𝑖𝑖,𝑘𝑘 + 𝑏𝑏𝑖𝑖,𝑘𝑘𝑓𝑓𝑘𝑘,𝑠𝑠−1 + 𝜀𝜀𝑖𝑖,𝑠𝑠, 𝑠𝑠 = 𝑡𝑡 − 59, … , 𝑡𝑡    (8) 

                                                                 
14 For 𝜂𝜂 = 0, there is no volatility-timing, 𝜔𝜔𝑘𝑘 = 1/𝐾𝐾 for 𝑘𝑘 = 1, … ,𝐾𝐾 and the EWI strategy 
arises. For 𝜂𝜂 = 1, the baseline VTI strategy arises. For 𝜂𝜂 → ∞, the most aggressive volatility-
timing strategy arises such that the jth style with the lowest past variance receives all the weight, 
𝜔𝜔𝑗𝑗 = 1 (𝜔𝜔𝑘𝑘 = 0,𝑘𝑘 ≠ 𝑗𝑗). 
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and the kth style weight is defined as the average predictive power 𝜔𝜔𝑘𝑘,𝑡𝑡 ≡
1
𝑁𝑁
∑ 𝑅𝑅𝑖𝑖,𝑘𝑘,𝑡𝑡

2𝑁𝑁
𝑖𝑖=1  based 

on the regression’s coefficient of determination, 𝑅𝑅𝑖𝑖,𝑘𝑘,𝑡𝑡
2 . Finally, we deploy a very parsimonious 

version of the earlier PCI approach that focuses on the 1st principal component, denoted PCI(1). 

Table A.V of the Internet Appendix reports results for the above variants of the sophisticated 

style integrations, deployed again per futures class and cross-class. Their risk-adjusted 

performance as measured, for instance, by the Sharpe ratio, does not challenge the performance 

of the much easier-to-construct EWI portfolio. This is formally confirmed by the Opdyke test 

p-values which strongly fail to reject the null hypothesis 𝐻𝐻0: 𝑆𝑆𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸 ≥ 𝑆𝑆𝑅𝑅𝑗𝑗 throughout. 

5.2. Alternative scoring schemes  

Our analysis thus far has relied on the standardized signals, as entries of the scoring matrix 𝚯𝚯𝑡𝑡 

in Equation (1). We now turn our attention to other scoring schemes. Following DeMiguel et 

al. (2019), the first scheme seeks to mitigate the biases induced by outliers in the individual 

signals by winsorizing the signals prior to standardizing them. Specifically, at each portfolio 

formation time per signal 𝑘𝑘 = 1, … ,5, we shrink all observations {𝑥𝑥𝑖𝑖,𝑘𝑘,𝑡𝑡}𝑖𝑖=1𝑁𝑁  above the upper 

threshold 𝑄𝑄3,𝑘𝑘 + 3 ∙ 𝑅𝑅𝑘𝑘 to this upper threshold value, and all signal values below the lower 

threshold 𝑄𝑄1,𝑘𝑘 − 3 ∙ 𝑅𝑅𝑘𝑘 to this lower threshold value; 𝑄𝑄1,𝑘𝑘 and 𝑄𝑄3,𝑘𝑘 are the first and third 

quartiles of the distribution �𝑥𝑥𝑖𝑖,𝑘𝑘,𝑡𝑡�𝑖𝑖=1
𝑁𝑁

 and 𝑅𝑅𝑘𝑘 is the interquartile range. 

The second alternative scoring matrix 𝚯𝚯𝑡𝑡 is populated with standardized rankings, 𝜃𝜃𝑖𝑖,𝑘𝑘,𝑡𝑡 ≡

�̃�𝑧𝑖𝑖,𝑘𝑘,𝑡𝑡 = (𝑧𝑧𝑖𝑖,𝑘𝑘,𝑡𝑡 − 𝑧𝑧�̅�𝑘,𝑡𝑡)/𝜎𝜎𝑘𝑘,𝑡𝑡
𝑧𝑧  where 𝑧𝑧𝑖𝑖,𝑘𝑘,𝑡𝑡 ∈ {1, … ,𝑁𝑁} is the ith asset rank at time t according to 

𝑥𝑥𝑖𝑖,𝑘𝑘,𝑡𝑡 (i.e., a rank N is assigned to the best candidate, and 1 to the worst candidate). By mapping 

the signals onto rankings, this approach also mitigates the effects of potential outliers while it 

still differentiates among the candidate futures contracts for the long and short positions.  

Third, we consider a parsimonious scheme that for each signal (or style) 𝑘𝑘 = 1, … ,𝐾𝐾 sorts 

the cross section of futures contracts according to the observed signal values, �𝑥𝑥𝑖𝑖,𝑘𝑘,𝑡𝑡�𝑖𝑖=1
𝑁𝑁

, and 
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assigns those with a value above (below) the median 𝑥𝑥𝑘𝑘,𝑡𝑡
0.50 a score of +1 (-1). The final 

allocations 𝜙𝜙𝑖𝑖,𝑡𝑡 from Equation (1) will not add to zero when the total number of available futures 

contracts N is an odd number; hence, we center them before scaling, 𝜙𝜙�𝑖𝑖,𝑡𝑡 = (𝜙𝜙𝑖𝑖,𝑡𝑡 −

𝐸𝐸𝑖𝑖(𝜙𝜙𝑖𝑖,𝑡𝑡))/∑ �𝜙𝜙𝑖𝑖,𝑡𝑡 − 𝐸𝐸𝑖𝑖(𝜙𝜙𝑖𝑖,𝑡𝑡)�𝑁𝑁
𝑖𝑖=1  to ensure 100% investment of the client’s mandate.15  

Finally, we consider sparse versions of the above score matrices 𝚯𝚯𝑡𝑡  that at each portfolio 

formation time t only consider the futures contracts classified into the extreme (top and bottom) 

quintiles according to the signal at hand, and ignore (𝜃𝜃𝑖𝑖,𝑘𝑘,𝑡𝑡 = 0) those in the intermediate 

quintiles. Thus, we have quintile versions of the i) standardized signals, ii) standardized 

rankings, and iii) the binary {-1, +1} schemes described above; in all of them, the number of 

contracts in the top and bottom quintiles is N/5 (rounded up to the closest integer). For 

consistency with our earlier portfolio formation approaches, we ensure full investment of the 

investor’s mandate and allocate equal mandates to the longs and the shorts. 

