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Determination makes you run, never stop. Got to win, got to run till you drop.
Keep the pace, hold the race. The mind is getting clearer...
- Steve Harris, “The loneliness of the long distance runner”

Iron Maiden (Somewhere in Time)
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Abstract

This thesis investigates the complex movement of migrating cells and small organisms.
Whilst special emphasis has been devoted to macrophages observed with fluorescent
confocal microscopy, the segmentation, tracking and shape analysis techniques de-
veloped here can be extended to various other applications, not exclusively of cells.
With the acquisition conditions and particular resolution, macrophages exhibit very
complex shapes. In some cases, the cells overlap, complicating the analysis considerably.

A software framework is proposed to detect, track and analyse the shape and
movement of macrophages. The framework, called macrosight, includes the following:
(i) a novel 2D matrix with multiscale angle variation, called the anglegram, based on
the angles between the points of the boundary of an object through which its general
shape can be characterised. For the case of the macrophages, the anglegram helped
identify the intersection of overlapping cell boundaries. (ii) A cell shape tracking
algorithm providing a measured evolution of shape parameters and categorisation of
shape types. This was based on metrics extracted from the anglegram and used for
non-overlapping cells. (iii) An algorithm to assess the changes of direction derived from
cell-cell contact. The algorithm may assist in the identification of cell-cell interactions,
which may influence migration patterns.

The anglegram showed promising results identifying two types of junctions in the
boundaries of segmented objects, both in synthetic and real data. Tests on synthetic
data showed that the method outperformed the classic junction detection technique
by Harris. The framework can be used to explore the influence of cell-cell contact in
movement patterns. The early experiments presented provided statistically significant
evidence of such influence, opening the path for additional information of the tracks
being included to further investigate on a larger number of interactions.

This thesis provides preliminary studies of macrophages’ shapes and interactions.
Future developments incorporating the techniques proposed in this thesis would provide
a precise analysis of cell movement in biological studies, which could lead to pioneering
insights concerning cell migration.
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Chapter 1

Introduction and background

1.1 Overview

Biomedical image analysis is a branch of Biomedical Engineering where computational
algorithms are developed to analyse images (which can include image sequences,
volumes or volume sequences) of different biological nature and context. Observation
of biological processes through microscopy has allowed for “large-scale, systematic and
automated studies”, as stated by Rittscher et al. [1]. For example, experiments where
the observation of cellular processes in genetically modified organisms produces several
images per second. Manual assessment of such experiments is a difficult and time
consuming task, for which an automated or semi-automated technique could obtain
useful information from the data. To extract information from an image, a collection of
mathematical and statistical procedures can be performed on the images acquired, and
the information obtained can aid tasks such as cell detection, counting and tracking.

The migration of cells is of great importance in many biological processes, one of
them is within the immune system [2, 3]. Under normal conditions, cells can migrate in
the body in response to a directional cue. The nature of these cues categorise motion
in terms of its nature, such as chemotactic (induced by chemical substances known
as chemoattractants), electrotactic (induced by electric fields) or durotactic (due to
differences in pliability). This work will focus on movement through chemotaxis, which
is involved in the immune response of the system in wound repair processes.Injured
cells secrete small proteins called cytokines, which act as pro-inflammatory signals
(chemokines) triggering the movement of immune cells from the lymph nodes to the
circulatory system and from there to the site of injury. Macrophages are one of the
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Introduction and background

cells within the immune system that settle in lymphoid tissues and the liver, serving
as filters for trapping microbes and foreign particles [2].

The experiments to acquire the video sequences are usually performed in surrogate
animals, called model organisms. One of such animals is the common fruit fly, Drosophila
melanogaster, allowing for several applications including the observation of macrophages.
As stated by Stramer et al. [4], “Drosophila melanogaster macrophages are highly
migratory cells that lend themselves beautifully to high resolution in vivo imaging
experiments” where the dynamic interplay of cytoskeletal structures can be observed
as the macrophages migrate.

The work documented in this thesis contributes towards (i) understanding movement
patterns of macrophages and other cells, (ii) providing measurements of the movement
in relation to the shape of the cells and (iii) automating the task through computer
algorithms. The thesis investigate image segmentation and tracking of time sequences
of fluorescently labelled macrophages and provides analysis of the movement, in the
context of their changing shapes and interactions. The novel computational algorithms
described in this thesis extract information from the video sequences and provide
statistical analysis of its results.

1.2 Motivation and relevance

Cell migration is an essential biological process that ensures homeostasis in adults,
where an unbalanced migratory response results in human disease; with excessive
migration causing autoimmune diseases and cancer metastasis [5]. As shown by Petrie
et al. [6], although the basic mechanisms of random cell movement are well characterised,
no single model explains the complex regulation of directional migration. A better
understanding of the processes that drive the movement of cells could lead to improved
strategies for treatment.

Stramer et al. [4] acquired images of macrophages in embryos of the common fruit
fly, which were genetically modified to produce two colours of fluorescence: nuclei
appearing in red and the microtubules fluorescing in green. Thus showing through in
vivo experimentation and observation of the green channel that macrophages form an
array of cytoskeletal structures which appear to indicate the direction of migration.
The arm-like arrays in two cells appear to align just before cell-cell repulsion, indicating
that a component in the moving patterns of cells might not be taken into consideration,
i.e. the interactions of the cells appear to anticipate the direction of migration. A
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quantitative analysis of such phenomena could provide statistical proof of the migration
patterns of cells related to shape changes and interactions.

Acquiring time sequences of moving cells is a complex task in itself, and it presents
challenges for automated image analysis algorithms. Various sources of noise can
be identified at different stages of the acquisition. Some examples include (i) the
digital camera not producing high quality images; (ii) out of focus samples, causing
microscopes to blur some areas of the image or undesired shading; or (iii) the staining
of the desired cellular structures not being uniform, or in case of fluorescence, the
intensities could be varied.

Problem statement. The cells in the images obtained by Stramer et al. [4] present
additional challenges for automated analysis that is not necessarily shared with other
tracking problems widely studied in computer vision. For example, (i) the cell membrane
is not present in the images and thus the overall shape of the cells tend to be difficult to
observe. (ii) Some events of cell-cell contact are of great interest, however these cause
cells to overlap causing an ambiguity in the boundaries of the cell bodies. The human
vision can often overcome some of these challenges, however, a computational analysis
would require complex methods to analyse each frame. The techniques developed
for this purpose would provide robust and repeatable analysis to image sequences of
migrating macrophages and other cells, aiding in the confirmation of the hypotheses
made from visual inspection.

1.3 Aims and objectives

The aim of this thesis is to develop a software framework that will allow a more
specialised analysis of the movement of migrating macrophages obtained from image
sequences, solving the ambiguities introduced in the imaging. The following objectives
are presented:

1. Develop a software framework for the tracking of shapes of fluorescently labelled
macrophages as they evolve in time. This framework will involve the detection
of the foreground, tracking the simpler red channel, and using the resulting
information to track the shape and analyse the movement of the corresponding
cells in the green channel.

3
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2. Describe, within the proposed framework, experiments to test whether cell-cell
contact events in the available datasets correspond to specific cell interactions
influencing migration.

3. Describe an accurate geometry-based image analysis methodology to analyse the
shapes of the macrophages and classify them into different states, which could
be correlated to the temporal context (tracks) and the spatial context (relating
shape states to proximity to other cells).

4. Propose a method to disambiguate images of macrophages that overlap, as this
would allow for the analysis of movement and shape to be applied when the cells
appear to be interacting with each other.

The objectives presented are oriented towards building a solid research foundation in
which questions about the nature of the movement can be raised.

1.4 Contributions

The original contributions of this thesis are:

1. A thorough exploration of the macrophages data through classic and novel image
analysis techniques.

2. Software tool for the analysis of shape, which detects peaks and corners in the
shapes of detected cells, or clumps of cells. The software tool could work as a
signature of a particular shape.

3. Development and testing of a software framework specific for, but not limited
to, the analysis of migrating macrophages, distributed as a set of routines under
an open source license. Such framework would directly address the aims and
objectives described in the previous section.

1.5 Outline and thesis structure

An overview of the thesis is represented graphically in Figure 1.1, and subdivided in
the chapters described below.
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1.5 Outline and thesis structure

Figure 1.1 Graphical outline of the thesis. Chapter 2 provides the context for cell migration
from a biological and mathematical point of view. Chapter 3 represents a thorough exploration
of the data. Chapters 4 and 5 provide the major contributions of this work, the results are
presented in Chapter 6.

Chapter 1. The second half of this chapter presents background knowledge, in which
cell migration as a complex biological process is presented alongside the mathematical
models used to describe it. The acquisition of images and time sequences through
confocal fluorescence microscopy is also discussed.

Chapter 2. The data is presented, consisting of three datasets containing time
sequences of different types: (i) the Cell Tracking Challenge of the IEEE Symposium
of Biomedical Imaging (ISBI) in 2015, (ii) images of brine shrimp, Artemia franciscana,
small marine crustaceans utilised in toxicological experiments, (iii) the fluorescently
labelled macrophages datasets. The generation of synthetic data and acquisition of
ground truth (GT) for images of macrophages is introduced.

Figure 1.2 Examples of datasets analysed in this thesis. (a) ISBI Cell tracking challenge data,
3 examples out of 15 datasets shown. (b) Artemia franciscana in a toxicological experiment.
(c) Macrophages: full frame and detail of cell-cell interactions and shape changes.

Chapter 3. A thorough exploration of the datasets described in Chapter 2, especially
of the macrophages data, using classic and novel image analysis techniques. The aim
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of the chapter is to present a literature review of image analysis techniques alongside
an exploration of the data, gaining insights for the macrophages dataset.

Chapter 4. A novel tool for the analysis of the boundaries of shapes is presented,
called the anglegram. Its main functionality derives from the need to acquire junctions
in the boundaries of overlapping 2D objects. Applications for the proposed tool are
presented for segmenting overlapping objects and to analyse the shape of single cells.
Figure 1.3 shows examples of the anglegram representing different shape types and one
case of the boundary of an overlapping object.

Figure 1.3 Examples of the anglegram tool and its relationship to shapes.

Chapter 5. The software framework macrosight is presented in this chapter. The
chapter is subdivided in two projects: (i) analysis and tracking of the shape evolution
of single cells, recognising four classes of shapes the cells can adopt; and (ii) analysis
of the change of direction of cells before and after cell-to-cell contact.

Chapter 6. The results for all experiments performed on all datasets are presented
here. First, the data presented in Chapter 2 corresponding to the (i) ISBI Cell Tracking
Challenge and (ii) the toxicological study in Artemia franciscana. Finally, the data of
migrating macrophages is analysed with the macrosight framework.

The following sections present an overview of cell migration, with some examples
of moving cells from previous work done. Special emphasis is provided for cells of
the immune system, neutrophils and macrophages. Cellular motion and its links to
biological processes are discussed; as a comparison, mathematical modelling of cell
migration is overviewed. The process of image acquisition of moving cells is described,
providing an overview of model organisms, describing various imaging techniques, and
how a microscope produces the images, which are the main data analysed in this work.
To finalise the background overview of this thesis, the process of image acquisition
of interacting macrophages through model organisms is outlined. The interactions
observed raise the problems of geometry-based image analysis and tracking.
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1.6 Cell migration

1.6 Cell migration

Cells are the smallest functional unit of an organism, which are typically microscopic and
can be categorised in two groups, eukaryotic cells, containing a nucleus and prokaryotic
cells which do not [7]. In this work, eukaryotes will be referred to organisms which are
multicellular, and whose different cells are classified based on their specific functions.

Cell migration is an important process that involves the translation of a cell from
one place to another; occurring in various environments and circumstances and due to
multiple situations. As mentioned by Petrie et al. [6], the basics of cell motility are
well understood, however, it is less clear how they are coupled into a procedure that
integrates both external (environmental) cues and characteristics of the cells into a
directionally persistent migration. In simple terms, the movement pattern observed in
some migrating cells appears to be oriented, yet the mechanisms for movement are not
sufficient to explain such behaviour.

Cell migration occurs as a response to two sources: internal and external. Internal
sources correspond to a cell responding to a non-directional signal that triggers the
motility processes of the cell. External sources correspond to an environmental factor,
which might trigger the same processes. The nature of cues that provoke this movement
categorises further the motion. Such categories are presented alongside an overall
description of the process in section 1.6.

The process of cellular movement

The process in which a cell moves from one place to another is described in this section.
Cells generally move on the substrate, which is the surface where the cells live and are
supported by extra-cellular molecules, called the extra-cellular matrix; the observed
direction the cell is moving is referred as the gradient. Notice that in this work,
the concept of a gradient is referred to by its mathematical connotation, and only in
this chapter is it mentioned in biological context. The previous concepts were briefly
described, as they will be referred to in this section. A deeper analysis is not relevant
to the scope of this work.

Specific molecular mechanisms operate at each step of cell motility, i.e. polarisation,
protrusion and adhesion, translocation of the cell body and retraction of the rear
that control cell migration [6]. Polarisation refers to the spatial arrangement and
composition of these domains that facilitate cellular processes, including cell migration
[8]. Protrusion and adhesion refer to the two steps in which forward movement of cells
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are classified [9]. Finally, the translocation of the cell body and retraction of the rear
can be explained as the rearranging of the cell organelles as the cell moves forward,
finalising with the movement of the rear of the cell relative to the movement vector.
Figure 1.4 shows an overview of the generalised process of cellular movement, based on
the works by Lauffenburger and Horwitz [10] and Ridley et al. [11].

Figure 1.4 Diagram of cellular movement. (a) Polarity is intrinsic to a migrating cell [11]
which results in reorganisation of organelles as well as the microtubules. (b) Migration starts
with the formation of a protrusion, which is stabilised by the formation of adhesions. At the
rear (c), the cell retracts as the adhesions disassemble. This diagram was based on [10, 11]

In particular, polarisation is a component process of cell migration of major interest
[12]. In simple terms, polarisation involves the process in which a distinct and stable
front and rear of the cell can be identified [13]. The leading edge can be identified by the
intense actin polymerisation, creating a protrusive structure in the cell, and adhesion to
the substratum. The trailing edge, on the other hand, is identified by the stable bundles
and the release and disassembly of adhesions. Migration often arises from environments
that provide a directional cue; these can be varied and are classified in five groups:
haptotaxis, mechanotaxis, electrotaxis, durotaxis and chemotaxis, which are described
in the following paragraphs. In particular, chemotaxis is of high relevance to this work
and will be described in more detail, as it is the guiding cue for macrophages.

Haptotaxis. The process of haptotaxis occurs in response to the graded adhesion in
the underlying substrate [6]. The gradient in the substrate that cause the process, can
be understood as the differences in the medium in which the cell moves (substrate)
causing a different reaction from the cell’s touch with the substrate at each point.
In other cases, haptotaxis occurs when other guidance cues are anchored within the
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extra-cellular matrix (ECM) [6]. Such guidance cues can involve chemicals which are
bound to the substrate, and causing the cell to polarise.

Mechanotaxis. The process of mechanotaxis is the result of mechanical forces
applied to the substrate. For example, in epithelial cells, lining the outer surfaces
of organs, fluid shear stress can affect migration patterns. Also, in wound healing
processes, breakdown of cell-cell contact is a form of mechanotaxis.

Durotaxis is a process in which the changes of pliability or rigidity of the substrate
cause the polarisation. Durotaxis is considered a subset of mechanotaxis [14]. The
process can be described as a migrating cell having a preference over stiff substrates,
to the point where, as described by Lo et al. [14], migration of cells can be guided by
manipulating the flexible substrate.

Electrotaxis. Electrotaxis is the polarisation process in which the cell responds
to electric fields. Injury that disrupts an epithelial layer instantaneously generates
endogenous electric fields [15]. As Zhao [15] describes using experimental models with
other directional cues (e.g., contact inhibition release, population pressure etc.) are
present, electric fields of physiological strength override them and direct cell migration.

Chemotaxis. Chemotaxis involves the movement in response to chemical cues. Given
the presence of extracellular signals, cells guide their movement through structures
which form at the leading edge in response to the local accumulation of certain signalling
molecules [16]. Chemotaxis occurs when a soluble factor is applied asymmetrically
and dictates the direction of cell migration [6]. In chemotaxis, three phenomena
can be observed. (a) Self-organising pseudopodia, which involves the movement
and extension of the pseudopodia in regular intervals biased by the gradient of the
chemoattractant. In (b), the polarisation is displayed, as the cell would turn towards
the direction of the gradient. Finally, the directional sensing in the cell is indicated by
the accumulation of proteins on the membrane towards the side of the cell experiencing
a higher intensity of the gradient. For example, in neutrophils, a type of white blood
cell, migration has been proven to be driven by sensing external chemical gradients
[17].

The ranges of shapes achieved by cells are most often the cytoskeletal structures,
such as the microtubules [18]. Furthermore, there is an emerging paradigm that cells’
shapes underlie their functions, and that the sensing of the shape is based on processes
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Figure 1.5 Diagram of the three interrelated phenomena in chemotaxis, as depicted by
Van Haastert and Devreotes [16]. In chemotaxis, three phenomena can be observed. (a) Self-
organising pseudopodia, which involves the movement and extension of the pseudopodia
in regular intervals biased by the gradient of the chemoattractant. In (b), the polarisation is
displayed, as the cell would turn towards the direction of the gradient. Finally, the directional
sensing in the cell is indicated by the accumulation of proteins on the membrane towards
the side of the cell experiencing a higher intensity of the gradient.

of auto-organisation [19]. Taking the work by Van Haastert and Devreotes [16] as a
point of reference, the changes in morphology are directly linked to the chemoattractant
increments, triggering biphasic responses. In them, the shapes of cells vary from a
resting state, to an adaptation state. Figure 1.5 shows a diagram of chemotaxis as
described in [16], which can be explained as the first step described in Figure 1.4(a).

Immune cells and cell migration in biological processes

In this section, cell migration in the context of biological processes is presented,
especially with regards to immune system cells like macrophages. The migration of
cells is of great importance in many biological processes, such as embryogenesis, wound
healing and within the immune system [2, 3, 6]. In particular, the chemoattraction of
immune cells, like macrophages and neutrophils, within tissues is an essential step to
the host organism’s response to infection [9]. The cells that form the immune system
are varied, and its classification complex. The main type of cells to be referred to in
this work are macrophages.

Macrophages These are cells of the immune system that filter foreign particles
when settled in lymphoid tissues and the liver [2]. In homeostasis, the tendency to an
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equilibrium of physiological processes, the role of macrophages range from tissue repair
through to immune responses to pathogens [20]. Furthermore, clinical applications
that target specific signalling in inflammatory responses are being developed [21, 22].

1.7 Mathematical modelling of cell motility

In spite of being a challenging task, mathematical modelling of cells’ structures and cell
motility is a large field of study [23]. This aims to produce reliable and robust models
which describe the steps of the cellular movement process described before; as put by
Flaherty et al. [23]. Such methods allow to explore various permutations of the same
event, skipping the inherent difficulty and time associated with in vitro investigations.
In this section, a brief overview of mathematical models of cell motility and some of
its findings are presented. Such models spawn from observation and from the essential
understanding of cellular movement; its objective is similar to the objective of this
work. As stated by Flaherty et al. [23] “The stimuli involved and the observed response
are of great interest as it would highlight reaction of multicellular entities to different
environmental factors.”

The review by Flaherty et al. [23] presents a classification of techniques from the
biological point of view, which involve the specific parts of the cell being modelled.
In the short review by Vermolen [24], a classification of such techniques in terms of
the mathematical methods of modelling is presented. Two relevant approaches are
discussed. First, models in which only the cell membrane is modelled as a surface in
which each point in it is connected to its neighbours. The second type of model involves
fully continuous models, corresponding to most of the techniques discussed in this
section. In such models, the workflow usually involves a certain form of equilibrium,
expressed as equations that describe physical properties of a medium, like the viscosity
and elasticity of a gel, or the mechanical behaviours of cell structures, which usually
exploit Hooke’s laws of springs. Such equations determine its parameters, which
normally are derived from the assumptions made, such as the medium’s characteristics.
Then, once parameters are chosen and the initial equations are simplified, a numerical
technique is then used to solve or approximate the model.
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Figure 1.6 Simplified diagram of cell migration. Recalling from Figure 1.4, the relevant
parts to the mathematical modelling of cells are shown: Protrusion, adhesion and retraction
of the rear. The cell parts highlighted in red represent a key component in the process in the
context of the mathematical modelling. (a) Represents protrusion, which is formed by actin
polymerisation, and then anchoring to the substrate in (b).

To understand the key features and the reasoning behind the mathematical mod-
elling, it is important to review the movement procedure from Section 1.6, which is
depicted in Figure 1.4, which was simplified in Figure 1.6. Three major steps can be
overviewed from the diagram: protrusion of the leading edge, adhesion to the under-
lying substrate and retraction of the rear. Paraphrasing the work by Munevar et al.
[25], the leading edge of the cell is pushed forward by actin polymerisation, forming
and anchor region. The body of the cell is then towed forward by contraction of the
actin network within the lamellipodia, or stable protrusion areas. Subsequently, actin
filaments contract, pulling the cell forward. At the trailing edge, substrate anchors are
released.

As mentioned in [23], models can take a holistic approach — considering the cell
dynamics as a whole process — such as in [26, 27]; or address specific mechanisms, in
particular protrusion dynamics, as in George et al. [28]. Both approaches are presented
with examples of their main findings.

Protrusion dynamics

The dynamics of protruding involve the development of lamellipodia, the thin feet
caused by cytoskeletal actin protein filaments protruding at the leading edge of the
cell. Mathematical models of such dynamics attempt to represent such a phenomenon
[23]. Even within the models, different approaches and subsequent depth of analysis
vary widely. In a relatively early model, Mogilner and Rubinstein [29] discovered that
the number of filaments forming is relevant to the formation of the protrusions in the
leading edge and thus to motion. More interestingly, the model showed how an excess in
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the number of filaments the velocity of the protrusion will start decreasing. The pattern
architecture of lamellipodia was explored in [30, 31] with different methodologies to
approach the problem. Firstly, the work by Atilgan et al. [30] includes mechanical
circumstances, like simulating growth or branching, into the modelling of growth, which
is based on Stochastic processes. Finally, in the more recent work by George et al.
[28], a more complex model is presented which attempts to describe cell deformation
by modelling of the actin filaments. The model is more complex, by considering
“both the mechanical and biochemical properties of actin filaments”. It assumes
that all deformations of the cell are a result of the cortical actin dynamics. The
model includes the mechanics of the network as well as the biochemical dynamics,
reflected in the consideration of the actin network as gel [28] with viscous, elastic,
contractile characteristics. The dynamics — or translation from physical assumptions
into mathematical form — are described in [32]. The model is of a bounded set in a 2D
plane which deforms in time and the points within it. The movement is described as a
function of time, and a set of equations including the characteristics of the medium are
introduced. Two partial differential equations are derived to form the model, which
describes the displacement of the cell by the actin filaments and the actin dynamics.
The study conclusively produced a model able to describe events such as cell expansion,
contraction, translation and protrusion.

Whole cell models

Whole cell models, as the name suggests, analyse the movement in a more holistic
approach when modelling motion. Quoting Flaherty et al. [23], “The models used to
define the movement of a whole cell range from simplified representations to highly
complex models with a large number of constituents”. In general, models involve the
simulation of the cell membrane, as well as the simulation of the internal and external
forces that act upon the cell.

Vermolen and Gefen [33] created a whole cell model of the interactions of the
cell with its medium and other cells. The order in which the authors approached
the problem involved an abstract model of a diffusion equation with a point source.
Furthermore, a model of the membrane of the cell was proposed which accounted
for the changes in cell boundary is interconnected by the cytoskeleton, modelled by
springs. The authors describe it as a phenomenological model for the evolution of
shape transition of cells. Further, the model describes both the displacement and
deformation of the cells.
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Figure 1.7 Graphical representation of a cell modelling technique based on [33]. The
boundary of the cell is interconnected by springs that restore the cell to a neutral state.

Elliott et al. [26] present a computational model for cell motility, in which the cell
membrane is modelled by an evolving surface, similar to [28], but in three dimensions.
Three types of forces which act upon the membrane were simulated: external forces,
for inhomogeneities in the medium, and pressure that constrains the closed volume of
the membrane; internal forces incorporated include the reaction of the cells’ surface
to stiffening and bending. Finally, protrusion of the cell is modelled as a separate
force through what the authors call a reaction-diffusion system. The model was
solved computationally with a finite-element method. The method accounts for large
deformations visible in cell migration images. The model is solved by a finite element
method variation called the moving grid finite element method, which is thoroughly
described in the work by [34], which describes in detail the numerical approach to solve
the model equations.

Figure 1.8 Explanation of a methodology of cell modelling based on [26, 34]. The diagram
shows a representation of the model of a cell, modelled as a bounded region which evolves in
time and is modelled as a viscoelastic medium. The different forces which act upon the cell
are shown.

Another noteworthy example is the follow-up work by Croft et al. [27], where the
cell motility problem is analysed in from an abstract point of view, as the core of
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the research is the identification of the optimal parameters in models of cell motility,
as opposed to directly modelling the behaviour. In [27], a parameter identification
algorithm is presented which utilises real imaging data of migrating cells. Finally, Yang
et al. [35] also presents a framework for whole cell tracking, which is relevant to this
work, as it compares two different approaches: modelling of the whole cell, like seen
in this section against a more traditional approach involving detection and linking
the cells from frame to frame. Some of the key aspects discussed in [35] regarding
the traditional tracking approach are that it does not take into consideration the
morphology of the cell. It also involves added difficulties inherent to the process of
detecting the cells.

Mathematical modelling discussion

As Croft et al. [27] concludes, it is typically difficult to estimate the forces associated
with cell motility. Therefore, estimating parameters with such models is challenging.
In [27] appears to be a point of connection between the mathematical modelling
approach and the direct analysis of time-lapse videos which will be analysed in this
work. The approaches compared in the work by Yang et al. [35] showcase some of
the key differences of the approach taken in this work compared to mathematical
modelling of the cells, whether holistic or specific. Mathematical modelling of the
whole cell structure attempts to reconstruct whole cell morphologies hoping that the
physics encoded in the model is reflected in the simulated data. On the other hand,
some difficulties associated to mathematical models of the cells include the difficulty in
choosing the parameters of the model, as discussed in [27]. Secondly, the procedures
are often complicated to implement and obtain results. Finally, computational power
required to run some of the models requires specialised hardware.

In this work, the difficulties of dealing with cell shapes and interactions will be
addressed via a data-driven approach through geometry-based image analysis. From
the images of macrophages, some empirical observations could be measured and
categorised into more robust and comprehensive models. Regarding cell movement, as
it will be addressed in the following sections and chapters, some interactions between
macrophages are not yet fully understood and could not be immediately combined
into a robust model; thus a robust method to analyse the geometry of the shapes and
trajectories of the cells could provide insights into the modelling of cell movement.
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1.8 Acquisition of images of migrating cells

In this work, imaging will be understood as the process of acquiring images [36], which
will be analysed at a later stage. The acquired data can be single frames (photos)
or time sequences (videos). Imaging allows the acquisition of high spatial resolution
and high temporal resolution, allowing high detail and several frames per second to
be obtained [37]. This section provides an overview of cell migration imaging as a
way to visualise spatiotemporal dynamics, producing experiments that can produce
data in the form of single frames, time sequences, 3D volumes or time sequences of
3D volumes. Modern immunology has been widely influenced by the visualisation
of dynamic interactions between immune cells through the use of time-lapse video
microscopy; although reliable quantification of said processes is necessary to draw
robust conclusions [38]. Time-lapse microscopy refers to the acquisition of image
sequences of microscopic objects and is reviewed in detail in Section 1.8.

Microscopy

Microscopic techniques allow for the visualisation of objects which go beyond the
resolution limit of the human eye and the visible range of light wavelengths [400 - 750
nm] [1], which involve colours ranging from red to violet. The human eye requires
contrast to perceive details of objects [39] and cells are generally transparent. For this
purpose, several methods have been proposed: colour staining, in which a chemical
is added to the sample which absorbs light at a certain wavelength, thus improving
contrast; dark field, which exploits the scattering of light on small particles that differ
from their environment; phase contrast, where light incident on the sample is split in
two spaced beams of light; finally, fluorescence microscopy, which will be described in
detail as it is relevant to this work.

The basic principle of the different techniques to acquire images from a microscope
involves an energy source which acts upon a sample by scanning or transmitting
through it. The majority of the images in this work, the images in this work were
acquired through confocal microscopy, where the working principle involves two pinholes
to restrict the passage of light at two key points.

Fluorescence microscopy

Fluorescence microscopy differs from the classic principle of microscopes presented
before. The guiding principle in this case is the emission of light by the sample, when
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excited with a particular wavelength. Figure 1.9 compares the visible range of sizes
observable by the unaided human eye with the visible range of sizes observed by most
applications of fluorescence microscopy.

Figure 1.9 Overview of fluorescence microscopy and the size scales visualised in a logarithmic
scale. The visible scale is represented, ranging from meters to nanometers. Along the scale,
the visible range for the unaided human eye is marked (a), as well as the range visible thanks
to fluorescence microscopy (b). At the top of the figure, examples of objects of interest within
the [1nm− 100µm] are shown for visualisation purposes. The diagram shows a modification
of a schematic found in [1, Chapter 1].

Most images studied in this work correspond to images acquired through fluorescence
microscopy techniques. Fluorescence involves exploiting a characteristic in specific
molecules to emit light when excited in certain conditions. Fluorophores, molecules
able to fluoresce, can be inserted in organisms causing the effect without interrupting
with the structures formed. This section explains the principle of fluorescence, and
how it can be exploited to produce fluorescent samples. Then, confocal fluorescence
microscopy is overviewed.

Fluorescence is the process where fluorophores, being either molecules or nanocrys-
tals, absorb photons at a specific wavelength, and later emit them. The absorption
causes electron to be excited. In order to return to ground state, there is an immediate
emission of photons of a higher wavelength. In particular, fluorescence microscopy
samples do not with the white spectrum, but only specific windows utilising filters.
Such light filters allow the emitted photons to reach the objective.

The basic principle of fluorescence involves the change of state of the fluorescent
molecule from an unstable state, caused by the illumination, to a stable one. When the
change of state occurs, the excess energy is emitted as light. The atoms in a fluorescent
molecule are in a stable state where all electrons are paired, known as a singlet state,
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S0. Upon absorption of light, change of orbitals of electrons which puts the molecule
in an unbalanced excited singlet state, S1, as the charge distribution of the electrons
around the atomic nuclei is altered compared to the ground state. The higher state
S1 is not stable for a long time, and when the molecule returns to stability, emission
of a fluorescence photon occurs. The diagram in Figure 1.10(a) illustrates the basic
principle of fluorescence, while Figure 1.10(b) depicts a confocal fluorescent microscope
setup.

Figure 1.10 Diagram of molecular fluorescence and setup of a confocal fluorescent microscope.
(a) Represents a Jablonski [39, Chapter 3] diagram in which the two states of the electron
are represented: S0 represents the ground (stable) state of the electron. When the molecule
is illuminated, the particle will absorb energy until reaching a higher, less stable energy state.
The electron will inevitably return to its normal state, causing a release of energy in the form
of lower energy light emission. (b) shows the diagram of a confocal fluorescent microscope.
The excitation light source passes through a filter and directed towards the sample, which lies
beneath a glass cover, by a dichrotic mirror. Molecules within the sample fluoresce, causing
an emission of light at a different wavelength. Prior to light detection, the emitted fluorescent
is filtered to reduce noise.

Fluorophores are catalogued through their absorption and fluorescence coefficients
[40]. These parameters determine the wavelength, or colour, at which they should
be excited and the colour the emitted light would produce. The use of fluorophores
requires a specialised setup of the illumination in order to produce the required
fluorescence excitation [39]. Specific light sources are required as well as filters both
in the illumination and collection of the emitted light. A laser beam illuminates a
sample, which excites its fluorescent molecules which is then collected. A schematic of
a fluorescence microscope is represented in Figure 1.10, in which the light filters setup
is visible. The combination of fluorophores and confocal microscopes provide enhanced
image contrast, sensitivity of detection and fluorescent labelling.
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The latter point refers to the ability to produce specific compounds which target
certain proteins in the object of study. The inclusion of genetically encoded labels also
allow to highlight structures in the cells without interfering with their function [37].
Thus, fluorescent microscopy involves modifying the observed organisms to provoke the
illumination of certain structures when illuminated with a certain light wavelengths or
colours.

Naturally occurring fluorescent proteins have been widely studied, as they allow
for in vivo studies of intracellular processes in living organisms [1, 41]. One of the
most recognised and utilised markers is the Green Fluorescent Protein (GFP). The
works by Zimmer [41] and Remington [42], thoroughly describe the history, structure
and most common applications of the protein. In the scope of this work, Stramer
et al. [4] acquired fluorescently labelled macrophages using a confocal microscope and
two probes, which highlighted two cytoskeletal structures: nuclei and microtubules.
The full acquisition protocol, outlined in [43], produced images like the ones shown in
Figure 1.11.