Table A.VI of the Internet Appendix shows that the key finding that the EWI method is 

unsurpassed by the sophisticated style-integration methods remains unchallenged when we 

employ different score matrices 𝚯𝚯𝑡𝑡 in Equation (1). As a byproduct, the comparison among 

score matrices reveals that by exploiting the full cross section of observed signal values (instead 

of just the extreme values in the top/bottom quintiles) the style-integrated portfolios generally 

afford better risk-adjusted performance.  

5.3 Is the superior economic performance of EWI due to data snooping? 

Employing the same dataset repetitively to test the performance of many investment strategies 

can trigger false discoveries – this is the data snooping issue as it is understood by practitioners. 

                                                                 
15 This heuristic is robust to noise but it may lose information by mapping the signals onto two 
scores; namely, it does not discriminate among the candidate assets for the long/short positions.  
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We now conduct the Superior Predictive Ability test of Hansen (2005) based on Sharpe ratio 

differences, as outlined next, to alleviate the impact of data snooping on our empirical inference.  

The data mining checks are conducted, separately, per class of futures and in an 

“everywhere” context by comparing the Sharpe ratio of a given style-integration strategy j (𝑗𝑗 =

1, … ,𝑀𝑀) to that of the EWI portfolio. M is the total number of alternative style-integration 

strategies against which the performance of the EWI portfolio is appraised.16 Relative 

performance is measured by the Sharpe ratio differential, 𝑑𝑑𝑗𝑗 ≡ 𝑆𝑆𝑅𝑅𝑗𝑗 − 𝑆𝑆𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸. The expected 

“loss” of the jth strategy relative to the benchmark is therefore 𝐸𝐸[𝑑𝑑𝑗𝑗] = 𝐸𝐸[ 𝑆𝑆𝑅𝑅𝑗𝑗 − 𝑆𝑆𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸]. 

Strategy j is better in terms of Sharpe ratio than the benchmark (EWI) if and only if 𝐸𝐸[𝑑𝑑𝑗𝑗]  >  0. 

The null hypothesis is that the best of the M strategies does not obtain a superior Sharpe ratio 

than the benchmark EWI strategy; i.e., 𝐻𝐻0: 𝑚𝑚𝑚𝑚𝑥𝑥𝑗𝑗=1,…,𝑀𝑀𝐸𝐸[𝑆𝑆𝑅𝑅𝑗𝑗]  ≤  𝐸𝐸[𝑆𝑆𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸].17  

The bootstrap p-values of the test, reported in Table A.VII of the Internet Appendix, range 

from 0.65 to 0.97 in all five settings (four futures classes and everywhere) and they are thus 

consistently unable to reject 𝐻𝐻0. Thus, our key finding that the EWI portfolio is unsurpassed by 

the sophisticated style-integrated portfolios is robust to data snooping biases. 

5.4 Longer estimation windows 

The sophisticated style-integration approaches, unlike the EWI approach which is parameter-

free, suffer from estimation error. It is therefore natural for us to investigate whether the EWI 

portfolio can “easily” be beaten by simply increasing the length of the lookback (or estimation) 

                                                                 
16 𝑀𝑀 = 27 for each of the four class-specific style-integration strategies which consist of the 5 
standalone styles of Section 2.2, the 6 sophisticated style-integration strategies of Section 2.3 
and 16 variants thereof as discussed in Section 5.1. M = 22 for the “everywhere” portfolios 
which consist of the 6 sophisticated style-integration strategies of Section 2.3 and 16 variants 
thereof as discussed in Section 5.1.  
17 The test is based on a statistic with a non-standard distribution that we approximate using the 
Politis and Romano (1994) random-length bootstrap method described earlier in Section 4.2. 
The block-length l is geometrically distributed with expected value 1/𝑞𝑞. We use 𝑞𝑞 = {0.2, 0.5}.  
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window as the estimation error ought to diminish on average with longer estimation windows. 

To do this, instead of the fixed 60-month rolling windows used thus far to estimate the style-

weighting vector 𝛚𝛚𝑡𝑡 in Equation (1) we now use: i) recursive windows expanded one month at 

a time (starting from 60 months) and ii) fixed 120-month length rolling windows. As Table 

A.VIII of the Internet Appendix shows, none of sophisticated style-integrated portfolios 

significantly outperforms the simpler-to-construct EWI portfolio. 

5.5 Are the findings time-specific? 

To address this question, we conduct a sub-period comparison of the style-integration methods 

based on two economic criteria. We split the sample months into months pertaining to: i) high 

versus low volatility regimes specific to each futures class,18 and ii) recession versus expansion 

months according to the NBER-dated business cycle phases. We report Sharpe ratios and test 

the null hypothesis that EWI is unchallenged by the sophisticated style-integrated portfolio at 

hand. We also report the rank of each strategy in each sub-sample – a number ranging between 

1 (lowest Sharpe ratio) and 7 (highest Sharpe ratio) – and the volatility-adjusted mean rank, as 

earlier. Notwithstanding the small number of months in some of the regimes (e.g., recessions) 

the results, presented in Table A.IX of the Internet Appendix, suggest that the Sharpe ratio of 

the EWI portfolio is at least as good as that of the alternative style-integrated portfolios as borne 

out by large Opdyke test p-values for 𝐻𝐻0: 𝑆𝑆𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸 ≥ 𝑆𝑆𝑅𝑅𝑗𝑗; the only exception is the low-volatility 

regime for the equity futures cross-section where the SMI portfolio significantly outperforms 

the EWI portfolio at the 10% level. As regards the performance ranking, the highest volatility-

                                                                 
18 The volatility regimes are obtained via a GARCH(1,1) model fitted to the monthly excess 
returns of a long-only equally-weighted monthly-rebalanced portfolio of futures contracts. The 
threshold is the mean of the fitted annualized volatility at 12.15% (equity indices), 3.50% (fixed 
income), 7.67% (currencies), and 10.86% (commodities). In the everywhere (cross-class) 
context, the model is fitted to the excess returns of the mean-variance-optimized combination 
of class-specific long-only portfolios (3.49% threshold). 
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adjusted mean rank is clearly achieved by the EWI portfolio strategy which is thus confirmed 

as the preferred one followed by the CSI strategy, in line with our earlier findings. 

5.6 Do the findings apply to equities? 

Setting aside the liquidity constraints and higher trading costs of equities, this section tests 

whether the evidence thus far obtained in futures markets also extends to equity markets. 

Following the seminal work of Brandt et al. (2009), for this purpose we modify Equation (1) to 

𝛟𝛟𝑡𝑡 = 𝛟𝛟�𝑡𝑡 + 1
𝑁𝑁

(𝚯𝚯𝑡𝑡 × 𝛚𝛚𝑡𝑡) where 𝛟𝛟�𝑡𝑡 denotes the benchmark allocations (i.e., value-weights or 

equal-weights). The 𝑁𝑁 × 1 vector 𝛟𝛟𝑡𝑡 represents the solution of the style-integrated portfolio 

allocation problem which is decomposed into: i) the weights of the stocks in the benchmark 

portfolio or the passive weights of the style-integrated portfolio, denoted 𝛟𝛟�𝑡𝑡, and ii) the 

deviations of the optimal portfolio weights from this benchmark or the active weights of the 

style-integrated portfolio, denoted 1
𝑁𝑁

(𝚯𝚯𝑡𝑡 × 𝛚𝛚𝑡𝑡). 

For consistency with the main analytical framework in the paper, the elements of the score 

matrix 𝚯𝚯𝑡𝑡 are the raw signals appropriately standardized cross-sectionally, the weights 𝛚𝛚𝑡𝑡 are 

unrestricted (𝝎𝝎t ∈ RK), the positions 𝛟𝛟𝑡𝑡 taken at each month-end t are held for one month, the 

investor’s mandate is assumed to be fully invested (i.e., 𝜙𝜙𝑖𝑖,𝑡𝑡 ≥ 0 and ∑ 𝜙𝜙𝑖𝑖,𝑡𝑡𝑁𝑁
𝑖𝑖=1 = 1),19 and the 

sample period is the longest feasible in the paper from July 1989 to December 2017.  

We focus on the size, value and momentum styles employed in Brandt et al. (2009) and 

follow their methodology in constructing the corresponding standalone-style portfolios. We 

download from the CRSP database the holding period returns of the S&P 500 composite index 

stocks and from the CRSP/Compustat merged database the corresponding book-to-market and 

market capitalization of each stock. As in Fama and French (1993) or Brandt et al. (2009), the 

                                                                 
19 To do so, we follow Brandt et al. (2009) and re-scale the optimal weights as 𝜙𝜙�𝑖𝑖,𝑡𝑡 =
max (0,𝜙𝜙𝑖𝑖,𝑡𝑡)

∑ max (0,𝜙𝜙𝑗𝑗,𝑡𝑡)𝑁𝑁𝑡𝑡
𝑗𝑗=1

. 
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stocks included in the style-integrated portfolios meet the following criteria: i) they have been 

available in the CRSP/Compustat database for at least 2 consecutive years, ii) they have non-

negative book-to-market values, iii) they have data for all three signals and iv) they are amongst 

the 80% largest in terms of market capitalization. The cross-section of stocks thus considered 

for the analysis ranges from 1,170 in July 1989 to 1,896 in July 2005 with an average at 1,639. 

Table A.X of the Internet Appendix reports the Sharpe ratios of the seven equity-based 

style-integrated portfolios, the test p-values for the hypothesis 𝐻𝐻0: 𝑆𝑆𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸 ≥ 𝑆𝑆𝑅𝑅𝑗𝑗 and the relative 

rankings of performance from 7 (top) to 1 (bottom). The results are reported for the value-

weighted benchmark in Panel A, for the equally-weighted benchmark in Panel B, over the full 

sample, and the six consecutive 5-year sub-samples. The bottom row summarizes the relative 

performance of the style-integrated strategies by reporting their volatility-adjusted expected 

ranks. Altogether the key finding of our paper that the EWI approach is the most effective 

among a host of style-integration methods survives in the equities scenario. Over the full period 

and in most sub-periods, the large Opdyke test p-values for 𝐻𝐻0: 𝑆𝑆𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸 ≥ 𝑆𝑆𝑅𝑅𝑗𝑗 reveal that the 

Sharpe ratio of the EWI portfolio is at least as good as that of the sophisticated style-integrated 

portfolios. EWI also obtains the highest volatility-adjusted expected rank. In sum, the equity 

EWI portfolio, aside from being much simpler to construct than the sophisticated alternatives, 

also comes across as very effective in terms of performance and attractive in terms of risk.  

6. Conclusions  

The asset pricing literature has identified a set of long-short investment strategies, termed styles, 

backed by reasonable economic intuition and out-of-sample tests that deliver attractive long-

term risk-adjusted returns pervasively across asset classes and different markets. However, as 

past performance is not necessarily a good guide for future performance, choosing one style 

over another may be bewildering for investors. Following a recent literature, this article studies 

style integration defined as the combination of multiple characteristics or signals at asset level 
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with a view to construct a portfolio with simultaneous exposure to many styles. We contribute 

to the literature by providing a comprehensive appraisal of style-integration methods. 

Specifically, we confront the naïve equal-weight-integration (EWI) approach that assigns time-

constant and homogeneous weights to the different styles, with a set of “sophisticated” 

approaches with time-varying and heterogeneous style weights that are estimated from past 

style return data according to utility maximization, style rotation, volatility timing, cross-

sectional pricing, style momentum and principal components criteria. 

Using futures to represent multiple asset classes – equities, fixed income, currencies and 

commodities – to sidestep liquidity concerns and short-sale constraints while keeping 

transaction costs low, we construct long-short portfolios according to the different style-

integration methods. Consistently across scenarios (per futures class and cross-class) we find 

that the risk-adjusted performance of the naïve EWI portfolio is unrivalled by that of any of the 

sophisticated style-integrated portfolios. This key finding withstands a battery of robustness 

checks that entertain variants of the sophisticated style-integration methods, different asset 

scoring schemes, data snooping tests, longer estimation windows, sub-period analyses and the 

consideration of equities in place of futures.  

Our study is ambitious in that it confronts the EWI method with several sophisticated style-

integration (extant and new) methods. Overall, a clear implication from the evidence is that any 

style-integration put forward in future research should be subject to a “reality check” of its 

relevance by comparing it with the easy-to-deploy but highly effective naïve EWI method.  
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Appendix A. Background studies on standalone styles and style-integration 

  

 

Equities Fixed income Currencies Commodities

Panel A: Standalone-style strategies
Asness et al. (2013, 2015) Asness et al. (2013, 2015) Asness et al. (2013, 2015) Asness et al. (2013, 2015)
Jegadeesh and Titman (1993) Brooks et al. (2018) Menkhoff et al. (2012) Erb and Harvey (2006)
Moskowitz et al. (2012) Miffre and Rallis (2007)

Asness et al. (2013, 2015) Asness et al. (2013, 2015) Asness et al. (2013, 2015) Asness et al. (2013, 2015)
DeBondt and Thaler (1985, 1987) Brooks et al. (2018)

Asness et al. (2015) Asness et al. (2015) Asness et al. (2015) Asness et al. (2015)
Koijen et al. (2018) Brooks et al. (2018) Koijen et al. (2018) Erb and Harvey (2006)