Figure 1.11 Images obtained by Stramer et al. [4] with two probes. (a) Represents the
microtubule structures of the cells. Notice the green intensities are not homogeneous, thus a
clear outline of the cell is not shown in the images. Furthermore, close to the edge of cells,
various small structures are present in the images. (b) Represents the red probe which makes
the nuclei visible. Bars: 10µm.

Model Organisms

Research using animal models is a major achievement in modern medicine. Animals
used in research to study a specific characteristic, that later can be linked to human
processes, are referred to as model organisms. The use of animal models in biomedical
research is essential to understanding the mechanisms that lead to disease in humans at
a cellular level and even to providing systems for developing and testing new therapies
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[44]. Different forms of cell migration can be observed both in in vivo, meaning in
whole live organisms or cells, and in vitro, studies made outside the normal biological
context such as biopsies, smears or smears. Many forms of cell migration are observed
in developing embryos of different species [45]. In this section, an overview of different
examples of organisms used for research is presented. Each subsection contains some
examples of the organisms.

Rodents

Rodents, mice (Mus musculus), rats (Rattus norvegicus), hamsters (Cricetinae) and
other rodents have been widely used as model organisms for understanding the normal
functions of living organisms, as well as the functional changes associated resulting
from disease or injury, according to Peters et al. [46]. These models are not only used to
produce images, but to understand behaviours and test developing medicines. In vivo
processes used in rodents involve skin wound healing, vascular sprouting and cancer
invasion [45]. Each process is assessed in different ways through the model organism. A
summary of the uses discussed in the work by Friedl and Gilmour [45] disclosed below.

Figure 1.12 Examples of images obtained from rodents. (a) shows rat mesenchymal stem
cells, usually obtained from the bone marrow, (b) shows GOWT1 mouse stem cells obtained
from mice embryos and (c) shows the nuclei of Chinese hamster ovarian cancer.

Characterising the speed of wound healing was made in the work by Gerharz et al.
[47], where multitissue arrays are useful tools in wound-healing studies. Multitissue
arrays consist in taking a biopsy using a hollow needle removing homogeneous tissue
layers. In the work by Kibbey et al. [48], an assessment of agents that stimulate
angiogenesis was done by injecting subcutaneously into mice. Finally, regarding cancer
invasion, the work by Alexander et al. [49] describes the routing of tumours in deep
vascularised tissue.
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Rodents have been also used for image analysis problems. Some examples include
topological analysis of the vasculature of tumours [50], where tumours of human
colorectal carcinoma xenografts were observed when growing in dorsal skin-fold window
chambers in mice. Figure 1.12 displays three examples of microscopic images obtained
from rodents which were analysed in this work, described in detail in Section 2.2.

Artemia Franciscana, brine shrimp

The marine crustaceans Artemia Franciscana, commonly known as brine shrimp, is
extensively used as a model organism in studies which evaluates the toxicity in the
water [51]. In common scenarios, Artemias is used as a test organism. In the work
by Lewan et al. [52], it is also an acceptable alternative of toxicological assessments
in mammalian cells. Common to most toxicological assessments, brine shrimp are
submerged in controlled environments, where the water is gradually infused with a
specific pollutant and the movement of the crustaceans is assessed to indicate water
contamination. In [53], an experiment was recorded, and the crustaceans’ movement
was analysed using image analysis and tracking techniques. Figure 1.13 shows a generic
overview of an experiment with Artemia Franciscana and an example frame.

Figure 1.13 Artemia franciscana in traditional setup for toxicological assessment of an
environment. (a) displays a figure of adult brine shrimps (reproduced from [54]); (b) is a
representation of a toxicological experiment in which the artemia are submerged in water and
the pollutant is infused gradually. (c) shows an example frame with brine shrimp swimming
(red box).

Danio rerio, zebrafish

Zebrafish, Danio rerio, has emerged as a genetically tractable vertebrate model, which
has become widely studied due to its optical clarity and embryological manipulability
[44]. As concluded by Lieschke and Currie [44], the scope of zebrafish as a model
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organism includes a wide range of human diseases both in early and adult life. The
model organism has also particular strengths as a model for biomedical research.

For example, Zebrafish has been used as a model for the sequential process from
the formation of a rudimentary organ parts or the epithelium, as discussed in the work
by [55] and later in Affolter and Caussinus [56]. The regenerative characteristics of
Zebrafish also allow for the study of collective cell migration. Two cases are worth
mentioning, first of all the work by Aman and Piotrowski [57] which studies the
molecular mechanisms of regulated collective migration, which can later be linked
to understanding cancer metastasis. Secondly, the work by Haas and Gilmour [58]
elaborates on the tissue cell self-organisation.

Finally, and more relevant to this work, Zebrafish allows for a detailed overview
of neutrophils, a type of white blood cells. The images acquired through fluorescent
labelling have enough resolution to drive image analysis research. In a case more
relevant to this work, the works by Reyes-Aldasoro et al. [59] and Kadirkamanathan
et al. [17] utilise zebrafish to understand neutrophil migration through image analysis.
In [59], neutrophils are observed in vivo in zebrafish through labelling with a Green
Fluorescent Probe (GFP), the images analysed provided enough information to perform
shape analysis of the cells. In [17], the chemoattractant field of neutrophils is inferred
through image analysis, where a transection of the zebrafish’s tail would be done and
the neutrophils were observed in vivo. Figure 1.14 represents an example of the data
that can be extracted from a zebrafish embryo which has been genetically modified
with a fluorescent probe to show the neutrophils.

Figure 1.14 Data of neutrophils observed in zebrafish embryo. A schematic of a zebrafish’s
lateral view is presented in (a), with a section of the caudal fin highlighted with a red box
(b) for visualising the experiment described in [17]. In (c), the phase contrast layer and the
fluorescence layers of the section, and the overlapped images are shown in (d).
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Drosophila Melanogaster, fruit fly

The common fruit fly, Drosophila melanogaster, also referred to as D. melanogaster,
has been widely studied because on investigations of many developmental and cellular
processes common to higher eukaryotes, including humans [60]. Models obtained
from Drosophila melanogaster and zebrafish have produced most mechanistic insights
as they combine genetics with in vivo imaging approaches, [45]. For example, D.
melanogaster has been studied for modelling diseases [61] and the findings have been
widely documented and shared [62]. Similar to the zebrafish, the fly has been used as a
model organism in cases of branching morphogenesis, where the sequential process from
formation of an organ anlage and invagination of the epithelium to branch initiation
and outgrowth was observed in various model organisms [55, 56].

Wood and Martin [3] showed how D. melanogaster are offering complementary
insights into how macrophages are integrating cues into migration, whether for de-
velopmental patterning or as response to inflammation. In their work, Wood and
Martin [3] discuss the general process in which macrophages can be observed on D.
melanogaster embryos. Briefly, the creation process of macrophages and other blood
cellular components, called hematopoiesis, occurs in two waves: during embryogenesis
and during pupal development. In both instances, the process involves blood cells
migrating from one end of the organism, thus populating it. Figure 1.15 shows a
simplified diagram of both processes of hematopoiesis modified from the diagram found
in [3].

On the other hand, Montell et al. [63] and later Pocha and Montell [5] have shown
insights into the mechanisms for single and collective cell migration, where the link
between defective migratory responses and human diseases, autoimmune and cancer,
has been studied.

Examples of macrophages acquisition in two settings are shown in Figure 1.16.
First, Figure 1.16(c) shows a developing drosophila melanogaster embryo, obtained in
the context of the Cell Tracking Challenge (CT-Challenge) of the IEEE Symposium
in Biomedical Imaging (ISBI) [64]. Finally, being central to the developments in this
work, Stramer et al. [4] showed empirically how the interactions amongst the cells’
structures, appear to “regulate and anticipate migration patterns”, Figure 1.16(d).
The imaging technique described would allow for the fluorescent labelling of both the
nuclei, through a GFP-Moesin marker, as well as the microtubules, obtained through a
green microtubule probe (Clip-GFP). The video sequences obtained allow for the clear
visualisation of the contact between cells’ structures. In some cases, a distinct change
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Figure 1.15 Hematopoiesis in Drosophila melanogaster. The diagram shows the two waves
of cellular blood components creation in macrophages. The first one (a), occurs when the
embryo of the organism is formed, in which the macrophages generated correspond to the
tissue macrophages found in humans. The second one (b), occurs during pupal development,
and corresponds to the fly equivalent to the bone-marrow derived macrophages in humans.
The diagram is an adaptation of a diagram found in [3].

of direction in two cells which come in contact can be observed. The datasets obtained
from these studies correspond to the principal data analysed in the development of this
project. Section 2.2 provides a thorough overview of the datasets and the characteristics
relevant to perform computational analysis.

Figure 1.16 Examples of images obtained from D. melanogaster. (a) Represents a diagram
of the adult fly. In (b) refers to hematopoiesis during embryogenesis as seen in Figure 1.15.
Finally, (c,d) show two examples of macrophages acquired in different settings. (c) shows an
image described in [64] and (d) shows an image shown obtained by Stramer et al. [4].
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1.9 Summary

The general understanding is made of three main parts: cell migration in general and
in the scope of immune response, understanding the acquisition of images, and an
overview of some attempts made to simplify the complex biochemical and mechanical
interactions through mathematical modelling.

The cell migration process is an intricate one, which encloses several sciences. Cell
migration in general involves a process which in reality involves biological understanding
of structures, chemical reactions happening within the cell and outside of it, as
well as the physics involved in the motion. Then, observation of cells span from
the technicalities of observing phenomena in much smaller spaces, to the intricacies
associated to using surrogate models and linking them to benefit the understanding
of humans’ systems and pathologies. These should be included as not all techniques
show every component in the cell, but each microscopy technique has limitations in
the representation cellular structures.

The objective of such compilation was to understand cell migration as a process, as
a series of steps which involve some cues and triggers and reactions. However, regardless
of the vast understanding of the motion itself, this chapter aimed to acknowledge the
lack of understanding the integration of such cues and, in simple terms the intention
of the movement. Especially in the context of immunological response, understanding
cell processes requires analysis in normal and perturbed conditions; ideally correlating
movement and shape changes with with the dynamics of cellular signalling, both internal
and external [37]. The mathematical models have been helpful in understanding and
producing repeatable experiments.

In a more particular scope, the model organism Drosophila melanogaster can offer
insights into how macrophages integrate cues to migration and other tasks [3]. It has
been shown that interactions amongst the cells’ structures appear to anticipate the
direction of migration [4]. And therefore suggest the need for a precise analysis of cell
shapes as they evolve through time as well as the correct identification of interacting
cells that overlap could provide information for specific cells in biological studies; where
sharp corners suggest an active migrating cell and rounded corners inactivity [4].

25





Chapter 2

Materials: images of fluorescently
labelled macrophages and other
data

This chapter describes the images analysed in this work. It is a continuation of the
biological context described in Chapter 1, which concluded with the acquisition of
images of cells from model organisms. The acquisition of images result in a digital
array of values, representing the intensities of light captured at each position.

The following main topics are presented: (i) the mathematical foundations for the
representation of images; (ii) the different datasets to be analysed in this work, where
A thorough description of the images acquired is provided and the challenges to analyse
the images are presented; (iii) the representation of shapes as closed boundaries of
objects and the synthetic data developed to model the shapes and overlapping of the
cells; finally (iv) the development of the routines to select the ground truth to validate
algorithms in future sections. Two types of synthetic data were developed, allowing to
validate algorithms presented in future chapters.

2.1 Representation of images

Light intensity images are the most common type of images encountered in daily
experience [65], such images represent the the variation of light intensity in the
scene. In analysing images of cells, as mentioned by Meijering [66], “the abundance,
heterogeneity, dimensionality and complexity of the data acquired by modern imaging
experiments rule out manual image management”. In the scope of this work the
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light intensity variation is produced by the fluorescence microscopy imaging technique
described by Stramer et al. in [4, 43]. The main objects of study in this work are video
sequences, which correspond to sets of time-related digital images, or simply called
images. The objective of this section is to provide a homogeneous representation of
digital images and the operations that can be performed in them; the overview includes
the notation that will be utilised throughout the thesis.

An image can be seen as a digitalisation of a continuous function in two variables [67],
corresponding to the spatial coordinates in an image. Let f : IX × IY → R, f(X, Y )
represent a function in two continuous variables, (X, Y ), over two intervals, represented
by I ⊂ R, in the Cartesian plane. The intervals can represent a rectangular section of
the plane. For simplicity, and without loss of generality, let IX = [0, a] and IY = [0, b],
where a and b are numbers such that a, b > 0, positioning the rectangle IX ×IY in the
first quadrant of the plane. The range of f is assumed to be the range of values [0, g].

Figure 2.1 Representation of the creation of a digital image. (a) A representation of the
continuous function f , the grid represents a sensor array in which the image will be projected.
After digitalisation, (b) shows the function f digitalised as a matrix I, given the sensor array.
In both cases, the order of the array is presented.

The digitalisation of f consists of (i) sampling, (ii) discretisation in the (X, Y )
variables; and (iii) quantisation, which is a discretisation of the range of f . Let the
discrete variables (x, y) correspond to the spatial positions in IX × IY where the
samples of f are taken. For simplicity, x = 1, 2, · · · , Nr, where Nr is the number of
rows and y = 1, 2, · · · , Nc, where Nc is the number of columns. The intensities of the
image will be quantised into the finite set I = 1, 2 · · · , L. For example, in 8-bit images,
the quantisation results in the interval I = 1, 2, · · · , 255. Throughout this work, all
digitised images will be referred to with the symbol I = I(x, y). Figure 2.1 shows a
representation of the digitalisation of an image. In the figure, the arrangement of the
digital coordinates (x, y) would represent the image as a matrix I of size Nr × Nc.
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Digital images are generated when an array of light sensitive sensors capture the light
entering them. The number of sensors in the array corresponds to the number of
positions in the resulting image. Each position in the image is called a pixel, and it is
represented by the symbol px = I(x, y). The number of pixels in an image depends on
the resolution of the sensor array.

Colour images

The main work carried out in this work involves the manipulation of images of colour.
In broad terms, following Gonzalez and Woods [67, Chapter 6], colour is perceived by
humans by the white sun light which is reflected from the objects it hits. The spectrum
of colours forms the different colours which blend smoothly into each other, as the
frequency of the light wave increases; however, seven colours can be broadly separated
in the visible spectrum: red, orange, yellow, green, blue and violet. Figure 2.2 contains
the representation of the RGB colour space, how each layer contributes to the coloured
image and an example frame of the MACROS2 dataset.

Figure 2.2 Representation of RGB colour space. (a) In the RGB colour space, each colour
is represented by three coordinates ranging from 0 to 1. The greyscale is represented in the
vector λ(1, 1, 1)T , λ ∈ [0, 1]. (b) Represents the three layers in an RGB image. (c) The RGB
space is reduced to the RG plane as the images in this work contain two layers: red and
green. (d) Represents both layers in a macrophages frame.

For the purpose of this work it is important to understand the RGB colour space. A
colour space is the specification of a coordinate system where each colour is represented

29



Materials

by a single point. The RGB colour space is based on a three dimensional Cartesian
space in which each coordinate represents the intensity of a primary value, R for red,
G for green and B for blue. In practical terms, each position (pixel) (x, y) on an image
will have three values to it, each one to represent the colour. This implies that an
image will be a 3D matrix I(x, y, c) of size Nr ×Nc × 3, each of the three Nr ×Nc will
be referred to as layers.

Binary images

Levels of intensities in images are created in terms of a given set I = l1, l2, . . . , lL, in
general either each li = i− 1 or they are bounded between zero and one, li = (i− 1)/L.
This section presents the special case where L = 2, without loss of generality, I = {0, 1}.
Binary images can be used to provide context to scenes in images, where regions of
interest can be defined as foreground and the rest can be defined as background. In
Figure 2.3, a representation of a binarised image where some some pixels are created
as foreground and others as background.

The connected region in the binarised image will be referred to as detection or
object, and it can be modelled as a set in a 2D plane with a size equal to the number
of pixels in it. Building a binary image can be done either by manually selecting which
pixels will be assigned as 1, or done automatically by a computer algorithm; which
incorporates context to the image by classifying some pixels as positive, or “1”, or
negatives, or “0”.

Figure 2.3 Example of a binary image defined from a digitised image. (a) Shows a digital
image in which a shape can be observed and others an be appreciated as background. A
binary image (b) in which the pixels corresponding to the object have been set to 1 and the
background pixels have been set to 0.
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2.2 Materials

This section provides the context for image analysis techniques described in the following
chapters to automatically analyse movement patterns of detected objects. The following
cases are presented: the ISBI Cell Tracking Challenge (CT-Challenge), the environment
analysis inferred from the observation of swimming patterns in Artemia Franciscana
and dataset of interacting macrophages. The latter presents overlapping of the cells
and distinct shapes that occur during movement. To address this, synthetic data was
created to aid in the testing of models and techniques developed in Chapter 4.

Datasets of the ISBI Cell Tracking Challenge

Figure 2.4 Example frames of all the ISBI datasets in the 2015 challenge. The acquisition
techniques in each dataset are referred in the top right corner: DIC refers to Differential
Interference Contrast, Fluo to Fluorescence microscopy and PhC refers to Phase Contrast
microscopy. The top right corner shows the imaging technique. In datasets which contain 3D
images display the maximum intensity projection. Dataset names are listed below, the ones
submitted to the challenge appear in bold: (a) C2DH-HeLa, (b) C2DL-MSC, (c) C3DH-
H157, (d) C3DL-MDA231, (e) N2DH-GOWT1, (f) N2DH-SIM, (g) N2DH-SIM+,
(h) N2DL-HeLa, (i) N3DH-CE, (j) N3DH-CHO, (k) N3DH-SIM, (l) N3DH-SIM+,
(m) N3DL-DRO, (n) C2DH-U373, (o) C2DL-PSC. Specification of the acronyms in Table
2.1.
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In the context of the ISBI 2015, a combined report on the results for three editions of
the CT-Challenge presented [64]. The CT-Challenge involved 21 algorithms and 13
different datasets from various microscopy modalities ranging from two-dimensional
(2D) to three dimensional (3D). In the case of these datasets, the temporal context is
not relevant to the work as no analysis of the tracks will be done.

Table 2.1 Description of the ISBI datasets used for this work. The table shows the basic
information of each dataset. Dataset names are listed below, the ones submitted to the
challenge appear in bold.

Dataset Description
C2DH-HeLa HeLa cells on a flat glass substrate.

C2DL-MSC
Rat mesenchymal stem cells on a flat (2D)
polyacrylamide substrate.

C3DH-H157 H157 lung cancer cells.
C3DL-MDA231 MDA231 human breast carcinoma cells.
N2DH-GOWT1 GFP-GOWT1 mouse stem cells on a flat (2D) substrate.

N2DL-HeLa
HeLa cells on Histone 2B Green Fluorescent Protein
(H2b-GFP) on a flat (2D) substrate.

N3DH-CE Early C. elegans developing embryo.
N3DH-CHO Nuclei of Chinese hamster ovarian cells
N3DL-DRO Developing Drosophila melanogaster embryo.
C2DH-U373 Glioblastoma-astrocytoma U373 cells
C2DL-PSC Pancreatic stem cells

The aim of the challenge, just like its predecessors such as [68], was the creation of
an objective comparison between algorithms that would perform both the segmentation
and tracking of the objects in each dataset. It is worth noting that none of the algorithms
fully obtained solutions. Also, it is important to notice that each participating team
could choose which datasets would be submitted to the challenge. For the purposes
of this work, the datasets thoroughly explored included the fluorescent microscopy
datasets, and one of the phase contrast.

Some of the sets have been used in previous challenges, these have been described
in earlier publications [68]. Table 2.1 includes a brief description of each of the datasets
that will be referred to as ISBI datasets, and the acquisition of the images. Some
datasets are described in this section to provide context. For a thorough description,
the reader is referred to [68, 64]. Examples of frames in all the datasets in the challenge
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are shown in Figure 2.4. The challenge involved fifteen datasets in which different
imaging techniques, differential interference microscopy (DIC), fluorescence (Fluo) and
Phase Contrast microscopy (PhC) was used.

Furthermore, examples each dataset are shown in figures 2.5 to 2.9 where the
difference in intensities found within the cells depicted can be appreciated. As the
datasets belong to a challenge, they include an annotated training dataset consisting
of the ground truth for both segmentation and tracking evaluation.

C2DL-MSC. The dataset consists of rat mesenchymal stem cells that have been
transfected with Green Fluorescent Protein (GFP), the cells grow on a flat polyacry-
lamide substrate. Figure 2.5 shows a frame of the dataset. The dataset consists of
t = 48 frames of size (Nr, Nc, nd) = (832, 992, 1). The dataset presents cells that in
some cases appear as very thin and elongated, and in general have a low signal-to-noise
ratio. Cell stretching causes some apparent discontinuities of the cells and contact
between the cells. One can notice on Figure 2.5 the difference in sizes of the discernible
cells. On the low centre of the image, a small bright spot can be noticed, that does
not appear to be connected to other cells.

Figure 2.5 Frame taken from the C2DL-MSC dataset. The colourbar represents the varied
intensities of the dataset. An intensity profile was taken and represented with a dotted, yellow
line to visualise the variations in intensities in the frame. A histogram of the intensities pixel
intensities is also displayed.

N2DH-GOWT1. This dataset consists of GOWT1 mouse embryonic stem cells
transfected with GFP, which grow on a flat substrate. The dataset has t = 92 frames
of size (nh, nw, nd) = (1024, 1024, 1). The staining of the cells is heterogeneous, which
translates into a lot of variability in the intensity levels in the image, like the two cells
that can barely be seen in the bottom right corner in Figure 2.6 compared to the bright
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one at the top left corner. In this dataset some collisions and mitosis occur which
would complicate with the tracking of the cells.

Figure 2.6 Frame taken from the N2DH-GOWT1 dataset. The colourbar represents the
varied intensities of the dataset. An intensity profile was taken and represented with a dotted,
yellow line to visualise the variations in intensities in the frame. A histogram of the intensities
pixel intensities is also displayed.

N2DH-SIM. This is a simulated dataset of fluorescently labelled nuclei of the HL60
cell line, migrating on a flat 2D surface, as seen in figure 2.7. The HL60 cell line
originated in 1977 with a patient with acute myeloid leukaemia, and have been a
widely used model for studies in differentiation. For a comprehensive review of this
the reader is referred to the work by Birnie GD [69]. The dataset has t = 50 frames of
size (nh, Nc, nd) = (400, 600, 1). This dataset includes some mitoses. The simulation
tool used was based on [70].

Figure 2.7 Frame taken from the N2DH-SIM dataset. The colourbar represents the varied
intensities of the dataset. An intensity profile was taken and represented with a dotted, yellow
line to visualise the variations in intensities in the frame. A histogram of the intensities pixel
intensities is also displayed.

N2DL-HeLa. This dataset consists of Histone 2B (H2B)-GFP expressing HeLa
cells on a flat substrate 2.8. The dataset has t = 92 frames of size (Nr, Nc, nd) =
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(700, 1100, 1). This is a dataset with a high density and low resolution, it also displays
mitoses, collisions and cells coming in and out of the field of view. The variation in
intensity in the cells is noticeable as well.

Figure 2.8 Frame taken from the N2DL-HeLa dataset. The colourbar represents the varied
intensities of the dataset. An intensity profile was taken and represented with a dotted, yellow
line to visualise the variations in intensities in the frame. A histogram of the intensities pixel
intensities is also displayed.

C2DL-PSC. This dataset corresponds to pancreatic stem cells on a flat polystyrene
substrate. It is a dataset obtained through phase contrast microscopy, which allows for
a simpler microscope setup. Notice the image profile presented in Figure 2.9, in which
the intensities of the background shows some shading, probably caused by the setup of
the microscope.

Figure 2.9 Frame taken from the C2DL-PSC dataset. The colourbar represents the varied
intensities of the dataset. An intensity profile was taken and represented with a dotted, yellow
line to visualise the variations in intensities in the frame. A histogram of the intensities pixel
intensities is also displayed.

Artemia Franciscana for toxicological assessment

Some of the migration process of cells inside higher organisms are similar to those
experienced by small organisms, in particular unicellular bacteria and also the Artemia
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Franciscana. In [53], an analysis to of the moving patterns of the Artemia Franciscana
was made, linking the moving patterns to the toxicity of the environment.

Artemia Franciscanas (from now referred as Artemia) are marine crustaceans
that have been used as a test organism in toxicological assays. Artemia larvae are
loaded into specially designed chambers where they can be observed with a USB-
based digital microimaging system. The microscope is equipped with a 5.0-megapixel
sensor. More specifically, the layout of the experiment can be seen on Figure 2.10,
where the micro-culture chamber was optimised to hold multiple specimens of freely
swimming crustacean larvae for up to 24 hours under continuous microperfusion.
Microfluidic devices were perfused at a flow rate of 5mL/h with varying doses of
potassium dichromate. A full description of the experiment and the materials and
doses used on this experiment can be found in [53], as it is part of the work presented
for the 2015 British Machine Vision Conference, in the context of the Machine Vision of
Animals and their Behaviour Workshop (MVAB) 2015. The objective of the experiment
was to determine, from the swimming patterns the dose-dependent immobilisation of
Artemia larvae in response to potassium dichromate.

Schematic and layout of the experiment
Outlet

Ecotoxicity 
chamber

Engraved 
channel

Loading 
chamber

Inlet

Figure 2.10 Layout of the Artemia Franciscana experiment. The first image (left) shows
the schematic of the 3D ecotoxicity chamber of 10mm in diameter and 1.5mm in height. The
second image (right) shows a photograph of the actual chamber with all its parts referenced.
Image originally presented in [53].

Figure 2.11 shows an example of the dataset analysed, a t = 1800 time frame
dataset of size (Nr, Nc, nd) = (288, 352, 3), that contains five animals and the actual
objects of interest highlighted manually. Notice the presence of artefacts like bubbles
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and the structure of the chamber that introduce more noise. However, if the challenges
of image processing for this problems are met, the 30 frame-per-second (fps) of the
imaging system allows for a very thorough analysis of the images and lets the changes
of the swimming patterns of the crustaceans be better noticed and analysed.

Figure 2.11 One representative image of the Artemia dataset. (a) Original image (b)
Ground truth overlaid on the image highlighting the Artemias (yellow).

Fluorescently Labelled macrophages

Fluorescently labelled macrophages were observed in embryos of the model organism
Drosophila melanogaster. The images show two fluorescence labels. The first layer
shows the nuclei, which were labelled with CFP-Moesin, appearing red, whilst the
microtubules were labelled with a green microtubule probe (Clip-GFP) [4], and appear
in the second (green) channel. Three datasets were considered in this work, these
will be referred to as MACROS<ID>, where ID is 1, 2 or 3. The dataset MACROS1 was
first acquired at the start of the project, and most work was developed on it, [71, 72].
The space and temporal resolution of all datasets consists of a pixel resolution of
0.21µm/pixel with a size (Nr, Nc, nd) = (541, 672, 3); each image was acquired every
ten seconds. The third layer on the RGB image corresponding to the blue channel
does not contain information.

The main differences between the datasets involve the distributions of the light
intensities and the number of time frames in each. Figure 2.12 show cases where cells
overlap, and where the boundary of the cells would not be correctly determined. In
this work, the overlapped cells are of great importance. These clusters of cells that
overlap will be referred to as clumps. Figure 2.17 shows a simple diagram explaining
the clumps, while examples of clumps can be found in 2.14.
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Figure 2.12 Representative time frame of the MACROS datasets. All datasets are represented,
(a) MACROS1, (b) MACROS2 and (c) MACROS3, where the two layers of fluorescence are visible,
with red representing the nuclei and the microtubules appearing in green. Per representative
frame, an intensity profile was taken in (i) a dotted, yellow line to visualise the variations in
intensities in the green and red channels, and a histogram of the intensities in the frame are
shown in (ii). Notice that the green channel does not fully outline the cells’ boundaries, but
rather presents inhomogeneous distribution of intensities. Bars: 10µm.

Challenges for automated analysis of macrophages

Figure 2.12 exemplifies the distribution of the intensities per channel and dataset.
Cell-cell contact, some due to possible interactions between the cells, cause overlapping
in the green channels. See figure 2.14 for an example of types of overlapping between
the cells. Furthermore, single cells show a range of changing shapes, examples are
shown in Figure 2.15. Such shapes could be indicative of the state of the cell, as cells
approaching each other appear to elongate towards ech other, as observed in Figure
2.16. The previous characteristics of the data would complicate an automated analysis
of the cells through a computer algorithm. Thus, in the following section, the modelling
approach for cells’ shapes will be described.
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Figure 2.13 Mean and variance frames of the MACROS2 dataset for the Red and Green
channels. The mean frames for the red (b) and green (c) channels of data are shown. The
mean channels were obtained by adding all the frames’ respective channels and dividing by
the number of frames. The variance frames for the red (d) and green (e) channels of the
MACROS2 show the areas where movement in the dataset was made. Notice that cells do not
occupy the space in the top right and bottom left corners; when observing the data in motion,
it can be seen that towards those edges the cells’ intensities fade due to imaging problems.

Figure 2.14 Example of overlapping cells in a single frame. On the right, representation of
a full frame with (red, dotted) squares highlighting all regions of interest (ROI) with cases of
overlapping in the green channel. Microtubules are clearly observed in green while nuclei of
the cells is visible in red. Detail of overlapping cases can be seen in frames (a-d). Notice the
different configurations of the cells, as the overlapping is caused by the interactions amongst
cells. Bars: 10µm.
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Figure 2.15 Example of cells’ shapes in a single frame. On the right, a representation of a
full frame with (red) squares highlighting all regions of interest (ROI) with the different cell
shapes recognised in this document. (a-d) Detail of cells’ shapes cases. Bars: 10µm.

Figure 2.16 Evolution of a single cell. Seven moments selected from 50 frames. Cell has
been cropped.

2.3 Object boundaries and synthetic data

Synthetic data was generated to overcome difficulties in analysing the changing shape
of moving cells, as well as studying the overlapping between objects. Two separate
approaches were generated to study overlapping and cell shapes respectively. This
section describes the generation of synthetic data to study the two main qualities of
the macrophages data: (i) overlapping cells and (ii) the basic shapes formed in the
cells as it migrates.

Shapes will be modelled using boundaries. The following section defines a boundary
as a closed curve, its characteristics as and discretisation are also presented. Then, a
working definition of a clump is introduced. Finally, the synthetic data generated to
model is developed. Overlapping ellipses will be helpful in studying the boundary of
the clumps and the basic shapes will be useful in understanding the evolution of the
cell shape through time, and in different scenarios, i.e. isolated vs. close to other cells.
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Boundary of an object

Object shapes can be modelled with a parametric, closed curves, c(s) = (x(s), y(s)),
such that s ∈ [0, 1] and the point c(0) is at the same position as the point c(1).
Particular to this work, object shapes are assumed to be closed and almost convex,
i.e. let A(c) be the area inside the parametric curve, then the curve will be almost
convex if the area of the largest strictly convex 2D set that fits inside the curve is
κA(c), κ ∈ (0, 1).

Discrete boundary of an object. Let B ⊂ R2 define the discrete boundary an
object containing N ordered points. Then B can be described as :

B =
{

xi = (x(si), y(si))
∣∣∣∣si = i

N
, i = 1, · · · , N

}
, (2.1)

where x corresponds to a specific vector or point with two coordinates x = (x, y)T .
Thus, each of the points xi ∈ B, i = 1, · · · , N in the boundary are ordered. Without
loss of generality, the points will be deemed to be ordered in a clockwise manner along
the boundary of the object. For example, for a boundary having N points, xN+i = xi.

Definition of a clump The term clump, as used in this work, represents a cluster
of two or more objects in a scene. A more formal definition of a clump with two objects
would be defined through boundaries B1 and B2 being partially overlapped such that
B1 ∩ B2 ̸= ∅. In an image, the image intensities would create ambiguities regarding the
exact position of the boundaries of the participating objects. The ambiguity can occur
in all images, whether they present various intensity levels, colour, or being a binary
image. Figure 2.17 illustrates a clump as used in this work.

(a) (b) (c)

Figure 2.17 Illustration of the formation of a clump using ellipses. The diagram shows a
(a) representation of two objects overlapping, then (b) presents the two different boundaries
of the objects, (c) presents a clump formed by the boundary of the union of the two objects
and (d) presents the binarised clump, that correspond to the mathematical union of the two
binarised boundaries.
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Modelling overlapping boundaries with ellipses

Let x = (x, y)T ∈ R, then the parametric equation of an ellipse is given by x(s) =
(x(s), y(s))T = (a cos s, b sin s)T , where a > b are the major and minor axes of the
ellipse and s ∈ [0, 2π]. Rotating the major axis by an angle ϕ, then a rotation matrix

R(ϕ) is defined as R(ϕ) =
 cos ϕ sin ϕ

− sin ϕ cos ϕ

 , yielding the more general form of the

ellipse xϕ(s) = R(ϕ)x(s).
Additionally, to define an ellipse at any point on the Cartesian grid, then a transla-

tion given by the pair pd = (xd, yd)T would then result in the complete form of the
ellipse that is considered on this work:

xϕ,d = xϕ(s) + pd. (2.2)

The ellipses generated on this work follow equation (2.2). The parameters used to
define the ellipses are the position p0 = (x0, y0), the angle the ellipse is rotated ϕ, and
the size of the ellipse determined by the axes (a, b). Thus, the expression of an ellipse
as used in this work is

E (ϕ, d, (a, b)) =
xϕ,d(s) = R(ϕ)

a cos s

b cos s

+ pd : s ∈ [0, 2π]
 . (2.3)

The objective of the synthetic ellipses is to have a model for overlapping objects where
the shapes of the objects do not vary, allowing for the study of the intersections of
boundaries based on simple variables, pd and ϕ.

In the objects generated using equation (2.3), three conventions were assumed
in this work: The first one presents the values of the axes (a, b), meaning that
E (0, p0, (a, b)) = E (0, p0). The second convention was to have a central ellipse common
to all pairs E0 = E (0, p0); this would allow the definition of the second ellipse in terms
of the differences between the angles and the distance to the centre p0. The third
convention made involves that the points taken from the centre p0 would only vary
on the x-axis, i.e. if p0 = (x0, y0)T , then for every pd = (x, y)T = (x0 + ∆x, y0)T . For
this work, an ellipse will be referred to in terms of the difference to the angle ϕ and
difference from the centre ∆x, as Eϕ,∆ = E

(
ϕ, p0 + (∆x, 0)T

)
. Figure 2.18(a) shows the

reference ellipse E0, while Figures 2.18(b,c) show two examples of overlapped ellipses.
Once the boundaries of both objects are calculated, binary images are generated from
the boundary and summed to form the test image for the proposed method. The
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Figure 2.18 Examples of ellipse boundaries generated by equation (2.2). The ellipses are
generated based on these parameters: major and minor axes, an angle of rotation and
translation of the x (separation). (a) Shows the single reference ellipse. (b) Shows the
reference ellipse overlapped with an ellipse with a change in angle (ϕ) and in (c) with changes
in angle and separation (ϕ, ∆).

binary images of size (M, N) will be represented by the variable Eϕ,∆, this is done
through the function poly2mask in Matlab®, Eϕ,∆ = poly2mask (Eϕ,∆, M, N). Figure
2.19 shows one test image generated from both E0 and E50,0.

Generation of overlapping data Images of size (M, N) = (256, 512) were gener-
ated with p0 = (128, 128)T and axes (a, b) = (120, 53) that contained an overlapping of
E0 and Eϕ,∆. The values for the reference ellipse E0 are shown in table 2.2. As stated
before, the images vary in terms of the separation distance ∆, and the angle with
respect to the major axis ϕ. Ellipses Eϕ,∆ were generated with values of ∆ ranging
from [0, 160] in increments of 10 pixels, as well as angles (ϕ) ranging in [0, 90] degrees
in increments of 10. The images where there was no overlap present in the generated
ellipses, E0, Eϕ,∆, were discarded, producing a total of 142 images. Figure 2.20 contains
a subset of the ellipses tested. Cases where there was no overlap were ignored from the
analysis.

Computing ground truth of ellipse intersections In this work, the intersections
of the two boundaries are recognised as key points in the boundary of a clump that
would allow for its disambiguation. If the aim will be to detect relevant corners from
the boundary of an object, then —at least in the context of the ellipse model— it is
important to assess whether said algorithm detects the correct features.
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Table 2.2 Values assigned to parameters of the ellipses to generate binary images.

Parameter Value
Image size (M, N) 256× 512

Major axis (a) 120
Minor axis (b) 53

Centre point (p0) (128, 128)T

Separation distances ∆ = 0, 10, 20, · · · , 160
Angles (DEG) ϕ = 0, 10, 20, · · · , 90

Figure 2.19 An example of the generation of overlapping binary ellipses. From the generation
of various ellipses, Figure 2.18, binary images can be generated to produce a model for
overlapping objects, where all their parameters are known.

Figure 2.20 Overview of the range of paired ellipses investigated. The pairs presented on
this image represent a small sample of the ellipses that were tested by the method presented.
The overlapped region can be seen in white and the areas that are not overlapping are shown
in grey. The boundary of the central ellipse E0 is highlighted in cyan (- -) while the second
ellipse’s boundary is presented in red.
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Thus, to analyse the output of any proposed method, ground truth of the intersection
points of ellipses E0, Eϕ,∆ needs to be computed. Even though the closed solution for
the equation E0(x, y) = Eϕ,∆(x, y) would yield the theoretical Nϕ,∆ intersection points:

X⋆ = {(x⋆
i , y⋆

i )}Nϕ,∆
i=1 , E0(x⋆

i , y⋆
i ) = Eϕ,∆(x⋆

i , y⋆
i ). (2.4)

It is easy to see how the number of intersection points goes from zero to four, i.e.
Nϕ,∆ = 0, 1, 2, 3, 4. This approach would not be practical when more complicated
shapes are needed, like the cell shapes from the ground truth of macrophages, discussed
in Section 2.2. The alternative was to estimate the real intersections, which could
be achieved through two methods. The first one is to analyse the boundaries of the
ellipses and find the points that solve the following problem:

(x̂, ŷ) = min ∥E0(x, y)− Eϕ,∆(x, y)∥2
2 , (2.5)

equation (2.5) refers to finding the set of Nϕ,∆ points that minimise the distance
between the points in E0(x, y) and the points in Eϕ,∆(x, y). This involves generating a
matrix of distances

D = ((di,j)) =
∥∥∥pi0

0 − pj
ϕ,∆

∥∥∥
2

,

where pi
0 = (x, y)i

0 corresponds to the ith point in E0, on the other hand pj
ϕ,∆ = (x, y)j

ϕ,∆

correspond to the jth point on Eϕ,∆. In all cases, ∥ · ∥2 refers to the euclidean norm.
The second approach was to consider the binary images E0 and Eϕ,∆, and get the

binary perimeters of both, named ∂E0 and ∂Eϕ,∆ respectively. They are computed
through the function bwperim from Matlab®, ∂E = bwperim (E) , in this way, adding
both images would cause the intersections to have a value of 2, making the finding
of the intersections a trivial task. However, it is worth noting that the process is not
as straightforward as the last statement, because the way the perimeter pixels are
arranged in the image. The position of ∂E0 relative to some ∂Eϕ,∆ could cause two
potential problems: (i) not detecting all the ground truth points and (ii) having a
digital segment of line intersect with another, giving more points than desired.

Modelling single cell boundaries using splines

This section describes the generation of test images that model the shape variations of
the macrophages, as seen in figures 2.15 and 2.16. The shapes were generated using
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control points and concatenating splines to them to achieve sharp edges with a smooth
curve in between them.

Let {Y ⋆
i }

N
1 = {(x1,i, y2,i)}N

1 , be a collection of N control points of a basic shape
such that Y ⋆

i ∼ N (µ⋆
i , σ⋆

i ). The value of N depends on the type of basic shape: circle
has 4, drop has 7, bi-drop has 8 and tridrop has 10. To model the variations in the
cells’ shapes, within their basic categories, the control points are distributed Normal.
It is easy to see that each shape has a specific number of corners that classify them,
i.e the drop has one pointy edge or corner, while bidrop and tridrop have two and
three, respectively. The control points are joined with splines that then produce the
boundary of the shape, B, which then models that of a segmented cell (Figure 2.22).
As splines are smooth curves, the pointy edges were modelled by joining different
splines, depending on the shape that is being modelled. An explanatory diagram of
this construction is presented in Figure 2.21.

Figure 2.21 Synthetic generation of random basic shapes using splines. This diagram
illustrates the generation of shapes using splines. The shapes that have a pointy edge would
prevent a single spline to generate them, thus the concatenation of various splines was used
in order to achieve the desired shapes.

Figure 2.22 Synthetic generation of random basic shapes. Per shape, 200 cases were
generated. The control points are shown in blue(·). The mean shapes are presented in
magenta(−); and the mean control points are represented in black(⋄).
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A measure of elongation: pointiness. As observed in Figure 2.23 Section 2.2,
the macrophages take various shapes while moving on the substrate. A key movement
appears to be the elongation of the cells, especially when they are about to come in
contact with other cells. Thus, the elongation is a factor of interest that would be
important to include in the analysis of the movement. To model the elongation of the
cell, for each of the identified shapes, a level of pointiness was introduced by moving
the leading control points in the shape further from the centre of the figure, causing
shapes where the pointy edges seem sharper.

Figure 2.23 Pointiness changes observed in consecutive frames.

2.4 Ground truth and comparison of binary images

The ground truth (GT) is a binary image, which contains the correct labelling of
objects of interest. Normally, an image is labelled manually by an expert in the field.
No ground truth was provided for the data of macrophages, thus developments were
made to address the selection of ground truth, which allows for overlapping cases. The
GT used to accommodate this data was built through a Matlab® software developed
by the author. The GT software, which is based on Matlab®’s imfreehand function,
allows the user to manually label images of cells, accounting for the overlap. The user
labels all cells of interest in both red and green channels of the data. Cells in the red
channel do not overlap, and the ranges of shapes and sizes do not vary extensively.
However, as mentioned before, the green channel presents several challenges in terms
of the segmentation due to the imaging technique used to visualise the microtubules in
the cells.

Generation of ground truth. Two challenges arise when developing the ground
truth for the green channel: (i) varying shapes of the cells and (ii) overlapping. Because
of overlapping, the software developed —freehandSegmentation, [72]— separates
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each annotated cell onto a single layer, producing a sparse 3D matrix that contains
as many layers as cells which were manually annotated. For storing purposes and
handling, another representation of the overlapping data was developed which involved
assigning a prime label to each annotated green channel cell and multiplying the areas
of overlapping. Finally, each nuclei is given the same label as its corresponding green
channel structure. The approach described ensures that each annotated data can be
stored in the same space as the original RGB images. Figure 2.24 shows a diagram of
the input and types of outputs available by the software.

(a) Input (b) Manual
annotation

(c) Output
layers 

Figure 2.24 Diagram of the manual annotating software and types of annotated data. (a)
The input (a) is a single RGB frame, which gets presented to the user twice for manual
annotation (b). The first time, the user annotates the areas of the image corresponding to
the nuclei and the second time the outlines of the green channel. Each annotation is then
assigned with a prime label pi, in this case represented in cyan and magenta. If overlapping
is detected in the green channel, then each cell in the green channel is separated into a
single layer while the annotation continues. Once the annotation is completed, the layers are
combined into a single one by multiplying the prime labels where overlapping is present.

In this work, a subset of ten frames from the original 541 images were manually
segmented by the author, the frames selected present examples of overlapping that
can be recognised and studied, namely the four CLUMPS depicted in Figure 2.14.
An example of both manually segmented channels can be seen in Figure 2.25. It
is important to notice that the ground truth was generated from a non-expert’s
perspective. in which the shapes of the cells was easily recognisable. This part of the
thesis development some of the difficulties of dealing with the dataset. As seen in the
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2.4 Ground truth and comparison of binary images

introduction to the dataset, in Figure 2.13 the up right and low left corners are areas
of low activity due to imaging problems.

Figure 2.25 Example of the ground truth at a representative time frame. The ground truth
for both red (nuclei) and green (microtubules) channels is shown in coloured lines. Both
channels are visible in the image. Notice that some visible cells were not segmented, at the
bottom and top. These cells were not segmented because the imaging did not provide a
correct representation in the image. Notice the cell at the top, the shape of the green cell is
elongated and barely visible. The case of the bottom cell, is simply because the red channel
is completely lost in this case.

The ten frames selected for ground truth generation were selected for two main
reasons. (i) Each frame contained four instances of clumps which could be easily
identified empirically and were presented in Figure 2.14. The clumps presented 2 or 3
cells in a clump; (ii) the images come from MACROS1 dataset, in which the contrast in
the green channel is much lower thus proving to be a testing for the more challenging
cases.

Comparison of binary images. In Section 2.4, the definition of ground truth (GT)
was provided both in general and in the context of the data used in this work. In
practical terms, given an image which contains regions to be automatically segmented,
its ground truth will be a binary image of the same dimensions where all the regions
were selected manually by a human, in some cases, an expert. The output of a detection
software is called a segmentation, the methodologies will be explained in Section 3.1.

Manual annotations are then compared with the output of segmentation algorithms.
There are various ways of comparing the annotated images with segmentation outputs,
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which involve looking at images like sets. In simple terms, the analysis can be done
comparing each pixel in both the ground truth and the algorithm’s output image. Four
possibilities, depending on the comparisons: (i) True positive (TP ) as the pixels
where both the output and ground truth show a positive or 1; (ii) True negative,
(TN) in pixels where both images show a negative or 0; (iii) False positive, (FP )
where the segmentation shows a 1 but the ground truth shows a 0, and (iv) False
negative (FN) where the segmentation shows a 0, but the ground truth shows a 1.

Counting the number of pixels that correspond to each category can produce metrics
for the performance of a segmentation, or how close the automatic output is from a
given manual annotation, appendix B.3. In the works by Jaccard [73], Fawcett [74]
and Randen and Husoy [75], such measures are provided. The Jaccard similarity index
[73], or simply Jaccard index, is defined in terms of sets and their sizes, as the ratio of
the intersection by the size of the union.

On the other hand, in the work by Fawcett [74], two measurements are presented:
precision and recall. Precision measures how many detected pixels are relevant,
by computing the ratio of true positives and the overall number of detected pixels,
TP + FP . Recall computes the ratio of true positives with the sum of the true
positives and the false negatives —or points that should have been detected, but
were missed—, this measurement can be seen as a ratio of the relevant pixels that
were detected. Finally, Randen and Husoy [75] present accuracy which compares the
number of correct detections, whether positives or negatives against the overall number
of pixels. All measurements can be understood from the diagram in figure 2.26, the
mathematical formulation is in equation (B.26).

Figure 2.26 Graphical representation of the Jaccard index, Precision and Recall measure-
ments. The diagram shows an abstract representation of the sets of pixels in an image, and
how they can be classified. The ratios described in equation (B.26) is shown, based on this
graphical representation.
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An important part of this work involves the automatic detection of cell structures
in images where the cells overlap. Therefore detections must be compared carefully
to the ground truth, as the overlapping could lead to confusions. The notion of the
performance measurements will be extended in the following sections to address such
problem.

Comparison of ground truth in overlapping segmentations This section ex-
plains the considerations made in order to compare the ground truth manually labelled
against the output of a segmentation algorithm. The software developed should consider
that the overlapping nature of the green channel will likely cause that the number of
cells detected by an algorithm will not match the number of cells in the ground truth.
The algorithm to compare a segmentation to the ground truth is based in the Jaccard
Similarity Index [73], or simply Jaccard index, however any statistic of performance
measurement can be used in this approach. The comparison methodology involves
calculating the Jaccard index of all detected cells against all cells in the output, then
for each detected cell, identify which cell in the ground truth is being targeted.

Figure 2.27 Procedure to compare ground truth (GT) of overlapping macrophages with
segmentation output. Assuming that both the segmentation output and GT are organised in
stacked form (Section 2.4) each cell in the segmentation output is compared to every cell
in the ground truth. The diagram shows two cases of GT cells (cyan, magenta) and two
corresponding cells part of a segmentation output (green, red). On the right, a representation
of the Jaccard matrix J, where the Jaccard Similarity Index [73] is performed on each of the
pairs. Intersection is represented in white, which in turn involve the true positives at each
case; on the other hand, different shades of grey represent false positives.
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Let Ngt be the number of cells in the ground truth of a frame and let Nseg be
the number of cells detected by a segmentation algorithm. The Jaccard Matrix J of
size Ngt × Nseg contains all the comparisons from the ground truth and the detected
cells. Figure 2.27 exemplifies the construction of the matrix J. Once the matrix of
comparisons J is built, each cell in the segmentation can be paired to the cell in the
ground truth which most likely is being targeted.

2.5 Summary

This chapter presents the materials used in this project. The chapter includes of four
main topics: (i) the mathematical representation of images, (ii) the main datasets of
migrating macrophages analysed in this work, and the secondary datasets used; (iii)
the representation of cell boundaries and (iv) the generation of ground truth.

Understanding the context of acquisition and cellular processes in the previous
chapter enhanced the familiarisation of the analysis with the data. Furthermore, the
presentation of the creation of digital images was of useful to understand the broad
context of digitalisation and introduce some key concepts and notation, such as size of
images or colour space and referring to channels (green or red). Segmentation, which
will be addressed in the following chapter, can be defined as the creation of a binary
image by classifying certain pixels from others.

In Section 2.2 Materials, three collections of datasets were presented, corresponding
to preliminary work and main focus. Preliminary data includes the ISBI datasets and
the Artemia datasets, while the main data consists of three datasets of macrophages
with two levels of fluorescence. The ISBI datasets are an overview of the field of cell
segmentation and tracking. The different datasets show a wide variety of intensities and
common problems encountered in the field, such as different intensity levels, shadowing
caused by the microscope, disappearing cells which could complicate the tracking and
even some cellular events like mitosis. On the other hand, the Artemia dataset presents
itself as an example of a project in which biological research questions can be extracted
from the analysis of the movement or tracks acquired. Finally, the MACROS datasets
were shown to give an overview of the data driving the whole project. The two levels
of fluorescence appear differently from each other. If analysed separately, the two
channels could provide complementary information. The nuclei (red) could be used as
an overall estimation of the position of the cell, while the shape of the cells could be
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investigated analysing the microtubules (green). In Chapter 3, the data is explored
thoroughly.

Finally, two developments were made: modelling the most relevant features observed
from cells in the MACROS datasets, section 2.3; developing a tool for the manual annota-
tion of data and comparison of segmentations considering overlapping. Overlapping
was modelled through ellipses, as they would allow for a controlled study of the level
in which an overlapping could potentially be handled by an algorithm analysing the
outline of the clump. On the other hand, the development of single shapes through
splines allowed for a controlled elongation of shapes similar to those found in the data.
Both models would allow for a controlled study of the geometry of the shapes, which
will be explored in Chapter 4. Regarding the generation of ground truth, 10 frames
were selected, which represented four clumps consistently moving without alteration.
The number of cells in each clumps ranged from two to three and they appeared to
have different levels of difficulty. The tool developed would allow for other applications
where ground truth is not widely available.

In the following chapter, an overview of image analysis techniques applied to the
data will be presented. The information empirically observed from the intensities of
macrophages will be explored and quantified with the objective of finding the overall
shape of the cell. Several algorithms will be tested with the datasets.
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Chapter 3

Exploration of the data through
image analysis and tracking

This chapter presents and exploration of the data through image analysis, showing the
processes of image alteration and modification, commonly grouped as preprocessing,
segmentation and postprocessing. The chapter also presents tracking as linking objects
from one point in time to another, of time-sequence models.

The objective of this chapter is to provide an analysis on segmentation and tracking
methods through various datasets and evaluate their performance to develop tools for
an automatic analysis of data described in Chapter 2, especially macrophages in section
2.2. The exploration of the data touches on overlapping cells, in which traditional
segmentation techniques produce clumps.

All methods presented are evaluated on the MACROS<ID> datasets to provide context
for the reader in terms of the design choices when developing the tools to analyse the
data (chapter 5); some techniques are also applied in some of the ISBI datasets, Section
2.2, and the Artemia datasets, 1.8.

General notation. Throughout this work, column vectors will be represented with
lowercase bold letters, e.g. x, v, p, and matrices will be represented either in uppercase
letters, like A, B, C or in blackboard uppercase letters when an image is being referred
to, for example I,K; where each element can be represented symbolically as A = ((ai.j)),
where i represents the ith row and j represents the jth column in the matrix. Values in
images at a certain location, I(x, y), are referred to as pixels, and are represented by a
lowercase p with a lowercase subscript, e.g ps, pr. The plane containing the pixels in
the image will be called the spatial domain.
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In the following Section 3.1, an overview of image processing techniques is presented,
centred in particular around image segmentation. Processes performed prior and after
segmentation are called pre- and post- processing techniques. The section is thus
separated in all three categories.

3.1 Classical image analysis

In this work, three main stages in image processing can be recognised, which will be
analysed in the following sections. The stages are preprocessing, which refer to the
intensity based operations performed on an image to aid in the segmentation techniques
perform better. Then, the core process of image segmentation will be discussed; such
process involves the classification of each pixel into one of two categories: background
and foreground. Finally, a postprocessing stage follows in which small errors in
segmentation are addressed, this stage usually involves some type of binary operation.
Sections 3.1, 3.1 and 3.1 show the relevant techniques in each category, applied to the
data presented in sections 2.2, 1.8 and 2.2. In particular, Figure 3.1 displays the test
frame which will be used to illustrate many of the techniques described herein. As
the objective is comparison, a region of interest of the image will be presented, as it
showcases the dataset’s principal problems.

 10 [ m]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Intensity along profile

Nuclei Microtubules

Figure 3.1 Presentation of test frame and the cropped images used in testing throughout
this chapter. The frame will be referred to throughout this work. (a) Represents the full
size frame from the MACROS1 dataset. Cyan boxes represent the areas of detail that will be
presented on the different techniques. (b,c) show the individual red and green channels. (e)
Shows the colour bars: (b) [0, 0.75], (c) [0, 0.5]. A yellow, dotted line is superimposed over
some cells in (b,c) to represent the image profile presented in (e).
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Preprocessing

Preprocessing of an image in this report refers to the operations performed on an
image that allows for a more precise segmentation or analysis of the data. These
operations can highlight some of the images’ features, remove noise, modify dimensions
and should improve the results of posterior operations. One classical classification
of preprocessing techniques is from the work by Sonka et al. [76], which classifies
such techniques into pixel brightness transformations, geometric transformations and
transformations in local neighbourhoods. Pixel brightness transformations refer to
modifications in the image regarding the pixels themselves, which normally address
brightness or grey-scale corrections. Geometric transformations are made to address
different types of distortion an image may present. Finally, local-preprocessing involves
the operation in the neighbourhood of a given pixel in order to produce a new value
for that location.

Furthermore, another approach in the work by Gonzalez and Woods [67] classifies
the techniques into transformations of intensities and spatial filtering. Transformations
of intensities, refer to transformations to the intensity levels I = 1, 2 · · · , L in each pixel,
which produce modifications of the statistical distribution of the intensities. Spatial
filtering refers to the local neighbourhood operations discussed in [76]. Techniques which
involve the convolution of the image with a filter kernel, to produce a new image in which
each pixel is the result of a local operation. In this work, the preprocessing techniques
used fall into the local-preprocessing and pixel brightness categories. Figure 3.2 shows
a graphical overview of the techniques analysed in this work and the classification it
has in classical literature.

Figure 3.2 Overview of the preprocessing methodologies analysed in this work. In the centre
of the diagram (double line) all the techniques as studied in the upcoming sections.
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Histogram modifications

Every pixel of the image will change its own value based in a determined in a function.
The transformation T [I(x, y)] can be rewritten as a one-dimensional function applied to
each pixel T (p), it is worth noting that the location is not relevant to this transformation,
only the intensity level at each point. Some examples of histogram modification are
described in Table B.1.

Table 3.1 Histogram modification functions. Let pr be a pixel in an image, which can be
one of the intensity levels I = 1, 2, . . . , L; and let ps be the modified value after applying the
function T (·), ps = T (pr).

Function on pixel Description
ps = L− pr Negatives, used to invert the levels

ps = c log (1 + pr) Logarithms
ps = cpγ

r Power-law or Gamma corrections
Contrast stretching Changing the range of pixel intensity values.

Histogram equalisation Increase the global contrast of an image.
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Figure 3.3 Comparison of histogram modification techniques with detail of the green channel
of a macrophage image. (a) Original image. (b) Negative of the original. (c) Represents a
logarithm transformation. (d) Gamma correction, (e) Contrast stretching, and (f) Histogram
equalisation are more complex techniques.

Size and geometric transformations

A common transformation is to reduce the size of the image in order to increase the
signal to noise ratio [77]. In their work, Burt and Adelson [77] developed an algorithm
to reduce an image. Given an input I0 ∈ Rm×n, then the image will be reduced to an
output I1 of size ⌈m/2⌉ × ⌈n/2⌉, which will be a reduced, low-pass filter version of I0.
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Figure 3.4 Examples of size reduction using both things proposed. From the original image
(a), size reduction is performed twice, to create an image of half the size, and an image of
25% the size. (b) Shows the outputs for the image when using interpolation and (c) shows
the images when using a Gaussian pyramid.

Geometric transformations are described as modifications of the spatial relationship
between the pixels in an image. Linear transformations are described by a matrix
T ∈ R3×3. Geometric transformations are shown for completeness, although they are
not a part the scope of this work. Transformations can be defined via matrices which
alter the positions (x, y) in an image, allowing it to change its size, the ratios of their
rows and columns and translating it to a different point. The transformation matrix T
is of size 3× 3.

Figure 3.5 Examples of transformations on detail of a frame. The top row shows the
transformations with an abstract 2D object, with the dotted lines representing the original
shape. White lines have been added for visualisation purposes.
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Filtering

This section provides an overview of the techniques in which each pixel in the image is
assigned a specific neighbourhood in which a predefined operation is performed, [67,
Chapter 3]. Filtering can be viewed differently depending on the field of study. Apart
from reducing noise in the images, other filters can be used to enhance some properties
or features of the image, extracting relevant information from it. The term filtering
is taken from the field of digital signal analysis and processing in which properties
of a signal are selected, enhanced or suppressed through convolution with a finite
function with special characteristics. For a thorough review of convolution in 2D digital
signals, the reader is referred to Section A, while for Signal Analysis and Processing,
the classical works by Oppenheim et al. [78] and [67] are recommended.

Filter kernels consist of matrices commonly of small sizes that can have different
parameters that determine the values within them. Throughout this work, it can be
assumed that all kernels, represented with letter K, are square matrices of size n, with
n = 2a + 1, a ∈ N, unless explicitly determined.

Figure 3.6 Simplified diagram of a 2D convolution of an image and a 5× 5 kernel. This is a
simplified version of the diagram in Figure A.1. In this case, the kernel, K, is represented by
a 5 × 5 matrix (yellow) as it moves onto different parts of the image. The position of the
origin in K will be the position in the resulting image.

Depending on the type of filter applied, the values will change to highlight certain
features in the image, like edges or corners. The following sections discuss two of
the principal filtering approaches: smoothing and sharpening of image features. The
difference lies in the properties of the kernels chosen to perform the convolution. To
highlight the processes performed in each image, two levels of detail will be provided.
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Smoothing filters

In this section, examples of smoothing filters are presented, as well as its application
on relevant images for this work. The filters are presented in terms of the kernels that
contain them.

Averaging kernel In this type of kernels, the values of the elements in K represents
a weight or proportion, that is, the values are between (0, 1) and the sum of all the
values in the kernel add up to 1. With the previous explanation in mind, in the
convolution I⊛K = imfilt(I,K), every pixel value is replaced by the weighted average
of the pixels in the n-neighbourhood.

The most straightforward implementation of this filter is what is known as a box
filter, which has uniform weights assigned to all the pixels K(i, j) = 1/n2. The only
parameter is the size of the filter, which at each point in the resulting matrix produces
the mean of the intensity values contained within the scope of the filter. Another
example of the weight distribution in the kernel is the disk filter, an averaging filter
acting upon a circular area. The circle is or radius r and the size of the kernel is 2r + 1.
The filter highlights circular structures which match the size of the radius of the circle.
The principle is the same as the one in the box filter, given the size of the filter, taking
the central element K(r + 1, r + 1), all elements within the radius will contain a value
higher than zero. As it is a discrete filter, the edges of the circle will not coincide with
the finite grid of the kernel.

Gaussian filtering Gaussian filters are another type of smoothing filter in which
the values follow a discrete 2D Gaussian of the size of the kernel. The parameters in
the filter are zero mean (0) and variance (σ2), as well as the size of the filter (n). As
seen in Section A, the 2D shape of the Gaussian resembles a bell, where the width of
it is determined by the variance. It is important to note that the Gaussian kernel must
consider a value for n large enough for an adequate discretisation of K.

Order statistic filtering. Most filtering is performed through convolution. As
shown in Figure 3.6, the convolution can be interpreted as a moving window of the
size of the kernel, which at every step, selects the pixels in the input image that will
contribute to the new intensities certain position in the output; normally through the
sum of the array multiplication of the elements in the kernel by the elements in the
image.
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Figure 3.7 Representation of filters for the box (top row), disk (middle row) and Gaussian
(bottom row) kernels with different parameters. For the box filters, (a) 2× 2, (b) 4× 4, (c)
8 × 8 and (d) 16 × 16; for the disk filters, the radii for each row are (e) r = 2, (f) r = 3,
(g) r = 4 and (h) r = 5; for the Gaussian filters, the parameter varied was the variance σ2.
Detail of a frame is presented after applying a Gaussian filter with varying variance, σ2. The
outline of a 1D normal distribution, N (0, σ2) was superimposed to the image for visualisation
purposes. (i) σ = 0.5, (j) σ = 1, (k) σ = 2, (l) σ = 4.

Order statistic filtering, the same idea of a moving window is taken, but at every
stage, the calculation of a percentile is performed in the pixels selected at a certain
moment. The most common calculations are the minimum, maximum and median
filters. Figure 3.8 displays the detail of three examples of order statistic filtering with
various different sizes, observed in close detail.
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Figure 3.8 Representation of order different statistic filters with varying sizes. Detail of a
frame is presented after applying three types of order statistic filters: minimum (top row:
(a-d)), median (middle row: (e-h)) and maximum (bottom row: (i-l)). Each filter was tried
using different sizes, and applied to each of the two channels to showcase the behaviour of
each technique. A yellow box was superimposed to the image to aid the visualisation of the
size of the filter. From the left: first column (a,e,i) 3× 3; second column (b,f,j) 7× 7; third
column (c,g,k) 11× 11; fourth column (d,h,l) 15× 15

Discussion. In general, smoothing filters are useful if the data presents high frequency
noise, and thus serve as low pass filters, in the context of signal analysis. Several
filters were applied to the data exploring their individual parameters, order statistic
filters appear to cause a deeper modification of the intensities in the image due to their
nonlinear nature. From averaging filters, the difference between the different filters is
not noticeable, refer to figure B.7 for a deeper insight.
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Sharpening filters

To analyse a digital image, it is sometimes useful to locate certain geometric objects,
such as lines which could correspond to edges and ridges in the image where certain
key objects are located. Thus, highlighting transitions in intensity, with a sense of the
magnitude of such transitions becomes key to image processing [67].

In calculus, the operator that describes the rate of change at a certain point is the
derivative, or in multivariate calculus, the gradient. As images were constructed as
discretisations of continuous functions of two variables, applying the numerical concepts
of differentiation to the images would provide an insight to the characterisation of
intensity transitions. On the other hand, as an image can be observed as a signal in
the spatial domain, abrupt transitions could be linked to locations of a high frequency.
In Figure 3.9, a combination of both ideas is represented, as this section describes the
tools used to highlight transitions in images.

Figure 3.9 Relationship between derivatives and filters. In this section, the relationship
between a derivative approximation for a 2D discrete function and a filter approach in which
local operations performed for each point —or pixel— in the function.

Methods based on derivatives. In this section, methods based on derivatives will
be described. The derivatives will be outlined both in terms of the gradient and the
filter which can be used to perform the analysis. The image gradient can be obtained
from an estimation of the derivative through central differences. In this work, the
symbol used for partial derivatives applied to an image is ∂xI(x, y), ∂yI(x, y), will refer
to the pointwise estimation of the derivative. While the symbol for gradient ∇xI will
refer to the image which contains all the partial derivative calculations per position,
i.e. ∇xI = (∂xI(i, j)). Consider a kernels given by the matrices Kx = (1, 0, 1)T and
Ky = (1, 0, 1). Centred around position (x, y), a convolution of certain filters in the
image would produce at each pixel the approximation of the derivative per point.
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The image gradient will consist of both images containing all the partial derivatives
per point, and per direction: Gx = ∇xI,Gy = ∇yI, as well as the gradient magnitude
G = |∇I| =

√
∇xI2 +∇yI2. Different calculations of the gradients can be applied,

commonly, Sobel, Prewitt and Roberts. The difference lies in the kernels used.
Table 3.2 shows the different kernels to calculate the gradients Gx,Gy for an image.
The Lapalacian filter is also presented, which provides the estimation of the Laplacian
operator ∇2f = ∂2

xxf + ∂2
yyf , a complete explanation on all sharpening filters is

presented in appendix B.

Table 3.2 Table of kernels of common sharpening filters in different directions.

Methods based on derivatives
Sobel Prewitt Roberts Laplacian

Kx =


−1 −2 −1
0 0 0
1 2 1

 Kx =


−1 −1 −1
0 0 0
1 1 1

 Kd1 =

1 0
0 −1

 K1 =


0 −1 0
−1 4 −1
0 −1 0



Ky =


−1 0 1
−2 0 2
−1 0 1

 Ky =


−1 0 1
−1 0 1
−1 0 1

 Kd2 =

 0 1
−1 0

 K2 =


−1 −1 −1
−1 8 −1
−1 −1 −1



To showcase the different implementations of the derivatives, figure 3.10 includes
the detail of a frame in the MACROS1 dataset in which each channel has been processed
with each of the filters.

(a) (d)(c)(b)

Figure 3.10 Representation of different sharpening filters. Detail of a frame is presented
after applying the different sharpening filters analysed in this section, each one presenting
the gradient’s magnitude G =

√
G2

x + G2
y. (a) Central differences, (b) Sobel, (c) Prewitt and

(d) Roberts.
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Figure 3.11 Representation of the different implementations of the Laplacian filter for K1
and K2. (a) K1, (b) K2, (c) −K1 and (d) −K2.