Koijen et al. (2018) Menkhoff et al. (2012) Koijen et al. (2018)

Amihud et al. (2005) Amihud et al. (2005) Koijen et al. (2018) Koijen et al. (2018)
Pastor and Stambaugh (2003) Lin et al. (2011) Mancini et al. (2013) Szymanowska et al. (2014)

Skewness Amaya et al. (2015) Chiang (2016) Brunnermeier et al. (2009) Fernandez-Perez et al. (2018)

Panel B: Style-integrated strategies
EWI Frazzini et al. (2013) Fuertes et al. (2015)

Fitzgibbons et al. (2016)
Leippold and Rueegg (2018)

OI Brandt et al. (2009) Barroso and Santa-Clara (2015b)
Fischer and Gallmeyer (2016) Kroencke et al. (2014)
Ghysels et al. (2016)
DeMiguel et al. (2018) 

RSI Barberis and Shleifer (2003)

Momentum

Value

Liquidity

Carry
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Appendix B. Cross-sections of futures contracts 
 

 
  

Dow-Jones Industrial Average MSCI Russia Russell 1000 Value S&P Industrial 
E-mini Dow-Jones Industrial Average MSCI Taiwan Russell 2000 S&P Information Technology
E-Mini S&P500 MSCI Thailand Russell 2000 Growth S&P Materials
Euro Stoxx 50 MSCI USA Russell 2000 Value S&P Small Capitalization
Eurotop 100 MSCI World Russell 3000 S&P Utilities
Eurotop 300 Nasdaq 100 S&P Citigroup Growth S&P400 Mid Capitalization
Major Market Index Nasdaq Biotechnology S&P Citigroup Value S&P500
MSCI Asia Nikkei 225 S&P Consumer Discretionary Value Line
MSCI EAFE NYSE composite S&P Consumer Staples VIX
MSCI Emerging Markets PSE Technology S&P Energy
MSCI Emerging Markets Latin America Russell 1000 S&P Finance
MSCI India Russell 1000 Growth S&P Health

1-Month Eurodollar 30-Year U.S. Treasury Bond
30-Day FED Funds BC U.S. Aggregate
90-Day U.S. Treasury Bill Brazil 'C' Barra Index
3-Month CD Brazil 'EI' Bond Index
3-Month Eurodollar GNMA Constant Default Rate
3-Month Euromark Mexican Brady Bond Index
2-Year U.S. Treasury Note Moody's Bond Index
3-Year U.S. Treasury Note Municipal Bond Index
5-Year Eurodollar Bundle Ultra 10-Year U.S. Treasury Note
5-Year U.S. Treasury Note Ultra Treasury Bond Index
10-Year Agency Note
10-Year U.S. Treasury Note

Australian Dollar Mexican Peso
Brazilian Real New Zealand Dollar
Canadian Dollar Norwegian Krona
Chinese Renmimbi Polish Zloty
Czech Koruna Russian Rouble
Deutsche Mark South African Rand
Euro Sterling
French Franc Swedish Krona
Hungarian Forint Swiss Franc
Israeli Shekel
Japanese Yen
Korean Won

BFP Milk Frozen Concentrated Orange Juice NY Harbor ULSD Sugar Number 14
Brent Crude Oil Frozen Pork Bellies Oats Unleaded Gas
Butter Cash Gold 100 oz (CBT) Palladium Wheat (CBT)
Cheese Cash Gold 100 oz (CMX) Platinum Wheat (KCBT)
Coal High Grade Copper RBOB Gasoline Wheat (MGE)
Cocoa HR Coil Steel Rough Rice White Wheat
Coffee C Lean Hogs Silver 1000 oz WTI Crude Oil
Corn Light Crude Oil Silver 500 oz
Cotton Number 2 Live Cattle Soyabean Meal
Electricity JPM Lumber Soyabean Oil
Ethanol Mini-Soyabeans Soyabeans
Feeder Cattle Natural Gas Sugar Number 11

Panel A: 45 equity index futures 

Panel B: 22 fixed Income and interest rate futures

Panel C: 21 currency futures

Panel D: 43 Commodity futures
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Figure 1. Turnover of class-specific style-integrated portfolios 
The figure plots the turnover, measured as in Equation (5), for each of the class-specific style-integrated 
portfolios. EWI is equal-weight integration, OI is optimized (mean-variance) integration, RSI is 
rotation-of-styles integration, VTI is volatility-timing integration, CSI is cross-sectional pricing 
integration, SMI is style momentum integration and PCI is principal components integration. 
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Figure 2. Turnover of “everywhere” style-integrated portfolios 
The figure plots the turnover, measured as in Equation (5), for everywhere (cross-class) style-integrated 
portfolios constructed using two-step (mean-variance, risk-parity, and constant class-weights) 
approaches and a direct approach that pools all N=131 contracts and inversely-weighs them by their 
volatilities. The constant class-weights are 40% (equity indices), 40% (fixed income), 10% (currencies) 
and 10% (commodities). EWI is equal-weight integration, OI is optimized (mean-variance) integration, 
RSI is rotation-of-styles integration, VTI is volatility-timing integration, CSI is cross-sectional pricing 
integration, SMI is style momentum integration and PCI is principal components integration.  
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Table 1. Performance of standalone-style portfolios 
The table summarizes the risk-adjusted performance of five long-short portfolio strategies based on the 
predictive signals stated in the first row. The results pertain to four futures classes – equity index (Panel 
A), fixed income (Panel B), currency (Panel C) and commodity (Panel D); the portfolio excess returns 
span the period indicated in parentheses. CER is the annualized certainty-equivalent return based on 
unconstrained mean-variance utility with relative risk aversion parameter 𝛾𝛾 = 5.  
 