Applications of the Hessian matrix. Other implementations of second order
derivatives include the Hessian matrix, which is a 2× 2 matrix containing the second
order derivatives with respect to x, y and the cross derivatives:

H(f) =
∂2

xx ∂2
xy

∂2
yx ∂2

yy

 =
Gxx Gxy

Gxy Gyy

 .

As this matrix is produced per point, then four matrices will be calculated per image.
This procedure is useful when some operations of the Hessian values are needed. For
example, blob detection, done by the determinant of the Hessian DoH = Gxx ·∗Gyy −
Gxy ·∧2, or in ridge detection, where the eigenvalues of the Hessian per pixel are
found by the following equation. An example frame is shown in figure 3.12.

λmax(H) = Gxx + Gyy ±
√
Gxx ·∧2 + Gyy ·∧2− 2GxxGyy + 4Gxy ·∧2.

0 5 10 15 20 25 30 0 2 4 6 8 10 12

Figure 3.12 Example of the minimum eigenvalue of the Hessian matrix per pixel. The
difference between edges and can be observed.
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Edge detection An important problem in image analysis is the detection of contours
of objects or edges. Note that filtering highlights edges and points of abrupt changes,
however edge detection refers to the creation of a binary image where positive values are
located where changes are more abrupt. In particular, the Canny [79] edge detection
algorithm has been a widely referenced image analysis technique with almost 30
thousand citations since its publication in 19861. As it is relevant to this work, an
overview of the algorithm is provided and some examples of its implementations, while
varying its key parameters. The overview of the algorithm is described in Algorithm 3
in Appendix B.

The two main advantages of the algorithm are (i) the ability to modify the Gaussian
kernels, allowing different edges to be visible and (ii) the non-maximum suppression
which allows to select the more relevant ones. The technique would be better classified
as a segmentation of the edges in the image, as the output is a binary image with
two levels, I = 0, 1. It is included in this section to provide context of the application
of sharpening filters and because the term Segmentation, in this work, refers to the
distinction of cells from other cells and from the background.

Figure 3.13 Detail of output of Canny algorithm on macrophages data. Different values of
σ2 are presented to showcase the output of the algorithm. Notice that the size of the variance
σ is inversely proportional to the level of detail being analysed by the algorithm.

Discussion. As observed in figures 3.10 and 3.11, and more importantly in Figure
3.13, the variable nature of the images of macrophages prevent the filtering to produce
clear edges.

1Consulted in Google Scholar, August 2018
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Image segmentation by intensity thresholding

Segmentation is the process of classifying pixels into one of two categories: foreground,
or objects of interest, and background. In a way, segmentation provides context to an
image selecting the regions which —given an application— are important. In particular,
cell segmentation is a widely studied problem which has produced considerable amount
of research output, like the works by Maška et al. [68] and Ulman et al. [64].

Considering the definitions in Section 2.1, intensity levels on an image are referred to
be a finite set of L levels, {1, 2, 3, . . . , L}. Thus, performing a segmentation by intensity
thresholding implies finding a value k which separates the intensity levels into groups:
{1, 2, 3, . . . , k− 1} and {k, k + 1, k + 2, . . . , L}. Let CR be the set of intensities in which
the intensities of an image are categorised, where R refers to the region in which the
image will be segmented, and can be either a subscript or a number depending on the
context. It is important to remember that the segmentation output of a method will
be a binary image which takes the value 1 at the detections of foreground and 0 at the
background. As it is relevant to this work, the concept of hysteresis thresholding
[80], mentioned in Section 3.1, is a technique for image segmentation that uses two
levels to segment an image, a higher one that determines what will be part of the
foreground and a lower one that will distinguish what will be considered as background.
A comprehensive explanation and examples can be found in the Appendix B. In the
following sections, the description of different techniques to automatically select the
threshold from the image intensities in the image. Two main approaches are compared:
the global threshold, which uses a single level throughout the image and the adaptive
threshold which selects a threshold locally.

Otsu’s threshold

Otsu [81] developed an algorithm for differentiating between classes, i.e. finding a
threshold, by maximising the quotient of between and within variances of the classes.
In simple terms, the algorithm would select a threshold that would distinguish the
classes as much as possible, while at the same time would make the intensity levels
within the class as alike as possible, one advantage is that this procedure can simply
be extended to more than two classes. The derivation of the algorithm is presented for
a single threshold as the extension to multiple thresholds is straightforward.

Given the levels of intensity found in an image I = {1, 2, 3, · · · , L}, the Otsu
method finds a level of intensity k, 1 ≤ k ≤ L, that maximises the quotient σ2

B/σ2
W ,
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where σ2
B is the variance between the two classes (foreground and background) and σ2

W

is the variance within the classes. A full derivation of the equations can be found in B.
Figure 3.14 displays the detail of a macrophages frame and the regions created after

intensities get classified after applying different Otsu thresholds.

Figure 3.14 Detail of two macrophages after applying different Otsu thresholds. The Otsu
algorithm was applied to the same section of a frame. Different number of thresholds were
applied, producing different number of classes Ci. (a-d) show the results of applying 1,2, 4
and 8 thresholds selected by the Otsu method.

Otsu’s method, while very fast, is very sensitive to outliers on the data. One
example can be studied on the ISBI datasets, with the Fluo-N2DH-GOWT1 dataset.
It can be observed in Figure 3.15(b) how the difference between the most and least
intense is too high for the algorithm to segment both cells. Also, it can be noted in
3.15(b) that even taking a robust approach like a hysteresis threshold is not enough
for cells of this kind.

Figure 3.15 Limitations of the Otsu algorithm in frame from the ISBI dataset. (a) Represents
a frame from the Fluo-N2DH-GOWT1 dataset, recalling section 2.2. One and two thresholds
were applied to the image, and the resulting classifications of the pixels are presented in
(b) and (c), respectively. It is important to notice that the variability of intensities in the
foreground is too large, and the algorithm is incapable of segmenting some of the darker cells.
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Adaptive thresholding

Variations of the thresholding technique are presented in the works by Pappas [82] and
Bradley and Roth [83]. In the work by Pappas [82], the segmentation achieved was
different from the global ones, as the threshold level chosen is dependent on the local
pixels at given positions. Instead of selecting thresholds that take into consideration
the statistical properties of the entire image, the method starts with global estimates
of the levels and adapts them to the local characteristics of each region.

The concept of an adaptive threshold becomes relevant to this problem, as the
objects of interest in fluorescent images can vary considerably, and a single threshold
might not be enough, even a robust one like a hysteresis threshold, as seen in Figure
3.15. In addition, it is possible that the images suffer from shading due to a variety of
reasons [84]. The work by Pappas [82] can be seen as a generalisation of the k-means
algorithm [85] that include spatial constraints and account for local variations of
intensity. The algorithm works through the estimation of the regions of an image
(segmentation) and the parameters in an a posteriori density function that computes
the probability of the distribution of regions (x) given the observed image (y). A
thorough explanation of the process is available in Appendix B.

On the other hand, the work by Bradley and Roth [83] (B&R) presents an adaptive
threshold methodology that takes into account spatial variations in illumination. It
achieves its purpose by selecting a threshold value based on local mean intensity in the
neighbourhood of each pixel. A neighbourhood of 1/8th of the size of the image is used
around each pixel. Each pixel gets assigned a different threshold value in which each
pixel is compared against. A parameter called sensitivity is included, which allows
for some control from the user into the threshold taken by the algorithm. Figure 3.16
shows a frame in the macrophages dataset which has undergone the two adaptive
threshold methods overviewed in this section.

 10 [ m]  10 [ m]  10 [ m]  10 [ m]

Figure 3.16 Comparison of different adaptive threshold techniques. The same representative
frame from the dataset as well as the image profile marked in the same spot (yellow, dotted).
(a) Shows the adaptive threshold as described by Pappas [82]. (b-d) Represent the results
B&R [83] algorithm with the sensitivity set to 0.325, 0.5 and 0.625 respectively.
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Postprocessing

Postprocessing is the set of operations performed on binary images which aid the
segmentation to reduce noise or over-detection. In the context of segmentation of cells,
some of the operations can aid in reducing noise, smoothing the edges of the shapes
and help give a more robust segmentation. Measurements can be performed on the
binary images, like area and orientation.

In this section, some techniques of morphology are overviewed. Morphology in this
work refers to mathematical morphology, the branch of mathematics that deals with
the representation and description of region shapes in a space [67]. In Section 3.1, the
construction of filter kernels and the notion of convolution was explored in order to
modify the intensities by assigning an operation performed on a neighbourhood of a
pixel. To extend the notion into binary images and sets, some operations must be
defined in the context of sets, and then translated into binary arrays to define each of
the operations.

Structuring elements and notation. Sets are represented by connected regions
in an image with the same value. As mentioned in the classic work by Gonzalez and
Woods [67, Chapter 10], a structuring element is a small set of subimage used to probe
an image under study for properties of interest. Such objects can be thought of in
abstract as sets with a centre, or reference point, or as a binary kernel, represented by
the symbol S.

Figure 3.17 Representation of different structural elements in abstract terms and as a
binary kernel S. The diagram shows the abstract representation of a structuring element as a
set with a particular shape. The notion of a centre refers to a point of reference in which
the element can pivot and from which it can move in a plane. (a) Shows the operation of
reflection while (b) shows translation. Notice that if the structural element is symmetric,
and the centre is in the midpoint of the element, then Ŝ = S.
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Morphological operations

In most cases, morphological operations are performed similarly to convolution, as
seen in Figure 3.6, as a structuring element will be translated along a binary image,
performing set operations as it moves. In this section, the following operations will be
defined: (i) erosion, (ii) dilation, (iii) opening and closing; as well as some algorithms
like (iv) boundary extraction and (v) hole filling. For the coming definitions, let I
be an image and S a structuring element of size 2n + 1, with a centre at position
(n + 1, n + 1). For simplicity, assume that I contains only one set —or detected object—
in it. The operations will result in new sets, described by the elements in it. In terms
of images, the positions that belong to a particular set will have a value of 1 in the
resulting image.

Table 3.3 Description of main morphological operations and equations in the context
mathematical morphology. Let I be a binary image and S a structuring element of size 2n+1.

Name Mathematical expression Description
Erosion I⊖ S = {(x, y)|Sx,y ⊆ I} Reduce the area of present regions in I
Dilation I⊕ S =

{
(x, y)|Ŝx,y ∩ I ̸= ∅

}
Expands the area of present regions in I.

Opening I⃝ S = (I⊖ S)⊕ S Erosion followed by a dilation.
Closing I⊙ S = (I⊖ S)⊕ S Dilation followed by erosion.

Figure 3.18 represents the application of the different morphological operations of a
structural element S into a set with disjoint regions A. The structural element present
in the picture will be translated throughout the plane containing the set A, and the
output produced will follow the equations in Table 3.3.

Figure 3.18 Diagram of morphological operations. The set A, is represented by different
disjoint regions, while the structural element, S, is represented as a circle, with its centre
in its midpoint. The outputs of the different operations can be observed: (a) erosion, (b)
dilation (c) opening and (d) closing.

72



3.1 Classical image analysis

Figure 3.19 Example of morphological operations outputs when applying different structural
elements. All images present a binary image overlapped on a section of a frame in the
macrophages dataset. The actual size of each structural element is highlighted in yellow, and
marked with arrows. The shape of the structural element kernel S, is shown amplified at
the lower right corner of each image. Rows represent the operations used: (a) erosion, (b)
dilation (c) opening and (d) closing; while the columns represent the elements: (i) rectangle,
(ii) line, (iii) diamond and (iv) disk.

Discussion. Combinations of techniques like in morphological opening, could be
useful, as the erosion could reduce granular noise and the subsequent dilation would
grow the area of the detected object and close certain gaps between disjoint sections.
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Feature extraction in images of macrophages

Another useful way to analyse images, involves extraction of certain characteristics in
the image called features. Feature extraction is common in problems of texture analysis,
where detection of objects is based on characterisation of regions in an image by the
variations of intensity values of an image, sometimes modelled through its statistical
properties. Texture analysis provides a quantitative description of qualities —such as
smooth or rough— in image regions.

Features are extracted by filtering an image with a number of specific kernels
to produce different related images, {Iq}q, all images contain information extracted
locally by the different kernels applied. Thus, per pixel, a vector of length q holds
local information extracted from the local characteristics of the image. Each pixel
could then be grouped with similar pixels through the similarity of the feature vector
extracted. As a continuation of the data exploration, two techniques are considered to
the analysis, Gabor filters [86] and SIFT/SURF techniques, [87, 88].

Gabor filters

Gabor filters [86] refer to kernels which —as seen in the filtering section of this work—
assign to each pixel local information about it. The kernels have a specific orientation
and frequency, or wavelength. A common application for texture classification [86]
involves using a bank of filters with varying frequencies and orientations to extract
a large vector which contains different information on each pixel, and then using a
statistical technique such as k-means [85] to cluster them.

Implementation. Figure 3.20 show an example of a standard Gabor filter bank, in
which the variation of wavelength and orientations can be observed. The orientations
shown are increments of 30 degrees from 0 to 150. The wavelengths were chosen in
increasing powers of two, starting at λ0 = 4/

√
2 and up to the hypotenuse length

of the input image, in this case λmax =
√

N2
r + N2

c , as stated in the work by Jain
and Farrokhnia [89]. This would produce six wavelengths and six orientations, for a
total of q = 36 kernels. In Figure 3.20, only a fraction of such kernels are shown for
visualisation purposes with different sizes. Note that the sizes displayed in the figure
were chosen arbitrarily, and are not to scale.
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Figure 3.20 Example of a Gabor filter bank for feature extraction. Notice the change in
orientation of the kernels and the change in size and resolution as the wavelengths increase.

After obtaining the filter bank, each filter is convolved with the frame to produce
q = 36 images, {Iq}q. Figure 3.21 shows the different instances of Iq, after convolving
with the Gabor filters in the bank. Notice how each kernel, due to the wavelength and
orientation highlights different areas of the original frame.

Figure 3.21 Convolution output of the different Gabor kernels on the green channel. Each
Gabor filter kernel shown in Figure 3.20 was convolved with the green channel of the test
frame. Notice that as the size of the filter increases, due to the wavelength increase, the
output of the convolution highlights different areas of the figure of different scales.

Feature vectors are then formed by aligning pixels at same positions in each of the
generated images, Iq. Therefore, each pixel in the original image has a vector in Rq

associated to it and the local information from it. K-means [85] is then used to group

75



Exploration of the data

the different vectors into one of two groups, foreground and background. Figure 3.22
represents the output of the experiment.

Figure 3.22 Foreground and background detected using Gabor features. (a) Represents the
binary image of foreground (white) and background (black). (b) Shows the original frame,
with the background suppressed for visualisation purposes. Notice that the technique was
able to identify areas where cells exist, but the segmentation is not done, as not even single
cells were detected.

Scale-Invariant Feature Transform and Speeded-Up Robust Features

In an image, a local feature refers to a pattern of specific structure like a point, edge
or a small image patch. The Scale-Invariant Feature Transform was introduced
by Lowe [87] as a novel class of local feature detection, which were impervious to
transformations such as translation, rotation or even illumination changes. On the
other hand, the Speeded-Up Robust Features (SURF) [88, 90] were proposed by
Bay et al. [90] as a method to obtain a scale and rotation-invariant feature detector
that could outperform SIFT.

In this section, a brief description followed by an experimental study on the algo-
rithms’ ability to follow single cells in consecutive frames are presented. Furthermore, in
Appendix B, a thorough description of SIFT and its differences to SURF are described
and an illustration is provided to highlight the algorithms’ advantages.

The SIFT and SURF algorithms are centred in finding keypoints in the context
of their orientation. The keypoints can be understood as a point on an image chosen
by some criterion, in the case of SIFT, local maxima and minima on specific functions
of the input image. For it to be robust, it is necessary to guarantee that the image is
considered at distinct scales, which is achieved by convolving the input image with
Gaussian kernels of varying standard deviation σ. The SURF algorithm uses the
same idea as the SIFT algorithm, however it applies key changes to the implementation
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of its parts in order to improve performance and running time. While SIFT calculates
image pyramids and then computes the DoG, SURF creates a stack of images without
downsampling which combined with the use of integral images, filters the stack using a
box filter approximation of the second order derivatives of Gaussians, which allows for
computation of rectangular filters in near constant time [91].

Implementation. A normal implementation which exploits the features created by
SURF, involves two images, a reference one which contains the object of interest and a
secondary image which contains the object in a particular scene. The SURF algorithm
would be run on both images and two sets of features would be found. Since SURF
detects features regardless of transformations, the same features would be found in
both images, and the feature vectors could be compared between them, matching
points in the original image and the scene.

For the implementation using the MACROS1 dataset, a similar approach was made.
Given the temporal resolution of the cells, the changes from frame to frame only vary
slightly. Therefore, the features detected by the SURF algorithm would be anticipated
to be similar around the same cells in both consecutive frames. This means the
representation of each cell per frame would be similar enough in consecutive, or even
close frames to produce the appropriate features to provide an area. Assuming a
previous segmentation has been made, based on intensity thresholding techniques, the
concept of a clump was presented in Section 2.1, and in Figure 2.17. Considering
a scenario in which one cell is segmented on its own, and in the following frame,
the segmentation has produced a clump. The experiment is based on detecting the
keypoints from the SURF algorithm on both images, taking the first frame as the
reference and the secondary as the target. In figure 3.23, a detail of the cell of interest
is shown with the outline detected by the segmentation; both consecutive frames are
shown, and the clump in the target frame is outlined. However, on visual inspection
both frames appear similar.
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Figure 3.23 Cell in two consecutive frames for experimentation of SURF in MACROS1 dataset.
(a) Represents the original frame, in which the cell of interest was completely detected by
the segmentation algorithm. (b) represents the same cell in the consecutive frame. The
segmentation consists of a Gaussian smoothening, followed hysteresis thresholding where the
levels were chosen with the Otsu [81] algorithm. Finally, morphological operations were done
as postprocessing, overviewed in section 3.1.

First, SURF features were detected on the entire frame to see the potential of the
algorithm with this data. The default parameters of feature threshold and number
of scales was used, and then parameters which would produce more keypoints was
searched for empirically, the detail of the parameters and the matched points from the
reference to the target frames can be found in figure 3.24.

Finally, a cutout of the cell of interest was used as the reference image, to investigate
whether the information detected in the cutout frame would produce enough keypoints
which would be matched in the entire target image. In figure 3.25, the matched
keypoints of such experiment can be seen. The most important parameter modified is
the number of scale levels per octave computed in the algorithm. In Matlab® the
default parameter is of 4 scale levels per octave, while the empirically chosen parameter
was of 9 scales. The default number of octaves computed is three. The results in figure
3.25 show only two points being matched between the reference and target.

Discussion. The objective of this implementation is to explore the possibility to
create an affine transformation of the matched points in the reference to the target
frame. The transformation would then be applied to the boundary of the correctly
segmented cell in the reference frame and use it as the segmentation of the same cell
in the target frame, solving the ambiguity of the clump. In the case of the experiment
described in figure 3.25, only two points in the reference were matched to the target
frame, and while the points correspond correctly, only two points are not enough
to produce a transformation. Hence an approach like this would not be suitable for
tracking the cells after overlapping.

78



3.1 Classical image analysis

Reference
Target

Reference
Target

Figure 3.24 Experimentation of SURF algorithm in macrophages data using different
parameters of threshold and number of scales. The implementation was done in Matlab®

with the default parameters of a threshold of 1000 and 4 scales (a) and compared with the
points matched with a threshold of 50 and 9 scales (b). The principal difference observed is
in the number of matched points. Notice that in both experiments, some points are matched
to different locations.

Reference
Target

Figure 3.25 Experimentation of SURF algorithm from the region surrounding the reference
cell to the target frame. Only two points were matched from the reference cutout frame to
the target.
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3.2 Segmentation techniques of overlapping objects

This section shows some techniques explored during the development of this project
to analyse single frames of overlapping macrophages. Segmentation by intensity
thresholding is central in this work. However, due to its simplicity, it introduces
ambiguity in the segmentation when used with the macrophages datasets, due to the
interacting cells, which cause overlapping. Thus, more sophisticated approaches need
to be explored to resolve the ambiguity. The methods alongside the implementations
are described, and a brief discussion on each topic is presented in terms of the lessons
learned by implementing each one of them. First, a straightforward approach using
Voronoi Tesselations was developed. Such naïve approach could provide insights of the
worst-case scenario of a segmentation that tries to solve overlapping of the objects.
Then, a statistical approach is discussed, through Active Shape Models [92], which
allowed to understand some of the difficulties inherent of the macrophages dataset.
Curve evolution methods were also explored, which provided some interesting ideas
which will be exploited in upcoming chapters. Finally, a brief overview of machine
learning techniques is presented, specifically neural networks.

Voronoi Tesselations

Voronoi Tesselations (or Voronoi diagrams) [93, 94] involve a polynomial partition of
a plane on a set of points scattered through it, where each point is associated with
the section of the plane nearest to. Let P = {xi}n

i=1 a set of n points in a plane
xi ∈ R2, which will be referred to as sites. Two concepts are provided to describe
the relationships of the points in the plane to the sites that generate the polygonal
partition, these are the dominance of power of a point xi over another xj and the
region of a site; both are sets that describe areas in the plane. This technique studies
the image as a set U, where all positions are present.

Definition 1 (Dominance of power) Let xi, xj ∈ P be two distinct sites. The
dominance of power dom(i, j) of xi over xj is the set of points in the plane which are
closer to xi than to xj

dom(i, j) =
{

x ∈ R2
∣∣∣ dist(xi, x) ≤ dist(xj, x)

}
,

where dist(·, ·) is the Euclidean distance.
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Definition 2 (Region of a site) Let xi ∈ P, the site region, reg(i), is defined as the
intersection for all sites xj ∈ P − {xi} of the dominance of power dom(i, j)

reg(i) =
⋂
j ̸=i

dom(i, j)

Figure 3.26 shows the explanation and relationship between the two concepts previously
presented. The Voronoi partition will be formed by the union of all site regions for all
points in P .

Figure 3.26 Illustration of a Voronoi Partition. From left to right, the calculation of three
cases of dom(i, jx), relative to a given point xi (cyan) can be observed. To the far most right,
the site region reg(i) is represented. It is easy to understand that the union of all the site
regions in a plane, U, corresponds to the Voronoi partition of it.

Implementation with overlapping macrophages The implementation incorpo-
rated a hysteresis thresholding segmentation of the both the green and red channels. As
seen in Section 3.1, the green channel would produce clumps, illustrated in figure 2.17.
However, the segmentation of the red channel would produce a robust segmentation of
the nuclei. Using the centroids of the nuclei as the collection of points P , the clumps
could be partitioned based on the Voronoi diagram. Notice that some of the nuclei
are not visible in the images due to imaging problems. Therefore, when two cells are
found in a single partition, an artificial nucleus is incorporated into the image, and the
partition is computed again. This process solves the problems, but introduces some
extra nuclei in the images. Figure 3.27 displays two cases of the artificial nuclei, one
correct and one incorrect. Figure 3.28 shows a comparison of each cell segmented with
the Voronoi partition method described in this section vs. the ground truth in a frame.
Notice the colour map follows black for TN , red for TP , blue for FP and yellow for
FN .
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Figure 3.27 Naïve segmentation using Voronoi Tesselations. In this example, the test
frame can be observed. First, the segmented nuclei are represented in (a), each in different
colour. (b) Shows the partitioned space with the centroid of the nuclei marked (black ×);
for visualisation purposes, the outline of the detected clumps and cells is marked (white -
-) (c) shows the output of the Voronoi segmentation. Notice the two arrows, in (a), they
correspond to artificial nuclei incorporated by the software as the original partition would
create more than one detections in the green channel per single nucleus. The arrows are
repeated in (b,c) to highlight the outcome of the algorithm’s incorporation.

Discussion on the Voronoi implementation The Voronoi partition based on
the centroids of the nuclei in the image was developed as a way to represent a naïve
approach to separating clumps into single cells. The algorithm was never meant to
solve the problem, but to provide a baseline in which future developments would be
compared. Other methodologies, sophisticated or simple, would require better results
as the ones highlighted here.

Figure 3.28 Results from implementation of Voronoi partition in overlapping macrophages.
See full explanation in text.
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Active Shape Models

Active Shape Models (ASM) [92] is a technique in which known objects are located in
images through a model of their physical shape. In the model, the natural variability of
the object class is captured by the algorithm to find examples of structures. Although
the model has been extended [95, 96], the basics are still referenced in the literature.
In this work, ASM was implemented, with the original intention of making use of
the rigidity innate to the Point Distribution Model generated by the algorithm. The
implementation details and results obtained are explained in this section. The aim is
building a model which describes the typical shape and variability of a class of object.
Each object is characterised by a set of ordered landmark points, which the input to
the model consists of a set of individuals (instances) of the objects.

Let xi ∈ Rn×2 be a vector describing the n landmark points of an instance i in
an object. To compare equivalent points from different shapes, they must be aligned
with respect to a set of axes. Alignment is done by a rotation and scaling of the
landmark points. Therefore, let R(s, θ)[x] be a rotation by θ degrees and a scaling in
s. A translation vector, tj = (tx,j, ty,j) is used to centre the landmark points. Figure
3.29 summarises the approach taken by this method.

Figure 3.29 Graphical representation of the ASM algorithm. From the examples of the
images of the object to be modelled (a), the points xi are built by manually annotating
landmark points (b). The Procrustes analysis is performed on the resulting points and a mean
shape is built (c), the variation of the captured points can be seen around each landmark
point. The PCA model is built, finding the main modes in which the figure can be reshaped
(β), two examples are shown in (d). Finally, using the mode, the model is fit to the data by
altering the mean shape via the modes, depending on the shape change needed (e).

Variations for overlapping cell segmentations As seen in Chapter 2, the micro-
tubule structures vary in shapes and sizes considerably. The ASM algorithm requires
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as input a set of instances of the objects characterised by landmark points, however,
the images described in Section 2.2, do not show distinct points which consistently
remain in the cells’ shapes. The single point, which is consistent along all shapes
and all points, is the nucleus in each cell. Therefore, to implement the algorithm in
this instance, landmark points were generated automatically using the position of the
nucleus and taking equidistant points along the boundary of the generated ground
truth of the macrophages.

In the work by Plissiti and Nikou [96], a similar problem was found since the cells
in the pap smears analysed also lacked clear landmark points to train the algorithm.
The way it was overcome in such a work was by implementing a model of the outline of
the cells. Unfortunately, this was not viable as the shapes shown by the macrophages
was so variable (recall figure 2.15). The order given to the points was based on the
polarity of the cells, i.e. the vector formed by the centroids of the (green) microtubules
with respect to the centroid of the (red) nuclei. The rest of the positions would be
equally spaced and starting at the closest point in the direction of said vector and the
outline of the green channel, Figure 3.30. Per shape, the output of this selection of
32 pseudo-landmark points produces a matrix of size 32× 2, called Xi. The set of all
matrices for all points ntp is allocated in a 3D matrix of size 32 × 2 × ntp, with the
symbol X: this arrangement of the data allows for a simpler programming.

Figure 3.30 Landmark points determination in different instances of macrophages. Four
different macrophages cells are shown. The first two points correspond to the centroids of the
cell in the green channel (x1), and nuclei (x2). The following points fall along the boundary,
being x3 the point which intersects the boundary of the shape in the green channel and the
line that passes through points x1 and x2.
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Details of the implementation. Ten frames were annotated manually using the
code described in section 2.4. Macrophages in which the nucleus is not visible, were
discarded from the analysis. Retrieving each of the training matrices Xi is done as
described in Figure 3.31. Then, following the methodology in [92], a Procrustes analysis
[97] is made to align the shapes to a single set of axes. The mean shape is computed,
Xµ, which allows for the shapes to be centred. Finally, the data is rearranged by
stacking the coordinates of each point into a matrix of size 64×ntp, then the covariance
matrix D is calculated from the resulting columns. PCA is then performed over matrix
D, and the resulting model for a shape is given by,

Xβ = Xµ + βP, (3.1)

where P is the model which results from the PCA processing. Figure 3.31 shows a
diagram of the representation of the data during the implementation of this technique.
On the other hand, figure 3.32 shows the different modes created for each shape.

Figure 3.31 Implementation of the ASM methodology in macrophages data. (a) Extraction
of points from boundary of green channel and centroids of green and red detection. (b)
Organisation of points into 32× 2 matrix Xi. (c) Procrustes analysis over all Xi shapes and
calculation of mean shape. After PCA analysis, (d) shows the modes of variation.
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Figure 3.32 Results of the ASM model implementation. The model in equation (3.1) was
trained for ten images where two cells were segmented. The different modes are shown as
they vary from the mean shape Xµ.

Discussion on the ASM implementation. While the training of the method
seemed to work successfully, various problems arose during the implementation of the
fitting of the model to the data, which rendered it an unsuitable method to deal with
overlapping segmentation. The wide variation in shapes and sizes of the cells would
imply that matrix P to have many different columns —up to eight in some analyses—
which defeats the purpose of explaining the variability of the shapes in a simpler model.

Furthermore, in order to adapt a shape to an image which had not been trained
presented more challenges. First of all, the intensities of the overlapping cells are
extremely confusing for a method to adapt to, and no initial shape would be suitable.
Even in the example presented in 3.32, where only two similar cells were used for
training, the implementation of the step that updates the shape proved difficult, and
the initial shapes would not update quickly. The explanation could be that the choice
of landmark points including the centroids could have caused problems.

Level set methods

Level set methods are a type of curve evolution algorithms, techniques used for
segmentation in which the outline of a detected object is considered as the contour at
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3.2 Segmentation techniques of overlapping objects

the level of a 3D function. The mathematical theory of partial differential equations in
image analysis is introduced in Appendix D, from the classical reference [98].

Lu et al. [99] developed a joint level set method technique to solve overlapping
cases of pap smears. The core of the method involves level sets operating simultane-
ously, one per cell that has been detected as overlapped. The method requires two
segmentations as input: one corresponding to the nuclei of the cells, and another one
of the cells’ cytoplasm, which contains the overlapping clumps. The algorithm detects
the intersections of the boundaries of each cell and initialises the level set function per
detected cell.

The images of pap smears only contain a single greyscale channel, and thus part
of the methodology involves the detection of the nuclei present in each frame as well
as the detection of each clump. Once these were found, an a priori mask —which
assumes the shape of each cytoplasm is ellipsoidal— is generated. Each of the level set
functions is applied and evolved to find the best fit to the boundary of the cytoplasm.

Figure 3.33 Overview of the framework proposed by Lu et al. [99]. The first steps, (a-c),
involve the separate detection of the clumps and the nuclei in the cells. Notice that the data
in Lu et al. [99]’s work are simple greyscale images, therefore the task of separating both
objects of interest becomes much more complicated. (d) Represents the extrapolation of the
boundary from the clump, which includes the detection of the junctions where the boundaries
meet and an estimation of the boundary based on ellipses. The overall shapes of the pap
smear cells allow for such a simplification. Finally, (e) shows the creation of the shape prior,
which will allow for the level sets to adapt to the outputs.

Implementation on images of overlapping macrophages.

After verifying the results obtained from the data presented in [99], the method was
implemented on frames of dataset MACROS1 with available ground truth. The detection
of clumps and nuclei is straightforward for the macrophages data, therefore, the first
steps of the function were not implemented. A user can select the initial stage of the
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analysis as the data relevant to each stage is stored in the separate folders, which are
accessed sequentially and produce specific output that points the program to a certain
stage in the algorithm. Figure 3.34 represents the processing segmentation performed
on the two channels and used as input to the LSM. The segmentation of the channels
followed the same steps described before in the Voronoi partition, a hysteresis threshold
as used and artificial nuclei were incorporated where it was needed. Both channels
were input into the algorithm at the right step in the LSM framework (figure 3.33(b)).

Figure 3.34 Description of input presented to joint level set method. Similar to the Voronoi
implementation, the segmentation of the two channels included a hysteresis threshold, with
the levels chosen with Otsu [81]’s method. Artificial nuclei were incorporated where it was
needed, marked with cyan arrows.

Discussion on the Level Set method implementation. In their work, Lu et al.
[99] reported promising results segmenting some cases of overlapping pap smears.
However, as seen in figure 3.35, the method was not able to produce satisfactory
results with the macrophages data. The main reason involves the extrapolation of the
boundaries of the participating clumps. The original algorithm estimates the positions
of the points where the boundaries intersect my measuring the distance of the nuclei to
each other. It also assumes the shape of the cell to be circular or ellipsoidal. Neither
assumptions are useful for the macrophages as the the cells vary widely in size and
shape. However, an important discovery for this project was made after the exploration
of this technique. The estimation of the location of the boundaries intersections
was the main problem in this implementation and the results obtained were found
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to be relevant to this work. Potentially better results might be produced if a more
robust approach in detecting the intersection of two overlapping cells. This notion was
explored and later implemented in Chapter 4.

Figure 3.35 Comparison of the joint Level Set Method with the Ground Truth and a
Voronoi partition. The top row (a-c) shows the full segmented frame with a box highlighting
some interesting cases. In the bottom row (d-f), the detail of the box is shown. In all cases,
different cells are coloured and regions where there is an overlapping have been drawn in
white. (a) The ground truth of the green channel of the frame is presented as described in
Section 2.4. (b) Shows the output of the joint LSM by Lu et al. [99] and (c) the output of a
Voronoi partition as described in Section 3.2.

3.3 Tracking

Tracking, in the context of this work, is defined as linking a single object as it migrates
in time from several segmentations in images from consecutive time frames. This work
considers Multiple Particle Tracking, which means that it is possible that more than
one object will have to be linked between every pair of frames. The input for the
tracking process, will be the output of a segmentation process in which each individual
object will be assigned a unique label to be identified. Several different techniques link,
with varying degrees of precision, the labelled objects. There are methods where the
tracking is coupled with the segmentation, which means that the methods look for
specific features of the objects to correlate one frame to another. An example is the
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work by Collins and Carr [100] who have proposed that tracking and segmentation
could be studied as a single complex problem. However, this work will focus on an
approach decoupled from the segmentation; the algorithms assume that at least spatial
coordinates are provided. The notion of having standalone segmentation and tracking
techniques paired together makes sense in the context of the project. Given that the
objective is to provide a software framework for the analysis of tracks of macrophages,
then having the option to pair and combine the various techniques could offer more
possibilities for even more applications.

In this section, the keyhole tracking algorithm [101, 59] is described, alongside the
PhagoSight framework [102], which utilises such tracking. A thorough description of
the algorithm and framework is provided in appendix B.

Nomenclature and notation. Regarding the links between objects in different
frames: regarding an object in frame t, the object in frame t− 1 that is linked to it
will be referred to as parent, and the object linked in frame t + 1 will be referred to
as child. Tracks will be presented as a 3D visualisation where the coordinated axes
correspond to rows, columns and time frames or (x, y, t). Finally, each object tracked
will include an identifier r, and the set of points {(xt, yt)}t will include the symbol Tr.
Figure 3.36 represents a diagram of the result of a tracking experiment.

Figure 3.36 Illustration of tracking experiments. Each tracking experiment will produce
several tracks, each corresponding to an object moving in time. (a) Represents a 3D
visualisation where the horizontal plane span the number of rows and columns in an image,
the bottom represents the first frame. Also notice the different starting points of each track
and different lengths. (b) Represents a top view of the same tracks, where the temporal
component is lost in exchange for a more precise understanding of the spatial movements
created buy the tracks. In general, longer tracks are considered to be more consistent. Shorter
tracks are usually cases where a more thorough analysis is required.
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PhagoSight and the Keyhole tracking algorithm

To explore the tracking on different datasets described in 2.2, the PhagoSight framework
is briefly introduced. The full description of the software can be found in Appendix
C. PhagoSight [102] is a software framework originally designed for the segmentation
and tracking of neutrophils and macrophages observed in zebrafish. The segmentation
module involves a hysteresis threshold based on the single threshold Otsu algorithm.
The tracking module of PhagoSight is the keyhole tracking algorithm [17, 59, 102],
and consists of an estimation of the position at the child frame following the velocity
from the parent frame, it creates two regions of probability which appear like an old
keyhole, thus the name of the algorithm. The output of the PhagoSight framework
consists of a large table containing information from each of the tracks detected, given a
particular segmentation. Table 3.4 shows the output information from the PhagoSight
framework.

Table 3.4 Track information retrieved from PhagoSight framework. The information utilised
for the analysis is highlighted: position provides the coordinates xt, yt, zt of the cell in the
image per frame t, time frame is the temporal position in the dataset, t, label in binary image
refers to the label assigned to the cell at segmentation and final track label corresponds to
the track identification, T .

Position (xt, yt, zt) Distance to closest Time frame
ID Parent cell Child cell
Velocity Volume Label in binary image
Keyhole Track ID Final track label
Bounding box information Volume to surface Sphericity
Neighbours at different Distance to disappear Distance to appear
distance brackets

It is important to notice that PhagoSight does not account for overlapping objects
or cellular processes such as mitosis, thus the one of the two cells generated would be
regarded as a new cell and a new track identifier would be assigned to it. Finally, the
PhagoSight framework includes a set of tools to amend and manually edit the tracks,
either in code or via a GUI. In the development of this PhD project, the PhagoSight
software was implemented in two separate instances: with the ISBI datasets, described
in section 2.2 and with Artemias, Section 2.2. In the following sections, a brief
description of such implementations is presented, as a way to explore the track outputs
which could be generated with PhagoSight, but mainly, with the tracking algorithm.
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Figure 3.37 Example of implementation of PhagoSight on different ISBI data. A fraction
of the tracks detected of four datasets is presented: (a) C2DL-MSC, (b) N2DH-GOWT1, (c)
N2DH-SIM and (d) N2DL-HeLa. The colour of the track represents the relative speed of the
track. In all results, (a-d), the x and y axes represent the rows and columns of the image and
the time frames are read from the bottom of each plot to the top. A guide for the axes is
presented in the middle of the picture. (a) C2DL-MSC shows few consistent tracks and
some very short tracks indicating to some possible segmentation errors. (b) N2DH-GOWT1
shows slower tracks, in shades of blue, to be much more consistent than faster and shorter
ones. These are usually at the edges, which could indicate that the imaging technique used
did not observe the cells at the edges of the image. (c) N2DH-SIM shows mostly consistent
tracks. (d) N2DL-HeLa shows a large number of tracks, if looked closely, some smaller
tracks can be observed. In this dataset, cases of mitosis can be observed, spawning new
tracks.
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Implementation for the Artemia franciscana. For the Artemia dataset, the
preprocessing of the frames included an earlier stage that consisted of two earlier stages:
manually selecting a region of interest in the data, and removing the mean image of all
the frames. Figure 3.38 shows the preprocessing of the images. Notice the change in
the image profile selected, and how it would affect the attempt to threshold the images.
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Figure 3.38 Preprocessing stage on the Artemia Franciscana dataset. (a) Original RGB
image with highlighted profile (yellow, dotted). On the top row, the images shown are the
original (a), the conversion to greyscale (b), and the resulting image after the preprocessing
stages of subtracting the mean from all the images (c). On the bottom row, the profiles from
the same highlighted lines in (a-c) are shown for all images.

Figure 3.39 Implementation of PhagoSight on Artemia data. In the results, the x and y
axes represent the rows and columns of the image and the time frames are read from the
bottom of each plot to the top. A guide for the axes is presented in the middle of the picture.
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Implementation of PhagoSight on Red channel or MACROS data. To explore
the macrophages data, tests were performed on the MACROS1 dataset. The results
are presented in Figure 3.40, where the red channel was input to PhagoSight. Some
problems can be noticed, as some inconsistent tracks can be observed close to the edges
of the frames because of problems in the acquisition of images.

Figure 3.40 Implementation of PhagoSight on Red channel or MACROS1 data. In the results,
the x and y axes represent the rows and columns of the image and the time frames are read
from the bottom of each plot to the top. A guide for the axes is presented in the middle of
the picture.

3.4 Summary

This chapter described image analysis techniques to segment objects from background.
The chapter was utilised as a thorough exploration of the data presented in Chapter 2,
in particular the macrophages images. As shown, the macrophages datasets involve
several challenges. Most of them are due to the imaging technique used, which caused
an uneven distribution of the intensities in the green channel, where microtubules are
represented. However, such also allow to observe interactions and cellular structures
from a different perspective. Challenges observed included: overlapping due to cell
contact and interactions, uneven segmentation and some holes or incomplete segmenta-
tion of the cells and inconsistencies in the imaging towards the upper right and lower
left corners of the images.
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A traditional image analysis approach, including preprocessing, thresholding
and post-processing, was described thoroughly. Various techniques per stage were
discussed. This segmentation approach could overcome some of the challenges in
the dataset, such as noise before and after applying a threshold. However, it is not
enough to solve the problem of overlapping, since a threshold will categorise intensities
into specific classes. Adaptive thresholds did not prove more useful than hysteresis
thresholds and had the downside of being time consuming.

Table 3.5 Main conclusions from the data exploration with traditional image segmentation.
The methods underlined stood out delivering the best performance for the data observed.

Preprocessing
Box filter

Both filters produce similar results useful for reducing noise.
Gaussian filter

Disk filter Filter would highlight circular structures such as cell nuclei.
Order statistic filters Nonlinear approach causing distortion and loss of shapes.

Thresholding
Single Sensitive to the changes of intensities in the cells.

Hysteresis Speckle noise is highly reduced.
Bradley and Roth [83] Sensitivity parameter difficult to optimise per frame.

Pappas [82] Time consuming. Results marginally better to hysteresis.
Postprocessing

Opening Allows for detection of the overall shape of the cells.
Closing Some unwanted structures get joined to the segmentation,

altering the shape detected.

Approaches involving feature detection did not produce satisfactory results, which
would overcome hysteresis thresholding’s outcomes. The case presented for Gabor
filters would require more analysis into which wavelengths and orientations would
be suitable to successfully classify the different pixels as foreground and background;
however this would get the images to the same state where hysteresis thresholding
would. Another approach involved the utilisation of SURF features, to try and create
a transformation of a cell from a state where it is not overlapping to a state where it
is. However, in the experiment attempted, unsatisfactory results were obtained as not
enough points could be matched between the cell in frame t and the cell at frame t + 1.
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Finally, three approaches for segmenting cases of overlapping cells were applied.
First, a naïve approach using Voronoi Tesselations, would provide a point of comparison
for any other algorithm trying segmentation. Then, an Active Shape Model (ASM)
and a Level Set Method variation. In the ASM, models incorporating all the cells
in the training frames would produce a model with eight modes which was hard to
manage, since the shapes were extremely varied in shapes. A model incorporating
only two overlapping cells was applied, which produced three modes of variation.
Unfortunately, in all cases, the selection of landmark points could only be implemented
in a way which made the implementation difficult. Possible implementations of this
model might work if the landmark points were selected differently and the temporal
component was utilised. The idea of exploiting the temporal component is explored in
Chapter 5. The LSM implementation presented issues with the implementation due
to the assumptions of the shapes and sizes of the cells. This implementation, however,
provided the idea to improve the detection of boundaries intersections by analysing
the border of the overlapped clump. Such an idea is explored in the following chapter.
While using machine learning techniques was considered, it was not implemented due
to the lack of ground truth data, and the difficulty of selecting an objective output for
the segmentation. A simple distinction between foreground and background would not
require a machine learning approach.

Through the exploration of segmentation techniques, hysteresis thresholding proved
to be the most efficient and cost effective. Thus passing the problem into new techniques,
which continue from the segmentation of single cells and overlapped clumps. At this
point, the analysis of single shape or overlapping boundaries will be introduced. The
materials developed in section 2.3 will be exploited to produce a new tool for the
analysis of the geometry of the shapes detected, overlapped or not.
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Chapter 4

Junction Detection and
Segmentation in Single Frames

In this work, the shape of macrophages is considered to be profoundly related to
their movement. In this chapter, a tool for the analysis of the junctions is introduced,
allowing to describe the shape, by determining whether the object of interest is a clump
or a cell. The tool originally was developed to detect specific points on the boundary of
an object, called junctions, however it could provide a roadmap for a broader analysis
of the shape in a 2D object.

In this chapter, a novel approach to find relevant junctions is described in detail
from the definition made in the author’s own work [71, 72]. From the data presented
in Chapter 2, two types of junctions can be recognised in the boundary of an object.
Initially, cells elongating as they migrate cause some pointy edges, which can be
observed. Situations where macrophages may overlap, result in their boundaries to
intersect. Such points can be detected in the boundaries of the clumps that form after
segmentation. For segmentation, a baseline algorithm is introduced in this chapter,
designed to automatically detect the objects of interest in both channels individually.
Clumps are thus defined as detections in the green channel containing two or more
nuclei. A novel tool, anglegram is presented, which enables two types of relevant
junctions to be detected from the boundary of segmented objects. The methodology in
junction detection, features and limitations will be presented using tests on synthetic
and macrophages data.

Finally, cases of separating overlapping cells in single frames using the anglegram
are presented. First, a naïve approach is presented as a starting point, which only
relies on the junctions detected by the anglegram. The chapter continues with two
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approaches to separate the cells in order to solve the ambiguity introduced by the
baseline segmentation. The approaches performed include (i) a boundary analysis of the
clump and the underlying edges close to the junctions; and (ii) a custom self-organising
maps (SOM) approach which would adapt to the area of the cells lost by the baseline
segmentation. All results are compared to overlapping cells separated by the Voronoi
approach described in Chapter 3.

4.1 Junctions

Junctions are the intersection of two edges corresponding to points of interest in the
shapes of objects and could aid in the analysis of shape. On the boundaries of objects,
junctions are commonly acquired by looking for extrema in the curvature of the image
gradient [103, 104]. However, a more intuitive approach to defining junctions includes
the notion of the tangent. The notion is summarised by the following definition.

Definition 3 (Junction, general) Let c = (x(s), y(s)) be the boundary of an
object, where s ∈ [0, 1] and c(0) = c(1) . A junction is defined as a point in which the
tangent of c is undefined.

Figure 4.1 showcases the two types of junctions and the nature of their generation
from the dataset. Preliminarily, both types of junctions can be defined based on the
definition above. However, the shapes can be classified based on the state of the objects
forming the boundaries. Corners occur due to overlapping of two objects, while peaks
occur through the inherent movement and elongation of the cells.

Figure 4.1 Diagram representing the two distinct types of junctions recognised in the working
datasets. (a) Corners correspond to junctions that are created by the combined outline
of two or more overlapped objects, forming a clump. (b) Peaks correspond to elongation
of a boundary of the object into a point. Both junction types can be recognised in the
macrophages dataset, and were modelled in the synthetic data described in section 2.3.
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Two types of junctions can be recognised, however, the previous definition, although
intuitive, is too broad. Also, the definition would be difficult to apply in digitalised
shapes. In a more accurate description1: (i) corners, which correspond to junctions
found in the boundary of the union of two overlapping objects, whose intersections
would correspond to the junctions acquired; secondly, (ii) peak , which correspond
to the pointy edges in single objects. The peaks detected, and the methodology to
do so would provide a tool for the analysis of shape. On the other hand, the corners
would be used as the basis for completing a segmentation of the overlapping cells.

4.2 Baseline segmentation

This section describes the algorithm to detect the nuclei in the red channel, as well as
the cells -or clumps- in the green channel in the MACROS<ID> datasets. The algorithm
serves as a starting point for additional processing involving (i) the disambiguation
of clumps in the green channel in single frames, Section 4.6, (ii) the shape tracking,
Section 5.2 and (iii) analysis of cell movements, Section 5.3.

As reviewed in Chapter 3, sophisticated algorithms have not produced satisfactory
results, furthermore, there is not enough annotated data to produce a machine learning
model for the shape of the cells that would allow for the segmentation of overlapping
cells. Therefore, the algorithm developed will favour simplicity and efficiency allowing
for new methods like the anglegram [72] to have a robust foundation. Figure 4.2 shows a
diagram of the algorithm used to segment single cells and clumps from the background.
The algorithm is straightforward and easy to understand. Each channel was treated
independently as the intensities distributions of both channels are different; the same
methodology was used for both. First of all, a preprocessing stage is done through
spatial smoothening, with a disk averaging filter of radius r = 3 for the red channel
and a Gaussian filter, standard deviation σ = 1 and size of 7× 7, for the green channel.
The segmentation stage is performed by a hysteresis threshold with the two levels
chosen by the Otsu algorithm, as shown in equation (B.12). The Otsu thresholds were
computed individually per channel. Finally, postprocessing was performed through
a morphological hole filling, followed by an opening with a structural element S of a
disk of radius r = 3.

1 Note that the notation utilised in [72] is different, but the notation could lead to confusions. A
more similar notation can be found in [71].
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Figure 4.2 Diagram of baseline segmentation. As overviewed in chapter 3, detection of
objects is made in three steps. Each channel in the images is treated independently from
each other. (a) Preprocessing is done through spatial smoothening, with a disk averaging
filter (r = 3) for the red channel and a Gaussian filter σ = 1 for the green channel. (b)
Segmentation is done by a Hysteresis threshold with the levels chosen by the Otsu algorithm.
(c) Postprocessing for the green channel involved a morphological hole filling, then an opening
with a S of a disk (r = 3).

Experiments with baseline segmentation

The baseline segmentation technique was evaluated and compared against ten con-
secutive frames with ground truth. The ground truth was obtained through the
freehandSegmentation routine described in section 2.4, where the objects in the
ground truth were joined with the union operator. This procedure produced ground
truth clumps. The Jaccard index per detected object was calculated for all objects in
the consecutive frames with available ground truth, concerning frames 45 to 54 of the
MACROS1 dataset. The results are shown in figure 4.3, where the frame numbers are
displayed along the axis. Two arrows point to relevant cases, representing the highest
(red) and lowest (black, dotted) Jaccard indexes scores.

Regarding the detection of objects, a qualitative comparison is presented in Figure
4.4, showing the segmentation output compared against ground truth at three distant
time frames. The colour code in the comparison column, shown in 4.4(d), is the same
as in previous figures throughout this work: black represents the background or true
negatives, yellow represents false negatives, blue represents false positives and red
true positives. It is important to notice that baseline segmentation refers to the
detection of frames, regardless of overlapping.

100



4.2 Baseline segmentation

Figure 4.3 Comparison of the Jaccard index for each object detected, whether a clump or
not, at each of the ten consecutive frames with available GT. The ribbon plot at the top
displays the time frames and the object detected per frame, on the vertical axis, the Jaccard
index is shown. Two relevant cases are highlighted: (a) depicts a cell in frame 45 achieving a
high Jaccard index (red arrow). (b) depicts a clump detected in frame 54 and its Jaccard
index is marked with a black arrow (dotted). In the comparison for both cases black is
background, yellow represents false negatives, blue represents false positives and red true
positives. Notice that the ground truth presents clumps as a result of combining all the
manually selected cell outlines.
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Figure 4.4 Detection of objects in the green channel on three representative frames of the
MACROS1 dataset and a qualitative comparison with the ground truth. (a) shows the original
frames in the dataset, while (b) and (c) depict the segmentation output and ground truth,
respectively. Subtle differences can be observed, like the number of objects, relating to the
number of clumps detected by the segmentation algorithm and the number of actual clumps
in the frame. Magenta boxes and arrows are used to highlight relevant differences. (d) shows
a qualitative comparison with the ground truth, where black represents the background,
yellow represents false negatives, blue the false positives and red true positives.
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Partition of clumps based in the detection of junctions

Identifying the object boundaries contained in a detected clump could be achieved by
detecting the intersections of such cell boundaries. The method will be fully defined in
Section 4.3. Given a set of junctions of a boundary known to contain overlapping objects,
a number of partitions of the clump can be proposed. Such partitions would then be
suitable candidates for approximating the original overlapping objects. Selection of
such candidates would then be a relevant task. This area of the research has been
incorporated as motivation to the algorithm for junction detection. An example is
provided to describe the problem, then in section 4.6, an initial approach is provided
in an application.

Considering two overlapping ellipses, the individual boundaries can have either two,
three or four intersections. The case for two intersections is solved almost trivially, as
there is only one line cutting through the objects and providing the correct candidates.
The case for 3 intersections, in practical terms, is not applicable and would not be
explored considering digitalised boundaries. Finally, the case for four intersections is
of importance, as without more information, eight possible partitions are possible and
it is only through some prior knowledge that the candidates can be produced.

Figure 4.5 Representation of possible partition of a clump based on the position of its
junctions. Eight different partitions of the object are possible. The prior knowledge of this
experiment is that there are two ellipses overlapped, which makes easy to visually identify
which candidates are appropriate.

Consider the case of several corners being detected in the outline of a clump
boundary. As with the ellipses, only two or four can be correct detections, although
due to cell shapes, more could be detected. Thus, a procedure must be considered to
identify possible candidates in a clump.
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4.3 The Anglegram Matrix

The anglegram is a matrix associated to the boundary of an object, which allows for 2D
shape characterisation; one of its key applications is the detection of relevant junctions.
The elements in the anglegram matrix are calculations of inner angles of the points
in the boundary, allowing for a computational description of relevant junctions. The
key terminology involves a calculation of various angles per point in the boundary of
an object, called angle variations. The angle variations allow for a distinction between
both types of junctions, and can be used in practical scenarios when dealing with
discrete boundary points. Following the definitions, tests of the methodology with
synthetic data, as well with images of binarised macrophages will be shown.

Discrete boundary of an object. As mentioned before, object shapes can be
modelled with a parametric, closed curve, c(s) = (x(s), y(s)), such that s ∈ [0, 1]
and the point c(0) is at the same position as the point c(1). Let B ⊂ R2 define the
boundary an object containing N ordered points. Then B can be understood as the
set described in equation (4.1):

B =
{

xi = (x(si), y(si))
∣∣∣∣si = i

N
, i = 1, · · · , N

}
, (4.1)

where x corresponds to a specific vector or point with two coordinates x = (x, y)T .
Thus, each of the points xi ∈ B, i = 1, · · · , N in the boundary are ordered. Without
loss of generality, the points will be deemed to be ordered in a clockwise manner along
the boundary of the object. For example, for a boundary having N points, xN+i = xi.
From Section 2.3, a clump of two objects will correspond to two boundaries partially
overlapped.

Angle variations on boundary points

Angle variations refer to multiple measurements of angles which can be computed from
a single point in the boundary of an object. In mathematical terms, in a 2D space, an
angle can be measured through three points: a middle point which serves as a reference
for the other two points. Classical mathematical tools, can then be used to compute
the value of the angle. To describe the angle variations of a shape, the inner angle of a
point will be defined by using each point along the boundary as the reference point,
and selecting two angles in the boundary to perform the calculation.

104



4.3 The Anglegram Matrix

Definition 4 (Inner angle of a point) The inner angle of a point xi ∈ B in the
boundary is the angle θi,j adjacent to the point, and measured from the jth previous point
xi−j to the following jth position xi+j. The angle is then depicted as θi,j = ∡xi+jxixi−j.

Figure 4.6 Illustration of the arrangement of n points in a boundary and the calculation of
the inner angles of two points. Notice the circular arrangement of the points meaning that
xn+i = xi.

Figure 4.6 shows the circular arrangement of points in a given boundary, as well as the
selection of the three points necessary to compute the inner angle of each point. As the
points in the boundary B correspond to a discretisation of a continuous curve c(s), the
N points in the boundary can be thought of as circular, or cyclical. This is important
when measuring the inner angle of certain points at certain separation distances.

For simplicity, the points at a separation j are depicted as xi−j, xi+j, however it
can be seen from the figure that the at a point xi, the selection of points i ± j will
correspond to the modulo, mod (i± j, N). From the last statement, it can be seen
that if i + j > N then the point xi+j = xi+j−N ; conversely, if i− j < 1, then the point
xi−j = xi−j+N .

The mathematical derivation of the calculation of the inner angle of point xi ∈ B,
with separation j, is presented. The angle is computed by the translation of the
two adjacent points xi±j to have the xi in the position of the origin. Then, the
calculation of the angle is made by the calculation of the angle between the resulting
vectors. Let pi ∈ B, the jth previous and following positions in the boundary are
pi−j, pi+j ∈ B, respectively. Let the vectors v+, v− ∈ R2 be defined as v+ = pj+i − pi,
and v− = pj−i−pi. The angle, θv, adjacent to the origin and measured from v+ to v−

will be equal to the inner angle of the ith point, θi,j. Figure 4.7 contains a graphical
explanation of the detailed implementation of such a calculation. Finding the angle
θv is done through Equation (4.2). Given the previous definition, a more accurate
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description of the types of junctions is outlined in Definition 5.

cos θv = v+ · v−

∥v+∥2∥v−∥2
. (4.2)

Figure 4.7 Graphical representation of the calculation of the inner point angle of point pi

at separation j. Left. representation of the inner angle of point pi at separation j. Notice
that the points in the boundary are taken in clockwise order. Right. representation of the
translation vectors v+, v−. Full explanation in text.

Definition 5 (Corner and peak junctions) A corner is a junction in which the
inner point angle for most separation distances is greater than 180 degrees. Conversely,
a peak is a junction in which most of its inner point angles are acute, i.e. less than
180 degrees.

Notice how the definition above does not contain assumptions about the closed boundary.
A junction is, thus, a point where the inner angle will range between certain values, at
various separations j. The discrete curves representing the boundaries would complicate
the detection of junctions, due to quantisation noise. Figure 4.9 shows examples of the
calculation of an inner angle for a given point in a clump boundary, the calculation is
the same for single objects. Next, the definition of the anglegram matrix will provide a
way to select corners or peaks based on calculations made upon it. For simplicity, the
detection of junctions will be described for the case of corners, following [72]. Detecting
peaks is a similar procedure, thus modifications to the method required will be outlined.
By visual inspection, the inner angle of a junction would be greater than 180 degrees
for a number of separations j. This number of separations will be referred to as the
depth of the junction. Thus, the method consists of computing the inner angle θi,j at
every point pi ∈ B, and on every separation j.
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The Anglegram matrix

The anglegram [72] is a tool to determine the relevant junctions of a particular shape,
based on its boundary points. The Anglegram matrix is defined as follows.

Definition 6 (Anglegram matrix) Let the boundary B, be referred to as the set
containing its points B = {xi}N

i=1, with the N ordered points corresponding to an object.
For each point pi ∈ B, the neighbours at the jth separation distance are the points
pi−j, pi+j ∈ B. Then, the anglegram matrix Θ(i, j) = θi,j is defined as the values
of the inner angles of each point i and per separation j, that is θi,j = ∡pi+jpipi−j,
calculated with equation (4.2).

Figure 4.8 Explanation of inner angle of a point in the construction of the anglegram. The
diagram shows a representation of nine arbitrary entries θi,j of the anglegram matrix. Each
entry corresponds to an inner point angle at a specific separation. In the diagram, as in the
matrix, the rows (i) correspond to a single point alongside the boundary (red ⋄) that start at
a specific point (marked ◦); the columns (j) correspond to the separation from the point i⋄
and from there the angle is taken. Each corresponding entry, θi,j , of the anglegram matrix Θ
is marked with a green arrow, furthermore, each angle is shaded to match the colour map
used in the anglegram in figure 4.9.
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The definition considers the concepts of inner angle of a point, i and separation
distance, j for the construction of the anglegram; the columns represent the separation
distance along the boundary and the rows represent each point in the boundary. The
anglegram matrix would provide a general overview of the shape and the inner angle of
the points along the boundary. Figure 4.8 represents the calculation of each inner point
angle based in some examples, each angle is shown in a different colour to symbolise the
size of the angle. Furthermore, Figure 4.9 contains an example of this construction in a
synthetic case, where (b) shows a single row of the anglegram, whose values correspond
to a single point (blue ◦) and three instances of the inner point calculation at different
separations (red+, yellow ∇ and green ⋄).
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Figure 4.9 Representation of inner point angle calculation and generation of anglegram
matrix. (a) Represents a synthetic clump with its boundary outlined (blue - -), where a point
(blue ◦) in the boundary will have various inner point angles per separation j. All the inner
point angles for the highlighted point are displayed in (b). (c) Shows the anglegram matrix,
where each row represents the graph displayed in (b) for each boundary point.

Notice that the sampling of the boundary would impact the generation of the
anglegram, and the subsequent detection of joints. As the boundaries are generated
using the Matlab® function bwbondaries, they will return a number of points
corresponding to the number of boundary pixels for the corresponding region. In
developing the anglegram matrix, common number of boundary points sampled, N =
|B|, would be ranging from 250 to 300 points, thus producing a matrix with such
number of rows and N/2 columns. The following sections describe the junction detection
algorithms, which use the anglegram. The number of sampling points was only reduced
when considering peak-detection.
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4.4 Junction detection with the Anglegram
In this section, the process to find relevant junctions on the boundary of an object by
using the anglegram is presented. The method will employ the definitions of corner
and peak and utilise them to search for extrema in the anglegram matrix. As any
junction will correspond to a point in the boundary, the inner point angles of it can be
assessed by looking at a projection of the rows of the anglegram. The method is similar
in both types of junctions, as shown in figure 4.10. After generating the anglegram, an
intensity projection can be applied to its rows where each data point would correspond
to the positions in the boundary.

Figure 4.10 Graphical representation of the detection of junctions via the anglegram. In
this example which represents a boundary with corner junctions, large inner point angles are
searched for. Therefore, the maximum intensity projection of the rows is represented. Each
junction is represented with a star (⋆) marker, also shown in the corresponding row in the
anglegram and position in the projection, where peaks display the detection of a junction.

Determination of the projection over the rows of the anglegram As the
local extrema on a projection over the horizontal dimension of the anglegram is related
to the position of the junctions of the boundary and the depth of the junction. Each
row, Θ(i, :), corresponds to the inner angles of point pi, therefore taking a summary
of the rows would yield a measurement of the general inner angles of each point. For
the detection of corners, the maximum intensity projection, MIP , was compared with
the mean, median and area under the curve. Figure 4.11 displays the four types of
projections used for a particular boundary. The maximum intensity projection produces
a particular shape in which the higher levels appear at positions in the boundary where
the junctions are located.
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Figure 4.11 Tests from the different row projections of the anglegram. On the left, the
overlapping object presents four corners. On the right, the different projections. Diamond
markers of relevant peaks are displayed in the different curves. The maximum intensity
projection consistently outperformed the other measurements when detecting corners, whereas
the mean and median would often miss junctions with small depth and the area under the
curve would produce false detections.

Detection of corners

The anglegram matrix, Θ, contains the inner point angles calculated at every point,
and at all separation distances. Thus, every row in the anglegram corresponds to the
measurements made at a specific point in the boundary. In the case of detecting corners,
definition 5 specifies that corners are junctions whose inner angles are consistently
obtuse. As seen in Figure 4.10, a projection over the rows of the anglegram Θ is needed
to find the positions along the boundary that contain a junction. And as seen in Figure
4.11, the maximum intensity projection (MIP ) over the rows of the anglegram was
chosen; this vector is represented by the symbol θ̂P r.

The anglegram needs to be preprocessed to account for quantisation errors in the
boundaries extracted from the clumps, especially at close separation distances. First
of all, an averaging filter of size 5× 5 was applied to the anglegram matrix, Θ, before
the calculation of θ̂P r. The second step ignores the first columns of the anglegram.
The local maxima of the 1D projection were found by using the function findpeaks
from Matlab®, which identifies local maxima of the input vector by choosing points
of which its two neighbours have a lower value. Due to quantisation noise in θ̂P r, the
parameters MinPeakDistance and MinPeakHeight were set to empirically consistent
values. First, MinPeakDistance, which restricts the function to find local maxima with
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a minimum separation, was set to 25. Furthermore, the parameter MinPeakHeight
was set to mean(θ̂P r) + 0.75× std(θ̂P r).

(b)

(a)

Figure 4.12 Junction detection on overlapping objects through the maximum intensity
projection of the anglegram matrix. The junctions detected on a synthetic pair or ellipses
is shown in (a), where the boundary of the clump is represented as a dotted line (blue) as
well as the junctions (magenta ⋄). The definition of θ̂P r is represented in (b), where the
anglegram matrix Θ is displayed in a plane and θ̂P r is represented along the boundary points.
Detection of junctions are shown with ⋄ markers (magenta). Notice the two horizontal lines
representing mean θ̂P r and mean θ̂P r + 0.75 std θ̂P r.

Detection of peaks

The detection of peaks, is analogue to the detection of corners. The process is similar
to the process in Figure 4.10. In this section, the alterations made to the process are
described. To detect peaks, two main alterations were implemented: (i) resizing the
anglegram to have 64 rows to reduce noise, and (ii) taking the minimum intensity
projection (mIP) of the first half columns, as the final columns are lower by the
definition of the inner point angle measurements. An extra condition was added to
avoid over-detecting peaks in circles: when detecting over four peaks with a mean
value greater than 120 degrees, the peaks detected are discarded.

The process of detecting peaks involves getting the minimum intensity projection
(mIP ) of the anglegram and finding the points which correspond to the local minima
of the mIP , also referred to as θ̂P r. The procedure to find the local minima is analogue
to the process of detecting corners, as the same Matlab® function findpeaks(−θ̂P r)
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is used. Figure 4.14 displays the minimum intensity projection of the anglegrams
computed from the mean basic shapes in figure 4.13.

0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

Figure 4.13 Anglegram of basic shapes. As presented in Figure 2.21, two hundred instances
of each basic shape were generated. Top row. The four mean basic shapes. In each
shape, the generated points is presented (·, blue) along its corresponding centroids (⋄, black).
Bottom row. The anglegram was computed for each mean shape. The matrix has been
transposed to show the boundary in the horizontal axis.
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(b) Drop
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(c) Bi-drop
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(d) Tri-drop

Figure 4.14 Minimum intensity projection of the anglegram of basic shapes. (a-d) show the
resulting curves when computing of θ̂P r. The strong blue lines represent the mIP, θ̂P r, the
red marker (⋄) represent the local minima found through the function findpeaks. The yellow
and purple horizontal lines correspond to the values of mean(θ̂P r), and mean(θ̂P r)− std(θ̂P r),
respectively. Notice that in (b-d), there appears to be an extra local minimum at the end of
the span of the graph, however, that corresponds to the same peak as the one found in the
beginning.
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4.5 Experiments with the Anglegram
The methods outlined in Section 4.4 were validated through tests in the synthetic
data described in Section 2.3 to find its limitations. Then, the method was applied to
different instances of the macrophages data both for cases of overlapping, as well as
different instances of single cells.