 
  

Momentum Value Carry Liquidity Skewness

Panel A: Equity index futures (2001/09-2017/12)
Sharpe ratio 0.8932 0.1246 1.0505 -0.7804 0.2719
Sortino ratio (<0%) 1.2933 0.2001 1.3581 -1.2695 0.3182
Omega ratio (=0%) 2.0009 1.1146 2.4199 0.5699 1.2550
CER 0.0794 -0.0291 0.1076 -0.0195 -0.0032

Panel B: Fixed income futures (1991/12-2017/12)
Sharpe ratio 0.3091 -0.0734 0.4149 0.4872 0.2971
Sortino ratio (<0%) 0.4891 -0.1126 0.6075 0.7252 0.4616
Omega ratio (=0%) 1.2880 0.9469 1.3829 1.4574 1.2570
CER 0.0086 -0.0054 0.0112 0.0078 0.0057
Panel C: Currency futures (1989/08-2017/12)
Sharpe ratio 0.1069 0.6653 0.4090 0.2938 -0.0381
Sortino ratio (<0%) 0.1246 1.0541 0.3956 0.4461 -0.0421
Omega ratio (=0%) 1.0986 1.6874 1.4622 1.2826 0.9658
CER -0.0042 0.0249 0.0166 0.0078 -0.0107

Panel D: Commodity futures (1989/07-2017/12)
Sharpe ratio 0.5893 0.2672 0.3480 0.1635 0.4532
Sortino ratio (<0%) 1.0498 0.4334 0.5745 0.2298 0.7032
Omega ratio (=0%) 1.5373 1.2192 1.3190 1.1373 1.4030
CER 0.0333 0.0025 0.0089 -0.0016 0.0201
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Table 2. Subsample analysis of standalone-style portfolios 
This table reports per style the annual Sharpe ratio (SR) over 5-year non-overlapping rolling windows 
and the corresponding rank from 5 (top) to 1 (bottom). The final rows report for each style the mean and 
volatility of the ranks, and corresponding ratio across time periods and class-specific portfolios; a larger 
ratio for a given style indicates a higher volatility-adjusted expected rank. 
 

  
 

SR Rank SR Rank SR Rank SR Rank SR Rank

Panel A: Equity index futures
2001/09 - 2006/08 1.2795 4 -0.2215 1 1.6372 5 0.1536 3 -0.1891 2
2006/09 - 2011/08 0.3236 3 1.0464 5 0.8137 4 -0.5828 1 -0.1287 2
2011/09 - 2016/08 1.0230 5 -0.3182 2 0.7782 4 -1.8730 1 0.7493 3
2016/09 - 2017/12 5.4843 5 -3.1300 1 4.6561 4 -2.5801 2 2.9219 3

Panel B: Fixed income futures
1991/12 - 1996/11 0.5833 5 -0.6139 1 0.4169 4 0.2152 2 0.4041 3
1996/12 - 2001/11 0.7551 5 0.5748 3 0.5585 2 0.7452 4 0.4518 1
2001/12 - 2006/11 0.1514 1 0.5142 3 0.3532 2 0.6601 5 0.6330 4
2006/12 - 2011/11 0.1266 3 -0.3075 1 0.7191 5 0.6318 4 0.0554 2
2011/12 - 2016/11 -0.0648 4 -0.2825 1 -0.1496 3 0.2212 5 -0.2005 2
2016/12 - 2017/12 -0.7183 2 -1.0747 1 1.1983 5 0.8280 3 1.0408 4

Panel C: Currency futures
1989/08 - 1994/07 0.1851 3 0.4200 4 0.0755 2 -0.7263 5 -0.7884 1
1994/08 - 1999/07 -0.1729 1 1.1903 5 0.0911 2 0.6183 4 0.3948 3
1999/08 - 2004/07 1.0640 4 0.6464 3 1.1690 5 0.2163 2 -0.7779 1
2004/08 - 2009/07 0.0211 1 0.7798 5 0.7388 4 0.3671 2 0.5843 3
2009/08 - 2014/07 -0.2424 1 0.5759 4 0.2684 3 0.7323 5 -0.0648 2
2014/08 - 2017/12 0.0166 2 0.3618 3 0.6775 4 0.7944 5 -0.0333 1

Panel D: Commodity futures
1989/07 - 1994/06 0.8591 5 0.6487 3 -0.4347 1 0.7287 4 0.3838 2
1994/07 - 1999/06 0.5297 3 0.5958 4 -0.2062 1 0.5172 2 1.2560 5
1999/07 - 2004/06 0.9427 5 -0.3016 1 0.4278 4 0.1621 2 0.3983 3
2004/07 - 2009/06 0.4198 4 0.3302 2 0.8936 5 -0.3320 1 0.4004 3
2009/07 - 2014/06 0.5322 5 0.1649 2 0.3199 4 -0.0971 1 0.1863 3
2014/07 - 2017/12 -0.0587 2 0.4616 4 0.8379 5 0.4155 3 -0.3024 1

Mean rank 3.32 2.68 3.55 3.00 2.45
StDev rank 1.52 1.46 1.34 1.48 1.10
Mean/Stdev rank 2.18 1.84 2.65 2.03 2.23

Momentum Value Carry Liquidity Skewness
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Table 3. Correlation structure of standalone-style portfolios 
This table reports Pearson pairwise correlations of the excess returns of the five styles. Bold denotes 
significance at the 5% significance level or better. The sample periods are indicated in parentheses. 

 

 
 

Momentum Value Carry Liquidity

Value -0.11
Carry 0.60 -0.12
Liquidity -0.27 -0.09 -0.23
Skewness 0.37 0.31 0.22 -0.36

Value -0.34
Carry 0.63 -0.34
Liquidity 0.61 -0.45 0.81
Skewness 0.21 -0.18 0.34 0.31

Value -0.23
Carry 0.15 0.40
Liquidity 0.13 0.30 0.17
Skewness 0.00 -0.01 0.24 0.12

Value -0.51
Carry 0.37 -0.27
Liquidity -0.07 0.00 -0.13
Skewness -0.02 -0.04 -0.06 0.14

Panel A: Equity index futures (2001/09-2017/12)

Panel B: Fixed income futures (1991/12-2017/12)

Panel C: Currency futures (1989/08-2017/12)

Panel D: Commodity futures (1989/07-2017/12)
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Table 4. Performance of style-integrated portfolios 
The table summarizes the style-integrated portfolios per futures class – equity indices (Panel A), fixed 
income (Panel B), currencies (Panel C) and commodities (Panel D). EWI is equal-weight integration, OI 
is optimized (mean-variance) integration, RSI is rotation-of-styles integration, VTI is volatility-timing 
integration, CSI is cross-sectional pricing integration, SMI is style momentum integration and PCI is 
principal components integration. CER is the annualized certainty-equivalent return with unconstrained 
mean-variance utility and CRRA parameter 𝛾𝛾 = 5. The p-values of the Opdyke (2007) test are for the null 
hypothesis 𝐻𝐻0:𝑆𝑆𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸 ≥ 𝑆𝑆𝑅𝑅𝑗𝑗 versus 𝐻𝐻𝐴𝐴: 𝑆𝑆𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸 < 𝑆𝑆𝑅𝑅𝑗𝑗 where j is the sophisticated style-integrated 
portfolio at hand. The asymptotic p-values of the CER test are for 𝐻𝐻0:𝐶𝐶𝐸𝐸𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸 ≥ 𝐶𝐶𝐸𝐸𝑅𝑅𝑗𝑗 versus 
𝐻𝐻𝐴𝐴:𝐶𝐶𝐸𝐸𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸 < 𝐶𝐶𝐸𝐸𝑅𝑅𝑗𝑗. The sample periods in each panel are shown in parentheses.  
 