Tests in corner detection

Two experiments were designed to test the functionality of corners. The first involves
the detection of corners in different cases of overlapping ellipses with varying angles
differences and separations. Then, some experiments of corner detections using instances
of the MACROS1 dataset. It can be anticipated that the methodology as described before
will have its limitations with certain ranges of angles. It is important to recall that
the maximum intensity projection (MIP ) is computed per columns, and the angles
below a given threshold are discarded. Thus, cases with angles close to 180 degrees are
expected to be missed from the analysis.

Synthetic data Images of overlapping ellipses with varying ranges of angles and
separations were analysed. The ellipses generated followed the procedure explained
in Section 2.3, where each image would contain two ellipses, a reference one E0, and
an ellipse with varied angle and distance from the centre E∆,ϕ. In the experiment, the
images included a variation of ten different angles ϕ ranging from 0 to 90 degrees with
a variation of 17 different separations ∆ ranging from 0 to 160 pixels from the centre
of E0. In total, 170 images were generated, of which 32 were removed from the analysis,
as these were cases where the separation would produce non overlapping ellipses.

A subset of the images is presented in Figure 4.15. In it, the detected junctions
are shown in a green marker (◦) whereas the ground truth for the junctions is shown
in a red marker (+). Places where a junction was missed, only the ground truth
marker would be visible. Based on the corresponding value in the maximum intensity
projection (MIP) of the anglegram matrix, given the methodology explained in Section
4.4, the junctions that were correctly detected on the synthetic data had a range of
angles [188.64 - 328.4] degrees; whilst the missed junctions had a range of [162 - 191.96]
degrees. A correct detection would place the junction within 5 pixels of the known
intersection of the boundaries. This indicates that very wide angles, close to a straight
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line are easy to miss. Detail of the cases where error was found are presented in figure
4.16, where the previous statement can be assessed.

Table 4.1 Synthetic test of corner detection from 139 cases of overlapping. Rows show the
number of corners detected by the algorithm compared to the real intersections.

Intersections / Corners detected (%)
Corners ≤ 1 2 3 4

2 14.29 85.72 0 0
4 6.25 8.33 4.17 81.25

Figure 4.15 Results of the corner detection through the anglegram method for overlapping
ellipses. The variation of angles and distances can be appreciated. The joint boundary,
corresponding to the overlapping region is shown in cyan (- -). In all cases, the detected
junctions are presented in a green marker (◦) and the ground truth junctions are shown in a
red marker (+). Overlapping instances of interest have been highlighted in yellow.

Detection of junctions in macrophages data

The method to find corners was applied to the macrophages dataset. The method
requires the boundary of overlapping objects, this requires a segmentation technique to
binarise the images and thus produce the boundary B. To ensure that the methodology
of detecting junctions would be isolated from the segmentation, the ground truth was
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Figure 4.16 Cases where the detection of corners was not accurate. The joint boundary,
corresponding to the overlapping region is shown in cyan (- -). In all cases, the detected
junctions are presented in a green marker (◦) and the ground truth junctions are shown in a
red marker (+). Case (a) is an extreme case, as both ellipses are occupying the same space
and have the same size. The junctions in (b-d) were most likely missed due to the inner
point angles not being large enough, or as can be seen in (b) caused by a lack of depth of the
corner.

used, by merging the two overlapping objects into a single boundary. Eleven frames
were segmented manually. The frames showcase four clumps as they evolve in time.

Figure 4.17 Results of the corner detection through the anglegram method for clumps in
macrophages data. The joint boundary, corresponding to the overlapping region is shown in
cyan (- -). In all cases, the detected junctions are presented in a green marker (◦) and the
ground truth junctions are shown in a red marker (+). Cases where a detection was made
that did not have a junction are green circle markers with a red outline.
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Tests in peak detection

To detect peaks, a synthetic test was designed utilising the shapes described in Section
2.3. As observed from the data, four main shapes were identified based in the number of
pointy edges they showed: circle, drop, bidrop (or croissant) and tridrop. As with the
detection of corners, two experiments were designed to test the functionality of peaks.
The first correspond to detection of peaks in a large number of artificially generated
shapes. Then, some experiments of peak detections were made using instances of the
MACROS datasets.

A collection of 1000 images of basic shapes was generated with control points joined
by cubic splines whose independent variable ranged in τ ∈ [0, 2π]. The tests done on
the synthetic data were in the range of 86-95% correct detection, as seen in Table 4.2.
The method achieved the highest accuracy in the bidrop shape, and the lowest in the
drop shape. A random sample of the test shapes is shown in Figure 4.18.

Figure 4.18 A random sample of the synthetic data used to test the peak detection using
anglegram. In all cases, the detected junctions are presented in a green marker (◦) and the
ground truth junctions are shown in a red marker (+). Cases where a detection was made
that did not have a junction are green circle markers with a red outline.
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Table 4.2 Synthetic test of peak detection from 1000 generated shapes. Rows show the
shape types and columns show the number of peaks detected by the algorithm. The accuracy
of the method is highlighted.

Shapes / Peaks detected (%)
Peaks None 1 2 3 ≥ 4
Circle 89.35 0 0 0.47 10.18
Drop 4.42 86.02 6.81 2.52 0.23

Bidrop 0 0.41 95.17 4.31 0.11
Tridrop 0 0.02 2.76 92.94 4.28

Additional anglegram experiments

Preliminary measurements of elongation. As in Chapter 2, particularly in figure
4.19, repeated here, the cells’ elongation and shape changes can be observed as they
move. This is referred to as pointiness. It is noticeable how the elongation becomes
greater making the peaks appear more prominent as they get closer with another cell.
In this experiment with synthetic data, simulated elongation of each of the basic shapes
is presented. In Figure 4.20 the difference between the lowest and highest angles of
the minimum intensity projection are shown as a preliminary to the measurement of
pointiness of a shape.

Figure 4.19 Pointiness changes observed in consecutive frames (repeated Figure 2.23 for
convenience). The detail of the cell is shown where an array of microtubules appears to form
at the bottom of the cell as it migrates. Outside the frame, another cell would approach
causing the elongation.

Comparison against Harris corner detector. Harris and Stephens [103] proposed
a junction detection algorithm centred in searching for extrema in the curvature of
the image gradient, which is widely used. Note that, unlike this work, Harris calls
all junctions corners. A comparison against this method is provided, highlighting the
differences in approach from the detection of junctions with the anglegram.
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Figure 4.20 Assessment of pointiness of the basic shapes. Each synthetic shape was created
with a visibly increasing elongation, causing the peaks to be more prominent. Eight levels
of pointiness are presented per shape; the relationship of the anglegram values and the
pointiness is presented. Notice that in all cases the difference between the maximum and the
minimum values of the minimum intensity projection appear to grow proportionally to the
pointiness.
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In the experiment, junctions in four overlapping clumps and four basic shapes are
shown, comparing the output of the anglegram method with the Harris corner detector.
The Harris detector is ranks the junctions detected in function of its sharpness, so
only the strongest corners are shown. The qualitative comparison, Figure 4.21, shows
similarities in the junctions detected and missed from both algorithms and highlights
the specific nature of the anglegram approach. Using the anglegram allows for a specific
type of junction to be detected, and ignores other types by the definition.

Figure 4.21 The strongest junctions detected by the Harris detector (green +) were plotted.
The output of the anglegram is presented in magenta markers (⋄). The top row, (a-d) show
the four basic shapes in which peaks are detected. Notice that the detection via anglegram
shows precisely the corners of interest. The bottom row, (e-h) show the detection of corners,
where only in the clump in (a) shows a missing junction from both algorithms (cyan ◦).

4.6 Segmentation of overlapping objects in a single
frame using the Anglegram

The following section is reproduced verbatim from [72]. Comparison of methodologies to
segment clumps into overlapping cells is described. As a benchmark, Voronoi partition
was used with the method developed in Chapter 3. Then, the three methods, which
incorporate the information from the junctions into a segmentation output were used.
The methods differed in the way the junctions’ information was incorporated into a
complete segmentation. Junction Slicing (JS) and Edge Following (EF) involved the
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explicit use of the junctions’ position, while the proposed self-organising map (SOM)
fitting involved the information of junctions into creating a custom SOM that adapts
to the overlapping section of the data. In this work, only the cases where two junctions
were found were examined in detail. A diagram showing all methods presented and
the data flow is presented in Figure 4.24.

Voronoi partition This method was included as a lower-bound benchmark for
comparisons against with the proposed methods. It consists of a naïve approach to the
problem that does not include any information from the green channel. The image area
was partitioned, using Voronoi tessellations [94]. The partition of the green channel’s
cells was based on the centroids of the detected nuclei from the image’s red channel.
Full description of this method is presented in chapter 3.

Junction Slicing (JS) This method partitioned the clump with the line that joined
two junctions. For each junction detected, each of the two adjacent segments of the
boundary of the clump would correspond to one of the different objects within the
clump. Since the points in the boundary are ordered, starting at one point p1 and
moving alongside B in a clockwise manner, then the segment that appeared before a
detected junction would correspond to one cell, whereas the segment that appeared
after the junction would correspond to the other cell. As described before, Figure 4.5,
for cases where only two junctions were found, the problem of selecting which pair
of junctions will be joined becomes trivial. However, considering a case like the one
presented in Figure 4.5, or in real data in figure 4.17, where four junctions would appear,
different combinations of the boundary segments could yield different candidates of
segments.

Edge Following (EF) In order to obtain the edge information, the Canny [79]
algorithm was used on the green channel of the image. The algorithm consists of
finding the local maxima of the image gradient. In this work, the parameter of the
standard deviation was set to σ = 1. The trend of the two adjacent segments leading
to the junction was defined by approximating the tangent line of the boundary at the
junction point. The definition of the tangent line was taking an average slope of the
secant lines leading up to the detected junction. The tangent line was extended, and
a region of interest (ROI) was defined by a triangle where the approximated tangent
line goes along the vertex and the adjacent angle corresponds to 20 degrees to each
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side of the tangent line (Figure 4.24). The ROI defined for each of the adjacent line
segments was then intersected with the edge information of the image, resulting in a
set of binary line segments, which were labelled. Labelling of the binary line segments
allowed for individual analysis of each line. Each line detected was analysed in terms
of its orientation and size, preserving the one that has the most similar orientation
to the extended line segment. Binary line segments with a change in direction were
split by removing the strongest corners, detected using Harris’ corner detector. The
lines found by both ROIs on each junction were used as new coordinates to add to the
boundary of the corresponding cell.

Figure 4.22 Initial study comparing Jaccard indexes of the segmentation via Edge Following
versus Voronoi tessellations. The results from the initial EF segmentation are shown in
the top row while the Voronoi output are shown in the bottom row. The boundaries of
the corresponding cells are shown in cyan and yellow depending the cell evaluated. The
boundaries are shown alongside the plot of Jaccard similarity index per cell/method.
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It is worth noting that originally, the only method developed was EF, where an
initial study on it was made. Figures 4.23 and 4.22 show the main output from such
exploration comparing the results of the two methodologies, performing EF in two cells
overlapped along ten consecutive frames.

Figure 4.23 Initial study comparing segmentation via Edge Following (EF) and Voronoi
tessellations. Two cells were assessed in this preliminary study, spanning ten frames, from
t = 45 to t = 54. The results from the initial EF segmentation are shown in the top row while
the Voronoi output are shown in the bottom row. The boundaries of the corresponding
cells are shown in cyan and yellow lines.

Self-organising Maps (SOM) Fitting This work proposes an alternative imple-
mentation of the self-organising maps [105] that adapts itself to the overlapped area.
For this SOM, a custom network was defined, as well as the input data and additional
rules to the definition of the step-size parameter, α. Let the network R = (V ,L),
where V = {mi = (xi, yi) ∈ R2 : i = 1, · · · , nv} are nodes assigned to positions in the
plane and L are some edges linking the some of the nodes in V. For implementation
purposes, each node mi ∈ V has an identifier, position, and a speed parameter, related
to the movement of each node. The input data was determined by the positions and
normalised intensity values of the image, i.e. (xt, I(xt)). Values in I(xt)which were
selected by an Otsu’s threshold [106], and were located within a bounding box that
contains the junctions. Given an input, the algorithm proposed by Kohonen [105]
follows two basic steps: identifying the closest node in the network to the input, shown
in Equation (4.3), and update the positions of the nodes inside a neighbourhood,
determined by a distance ne to the winner node mc, (4.4),

mc(t) = arg min
c∈{1,··· ,nv}S

∥xt −mi(t)∥2
2 (4.3)
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4.6 Segmentation of overlapping objects

mi(t + 1) =
 mi(t) + αt (xt −mc(t)) , (i, c) ∈ L and Dist(mi, mc) ≤ ne

mi(t) , otherwise
, (4.4)

where Dist(mi, mj) refers to the distance from node i to node j in the shortest path
determined by the edges L. In this work, the parameter αt was determined the intensity
level of the image, I, and the speed parameter of the node. The proposed formula for
the parameter αt is shown in equation (4.5),

αt,i = α0 × (0.2 + I(xt))4 × speed(mi), (4.5)

where speed(mi) is 0.1, or 1, depending on where the node resides in the topology.
The network was defined by taking a subset of the boundary points in B in a ring
topology, and then adding two networks in a grid topology to each side of the line
joining two junctions. The three networks are independent from each other. Thus,
speed(mi) = 0.1, if mi was located in the boundary of the clump, and speed(mi) = 1,
if it was one of the grid networks. The assumption is that the network taken from B
would be closer to the actual cell, and therefore it should not move abruptly, whereas
the networks inside the clump will adjust and adapt to the shape of the overlapping
area between the cells. In order to finalise the network final state into a segmentation,
the external network was taken as a new clump and it was partitioned by the same line
used in the junction slicing (JS) method. Finally, the area formed by the inner network
that adapted to the overlapping section of the cell was dilated with a 5 × 5 square
element and then attached to both partitions of the new clump. The right column of
Figure 4.24 displays the main steps of the SOM fitting method described.
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Original image Clump and
junction detection

SOM fitting
SOM adapting

Extraction of overlap
Voronoi partition Junction Slicing Edge Following

FINAL OUTPUTS

Figure 4.24 Illustration of all the methods developed and the workflow to obtain results.
Top left shows the detail of CLUMP (a) in the original frame. Clumps are detected and the
boundary was extracted. With the boundary information, the anglegram was calculated and
the junctions were detected (top, middle). On the second row, a diagram to the methods were
presented. From left to right, the Voronoi partition, Junction Slicing (JS), Edge Following
(EF) and SOM fitting. Bottom row shows the outputs from each method for both cells within
the detected clump.
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4.6 Segmentation of overlapping objects

Overlapping segmentation results and discussion

The following section is reproduced verbatim from [72]. The author’s work presented in
[71, 72] shows the initial approach of solving the ambiguity introduced by the baseline
segmentation of the green channel in the data, forming clumps. Two clumps were
assessed for this experiment spanning ten consecutive time frames with available ground
truth. A qualitative result is presented in Figure 4.25, where the four techniques can
be assessed in one representative frame. The detail of both clumps is shown with the
boundary of the segmentations superimposed.

Figure 4.25 Qualitative comparison of different segmentation methods in two different
clumps. Two clumps are shown, one in (a-d) and the other one in (e-h). The columns have
the results from the frame depending on the different techniques described: (a,e) Voronoi,
(b,f) JS, (c,g) EF and (d,h) SOM. Image rearranged from [72].

The data was organised in the following way: two clumps, with two cells each over
ten frames. Furthermore, the comparison with the ground truth was performed with
three performance measurements: Precision, Recall and Jaccard index. Thus, 120
calculations were made. To summarise them, tables 4.3 and 4.4 were created. Junction
Slicing (JS), Edge Following (EF) and Self-organising Maps (SOM). The Jaccard
Similarity Index [73], recall and precision [74] statistics were computed for both clumps
on all the frames and all the methods described, box plots of the results are shown in
Figure 4.26 and summarised in table 4.3. Table 4.4 presents a statistical analysis of the
results presented in Table 4.3. The Wilcoxon Signed Rank test [107] was implemented
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to compare the medians of the results per measurement, for example Precision(Voronoi)
vs. Precision(JS). The test was chosen as an alternative to a traditional t-test, without
the need to assume the distribution of the measured values.

Table 4.3 Comparison of mean values of Precision, Recall and Jaccard Index for clumps 2
and 3 over 10 frames. This table summarises the results in Figure 4.25. Highest results are
highlighted.

CLUMP (a) CLUMP (b)
Precision Recall Jaccard Index Precision Recall Jaccard Index

Voronoi 0.906 0.925 0.843 0.872 0.868 0.771
JS 0.970 0.953 0.926 0.974 0.948 0.925
EF 0.964 0.983 0.948 0.938 0.950 0.896

SOM 0.965 0.951 0.919 0.973 0.948 0.923

Table 4.4 Statistical analysis of results presented in table 4.3. The Wilcoxon Signed Rank
test [107] was implemented to compare the results per measurement (Voronoi, JS, EF and
SOM). The table presents the p-values on the paired test for each of the pairs, (first and
second columns). Tests where the null hypothesis could not be rejected are highlighted.

CLUMP (a)
Precision Recall Jaccard Index

Voronoi vs.
JS p = 0.002 p = 0.002 p = 0.002
EF p = 0.004 p = 0.004 p = 0.004

SOM p = 0.002 p = 0.037 p = 0.002

JS vs. EF p = 0.004 p = 0.004 p = 0.004
SOM p > 0.05 p > 0.05 p > 0.05

EF vs. SOM p > 0.05 p = 0.004 p = 0.008
CLUMP (b)

Precision Recall Jaccard Index

Voronoi vs.
JS p = 0.004 p = 0.004 p = 0.004
EF p = 0.008 p = 0.008 p = 0.008

SOM p = 0.004 p = 0.004 p = 0.004

JS vs. EF p = 0.008 p > 0.05 p > 0.05
SOM p > 0.05 p > 0.05 p > 0.05

EF vs. SOM p = 0.016 p > 0.05 p > 0.05
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Figure 4.26 Comparison of Precision, Recall and Jaccard index for all segmentation methods
presented in this section. The horizontal axis shows the different measurements of performance
tested on the different overlapping segmentation methods: Precision, Recall and Jaccard index.
Groups of four boxplots are shown as a visual representation of the statistical distribution of
the values of each method. From left to right, the order of the methods shown are Voronoi,
JS, EF and SOM. Image rearranged from [72].

4.7 Summary

This chapter presented a tool for the detection of junctions and the analysis of the
shape of cells. The baseline segmentation for all developments in this and next chapter
was introduced. As mentioned in section 3.4, more sophisticated approaches would
produce unsatisfactory results, which failed to solve the ambiguity of the clumps. The
baseline segmentation is a fast and robust algorithm, with relatively low issues. As
observed in Figure 4.4, some limitations were observed in the formation of clumps,
as the microtubules in the cells cause larger clumps. This effect is likely due to the
morphological hole filling after thresholding. However, such a trade-off is necessary to
allow for boundaries to be closed and almost convex, as defined in Section 2.3.
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The anglegram matrix was introduced, which paired with the projections along
its rows, provides a signature of the shape of an object. The anglegram allows for the
correct identification of junctions when considering a clump or a single cell. Tables
4.1 and 4.2 show promising results for both cases. The method can be exploited
in several ways, from allowing the reconstruction of an overlapped segmentation, to
allowing a measurement of the elongation of the cells. This chapter also shows some
limitations to the method, and poses some restrictions on the underlying segmentation,
like the production of a closed boundary. Regarding the limitations, when detecting
corners, the anglegram method was unable to detect anything in a range of low angles,
[188− 192] in the experiments presented, although the Harris corner detector showed
similar problems at those angles, Figure 4.21. In peak detection, the limitations lie
in the amount of corners found. Notice in Table 4.2 that for all shapes with at least
a peak, the detection of an extra peak is more common than missing peaks. Some
limitations are shared with the Harris corner detector, notice in figure 4.21(e) a junction
was missed by both methods.

The information that can be extracted from the anglegram shows a good promise for
shape determination and analysis, whether this involves overlapping or non-overlapping
objects. The limitations for corner detection depends on the participating cell positions,
and it is transferred to the following segmentation methods. Table 4.3 shows a better
performance from all three junction-based methods compared to the Voronoi partition.
Furthermore, the percentile box sizes in figure 4.26 show that the EF method (yellow)
is less consistent than the SOM method (white).

This chapter involved the analysis of single frames, however it is important to
remember that most of the information of interests lies within the movement of the
cells. In the work by Stramer et al. [4], the interactions amongst the cells’ structures
appear to anticipate migration, where sharp corners suggest an active migrating cell and
rounded corners inactivity. Different shapes of the could hint at different movements.
Therefore, a classification of the cell shapes into distinct shape-states could aid in
biological studies where a precise analysis of cell shapes as they evolve through time is
necessary. Such methodologies will be explored in the following chapter.
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Chapter 5

A Cell Shape Analysis and
Tracking Algorithm: macrosight

In this chapter, the algorithms to study macrophages cells are described. Combined
with the previous chapter, the algorithms in this chapter belong to a framework which
allows for different types of analysis. The previous chapter presented the anglegram and
some methods allowing for single frame analysis, without incorporating the temporal
context. The current chapter presents two distinct contributions from the ones
presented in the previous chapter; both analyses were performed on the macrophages
datasets. The temporal context is included in both by the tracking of the cells. For
tracking, the keyhole algorithm within PhagoSight [102] is used. The methods proposed
in this chapter, in conjunction named macrosight, exploit the baseline segmentation
from Chapter 4, using the channels for different purposes: (i) the red channel is used
for tracking of the cells and (ii) the green channel is used to perform the different
analyses.

An overview of the macrosight framework is described below. Figure 5.1 shows
a graphical abstract in which the two projects and its relationship with the baseline
segmentation, PhagoSight and how both techniques were incorporated into the two
main projects is described. As discussed in Chapter 3, PhagoSight is a framework
which includes segmentation and tracking routines, the latter implementing the keyhole
algorithm. Apart from the algorithms, information is handled and saved in a specific
way. To incorporate the baseline segmentation output into PhagoSight’s framework,
technical modifications were made to the output and storage of the segmentation and
to the output of the framework. Furthermore, information regarding the clump was
incorporated. Section 5.1 is included as a detailed overview of PhagoSight and the
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modifications made to it, allowing the implementation of developments in sections 5.2
and 5.3.

Figure 5.1 Complete graphical abstract of macrosight, which includes PhagoSight, the
anglegram, shape analysis and analysis of cell-cell interactions. The different contributions
are clearly presented. At the top the segmentation block is shown, including the baseline
segmentation and the anglegram. At the bottom, the two contributions are shown: shape
tracking and direction changes from cell-cell contact.
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5.1 Modification of the PhagoSight framework

The first project, shown in section 5.2, consists of the incorporation of shape analysis
to a tracking framework, and was originally presented in [108]. Macrophages cannot be
assumed to have simple shapes, however from one time frame to the next, the shape does
not change drastically, but rather evolves gradually. The project describes an algorithm
that iteratively tracks and analyses the shape of macrophages in time intervals when
they do not overlap. The process allows the observation of shape variations as each
cell migrates and the measurement of shape parameters. The anglegram is used to
detect peaks in the cells as they evolve. The second project, shown in section 5.3
presented in [109], where the direction of the original path changes from at least one
cell. The work analyses the change of direction in cells before and after overlapping.
Interaction of macrophages are assumed to occur upon coming in contact, which causes
their representation in the green channel to overlap.

Notation. The notation relevant this chapter include the time position represented
with the letter t, t + 1 refer to the following frame in the dataset and t− 1 represents
the previous frame. In section 5.3, specific frames are referred to via subindexes. The
positions in the image are represented in vector notation xt or explicitly (xt, yt). Tracks
are represented by Ti, where i is an index and represent collections of positions of the
cell as it moves in time. Cell boundaries are represented by B, as in chapter 4.

5.1 Modification of the PhagoSight framework for
migrating macrophages

This section describes the technical details which were considered when incorporating
the macrophages time sequences into PhagoSight and use the keyhole tracking algorithm.
PhagoSight is a semi-automatic software for the segmentation and tracking of fluorescent
neutrophils, it has a complete pipeline (algorithm 1) based on saving the intermediate
steps in the processing. Storing intermediate steps of the processing is visible in lines
4 and 9 of algorithm 1. The software recognises the dataset containing the raw data,
DS, and produces intermediate directories DSRe for preprocessed data and DSLa for
the segmented and labelled images. Therefore, to incorporate a different segmentation
technique, the right information has to be saved to the correct directory and naming
scheme. To incorporate the results of a different segmentation technique, the segmented
data must be labelled and stored in a directory with the name DSLa. The software has
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the ability to recognise which of the intermediate steps has been previously detected
and continue the analysis from there.

The PhagoSight package was used to track the movement of the nuclei through time
using the keyhole algorithms. Its segmentation is similar to the baseline segmentation
but only uses scaling of a single Otsu threshold to produce the two different levels.
Also, it does not account for the different channels in the data, for which the channels
were saved as different images. The output of PhagoSight is the handles structure,
which contains the general information of each image analysed and the information of
the cells per frame. Namely, which of the detected cells in frame t is parent to another
cell in t + 1. The information stored per track detected is in table 5.1. The information
used in the subsequent analyses are the position in time and space and two labels
associated to each cell.

Algorithm 1: PhagoSight pipeline
Input: Dataset location: DS, Input parameters: θ (optional)
Output: Structure variable: handles

1 foreach image I of the dataset DS do
2 IRe = preprocess(I)
3 end foreach
4 Save preprocessed images Re to disk: DSRe

5 Determine parameters: θ
6 foreach image IRe of the dataset DSRe do
7 ILa = segment(IRe)
8 end foreach
9 Save labelled and segmented images ILa to disk: DSLa

10 Perform tracking on labelled images DSLa

11 handles= structure with locations of DS, DSRe, DSLa and tracks information.

First, a label in binary image, which refers to the label assigned to the cell at
segmentation and the final track label corresponds to the track identification. Thus,
a single cell will have a final track label, or track label, identifying it in the context
of the whole experiment and at each frame it will have a label in binary image
which could vary from frame to frame.
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Table 5.1 Track information retrieved from PhagoSight framework (repeated from Table 3.4
for convenience). The information utilised for the analysis is highlighted: position provides
the coordinates xt, yt, zt of the cell in the image per frame t, time frame is the temporal
position in the dataset, t, label in binary image refers to the label assigned to the cell at
segmentation and final track label corresponds to the track identification, T .

Position xt, yt, zt Distance to closest Time frame
ID Parent cell Child cell
Velocity Volume Label in binary image
Keyhole Track ID Final track label
Bounding box information Volume to surface Sphericity
Neighbours at different Distance to disappear Distance to appear
distance brackets

Addition of clump information. Each track produced by PhagoSight includes
the information of the cell’s nuclei that has been tracked and linked from one frame to
others. The information of interest to this work is explained in Table 5.2, it includes
parameters such as time frame, position and velocity of each nuclei at each time frame.
At each point in time, the presence of clumps was detected by counting the number of
nuclei contained within a single object detected in the green channel.

Table 5.2 Brief description of the parameters measured per track.

Field Description
Time frame t Frame in the dataset.
Position (xt, yt) Cartesian coordinates of the centroid of the detected

nucleus at time t.
Track label T Unique identifier for each track.

As each nuclei within a clump has a track associated to them, each clump can
be uniquely identified via a simple unique identifier number or for short code, which
includes the labels of the tracks contained within it. For instance, let r, q be the labels
of two tracks (r < q) which at a certain point in time belong to a clump, then the code
c is defined by c(r, q) = c(q, r) = 1000q + r. The value of 1000 is chosen arbitrarily as
a large number, larger than the number of total tracks. Notice how the tracks’ labels
are arranged from left to right starting with the highest identifier to the lowest; for
example, code 24013 would correspond to a clump that at a certain frame contains
tracks 24 and 13. The previous definition can be extended for an arbitrary number
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of labels m interacting in the same clump as c(r1, · · · , ri, · · · , rm) = ∑m
i=1 1000i−1ri.

Each clump can be uniquely identified based on the tracks contained in it. Table 5.3
shows a simple example of the creation of the clump codes. The inclusion of the codes
facilitates the analysis of the cells that interact with each other.

Table 5.3 Examples of clump codes created through the track labels obtained by PhagoSight
by applying the defined codes. See text for detailed explanation.

Clump code Code construction c(·) Tracks within clump
2001 c(2, 1) = 2000 + 1 2,1
3002 c(3, 2) = 3000 + 2 3,2
5003002 c(5, 3, 2) = 5000000 + 3000 + 2 5,3,2

The inclusion of the clump information allowed to partition tracks and shed light on
the state of the cell: single or involved in a clump. For example, Figure 5.2 represents
the information from each track, as produced by PhagoSight, where the clump code
is incorporated by macrosight. The information of a single track (track ID = 2) is
shown, at different time frames. When the cell is not part of a clump, the variable
clump code has a 0. At a specific frame t + 1, the cells in the green channel come in
contact, forming clump 2001. At frame t1, two more cells come in contact with clump
2001, thus forming clump 5003002001.

Figure 5.2 Illustration of clump codes incorporated to a particular track information. The
table shows the information of track 2 spanning along certain time frames and in several
clumps. The right column shows a representation of the cells at different time frames, and
their involvement in different clumps.
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5.2 Shape tracking

5.2 Shape tracking

This section describes a framework within macrosight developed to track and analyse
the shape of migrating macrophages from the baseline segmentation output, and follows
the description made by the author in [108]. The work is based on the notion that the
red channel can be segmented robustly, which would allow the keyhole tracker [102] to
aid in the following of the cells’ paths, which could be incorporated into tracking the
shape of the green channel, and analyse its shape detecting corners with the anglegram.

Motivation. This approach may appear redundant having a segmentation which
can obtain clumps and single cells in a quicker way, however, this approach allows a
complete study of the cell’s evolution allowing recording of measurements. Furthermore,
if the overall position of a cell is resolved, then following the shape as it evolves in time
could aid in producing a segmentation for overlapping cells in a single clump.

Description of the methodology

The shape of the cells was extracted from the green channel whilst the red channel
was used to distinguish between individual and overlapping cells. Figure 5.3 represents
an overview of the method implemented.

Figure 5.3 Illustration of shape tracking functionality.

The method focuses in tracking the non overlapping cells. The main functionality
presented is a framework in which a cell shape can be tracked through a curve evolution
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algorithm. PhagoSight [102] was used to track the movement of the nuclei through
time using the keyhole algorithm, and the baseline segmentation of the green channel
was used to determine which nuclei were involved in a clump. Clumps were removed
from the analysis. As mentioned in section 5.1, the tracking produced unique labels
for each of the tracks detected, as well as the position of each nuclei at each point in
time. Each track is represented by Tj , with j = 1, 2, · · · , M being the number of tracks.
Each Tj contained the information regarding the positions of the centroid of the nuclei
{xj,k}T

k=1 as well as the time frames where the track was present tj,0, · · · , tj,k, · · · , tj0,T −1

for the T consecutive time frames. For simplicity, a time frame of an arbitrary track T
is shown as tk.

Given a track T , the shape of a cell Bk+1 at any time tk+1 can be determined by the
shape of the previous frame Bk, and the position change from tk into tk+1 of the red
nuclei. Let B̄k be the shape Bk when moved onto the position xk+1. The shape Bk+1

will be determined by evolving B̄k the shape from the previous time frame, where Ik

corresponds to the image of the kth time frame (Algorithm 2). Every iteration of the
algorithm consists of loading the known frame tk, the position information from the
unknown frame tk+1, performing the evolution from B̄k+1 to Bk+1 and obtaining the
region properties of the new cell shape, these include (i) the orientation, (ii) the ratio
of the minor and major axes (aspect ratio), (iii) the solidity, and (iv) the equivalent
diameter.

Algorithm 2: shape evolution Tracks shape of cells in a single track.
Input: Track: T , time frames: (t0 : tT −1)

1 tk ← t0;
2 (Ik, xk)load frame information at tk;
3 Bk ← get boundary(Ik);
4 for tk+1 in time frames do
5 tk+1 ← tk + 1; (Ik+1, xk+1)← load frame at tk+1; dk ← xk+1 − xk;
6 B̄k+1 ← move boundary(Bk, dK);
7 Bk+1 ← evolve(Ik+1, B̄k+1);
8 save(Bk+1, regionprops(Bk+1));
9 tk ← tk+1;

10 Bk ← Bk+1;
11 end for

The evolve function in Algorithm 2 implements the Chan-Vese active contour
[110, 111] method in Matlab®. The function uses B̄ as initialisation and is able to
change its parameters based on one of three states: Shrink, Grow, or Normal (Table
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5.4). The active contour runs once, with a set of parameters, then the area of the
output is compared to the area of the input. The parameters would be adjusted to
contract or expand the shape and the active contour is re-run. To avoid an excessive
segmentation leaking/contraction, the area of the output was kept within ±5% of the
previous frame’s area.