 

EWI OI RSI VTI CSI SMI PCI

Panel A: Equity index futures (2001/09-2017/12)
Sharpe ratio 1.0043 0.7576 0.9566 -0.0056 0.9368 0.9680 0.8709
Opdyke test p -value - (0.81) (0.58) (1.00) (0.66) (0.57) (0.71)
Sortino ratio (<0%) 1.3146 1.0831 1.2546 -0.0094 1.1667 1.4914 1.0785
Omega ratio (=0%) 2.2440 1.9771 2.1244 0.9953 2.1008 2.1788 2.0381
CER 0.0919 0.0420 0.0884 -0.0033 0.0796 0.0935 0.0693
CER asymptotic p -value - (0.95) (0.54) (1.00) (0.86) (0.48) (0.78)

Panel B: Fixed income futures (1991/12-2017/12)
Sharpe ratio 0.4564 0.2141 0.2863 0.4542 0.4442 0.2596 0.2156
Opdyke test p -value - (0.90) (0.88) (0.50) (0.59) (0.94) (0.92)
Sortino ratio (<0%) 0.6561 0.3239 0.4377 0.6369 0.6378 0.3721 0.2992
Omega ratio (=0%) 1.4742 1.2015 1.2772 1.4414 1.4642 1.2365 1.1813
CER 0.0125 0.0034 0.0074 0.0097 0.0122 0.0059 0.0044
CER asymptotic p -value - (0.95) (0.85) (0.82) (0.74) (0.95) (0.92)

Panel C: Currency futures (1989/08-2017/12)
Sharpe ratio 0.4037 0.1845 0.1055 0.4540 0.4125 0.1479 0.0378
Opdyke test p -value - (0.89) (0.99) (0.27) (0.43) (0.97) (0.98)
Sortino ratio (<0%) 0.4246 0.1953 0.0897 0.5630 0.4340 0.1446 0.0398
Omega ratio (=0%) 1.4114 1.1722 1.1121 1.4440 1.4232 1.1414 1.0344
CER 0.0152 0.0029 -0.0046 0.0169 0.0158 -0.0006 -0.0066
CER asymptotic p -value - (0.90) (0.99) (0.34) (0.32) (0.97) (0.98)

Panel D: Commodity futures (1989/07-2017/12)
Sharpe ratio 0.9738 0.7440 0.4367 0.8391 0.8498 0.6691 0.0051
Opdyke test p -value - (0.90) (0.99) (0.86) (0.85) (0.95) (1.00)
Sortino ratio (<0%) 1.6011 1.2161 0.7428 1.2682 1.2656 1.2377 0.0077
Omega ratio (=0%) 2.1059 1.7593 1.3921 1.8763 1.9182 1.6420 1.0038
CER 0.0571 0.0413 0.0190 0.0460 0.0474 0.0379 -0.0169
CER asymptotic p -value - (0.91) (0.99) (0.98) (0.98) (0.93) (1.00)
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Table 5. Subsample analysis of style-integrated portfolios 
The table reports per style-integration strategy the annual Sharpe ratio (SR) over 5-year non-overlapping windows, the Opdyke test p-value for the hypothesis 
𝐻𝐻0:𝑆𝑆𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸 ≥ 𝑆𝑆𝑅𝑅𝑗𝑗 versus 𝐻𝐻𝐴𝐴: 𝑆𝑆𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸 < 𝑆𝑆𝑅𝑅𝑗𝑗 where j is a sophisticated style-integration method, and their rank from 7 (top) to 1 (bottom). EWI is equal-weight 
integration, OI is optimized (mean-variance) integration, RSI is rotation-of-styles integration, VTI is volatility-timing integration, CSI is cross-sectional pricing 
integration, SMI is style momentum integration and PCI is principal components integration. The last rows report the mean and volatility of the ranks, and 
corresponding ratio across time periods and class-specific portfolios; a larger ratio for a given strategy indicates a higher volatility-adjusted expected rank. 
 

 

SR Rank SR p -value Rank SR p -value Rank SR p -value Rank SR p -value Rank SR p -value Rank SR p -value Rank

Panel A:  Equity index futures
2001/09 - 2006/08 1.2919 7 0.8566 (0.81) 1 1.1301 (0.65) 4 1.0255 (0.73) 2 1.2793 (0.52) 6 1.1281 (0.65) 3 1.2198 (0.56) 5
2006/09 - 2011/08 0.7042 5 0.8201 (0.39) 7 0.7310 (0.47) 6 -0.5730 (0.97) 1 0.6425 (0.61) 4 0.6327 (0.61) 3 0.4484 (0.72) 2
2011/09 - 2016/08 0.9760 7 0.2414 (0.84) 2 0.7782 (0.70) 5 -1.8422 (1.00) 1 0.7567 (0.79) 4 0.8950 (0.58) 6 0.5157 (0.90) 3
2016/09 - 2017/12 4.5240 4 4.3826 (0.51) 2 4.7692 (0.49) 6 -1.6522 (1.00) 1 4.5054 (0.50) 3 5.0228 (0.47) 7 4.6243 (0.50) 5

Panel B: Fixed income futures
1991/12 - 1996/11 0.4145 3 0.4591 (0.45) 4 0.6252 (0.28) 7 0.3444 (0.64) 1 0.4094 (0.52) 2 0.5123 (0.30) 5 0.5564 (0.32) 6
1996/12 - 2001/11 0.8761 7 0.3559 (0.88) 1 0.7551 (0.66) 4 0.8572 (0.49) 5 0.8590 (0.53) 6 0.6369 (0.77) 3 0.4508 (0.91) 2
 2001/12 - 2006/11 0.5544 5 0.4461 (0.61) 3 0.3088 (0.78) 1 0.6312 (0.33) 7 0.5555 (0.50) 6 0.4151 (0.78) 2 0.4768 (0.69) 4
2006/12 - 2011/11 0.4978 6 0.4202 (0.58) 4 -0.3565 (0.97) 1 0.5559 (0.38) 7 0.4587 (0.61) 5 -0.2821 (0.99) 3 -0.3429 (0.93) 2
2011/12 - 2016/11 -0.2309 2 -0.5827 (0.77) 1 -0.0771 (0.33) 5 -0.1761 (0.41) 4 -0.2171 (0.43) 3 0.1217 (0.16) 7 -0.0183 (0.33) 6
2016/12 - 2017/12 0.9705 4 0.1349 (0.75) 2 0.8280 (0.58) 3 0.9771 (0.50) 6 0.9713 (0.50) 5 -0.9757 (0.95) 1 1.0817 (0.44) 7