Table 5.4 Parameters used of the active contour function based on the desired state required.
The parameters were chosen empirically through numerous tests.

State Iterations Smooth factor Contraction bias
Normal 50 1.5 -0.1
Shrink 100 1.25 0.10
Grow 200 1.00 -0.25

Figure 5.4 Comparison between the shrink (a,b) and grow (c,d) states of the evolve function.
(a,c) Show the initial (cyan, dotted) and final (magenta, solid) outlines from the active contour
method. (b,d) Show the comparison between the baseline segmentation and the final contour
for each state.

Overlapping segmentation through shape tracking: preliminary study The
approach presented in algorithm 2 could theoretically be extended beyond the scope
of single cells. The tracks follow the nuclei of a cell regardless if the corresponding
cell shape in the green channel undergoes overlapping with other cells. Preliminary
results were not conclusive, since the implementation of the active contours would leak.
However, in some cases the overlapping was resolved, especially in cases where the
baseline segmentation would produce larger clumps than the corresponding ground
truth showed, recall the examples presented in Figure 4.4.
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Shape analysis through Anglegram

Described in the previous chapter, the anglegram [72] is a matrix which describes
multiscale angle variation of a shape. The boundary of an object consists of a set
of ordered points pi. The angles adjacent to each point are measured from the jth
previous point pi−j to the following jth position pi+j are depicted as θi,j = ∡pi+jpipi−j .
This collection of angles forms the anglegram matrix, of which the maximum intensity
projection (MIP) per columns is calculated. To detect clumps, the angles of interest
were those larger than one standard deviation (std) above the mean of the MIP. In
this work, a similar idea is explored, but for acute angles, using the minimum intensity
projection (mIP) and the threshold is one std below the mean. Implementing the
anglegram matrix consists of the detection of junctions that correspond to the corners
of the analysed boundary. Figure 4.10 illustrates the junction detection functionality
of the anglegram. The method works as reported in Section 4.6 with two alterations:
(i) resizing the anglegram to have 64 rows to reduce noise, and (ii) taking the mIP
of the first half columns, as the final columns are lower by the definition of the inner
point angle measurements.

5.3 Analysis of the interactions of cells

The second analysis in macrosight is a method to analyse the movement of macrophages
was proposed. This section follows the work presented in [109]. Particular emphasis
was placed in the analysis of the cells’ trajectories and the interaction between cells.
The algorithm integrates the segmentation algorithm described in [72] into the software
framework PhagoSight [102], and utilises the overlapped clumps as points of interaction
between the cells. The main hypothesis of this work is that the direction of a given
cell will change noticeably before and after an interaction with another cell. Figure
5.5 represents the hypothesis and the key experiment performed. The experiment is a
comparison between the trajectories of (i) the single cells moving without noticeable
external influences from other cells and (2) the path of cells before and after coming
into contact with one or more cells. A preliminary approach to determine cell behaviour
would involve the detection of a change in trajectory after an interaction within a
clump.
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Figure 5.5 Outline of the main hypothesis in this work. The interactions of the cells in a
clump appear to influence on the migration patterns of the cells. The diagram shows (a) the
case where a cell’s trajectory does not change significantly from a point chosen arbitrarily; (b)
shows the expectation of a cell that interacting in a clump and changing direction noticeably.

Description of the methodology

The method in this work can be divided into four stages of analysis, referring to the
framework in Figure 5.1. First, the segmentation of each channel individually. Then,
the tracking of the objects detected in the red channel is performed, and the detections
of each channel are classified as clumps or single cells. The crucial aspect of this part
of the framework consists of an analysis of the tracks’ directions before and after the
clump. For each track, the change of direction (∆ Direction) is estimated before and
after a given clump. Figure 5.6 shows an illustration of the procedures carried out.

Figure 5.6 Graphical illustration of the analysis done in this work. Three principal phases
are depicted. (a) Segmentation of each fluorescence channel. (b) Tracking of the red channel
and identification of each clump. Each mark (×) in the diagram corresponds to a different
time frame. (c) Finally, the measuring of the change of direction angle (θx) before and after
a detected clump.

Let θx ∈ (−π, π) be the angle that measures the direction change (∆ direction).
Let a track with label r, given by Tr = {(xt, yt) ∈ R2|t = t1, · · · , tT}, interact with
another Tq through a clump with code c(r, q), such that the overlap between the two
cells happens at time frames tk0 , tk1 , · · · , tkC

.
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Measuring the change of direction before and after a clump

The algorithm developed in this work, estimates the angle formed between the direction
of the cell prior to an interaction (clump) and the direction of the cell once the
interaction is over and it does not belong to any clump. Let θx ∈ (−π, π) be the
angle that measures the direction change (∆ direction). Let a track with label r,
given by Tr = {(xt, yt) ∈ R2|t = t1, · · · , tT}, interact with another Tq through a clump
with code c(r, q), such that the overlap between the two cells happens at time frames
tk0 , tk1 , · · · , tkC

. The determination of θx involves analysing the tracks Tr, Tq starting S

frames before tk0 and finalising at S frames after tkC
. Frames tk0−S, · · · , tkC+S will be

referred to as the clump span; likewise, the time frames where the tracks are interacting,
tk0 , tk1 , · · · , tkC

, will be referred to as time in clump. Figure 5.8 shows a schematic
of the tracks analysed and the choice of the time frames. The relationship between
the frames tk0 , S and TkC

can be clearly observed as the moments in the clump span
containing tracks Tr and Tq. The moments are called (a) pre-clump, (b) clump and (c)
post-clump.

(a) . (b) .

Figure 5.7 Diagram explaining the calculation of the angle of direction change (θx). (a)
Shows the determination of the direction before and after the clump, while (b) displays the
calculation of the angle θx from the previously selected lines. The red arrow represents the
line generated by points at times tk0−S and tk0−1, while the green arrow shows the points at
times tkC+1 and tkC+S .
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5.3 Analysis of the interactions of cells

Figure 5.8 Diagram explaining the time frames chosen from tracks Tr, Tq for the analysis
of direction change. The time frames chosen for the analysis are S frames before tk0 and S
frames after tkC

. The time frames are selected, and schematics of the cells moving are shown
for each stage.
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Description of experiments’ results

Once the tracks involved, and the span have been manually selected, the calculation of
the change of direction angle is done by selecting a vector oriented towards the clump
and another one leaving it. Figure 5.7 displays the process of selecting the lines from
which direction before and after the clump will be selected, and the way the angle will
be measured. The estimation assesses the change of direction of each cell that exits
a clump, relative to the orientation it has entering it. To calculate the angle, vectors
must be aligned and rotated from the original positions in the image (x, y) to a new set
of rotated axes (x′, y′). This is performed in an intermediate step, where the incidence
angle is calculated and all the points in the track are rotated to the new axes.

Figure 5.9 Measurement of angle change with cell-cell contact (i) and control (ii) experiments.
Four markers are highlighted corresponding to specific time frames in each experiment. In
order, the markers are: (+) 2S frames before contact; (◦) S frames before contact; (⋄) starting
instant of the clump; and (∗) S frames after the clump has finished. (a) Shows the original
image with their original positions (x, y). (b) Shows the intermediate rotation of the tracks,
where the tracks are rotated onto a common axis. (c) Represents the actual calculation of θx.

Figure 5.9 represents the calculation of the angles compared for the interactions and
the control experiments. It shows how to interpret the results in Chapter 6. Notice that
the new axes (x′, y′) in Figure 5.9(b) can be interpreted as a new frame of reference,
containing all the positions rotated and aligned.
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5.4 Summary

5.4 Summary

Two different analyses and their corresponding algorithms, were presented in this
chapter; to analyse the evolution of the shape of macrophages while migrating and to
understand the role that interaction of cells have on the path of them. Alongside the
baseline segmentation presented in chapter 4, the two algorithms form a framework
centred around PhagoSight [102], and the keyhole tracking algorithm to link the
positions in the cells’ nuclei from frame to frame.

The experiments and results of the methods described in this chapter are presented
in Chapter 6. However, some considerations from observations and development of the
algorithms can be made at this point. The shape tracking algorithm was originally
designed as a way to solve the overlapping segmentation problem by incorporating the
relationship between frames. The initial experiments, apart from the work presented
in [108], were not satisfactory as the active contours would leak. Restrictions on
the boundaries of the cells at each step could allow the method to be extended into
segmenting all cells individually. Despite the limitations, the method is currently
capable of track shape measurements and shape-states which could provide additional
information to the tracks. In the analysis of interactions, observation of the
nuclei moving shows small variations in the cells’ trajectories, relative to the observed
movement of the cell movement in the green channel. It is worth noting that the
relative changes in position from the nuclei are not taken into consideration for the
analysis, simplifying the analysis by considering the nuclei paths the overall movement
of the entire cell. Also, the notion of cell-cell contact is determined by the presence
of clumps, not by the first contact of the microtubules. This design choice in the
segmentation algorithm. serves the purpose of analysing the overall cell shape.
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Chapter 6

Experiments and Results

In this chapter, the principal experiments performed in the data are explained, and
its corresponding results presented. The experiments presented include all the contri-
butions by the author, spanning the different analyses made in the different datasets
shown in Chapter 2.

The chapter is subdivided into three major sections related with (i) ISBI, the 2015
edition of the ISBI Cell Tracking Challenge [64], (ii) the analysis of movement of
Artemia franciscana as shown in [53], and the foremost conclusions in such work and
(iii) research in macrophages segmentation and movement analysis. The key research
presented in this chapter is the investigations done on the macrophages images acquired
by Stramer et al. [4], where various results were found. These include detection of
foreground the clumps from single cells and the disambiguation of overlapping cells
from clumps [71, 72], overviewed in chapter 4. From the algorithms described in chapter
5, the classification of single cells by shape, and a measurement of the elongation of the
microtubules [72, 108] is presented; finally, the initial steps towards determining the
change of direction of the cells as a result of cells interactions [109]. All contributions,
provided both technical and biological insights, were found from the dataset. All
sections describe the experiments referring to the algorithms and techniques specified
in previous chapters. Then, the results are presented, making the distinction between
results previously published and extensions made for this thesis or that were not
published in due time. Finally, a brief discussion on the specific experiments is
provided.
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6.1 ISBI Cell Tracking Challenge

The 2015 ISBI Cell Tracking Challenge (CT-Challenge) was used as an entry point to
cell segmentation and tracking problems. A fully automatic software was a requisite
for submission to the CT-Challenge. Thus, the experiments presented in this section
describe the amendments made to the PhagoSight software to make it fully automatic,
which were described in Appendix C. Difficulties found in the data involved the
automatic detection of optimal thresholds for each dataset, and in particular, an extra
preprocessing step required for the dataset C2DL-PSC, which was acquired via phase
contrast microscopy. Experiments are described and qualitative results presented, the
submitted data was used, which did not include ground truth to make segmentation
or tracking comparisons; however, a visual approach suffices to extract some insights
from the dataset and the overall participation in the CT-Challenge.

Experiments

Three experiments are presented: (i) detecting automatic thresholds per dataset to use
when running PhagoSight; (ii) segmentation and tracking results, where some example
segmentation frames are presented and tracks shown; (iii) description of an additional
preprocessing step applied in the C2DL-PSC dataset.

Finding appropriate thresholds for each dataset. Preliminary experiments
showed that the automatic thresholds detected by PhagoSight, (ltotsu, htotsu), were
too high for most of the ISBI datasets. In normal use, PhagoSight allows for user
modification of the thresholds. However, for submission to the CT-Challenge, a lineal
modification led to the new parameters (LT, HT ), which depended of the parameters
α, β, shown in equation (C.2). To find the parameters, the sum of the evaluation
codes for segmentation and tracking provided by the CT-Challenge organisation was
used as an objective function (equation (C.3)) to an implementation of the Particle
Swarm Optimisation algorithm [112]. Each dataset was evaluated, producing individual
parameters for each.

Shading correction on phase contrast dataset. A special case had to be made
for the C2DL-PSC dataset, in which the imaging technique used was phase contrast
microscopy. As it can be observed in Figure 2.9, the image profile shows noticeable
differences in the background intensities towards the edges of the figure, making thresh-
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6.1 ISBI Cell Tracking Challenge

olding insufficient to segment such images. Therefore, a shading correction algorithm
[84] was implemented on this particular dataset before detecting the thresholds.

Segmentation and track results. In Section 2.2, 2.4 shows all datasets in the Cell
Tracking Challenge and is repeated here (figure 6.1) for convenience. In this section, a
qualitative output is presented from the segmentation results and with all the datasets
arranged similarly in the image, but with the tracks superimposed.

Figure 6.1 Example frames of all the ISBI datasets in the 2015 challenge (repeated Figure
2.4 for convenience). The acquisition techniques in each dataset are referred in the top right
corner: DIC refers to Differential Interference Contrast, Fluo to Fluorescence microscopy and
PhC refers to Phase Contrast microscopy. The top right corner shows the imaging technique.
In datasets which contain 3D images display the maximum intensity projection. Dataset
names are listed below, the ones submitted to the challenge appear in bold: (a) C2DH-
HeLa, (b) C2DL-MSC, (c) C3DH-H157, (d) C3DL-MDA231, (e) N2DH-GOWT1,
(f) N2DH-SIM, (g) N2DH-SIM+, (h) N2DL-HeLa, (i) N3DH-CE, (j) N3DH-CHO,
(k) N3DH-SIM, (l) N3DH-SIM+, (m) N3DL-DRO, (n) C2DH-U373, (o) C2DL-PSC.
Specification of the acronyms in Table 2.1.

Results

Finding appropriate thresholds for each dataset. Table 6.1 shows the com-
parison of the automatically produced thresholds against manually selected and the
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ones detected by PhagoSight on its own. In the table, the values of four datasets
are compared. The thresholds compared are: (i) thresholds defined by PhagoSight
(Original PhS), (ii) threshold selected manually and (iii) the new automatic thresholds
selected by equation (C.2) ((α, β)).

Table 6.1 Comparison of the ISBI Challenge results when changing the method of defining
the hysteresis thresholds. For each dataset, the results of the SEGMeasure and TRAMeasure
were compared depending on the way the hysteresis thresholds were defined. The first
column shows the name of the dataset. The second column shows the method of defining the
thresholds between Original PhS involving the Otsu-based algorithm, Manual and (α, β)
for the modified thresholds described on equation (C.2). The Total column corresponds to
the sum of the segmentation and tracking outputs, the highest total values are highlighted in
blue to indicate the best performing method. Time is shown in seconds.

Dataset Thresholds SEGMeasure TRAMeasure Total Time [s]
Original PhS 0 0.019 0.019 30.845

C2DL-MSC Manual 0.074 0.361 0.436 46.973
(α, β) 0.250 0.613 0.863 117.520

Original PhS 0.039 0.068 0.107 88.046
N2DH-GOWT1 Manual 0.672 0.916 1.588 400.300

(α, β) 0.457 0.720 1.176 200.860
Original PhS 0 0.000 0.000 32.880

N2DH-SIM Manual 0.848 0.873 1.721 111.910
(α, β) 0.948 0.927 1.875 92.677

Original PhS 0.150 0.217 0.367 85.355
N2DL-HeLa Manual 0.518 0.665 1.183 189.330

(α, β) 0.518 0.658 1.176 191.112

Shading correction on phase contrast dataset. Figure 6.3 shows the result of
implementing the shading correction algorithm in a frame. In this chapter, a comparison
between adaptive thresholds seen in Chapter 3, by Pappas [82] and Bradley and Roth
[83], and the shading correction algorithm are presented. This comparison was not
explored in preparation for the CT-Challenge. Although the outcome of the adaptive
threshold by Pappas [82] shows promising results, running time of the algorithm shows
a clear disadvantage. The time consumed processing a single frame were 0.6739 (s)
for shading correction [84], 6.5480 (s) for Pappas [82] and 5.2207 (s) for Bradley and
Roth [83].
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6.1 ISBI Cell Tracking Challenge

Figure 6.2 Preprocessing by shading correction applied to phase contrast dataset. (a)
Original frame, the colour map chosen to highlight the shading in the imaging. (b) Output
of the shading correction [84]. (c) Shows the classes of intensities after classifying them with
the Otsu levels.

Figure 6.3 Comparison between shading correction and adaptive thresholding. (a) Otsu
classes after applying the shading correction algorithm. Adaptive thresholding techniques
were implemented: (b) Pappas [82] and (c) Bradley and Roth [83].

Segmentation and tracking results. Parallel to Figure 2.4, the presentation of
all datasets and the results are shown for segmentation (Figure 6.4) and tracking
(Figure 6.5). In both figures, the images shown correspond to a specific time frame
(t = 10) only where segmentation and tracking outputs were produced. Particular to
the segmentation results, 3D dataset results are presented by showing the maximum
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intensity projection of the corresponding 3D frame. The jet colour map only represents
the arbitrary cell label in the image.

Figure 6.4 Segmentation results submitted to the ISBI Cell Tracking Challenge. Frames
displayed in black are the ones where no submission was made. In datasets which contain 3D
images display the maximum intensity projection. Dataset names are listed below, the ones
submitted to the challenge appear in bold: (a) C2DH-HeLa, (b) C2DL-MSC, (c) C3DH-
H157, (d) C3DL-MDA231, (e) N2DH-GOWT1, (f) N2DH-SIM, (g) N2DH-SIM+,
(h) N2DL-HeLa, (i) N3DH-CE, (j) N3DH-CHO, (k) N3DH-SIM, (l) N3DH-SIM+,
(m) N3DL-DRO, (n) C2DH-U373, (o) C2DL-PSC.

Regarding the tracking results, positions where a cell can be observed, but no
track is found, it due to a failure in the segmentation, an example of this is dataset
N3DL-DRO(m). Also in Figure 6.5, some results are worth noticing and should
be pointed out. First of all, datasets (a) C2DH-HeLa and (n) C2DH-U373 were not
submitted and do not appear in the results. Secondly, some cells in some datasets can
be observed although in varying intensities, thus missing or faulty segmentation was
found in such frame, and in turn, some tracks appear to be missing or abnormal. This
caused different outcomes in the results. Some interesting points are highlighted in
yellow arrows.
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Figure 6.5 Tracking results submitted to the ISBI Cell Tracking Challenge. Frames displayed
in black are the ones where no submission was made. In datasets which contain 3D images
display the maximum intensity projection. Dataset names are listed below, the ones submitted
to the challenge appear in bold: (a) C2DH-HeLa, (b) C2DL-MSC, (c) C3DH-H157, (d)
C3DL-MDA231, (e) N2DH-GOWT1, (f) N2DH-SIM, (g) N2DH-SIM+, (h) N2DL-
HeLa, (i) N3DH-CE, (j) N3DH-CHO, (k) N3DH-SIM, (l) N3DH-SIM+, (m) N3DL-
DRO, (n) C2DH-U373, (o) C2DL-PSC. Arrows show points of interest, full explanation in
text.

In dataset (b) C2DL-MSC, the variation of intensities is sizeable, causing cells
to be missed from the analysis. Then, in dataset (e) N2DH-GOWT1 some cells are
also missing due to their intensity, but also two cells are pointed at with an arrow,
because the algorithm was not able to segment those cells individually, therefore only
one track is visible. Finally, in dataset (j) N3DH-CHO some large jumps form the
tracks appear, and could be instances where the segmentation was not robust enough
and caused the tracking algorithm to link the cells in time incorrectly. Another special
case observed concerns dataset (m) N3DL-DRO, where the algorithm only detected
a single large cell. which produced a single track. Finally, notice the shading in dataset
(o) C2DL-PSC, the following section explains the experiments made and the extra
preprocessing stage implemented to overcome it.
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6.2 Artemia franciscana dataset

In [53], a framework was developed to investigate the relationship between the swimming
patterns of the Artemia franciscana and the toxicity of the environment. The algorithm
involves the pipeline of semi-automatic image processing steps for the movement analysis.
As mentioned in Chapter 3, Figure 3.38, the mean frame was subtracted from all time
frames, and negative values were rectified. This produced an appearance similar to
fluorescence, where artemia look much brighter than the background. PhagoSight was
used to segment and track the preprocessed frames.

Experiments

Fixing broken tracks. The preprocessing method caused some artefacts and noise
to be generated in the images, which caused some of the artemia to disappear and thus
producing broken tracks. Tracks that were separated by one or two frames within a
small distance were assumed to correspond to the same moving object; and thus were
joined as a single track. Furthermore, tracks incorrectly produced due to the detection
of an artefact in the preprocessed images were manually discarded.

Calculating turns of the artemia. Counting individual 360◦ turns was of special
interest, as it can help distinguish patterns or movement. The orientation angle is
calculated per object at each time frame, the cumulative angle per object was recorded.
Every time the cumulative angle crosses a threshold of ±2π, a turn is recorded.

Results

Fixing broken tracks. The results for the tracks’ before and after applying the
postprocessing routine are presented in Figure 6.6. The result involves 5 objects tracked
throughout the 1800 frames, where several 360◦ turns can be observed. Figure 6.7(a)
displays a single track throughout the first half of the data (900 frames) where the
turns can be clearly observed. Figure 6.7(b) shows a detail of all tracks in the first 50
time frames with an superimposed frame.

Calculating turns per object. One track was selected and the distance, calculating
the angle per frame, cumulative angle and distance form the origin. Figure 6.8 displays
such results. Notice Figure 6.8(a), how the cumulative angle around the 1600th frame
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6.2 Artemia franciscana dataset

increases consistently and turns various times in succession. angle per frame, shown in
figure 6.8(b), is used to calculate when full turns of 360◦ occur; the relative vertical
position corresponds to clockwise or counter clockwise turns.

Figure 6.6 Postprocessing of the tracks resulting from inconsistencies in the segmentation.
(a) Original output from PhagoSight where multiple short tracks, corresponding to artefacts
detected by the segmentation, can be observed. Longer tracks get cut short, due to an object
not being detected by the segmentation. (b) shows the output of the postprocessing of the
tracks.

Figure 6.7 Detail of the tracks in the Artemia franciscana dataset. (a) Shows the first half
(900 frames) of a single track. The time is on the vertical axis, moving from bottom to top.
The movement appears to be a spiral where each turn occupies a larger area. (b) Represents
the first 50 frames of all tracks. Frame 25 is superimposed in the image for visualisation
purposes.
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Figure 6.8 Illustration of the visualisation of measurements. (a) Cumulative angle detecting
multiples of 2π turns (red ◦). (b) Angle at every time frame. The positions at which a
complete 360-degree turn occurs are marked (red ⋆); the relative vertical position corresponds
to clockwise or counter clockwise turns. (c) distance covered from the origin for all the tracks.
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6.3 Detection of peaks with Anglegram

In Chapter 4, Table 4.2 shows the accuracy of the method to detect corners in synthetic
shapes, the result was reported in [108]. In this section, the result will be extended to
include a comparison with the Harris’ corner detector [103]. It is worth noting that
the Harris corner detector ranks all corners based how sharp or pointy the junctions
are detected, assigning them a number between 0 and 1, called metric.

One thousand different synthetic shapes were generated. The peaks in each shape
were detected with the anglegram, and the number of peaks stored, as the number
of peaks defines the type of shape: zero for circle, 1 for drop, 2 for bidrop and 3 for
tridrop. In order to have a fair comparison with the Harris algorithm, an additional
procedure was implemented to detect the specific number of junctions, depending on
the basic shape. The strongest five junctions detected by Harris’ method with a metric
higher than a certain threshold were selected providing the number of peaks. From
visual inspection of the metrics of the strongest corners, four thresholds (0.06, 0.07,
0.08 and 0.09) were applied and the number of junctions whose metric exceeded the
threshold were considered as detections.

Table 6.2 Peak detection using the Harris algorithm. The metric values of the five strongest
junctions were tested against different threshold values. Each column corresponds to the
number of peaks detected, and the rows correspond to the basic shape the detection represents.
The highest values per shape were highlighted and presented in Table 6.3. Results were
obtained from a synthetic dataset from 1000 shapes.

Harris metric > 0.06 Harris metric > 0.07
Shapes / Peaks detected (%) Peaks detected (%)

peaks None 1 2 3 ≥ 4 None 1 2 3 ≥ 4
Circle 87.88 9.85 2.27 0 0 91.67 8.33 0 0 0
Drop 5.65 77.82 13.31 2.42 0.81 8.47 81.05 8.06 1.61 0.81

Bidrop 3.44 33.59 56.87 5.73 0.38 6.87 36.26 53.82 3.05 0
Tridrop 0 2.21 26.55 61.06 10.18 0 3.10 33.63 58.85 4.42

Harris metric > 0.08 Harris metric > 0.09
Shapes / Peaks detected (%) Peaks detected (%)

peaks None 1 2 3 ≥ 4 None 1 2 3 ≥ 4
Circle 97.35 2.65 0 0 0 98.48 1.52 0 0 0
Drop 19.35 75.00 4.03 1.61 0 21.77 74.19 2.42 1.61 0

Bidrop 18.32 47.33 33.59 0.76 0 20.61 47.71 31.30 0.38 0
Tridrop 0.44 15.04 46.02 37.17 1.33 1.77 14.60 46.90 35.84 0.88
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Overall, the anglegram method had an accuracy of 92.9%, while the algorithm
by Harris’ accuracy ranged from 59.9% on the 0.09 threshold to an overall accuracy
of 71.347%, when using the 0.07 threshold. For the anglegram method, tests on the
synthetic data were in the range of 87.5-99.2% correct detection, as shown in Table 4.2.
The method achieved the highest accuracy in the bidrop shape, and the lowest in the
drop shape. The circle shape detection improved considerably since the amendment
made to the method reported in [108].

Table 6.3 Comparison of the number of peaks detected by the anglegram and the Harris
corner detector. The best column per experiment in table 6.2 to simulate a best case scenario
for comparison. The accuracy of each method is highlighted. Results were obtained from a
synthetic dataset from 1000 shapes.

Shapes / Number of peaks detected (%) Number of peaks detected (%)
peaks None 1 2 3 ≥ 4 None 1 2 3 ≥ 4
Circle 99.62 0 0 0.38 0 98.48 8.33 2.27 0 0
Drop 4.44 87.5 6.05 2.02 0 21.77 81.05 13.31 2.42 0

Bidrop 0 0.38 95.8 3.82 0 20.61 36.26 56.87 5.73 0
Tridrop 1.33 0 2.65 88.94 0 1.77 3.1 26.55 61.06 0.88

> .09 > .07 > .06 > .06 > .09

Table 6.3 displays an inviable best-case-scenario for the junctions detected by Harris,
compared to the results from the peak detection methodology using the anglegram.
Results from the anglegram method are higher in all categories. Furthermore, the
anglegram method ignores corner junctions, where the prevailing angle is obtuse whereas
the Harris algorithm would not make such a distinction, and in more complex shapes
more junctions would be detected.

6.4 Fluorescently labelled macrophages analysis by
the macrosight framework

An overview at the three macrophages datasets is shown in figure 6.9, where all the
detected tracks from the red channel are presented for all the frames in each dataset.
The first 100 frames per dataset are presented in the bottom row. In general, short
tracks hint to issues resulting from the image acquisition, segmentation or tracking. In
the case of the macrophages data, cells close to the upper right and lower left corners
are prone to errors because the cells are not visible in those positions.
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Figure 6.9 Complete tracks (top) obtained from red channel in all three datasets and detail
of the first 100 tracks (bottom) per dataset. The datasets are organised in columns: (a)
MACROS1, (b) MACROS2 and (c) MACROS3. Track colours in all cases represent the relative speed
of the objects, following jet colour map with blue - slow, red - fast. (a) MACROS1 displays the
higher amount of inconsistent tracks (black arrows).

The results of the algorithms described Chapter 5 are presented in this section.
The experiments and results of the shape tracking and analysis, as described in Section
5.2, will be described in Section 6.4. The analysis of interactions, resulting from the
algorithm described in Section 5.3, will be described in Section 6.4.

Shape evolution and tracking

The experiments correspond to the shape evolution algorithm with some of the single
cells. Three experiments were performed in the MACROS1 dataset in which a cell is
followed alongside a track, analysing the shape as described in Section 5.2. Figure 6.10
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shows an overview of the three experiments presented in this section. Three tracks
were followed in a span of 50 frames or less.

Figure 6.10 Overview of the three experiments presented in this section regarding the shape
tracking analysis. The horizontal axes represent the rows and columns. The vertical axis
represents time, and each section represents 25 frames. Left column shows three complete
tracks throughout the 536 time frames. The analysis has been done in segments of the tracks
where the cells were not in clumps. On the right, a detail of each cell track is shown.

Figure 6.11 displays the shape evolution of the three track-fragments presented
before, containing 43, 38 and 50 frames, respectively (a,b,c). Each experiment show
three rows marked (i,ii,iii). Per experiment, eight frames are shown with the moved
boundary displayed in the dotted line (cyan- -) and the evolved shape in the solid line
(magenta-), top row (i). For visual assessment, the peaks detected by the anglegram
at each point are displayed as asterisks (yellow ∗). The middle row (ii) shows a
comparison between the orientation (blue ∗−) and the aspect ratio (orange +−). The
values for the top frames are highlighted in blue(◦) and black (⋄). The bottom row
(iii) shows the minimum intensity projection of top’s respective anglegrams displaying
the values of the angles measured per corner (red ⋄).
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6.4 Fluorescently labelled macrophages analysis

Figure 6.11 Evolution of shapes throughout multiple frames. The indexes (a,b,c) corre-
sponding to the indexes in Figure 6.10. Full explanation of the rows in text. (i) Represents
eight frames in the experiment with the boundary superimposed (current - magenta, previous
- cyan), as well as the peaks detected (yellow ⋄). (ii) Orientation (DEG) and aspect ratio
computed throughout the shapes in the experiment. (iii) Shows the mIP of the anglegram,
and the detected minima, which correspond to positions in the boundary showing a peak.
Notice the peaks detected in (a.i) where the algorithm successfully detected two peaks in
the final frame, despite being a complex shape. The first and fifth frames show extra peaks
detected. Frames in (b.i) show a similar problem, with two very close peaks are detected.
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Analysis of direction changes

All three datasets were segmented and tracked, however, only two datasets (MACROS2
and MACROS3) were considered for the change of direction analysis due to inconsistent
tracks being present in MACROS1, where a single cell would produce more than one
tracks. The reader is referred to Figure 6.9(a) where several short and inconsistent
tracks can be observed. The tracks’ information was searched to find cases of clumps
that fulfil the following criteria:

1. Only two cells interacting. There are cases where more than one cells integrate
a clump, e.g Figure 5.2. These cases were excluded from the analysis as it is not
clear whether the interaction of more than two cells would be different from the
interaction between a pair.

2. In and out cases. The cases selected only involved cells with a well-defined
clump span, in which the cell would enter the clump and exit it without disap-
pearing or interacting with other clumps.

3. Immediate reaction. A small value for S = 5 was chosen to define the clump
span, as the interest of this work is to study the immediate reaction of a cell after
interacting within a clump. In this work, the clump length was not taken into
consideration.

4. Both cells in clump. Cases where both tracks in the clump had a well-defined
clump span were preferred as they would allow an analysis per clump.

Once the tracks were selected, the θx angles were calculated for each case. Additionally,
for each track selected, the 2S time frames leading up to the clump were selected to
compare the change of direction with a cell that has not interacted with a clump.
These tracks will be referred to as control tracks or single cell movement. The
experiments were chosen in a semi-automatic way, using the information from the table
in Figure 5.2 to generate candidates of experiments and manually logging the starting
and ending points tk0 − 2S, tk0 − S, tk0 and tkC

+ S per experiment. It is important to
notice that the experiments were chosen without considering the time in clump. As
highlighted in Section 5.3, such parameter could be influential to the results, as the the
window where the interaction is observed occurs within a few minutes, which would be
translated to a cell belonging a small number of time frames in clump.
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The original results reported in [113] are presented verbatim, then extra conclusions
drawn from them are described and presented, these include dataset MACROS3 and is
shown in figure 6.12(c) statistical analysis presented next.
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Figure 6.12 Comparison of the changes in track directions with or without clump interaction
within the all datasets, (a) N = 15, (b) N = 17 and (c) N = 20. (c) Correspond to the
results reported in [109]. The sold line represents a cell’s trajectory. Each line can be read
from the utmost left point and continuing along the line. For all datasets, (a) MACROS1, (b)
MACROS2 and (c) MACROS3, (i) illustrates cells entering or exiting a clump, where the origin
(⋄) represents the clump formation. Grey lines represent S = 5 time frame points of each
cell’s track before entering a clump. Red lines represent 5 time frame points of each cell’s
track after exiting a clump. (ii) illustrates the movement of cells before entering a clump,
where the origin (◦) represents a chosen arbitrary point (time frame 6).
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All datasets were segmented and tracked. Tracks were selected based on the criteria
described before. In total, fifty two cases were found with N = 15, 17, 20 respectively
for each dataset. To represent the tracks and changes in directions for all datasets
and compare them to the control tracks, Figure 6.12 is presented to qualitatively show
the hypothesis depicted in Section 5.3. The figure contains a key taken from the
explanatory Figure 5.9.