Panel C: Currency futures
1989/08 - 1994/07 -0.3765 1 0.9101 (0.02) 7 -0.2471 (0.39) 5 -0.2632 (0.24) 4 -0.3328 (0.35) 3 0.3401 (0.08) 6 -0.3386 (0.46) 2
1994/08 - 1999/07 0.3256 6 -0.3387 (0.97) 2 -0.2253 (0.98) 3 0.5837 (0.07) 7 0.2658 (0.81) 5 -0.3993 (0.98) 1 0.2200 (0.68) 4
1999/08 - 2004/07 1.0883 6 0.2327 (0.97) 1 0.4490 (0.91) 3 0.7127 (0.85) 5 1.1123 (0.47) 7 0.5108 (0.93) 4 0.2616 (0.91) 2
2004/08 - 2009/07 0.7606 6 0.2993 (0.92) 2 0.7388 (0.54) 4 0.7210 (0.57) 3 0.7898 (0.45) 7 0.7505 (0.52) 5 -0.2452 (0.95) 1
2009/08 - 2014/07 0.4159 4 0.3742 (0.52) 3 0.0665 (0.77) 2 0.4770 (0.34) 7 0.4593 (0.37) 5 0.4764 (0.44) 6 -0.0283 (0.87) 1
2014/08 - 2017/12 0.6402 5 0.0650 (0.87) 2 0.7576 (0.37) 7 0.6508 (0.48) 6 0.6327 (0.51) 4 0.0061 (0.94) 1 0.1571 (0.73) 3

Panel D: Commodity futures
1989/07 - 1994/06 1.0356 6 1.0837 (0.46) 7 0.6507 (0.74) 2 0.7817 (0.81) 3 0.8823 (0.71) 4 0.8924 (0.61) 5 0.3543 (0.94) 1
1994/07 - 1999/06 1.3206 5 1.2672 (0.55) 3 0.2652 (0.99) 1 1.4259 (0.40) 7 1.3734 (0.45) 6 1.3111 (0.50) 4 0.5958 (0.91) 2
1999/07 - 2004/06 0.9890 7 0.6849 (0.78) 4 0.1962 (0.91) 1 0.7905 (0.73) 5 0.8331 (0.69) 6 0.5545 (0.82) 3 0.3121 (0.87) 2
2004/07 - 2009/06 1.0264 7 0.6759 (0.85) 4 0.2725 (0.93) 2 0.8585 (0.70) 6 0.7722 (0.76) 5 0.5298 (0.90) 3 -0.8601 (1.00) 1
2009/07 - 2014/06 0.6247 6 0.1511 (0.84) 3 0.3367 (0.74) 4 0.6697 (0.42) 7 0.5208 (0.70) 5 0.1173 (0.86) 2 -0.2333 (0.89) 1
2014/07 - 2017/12 0.7818 6 0.3425 (0.76) 2 1.1298 (0.30) 7 0.4163 (0.89) 3 0.6787 (0.64) 5 0.5711 (0.63) 4 -0.1518 (0.92) 1

Mean rank 5.23 3.05 3.77 4.45 4.82 3.82 2.86
StDev rank 1.66 1.89 2.05 2.26 1.33 1.87 1.88
Mean/Stdev rank 3.15 1.61 1.84 1.97 3.62 2.04 1.52

SMI PCIEWI OI RSI VTI CSI
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Table 6. Can a common factor structure explain the performance of the class-specific style-integrated portfolios?  
Panel A reports Pearson correlations between the excess returns of the style-integrated portfolios per class of futures: equity indices (Eq), fixed income (FI), 
currencies (FX) and commodities (Comm). EWI is equal-weight integration, OI is optimized (mean-variance) integration, RSI is rotation-of-styles integration, 
VTI is volatility-timing integration, CSI is cross-sectional pricing integration, SMI is style momentum integration and PCI is principal components integration. 
Panel B reports the percentage of the total variation of the excess returns of the four class-specific style-integrated portfolios that each principal component 
explains. Panel C reports slope coefficients, Newey-West t-statistics (in parentheses) and adjusted-R2 from regressions of each style-integrated portfolio excess 
returns on innovations to the Kilian (2018) index of global real economic activity, global market liquidity (𝐿𝐿), global funding liquidity (TED) and global volatility 
(𝑣𝑣). Bold means significant at the 10% level or better. The analysis is conducted over the common sample period September 2001- December 2017.  
 

 
 

Panel A: Correlation analysis

Eq FI FX Eq FI FX Eq FI FX Eq FI FX Eq FI FX Eq FI FX Eq FI FX
FI -0.23 0.00 -0.03 0.03 -0.25 -0.06 0.03

FX 0.20 -0.19 0.06 -0.10 0.08 -0.13 0.00 -0.22 0.21 -0.18 0.10 -0.16 0.14 0.00
Comm -0.01 -0.10 0.00 -0.07 -0.10 0.10 -0.14 0.00 -0.04 0.07 -0.11 0.02 0.05 -0.16 0.08 -0.09 0.02 0.02 -0.02 0.09 -0.10

Panel B: Principal component analysis (% var explained)
PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4
35.5 25.7 20.4 18.4 29.8 26.3 22.7 21.2 30.4 26.6 21.7 21.2 31.3 26.4 23.4 18.9 37.2 24.3 20.5 18.0 30.7 26.3 22.6 20.4 29.7 27.0 22.6 20.8

Panel C: Regression analysis
Eq FI FX Comm Eq FI FX Comm Eq FI FX Comm Eq FI FX Comm Eq FI FX Comm Eq FI FX Comm Eq FI FX Comm

βKilian -0.04 0.00 0.00 -0.01 -0.01 0.00 0.01 -0.01 -0.02 0.00 0.01 -0.01 0.00 0.00 0.00 -0.01 -0.03 0.00 0.01 -0.01 -0.05 0.00 0.01 -0.01 -0.02 0.00 0.00 0.00
(-1.99) (1.07) (1.43) (-0.84) (-1.04) (2.48) (1.86) (-0.78) (-0.62) (0.82) (4.29) (-1.15) (0.52) (0.15) (1.28) (-0.87) (-1.90) (1.08) (1.50) (-0.90) (-1.49) (0.64) (1.43) (-1.19) (-1.76) (0.23) (-0.68) (-0.39)

βL 0.46 -0.25 0.24 -0.01 0.27 -0.12 0.18 -0.01 0.31 -0.20 0.19 -0.34 -0.14 -0.20 0.22 0.08 0.61 -0.26 0.25 0.23 0.29 -0.25 0.26 -0.21 0.55 -0.17 0.05 0.20
(1.03) (-2.38) (2.00) (-0.03) (1.18) (-1.29) (2.03) (-0.05) (0.43) (-1.73) (2.01) (-0.86) (-1.75) (-2.08) (1.84) (0.26) (1.37) (-2.48) (2.05) (0.74) (0.45) (-2.25) (2.23) (-0.67) (1.38) (-1.49) (0.40) (0.53)

βTED -2.29 -0.01 -0.07 0.10 -1.06 -0.05 0.14 0.22 -2.19 -0.24 -0.13 -1.26 -0.13 0.02 -0.37 0.37 -3.23 -0.04 -0.07 0.50 -3.95 -0.21 -0.09 -0.38 -0.60 -0.11 -1.26 0.92
(-2.57) (-0.09) (-0.16) (0.23) (-2.45) (-0.36) (0.33) (0.56) (-1.30) (-0.74) (-0.29) (-2.04) (-0.65) (0.09) (-1.10) (0.74) (-3.46) (-0.26) (-0.16) (1.02) (-2.13) (-1.20) (-0.21) (-0.94) (-0.59) (-0.51) (-3.34) (1.92)

β ν -0.21 0.00 -0.07 -0.02 0.05 0.01 -0.06 -0.03 -0.18 -0.01 -0.09 -0.02 0.00 0.00 -0.06 -0.04 -0.12 0.01 -0.08 0.01 -0.08 0.01 -0.07 -0.07 -0.20 0.01 -0.05 0.01
(-1.23) (0.20) (-3.15) (-0.52) (0.64) (0.61) (-2.03) (-0.67) (-0.93) (-0.53) (-3.05) (-0.37) (-0.12) (0.17) (-2.73) (-1.02) (-0.68) (0.30) (-3.12) (0.24) (-0.28) (0.61) (-2.65) (-1.95) (-2.01) (0.60) (-1.96) (0.18)

Adj-R² 0.10 0.04 0.09 0.00 0.03 0.04 0.07 0.00 0.03 0.02 0.15 0.02 0.01 0.03 0.08 0.01 0.11 0.04 0.09 0.01 0.05 0.03 0.09 0.02 0.08 0.02 0.08 0.01

SMI PCIEWI OI RSI VTI CSI
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Table 7. Performance of everywhere style-integrated portfolios 
The table summarizes the risk-adjusted performance of “everywhere” style-integrated portfolios 
constructed in a two-step (mean-variance, risk-parity, and constant class weights) approach, and in a 
direct approach that pools all N=131 contracts while adjusting for their different volatilities. EWI is 
equal-weight integration, OI is optimized (mean-variance) integration, RSI is rotation-of-styles 
integration, VTI is volatility-timing integration, CSI is cross-sectional pricing integration, SMI is style 
momentum integration and PCI is principal components integration. CER is the annualized certainty-
equivalent return with unconstrained mean-variance utility and CRRA parameter 𝛾𝛾 = 5. The p-values 
of the Opdyke (2007) test are for 𝐻𝐻0: 𝑆𝑆𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸 ≥ 𝑆𝑆𝑅𝑅𝑗𝑗 vs 𝐻𝐻𝐴𝐴: 𝑆𝑆𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸 < 𝑆𝑆𝑅𝑅𝑗𝑗 where j is a sophisticated style-
integrated portfolio. The asymptotic p-values of the CER test are for 𝐻𝐻0:𝐶𝐶𝐸𝐸𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸 ≥ 𝐶𝐶𝐸𝐸𝑅𝑅𝑗𝑗 vs  
𝐻𝐻𝐴𝐴:𝐶𝐶𝐸𝐸𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸 < 𝐶𝐶𝐸𝐸𝑅𝑅𝑗𝑗. The appraisal covers the common period September 2006 to December 2017.  
 

 

EWI OI RSI VTI CSI SMI PCI

Panel A: Two-step approaches
Mean-variance class weights
Sharpe ratio 1.0255 0.2323 0.7245 1.1664 0.8129 0.7378 0.5925
Opdyke test p -value - (0.99) (0.80) (0.33) (0.87) (0.81) (0.86)
Sortino ratio 1.4870 0.3442 0.9770 1.9371 1.0321 1.1670 0.9089
Omega ratio 2.1072 1.1941 1.7690 2.3526 1.8548 1.7166 1.5874
CER 0.0264 0.0041 0.0300 0.0172 0.0213 0.0284 0.0217
CER asymptotic p -value - (1.00) (0.39) (0.92) (0.97) (0.43) (0.63)

Risk-parity class weights
Sharpe ratio 0.7217 0.5697 0.7341 -0.1444 0.7176 0.8034 0.2419
Opdyke test p -value - (0.66) (0.50) (1.00) (0.51) (0.40) (0.93)
Sortino ratio 1.1420 1.0955 0.7712 -0.1678 1.1119 1.1091 0.3520
Omega ratio 1.7254 1.5657 1.9454 0.8873 1.7095 1.9381 1.2174
CER 0.0194 0.0109 0.0285 -0.0042 0.0203 0.0272 0.0056
CER asymptotic p -value - (0.81) (0.23) (1.00) (0.43) (0.22) (0.90)

Constant class weights (40%Eq;40%FI;10%FX;10%Comm)
Sharpe ratio 1.1283 0.7225 1.0122 -0.1116 1.0156 0.9931 0.6246
Opdyke test p -value - (0.88) (0.65) (1.00) (0.70) (0.70) (0.94)
Sortino ratio 1.5562 0.9861 1.3285 -0.1523 1.3179 1.4763 0.7133
Omega ratio 2.3471 1.8742 2.1172 0.9181 2.1505 2.1443 1.6670
CER 0.0604 0.0201 0.0771 -0.0023 0.0500 0.0695 0.0281
CER asymptotic p -value - (0.99) (0.20) (1.00) (0.94) (0.27) (0.97)

Panel B: Direct approach
Sharpe ratio 0.4102 0.5549 0.6198 0.1099 0.5334 0.3708 0.3018
Opdyke test p -value - (0.30) (0.23) (0.91) (0.18) (0.57) (0.65)
Sortino ratio 0.5079 0.9508 0.7576 0.1334 0.6827 0.4440 0.3479
Omega ratio 1.4603 1.7989 1.6928 1.1419 1.5815 1.3649 1.3317
CER 0.0072 0.0089 0.0257 0.0011 0.0099 0.0100 0.0064
CER asymptotic p -value - (0.37) (0.08) (0.93) (0.10) (0.34) (0.55)
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