Several differences can be observed in the tracks containing cell-cell contact, varying
depending on the dataset. To assess the changes of angles of all experiments collected,
the mean and median of the angle changes were compared from experiments to control.
Referring to Figure 6.12, Table 6.4 summarises the angle comparisons made with the
mean and standard deviation in each case. The Wilcoxon Signed Rank test [107] was
implemented in all cases, to compare the median of the measurements and a normal
T-Test was implemented to compare the means.

Table 6.4 Angle change (θx) comparison per dataset. The mean and standard deviation
angle change were calculated, and the results of the statistical tests comparing both contact
and control experiments are shown. In moments where the null hypothesis could not be
rejected are highlighted in red.

Cell-cell contact Control WILLCOXON T-TEST
DATASET mean (std) mean (std) p-value p-value
MACROS1 53.79 (64.25) -4.34 (74.18) 0.08 0.03
MACROS2 0.61 (77.31) 15.48 (78.10) > 0.05 > 0.05
MACROS3 37.40 (77.65) -15.59 (46.68) 0.02 0.01

ALL 30.10 (75.70) -2.19 (66.42) 0.03 0.02

A more thorough exploration of the cases and the tracks was implemented, con-
sidering the time in clump (TC) parameter. First, consider the average TC per the
datasets, where MACROS1 had an average of TC = 3.6± 3.18, MACROS2 had an average
of TC = 19.65± 24.96 and MACROS3 had an average of TC = 12.30± 14.25. Visually,
TC can be observed in Figure 6.13, which displays three examples of cells interacting
through a given span and the orientation lines before (red) and after (green) the clump.
Clumps shown contain the codes 2001, 3002 and 22001, which have very different
values of TC, as can be observed from the yellow lines.
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6.4 Fluorescently labelled macrophages analysis

Figure 6.13 Examples of change of direction before and after a clump. Column (a) shows
three examples of cells interacting in three different clumps: 2001, 3002 and 22001. Red line
(∗−) shows the orientation of movement before the clump, and a green line (⋄−) represents
the positions of movement after. A yellow arrow was superimposed on the image to show the
trajectory of the cell inside the clump. (b) Simplified view of the cells’ changes in orientation.
The cells’ path before the clump is represented in blue (−⋄−). The path of the cell after the
clump is shown in orange (: ∗). The angle arc of orientation is shown in magenta. Notice
that the movement of the two cells involved in clump 2001 is a lot smaller compared to the
other cells. For a detailed movement analysis of the cells, figures 6.16, 6.17 and 6.18.
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Figures 6.14 and 6.15 explore the differences between change in angle and time
in clump (TC). From figure 6.14(a), it can be observed that TC range for datasets
MACROS1 and MACROS3 is much smaller compared to the range of the TC for dataset
MACROS2. The scatter plot 6.14(c) shows a distinct gap in the range 20 < TC < 40,
and most of the cases in the range 0 ≤ TC < 10.
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Figure 6.14 Comparison of the time in clump and the angle of variation. (a) Boxplot
diagram comparing time in clump (TC) per dataset. (b) Boxplot comparing the value of
the measured angle change from the contact (red) and the control (black) experiments. (c)
Scatter plot of time in clump vs. angle change in contact experiments per dataset.

In Figure 6.15, a comparison was made between the angle change depending on
TC. Each row represents the comparison of θx between cases with cell-cell contact and
control cases, when selecting only cases with TC ≤ a where a = 2, 6 and 10. Although
most cases are broadly similar, cases with TC ≤ 2 and TC ≤ 6 show a more distinctive
difference between control and cell-cell contact cases, with control cases (black box
plots) showing a greater range in almost all cases. A final experiment was run, in which
the value of the angle change θx was compared between the control and interaction
experiments presenting a TC < 10. The cases satisfying TC < 10 in all datasets were
combined, giving a total of 33, where the mean for interaction cases was 31.65◦± 64.05
and the control cases was −8.87◦ ± 63.38. The Wilcoxon Signed Rank test produced a
p-value of 0.03, providing statistical significance to the difference.
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Figure 6.15 Comparison of angle change, depending on the time spent in clumps. In both
datasets, boxplots of the angle change were generated for experiments with cell-cell contact
(red) and control movement (black). The figure should be read by rows, where each one
corresponds to a specific number of frames the cells remained in a clump (Time in clump:
TC = a, a = 2, 6, 10). The left column shows boxplots of the experiments that fulfil the
criterion TC ≤ a and the right column show the experiments where TC > a. The middle
column shows scatter plots showing all cases from both datasets.
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Figure 6.16 Representation of two cells in clump 2001 through the direction change and
interaction analysis. The reader is referred to figure 5.8 in Chapter 5. The detected clump
outlines are presented in yellow line and the individual cells are shown in cyan and magenta.
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Figure 6.17 Representation of two cells in clump 3002 through the direction change and
interaction analysis. The reader is referred to figure 5.8 in Chapter 5. The detected clump
outlines are presented in yellow line and the individual cells are shown in cyan and magenta.
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Figure 6.18 Representation of two cells in clump 22001 through the direction change and
interaction analysis. The reader is referred to figure 5.8 in Chapter 5. The detected clump
outlines are presented in yellow line and the individual cells are shown in cyan and magenta.
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Figure 6.19 Frames in clump interaction overlapped to appreciate cell movement and time
in clump. In each case, three frames are superimposed: the first, middle and final frames in
each experiment are shown, with the corresponding segmentations and tracks. The full track
in each experiment is presented, with changes of colour representing different moments in the
experiment: red - before the clump, yellow - during the clump and green - after the clump.

6.5 Summary

Results for all developments described in this thesis were presented in this chapter. The
chapter was subdivided in three main projects: (i) the ISBI Cell Tracking Challenge of
2015 [64], (ii) the movement analysis of the Artemia Franciscana [53], (iii) comparison
of the peak detection via anglegram and (iv) the developments described in the
macrosight framework from chapter 5 and [108, 109]. Thus, this section is subdivided
in a summary and discussion of points (i-iii) and comments on the developments in
(iv).

Summary on additional tests

Discussion on ISBI results. The automatic thresholds found from the optimisation
process described in equation (C.2), appear to have an overall better result other
thresholds tested. Table 6.1 presenting the the automatic thresholds to have better
results or close, next to the manually selected ones. However, the segmentation results
in figure 6.4 are not optimal. Noticeable errors in the segmentation are appreciated
in the datasets C3DL-MDA(d), N3DH-CE(i) and N3DL-DRO(m). It is worth
noting that the datasets presenting the worse segmentation times were the ones that
proved computationally expensive to test. Thus, the implementation of an optimisation
technique for such datasets was made blindly given the promising outputs from the
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2D datasets (table 6.1). Verifying the resulting segmented cells manually would have
helped detect such problems. Subtle errors in segmentation can also be observed
in noisy datasets like C2DL-MSC(b), N2DH-GOWT1(e) and N3DH-CHO(j),
where the errors correspond to limitations in thresholding of the datasets.

Regarding tracking results, the most noticeable problems can be observed in datasets
N3DH-CHO(j), where tracks appear to make large leaps from one point to another.
This could be caused by a poor segmentation where a cell disappears from one volume
to the next, and the keyhole algorithm assigning the corresponding track to another
cell. Most notably, dataset N3DH-CHO(j) shows a single track.

The ISBI Cell Tracking Challenge was as an introductory project to the cell
migration problem in image analysis. The challenge’s results showed overall good
tracking results, providing a suboptimal segmentation in many cases. This caused the
subsequent projects, especially the work with macrophages to be heavily focused on
segmentation, as the tracking solution was robust for many cases.

Discussion of the movement analysis of the Artemia Franciscana. The
semi-automatic approach of studying the movement of the animals enabled to both
automate and significantly increase sensitivity of Artemia toxicity biotests as compared
to a current gold standard that is based on manual counting of immobile larvae at
24-hour end-point [53]. The approach is semi-automatic, with post-processing needed
for the tracks, to join inconsistencies created by the incorrect segmentation of artefacts.

While a fully automatic approach would be desirable, the solution presented provide
significant insights when analysing the moving patterns of the crustaceans. The reported
results showed a similar trend as manually assessing the reduction of movement, albeit
with differences towards higher concentrations of the pollutant. The differences were
due to the software not taking into consideration of subtle movements such as the
swing of an arm or agitation of the body.

Discussion of detection of peaks comparison to Harris’ algorithm. The
functionalities of the anglegram were compared with the Harris junction detector. Such
a comparison is an extension from the original results reported in [108], and reproduced
in Table 4.2. The results show improved accuracy in detecting circle shapes, compared
to Table 4.2 due to the additional step when detecting more than four peaks.

Referring to Tables 6.2 and 6.3, a method was developed to obtain peaks using
the Harris algorithm [103]. The method exploited the Harris’ metric of the detected
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junctions and selected those with a value above a certain threshold to have comparable
results to the anglegram method. The peak detection via anglegram produced better
results for all shapes identified, even when compared to a best-case-scenario alternative
with the Harris’ method (table 6.3).

Migrating macrophages analysed with macrosight.

In Chapter 5, the macrosight framework was described and its results presented
in this section. Two functionalities were explored: shape tracking and analysis
and interactions analysis. Three datasets were analysed: MACROS1, MACROS2 and
MACROS3, acquired with the same methodology described in [4, 43]. Each frame contains
two channels, corresponding to the nuclei (red) and the microtubular structures (green).
All methods assumed the baseline segmentation, described in chapter 4, and utilised
the tracks obtained by PhagoSight.

Datasets MACROS2 and MACROS3 appear to have more contrast compared to MACROS1,
which could explain the number of inconsistent tracks in it, as marked with black
arrows in figure 6.9.

Discussion of shape evolution experiments. Shape evolution experiments were
run on the MACROS1 dataset, where all non-overlapping track fragments were isolated.
Three tracks were selected to showcase the functionality of the shape tracking algorithm.
This algorithm would allow to incorporate shape measurements to the track information,
initially obtained by PhagoSight, including the location of peaks detected in the analysis.

The main results in this section are presented in figure 6.11. The three cases
presented were chosen for each cell’s shape changing and sizes; the experiments shown
will be referred by the indexes in Figure 6.11, namely (a), (b) and (c). Problems when
detecting peaks in the data correspond to errors in the peak detection via anglegram
method. Such is the case of the first, fifth and seventh frames in (a.i). Other cases
show two very close peaks being detected, like in most of the frames shown in (b.i),
which could be attributed to the segmentation of the green channel. A postprocessing
method to the anglegram could take such cases and join the segmentations into a
single peak. Also, in (a.ii) the orientation angles towards the final frames show a large
transition caused by warping of the angles.

As mentioned in [108], the key contribution is the consistent tracking of the shape
providing a measured evolution of shape parameters. More examples have been
showcased which further such statement. Furthermore, this implementation could
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incorporate such measurements as information in the tracks computed by PhagoSight.
Minor errors can be addressed through postprocessing and by a thorough understanding
of the anglegram.

Discussion of cell direction changes. Interactions analysis experiments were run
on all MACROS datasets, exploiting the consistency in the intensities of the images to
obtain reliable tracks. Thirty seven experiments were run in total, which would fulfil
the criteria described before. It is worth noting that the term interaction is used to
describe two cells coming in contact to a clump. Also, even though only two cells
came in contact in a given clump, the time spent in it varied widely, as seen in Figure
6.15(a).

Consider the comparisons of the changes in track directions with or without clump.
Figure 6.12 represents all tracks rotated and translated to coincide at a specific point.
It is worth noting that for the single cell movement experiments, in Figure 6.12(ii),
the reference point was chosen arbitrarily as the middle point in the track segment
leading up to the clump. Furthermore, Figure 6.12 presents more insights about the
overall hypothesis presented in this thesis. For [109] the analysis was only performed
in the MACROS3 dataset, shown in Figure 6.12(c), where a clear difference in the tracks
can be observed, although the angle variation could not be proven to be different with
statistical significance.

Segments of this discussion are reproduced verbatim from the work presented in
[113]. Figure 6.12 shows tracks to be different between the two cases. The cases of
cell-cell contact show less movement before and after contact, shown by the smaller
lines; a higher variability is observed in control cases. Each dataset also presents
unique differences in the comparisons. In MACROS2, for example, the tracks appear
more curved after the interaction; and in MACROS3, the ranges of change in direction
are more distinct.

Even though the differences between contact and control cases are noticeable, how-
ever the characterisation of the movement should not be reduced to the analysis of a
single variable, in this case the angle of changed direction. For example, the tracks cor-
responding to interactions travel very short distances with curved movements, causing
the calculation of the angle variations to be much smaller. The tracks corresponding
to single cell movement seem much more chaotic. Upon close inspection of each track,
it was observed how some of the tracks before a clump took a turn towards it in the 11
frames leading up to the interaction. In both cases, the movement pattern do appear
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different in one case from another, however it seems to be a complex process where the
basic angle change measurements were insufficient to categorise the movement. More
variables like speed, curvature could be incorporated. From a biological standpoint,
the moment cells come in contact could be determined much sooner if the microtubules
with a lower intensities are also segmented and tracked.

An extension to the results reported in [109] was presented. The number of time
frames a cell remained in a clump time in clump TC, was presented to try and
contextualise the differences in motion patterns in the cells. The hypothesis being that
the time each cell spent in each clump would impact the angle variation. Figures 6.14,
and subsequently 6.15 were created to observe the angle differences per dataset, given
the time in clump. The time in clump, TC, was found to be a relevant parameter for
the measured angle change for different reasons. Firstly, the value of TC per clump
appeared to be smaller where statistical significance was achieved, as seen in table 6.4.
Secondly, from figures 6.14 and 6.15 display the differences in the angle changes and
their ranges if the experiments are restricted to keeping a low time in clump (TC < 10).
Finally, as mentioned in Section 2.2, each frame is taken every 10 seconds, and the time
cells remain in contact should not exceed 1-2 minutes (TC ∈ [6, 12]) to be considered
an interaction relevant to explore. Through the analysis made in this work, the time
in clump was found to be helpful when assessing the change of direction in values of
TC < 10. The result was not previously found in [109], therefore it fuels the need for
a more thorough analysis of the tracks’ parameters, attempting to characterise them.

In both datasets, a lot of cases seem to be grouped at specific values of TC. For
example, in Figure 6.15(d) where a purple line was drawn at TC = 10, showing six
cases of different angle changes. To investigate further, all experiments were partitioned
based on a specific time in clump in cases with TC ≤ a and TC > a, a = 2, 4, 6, 10.
The results were shown in Figure 6.15, where the angle change distributions of each
experiment vary noticeably depending on the values of time in clump considered. The
rightmost column is noticeable, as it is the one involving pairs of cells which interact
in what would be described as brief time periods, it also presents the most apparent
differences in the distributions of the angle changes between experiments with clumps
and single cell movement experiments. Finally, three experiments were chosen with
different time in clump, so the movement in the cells can be observed in the context
of the images. In figures 6.16, 6.17 and 6.18, an overview of the entire movement is
shown.
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The limitations of the algorithm involved the underlying limitations of the segmen-
tation and tracking methods at dealing with complicated interactions. As mentioned
before, the experiments were chosen manually, by observing the clump span of each case.
Upon verification of the tracks, which consists of manually comparing the segmented
nuclei and tracks, the dataset MACROS1 presented some inconsistencies like nuclei chang-
ing their track identifier, thus complicating the choosing of experiments. The problems
with the tracks could be inherited from the limitations of the keyhole algorithm, which
only considers velocity and previous direction to estimate the upcoming position. The
reader is referred to figure 6.12(b.i), where the red tracks appear clearly curved. The
problems could also be due to segmentation, as MACROS1 contains more variability in the
intensities than MACROS2 and MACROS3, as well as a larger number of cells interacting
in each clump. Future work could improve this by incorporating post-processing to the
tracks.
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Chapter 7

Conclusions and Future Work

A framework for the analysis of moving objects, with special emphasis on fluorescently
labelled macrophages through image analysis and tracking methods has been presented.
The framework includes the analysis of the segmentation, tracking and shape analysis.
The framework was developed to analyse the movement and provide insights on the
intention of movement from migrating cells, shedding light on the understanding of
the processes that drive cell movement. This chapter presents a summary of the thesis,
which highlights the key findings; then, the major contributions and conclusions; finally,
limitations of the algorithms are presented, leading to suggestions for further research.

7.1 Summary

Cell migration as a biological process, the mathematical modelling to describe it and
the acquisition of images and time sequences through microscopy were first described to
provide the context to the data studied. Cell migration is an intricate process involving
physical and chemical interactions within the context of the biological structures of cells
and the substrate. Despite the comprehensive knowledge about the movement of cells,
the ways in which cells integrate cues is not yet fully understood. Macrophages were
presented as an example of cells whose migratory functions are of great importance
to the health of organisms. The data of macrophages was presented and described in
detail as images with two levels of fluorescence producing two separate layers: nuclei
in red and microtubules in green.

To study the movement of macrophages present in the data, the images were
thoroughly explored by several image analysis techniques. Chapter 3 was then used
both as literature review and as an exploration of the data. Classic image analysis
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techniques were explored including preprocessing, segmentation by thresholding and
postprocessing. Different methodologies were used to provide a thorough exploration
of the data. More sophisticated techniques, such as a multilevel set method and active
shape models, were described and tested on the data with unsatisfactory results that
would not justify the increase in complexity compared to results achieved by simpler
techniques.

A baseline segmentation methodology was developed to segment objects in frames
where intensities are distributed similarly to fluorescence microscopy frames. Such
segmentation was aimed to detect the foreground in both channels of the data, more
importantly, it would allow for the detection of overlapped cells in the green channel,
clumps.

The framework for the analysis of moving macrophages was divided into the
segmentation and tracking. At every segmented, analysis of the boundaries of the
detected objects was performed through a novel technique based on a multiscale
analysis of the inner angles of the boundary of an object, called anglegram matrix.
The algorithm allowed for the detection of junctions, whether concave (corners) or
convex (peaks), through the detection of maxima in a projection of the anglegram’s
rows. Two applications for detecting junctions with the anglegram were presented: (i)
disambiguation of clumps and (ii) analysis of shape through detection of peaks. In
both cases, the anglegram method was compared to synthetic data, outperforming the
Harris corner detector [103]. In overlapping cells, corner junctions in clumps were used
as points where the underlying boundaries of the cells intersect; for it, a proposal of
exploiting the junctions was presented. In single cells, movement is accompanied by
shape changes. Four shapes were identified from the data, depending on the number of
peaks; junctions detected by the anglegram were used to identify the shapes as cells
migrated.

The full framework, macrosight, analysed the movement of cells as they migrate.
The framework implemented the PhagoSight’s keyhole tracking algorithm [102] to
link the segmented nuclei between frames. Two algorithms were presented: (i) shape
tracking, to acquire the shape information from the segmented green channel on non
overlapping cells; (ii) analysis of interactions, which compared the general orientation
of movement before and after a cell came in contact with another one, forming a clump.
Results presented for the shape tracking analysis show a consistent tracking providing
a measured evolution of shape parameters.
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7.2 Major contributions

• A thorough exploration of the data obtained in the work by Stramer et al.
[4], throughout Chapter 3 and supported by the context of cell migration and
imaging techniques presented in chapter 2. Classic image analysis techniques were
reviewed as an exploration of the data, showing the difficulties in segmentation,
not including overlapping cases and a classical segmentation was proposed to
segment both channels.

• To analyse the shapes of the detected objects, the anglegram matrix was proposed
to detect important junctions in the boundaries of objects. The anglegram was
validated with synthetic data for both types of junctions. More importantly, the
algorithm detected junctions comparable to the Harris corner detector but with
the added benefit of detecting junctions based on context, allowing the distinction
between peak and corner junctions. In detection of peaks, the algorithm showed
improved results over Harris’ method. Applications of the anglegram included
the identification of shapes based on the number of peaks detected on single
cells and the use of corner junctions for the disambiguation of clumps; showing
promising results were found on both applications.

• The macrosight framework was proposed for the analysis of moving macrophages,
providing the separate tools to do so. It includes a robust segmentation for both
channels. The framework incorporates an established tracking technique for the
nuclei (red channel) to the shapes of single cells or clumps in the green channel.

• Throughout the development of this thesis, algorithms were developed in Mat-
lab® and versioned using git. The following projects including the most important
algorithms in this thesis are available on Github, an online repository for sharing
code. Anglegram, described in chapter 41. The macrosight framework, described
in chapter 52, and the manual segmentation of time sequence frames, described
in chapter 23.

• The algorithms presented in this work can be extended into other applications,
as presented on the ISBI and Artemia projects.

1https://github.com/alonsoJASL/matlab.anglegram
2https://github.com/alonsoJASL/macrosight
3https://github.com/alonsoJASL/matlab.manualSegmentation
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7.3 Major conclusions

The following conclusions are considered:

• The macrophages time sequences analysed in this thesis are an important de-
velopment in imaging techniques, allowing for the observation of microtubular
structures, and cell interactions as not available before. However, the amount
of structural information of the cells migrating and interacting, have created
a remarkably complex dataset, with several challenges when analysing it with
computer algorithms. Being a novel dataset, annotated ground truth was not
available to explore supervised machine learning approaches. The cells adopt
extremely varied shapes, such that other methodologies with strict shape assump-
tions like the level set method by Lu et al. [99], the work by Plissiti and Nikou
[96] or even active shape models explored in Chapter 3, could not work with the
data.

• One key hypothesis raised in this thesis, as observed in the data, was the possibility
that the interactions between the cells could affect their moving patterns. This
hypothesis was explored through the macrosight framework, and its results
presented in section 6.4. The comparison of the change angles before and after
the interaction resulted to be valuable, but insufficient as there was no significant
difference. Yet visually, the tracks appear to be different, which invites further
analysis. A key conclusion from this analysis is worth noting: the test was done
on a single variable of movement, i.e. angle, and movement led by interactions
was assumed to influence it. More variables such as speed, curvature of the
track, polarity of the cell, and shape parameters, including cell state should
be considered in the analysis to produce a comprehensive description of the
movement.

• Following the previous point, the shape analysis of the macrophages provide an
interesting way to contextualise the nuclei movement to the shape measurements
of the cells. It has been observed in the data, how cells appear to elongate as
they migrate towards another cell or clump. In some cases, the shape change is
evident, from a circle into a drop if only another single cell is close to it; or a
bidrop or tridrop if more cells are present in the vicinity. A calculation of the
basic shapes described in Section 5.2 allowed an initial approach to defining states
in cellular movement, based on their interactions that have not been explored.
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7.4 Limitations

The limitations presented include all major blocks of the macrosight framework: the
segmentation and anglegram from Chapter 4, as well as the shape tracking and the
influence of cell-cell contact in driving the movement of cells. The limitations are
highlighted to introduce possible routes moving the research forward.

Baseline segmentation. Several microtubular structures are removed from the
analysis with the morphological operations, causing certain events of contact to go
undetected. The need for a closed almost convex curve causes some clumps to be more
complicated than need be. As an example, the reader is referred to figure 4.4.

Anglegram and junction detection. The anglegram is completely dependant
on the previous segmentation step, and has no way of adjusting itself using other
information, such as the intensities. Such adjustment, done a posteriori, could also
help produce a more accurate map of the junctions, even in cases where the angles
measured in the anglegram are not high enough to be detected.

Shape tracking analysis. The main limitation of this technique is that it is not
robust enough to address overlapping cases. Some restrictions on the active contour’s
evolution might address the leaking problem. In the evolve function, the different
functionalities (shrink, grow and normal) were implemented to address this, however
they do not follow a precise measurement the intensities around the boundary of
the object, instead they only assume the area of the objects should remain relatively
constant. More restrictions on the boundaries’ shapes could aid this problem.

Analysis of interactions. As this analysis is the last in the pipeline, the limitations
on previous algorithms would impact the performance of it, those are not mentioned.
However, other limitations can be found independent of the methodologies this method
depends on: (i) not being able to distinguish between types of contact, e.g. actual
interaction vs. overlapping due to the cells being in different planes, in such cases, an
expert would need to label each contact to determine interactions; (ii) the algorithm is
semi-automatic, with the cases needing to be manually written logged in a spreadsheet;
(iii) as mentioned before, a detected clump does not mean a contact event, however
this is the case in the current implementation of the work.
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7.5 Suggestions for further research

The following suggestions for research do not necessarily address the problems stated
in the previous section, but provide further extensions of the work.

• As mentioned before, the frames in each dataset summarise various information
at different scales. In this thesis, an exploration was made on the general shape of
the cell when migrating, however, when observing the data, several microtubular
structures (pseudopodia) are observed, which were intentionally removed from
the analysis. Having a robust segmentation and shape analysis, the research can
focus on the smaller structures observed incorporating them into the analysis.

• The anglegram is a noteworthy tool for the analysis of shape, and several
improvements could be considered. First, the anglegram could be exploited as a
prior to a probabilistic modelling of the position of the junctions and the overall
shape. This would allow to deal with complex shapes, where corner junctions are
missed because the inner angles are not high enough. Using the anglegram as a
shape prior could provide insights to recovering a shape from the anglegram.

• Following the previous point, the dimension of the anglegram could be extended
to consider grey level images, and a likely shape, similar to a Hough transform.

• A clear future direction of this research would expand the notion of tracks to
include shape parameters and spatial context to identify interactions of cells.
Extracting features from a track and categorise it is an idea explored before [114]
and incorporated to the information already obtained in this work could produce
satisfactory results.

• Cells seem to elongate when approaching other cells, thus an analysis of the
spatial context of the cells to the rest of the cells could be explored. Quantifica-
tion of such elongation from a rounded circle into basic shapes was introduced
with the pointiness of the shape and could provide more information to the
overall description of a moving track. A noteworthy point when designing a
more thorough measurement of the characteristics of movement is subject such
technique to thorough validation using synthetic and real data.
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Closing statement. Cell migration was presented in this work as a complex biolog-
ical problem involving a two complementary approaches to understanding it: image
analysis or mathematical modelling. This work analysed the problem from the per-
spective of image analysis because the interactions being measured have not been
fully understood. Through the analysis presented in this work, the determination
of the interactions presented in this work might be useful in the modelling of whole
cell dynamics, providing insights of motion dynamics, which paired to shape states,
have not been fully accounted before. The evolution of shapes before a contact event
would be relevant to mathematical models. Finally, the notion of a shape signature
was explored with the anglegram, which could aid in geometrical image analysis.

The work presented in this thesis lays the foundation for automated image analysis
of migrating macrophages. Several studies of cell motion are still analysed manually,
especially when it comes to segmentation. The work presented in this thesis provides
a framework which would allow biologists to have consistent measurements of the
phenomena in the movies, thus allowing for reproducibility in studies with more complex
questions, such as determining the differences between control cells vs. cells in which a
specific gene has been modified. The framework could be extended to incorporate a
more detailed analysis of the cells’ tracks incorporating velocities and shape evolution.
The amount of information scientists acquire is vast, therefore an automated analysis
would highlight patterns in the data not seen before. The project presented in this
thesis follows a very specific scope, however it provides clear implications in several
fields of research.
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Appendix A

Mathematical preliminaries

In this appendix, detailed description of the mathematical techniques is presented.
The representation of digital images as matrices allows the utilisation of mathematical
techniques involving vector spaces and arrays. The operations performed in images
can be linear, nonlinear, they can involve transformations, and changes of domain, for
example from spatial to frequency. Because images are considered to be digitalisation
of continuous functions, notions in calculus can be applied, the only requirement being
taking into consideration the correct numerical application of continuous techniques.
This appendix presents the notation used for the operations used throughout the thesis.

A.1 Notation

Throughout this work, vectors will be represented with lowercase bold letters, e.g.
x, v, p, and matrices will be represented either in uppercase letters, like A, B, C or in
blackboard uppercase letters when an image is being referred to, for example I,K, or
a binary image representing a set, for example A,B. Values in images at a certain
location, I(x, y), are referred to as pixels, and are represented by a lowercase p with a
lowercase subscript, e.g ps = I(xs, ys), pr = I(xr, yr). The plane containing the pixels
in the image will be called the spatial domain.

A.2 Vector spaces and Matrices

Representing images as matrices allows for all the mathematical developments in
vector-matrix theory [67]. In this section, an overview of the elements of linear algebra
will be presented, using the classical reference of Nocedal and Wright [115] as a basis
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for the more theoretical derivations. Vectors correspond to one-dimensional arrays of
numbers which exist in the Rn space and are generally represented vertically,

x =



a1
...
ai

...
an


= (a1, · · · , ai, · · · , az)T .

Vectors can be operated element by element, as long as they have the same size. An
important measurement for vectors is the interior product, which multiplies two vectors
and produces a scalar,

⟨a, b⟩ = aT b =
∑

i

aibi.

As seen before, images will be represented as matrices, in which the space of matrices
of size Nr ×Nc can also be represented as RNr×Nc . On the other hand, matrices are
two dimensional arrays which each entry is represented by two indices, ai,j = A(i, j)
where the index i = 1, · · · , Nr indicates the row number and the index j = 1, · · · , Nc,
also, a matrix can be seen as a vertical array of Nr rows, or a horizontal array of Nc

columns,

A = ((ai,j)) =



a1,1 · · · a1,j · · · a1,Nc

... . . . ... . . . ...
ai,1 · · · ai,j · · · ai,Nc

... . . . ... . . . ...
aNr,1 · · · aNr,j · · · aNr,Nc


=



âT
1
...

âT
i
...

âT
Nr


= (a1 · · · aj · · · aNr) .

Let A, B ∈ Rn×m, the operations of addition and scalar product are defined in an
element by element basis, i.e.,

A + B = ((ai,j)) + ((bi,j)) = ((ai,j + bi,j)) ; αA = α ((ai,j)) = ((αai,j)) .
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On the other hand, matrix multiplication is defined as

AB =



âT
1
...

âT
i
...

âT
Nr


(b1 · · ·bj · · ·bNr) =

((
âT

i bj

))
.

Finally, array operations are worth mentioning. In which multiplication is done element
by element, it is represented by the symbol ·∗, for example,

A.∗B = ((ai,j)) ·∗ ((bi,j)) = ((ai,jbi,j)) .

Transformations

Transformations modify the spatial relationship between points, in case of curves, and
between pixels in the case of images. The principle is very similar, where the only
difference lies in the need to interpolate values of pixels after the transformation has
occurred [67]. Transformations can be defined in a broad manner, as a function T

mapping another f(x, y) into a new one g(x, y), i.e., g(x, y) = T [f(x, y)].

Linear operations

Most transformations presented in this thesis are linear, which imply a modification
of scale and translation. More accurately, let T [·] a linear transformation, and f, g

functions, then the following properties are fulfilled:

• Let α ∈ R, then T [αf ] = αT [f ].

• For functions f, g then T [f + g] = T [f ] + T [g].

The previous conditions involve a generalised way of representing linear transforma-
tions, however in more practical applications transformations in vector spaces and
images occur through matrix operations. The following definition outlines a linear
transformation in the context of a vector space.

Definition 7 (Linear transformations) Let x ∈ Rm be a vector and A ∈ Rn×m.
Then a linear transformation will be defined as the translation and modification of the
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coordinates of x such as
x̃ = Ax + b

for some matrix A = (u1, u2) and vector b. Depending on the restrictions of column
vectors u, is the classification of the transformation.

Other notions of linear algebra are worth mentioning, like optimisation, linear program-
ming and even some with statistical applications such as least squares and principal
component analysis.

Convolution and filtering

As a quick overview of convolution, available in detail in appendix A, let f(x, y) be an
image of size Nr ×Nc, and let K be a filter kernel, i.e. a small square matrix of size
n2, n << min (Nr, Nc) with n odd (n = 2a + 1). Then the convolution g(x, y) = f ⊛K
is given by Equation (A.1),

g(x, y) =
a∑

i=−a

a∑
j=−a

K(i, j)f(x + i, y + j). (A.1)

Notice that convolution can be represented mathematically as in Equation (A.1), with
the operator ⊛, or in Matlab® notation, imfilt(I,K).

Figure A.1 Detailed diagram of convolution in 2D variables. The diagram shows an image
I and a kernel K interacting in three different instances; for a particular position (xi, yi) in I,
a corresponding position in the resulting g(x, y) will be given by the sum of the values of the
image, weighted by the values of K.
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A.3 Notions of multivariate calculus

Let f : I → R, the derivative at point x0 will be given by the limit of the gradient
from points (x0 − h, f(x0 − h)) to (x0 + h, f(x0 + h)), like

lim
h→0

f(x0 + h)− f(x0 − h)
2h

.

Regarding discretisation, following the notation from Appendix A, the closest points to
discrete variable x are x− 1 and x + 1. Therefore, the approximation of the derivative
will be given by

f(x0 + 1)− f(x0 − 1)
2 , (A.2)

the process can be observed in figure A.2(a) and A.2(b). In an image, discretisation of
a function with two variables, the process can be extended to include horizontal and
vertical directions. Figure A.2(c) shows a representation of the process of estimating
the gradient at a point given the two directions x and y.

In multivariate calculus, the individual derivatives with respect to directions x

and y are called the partial derivatives ∂xf and ∂yf . The vector which contains the
partial derivatives is called the gradient, ∇f = (∂xf, ∂yf)T . Since the gradient can be
calculated per point in the image, two images will be generated containing the partial
derivatives per point, highlighting the transitions in intensity at each direction.

Figure A.2 Discretisation of a central point derivative in 1D variables.
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A.4 Set theory

In previous sections, analysis of images has been done analysing them as discretisations
of continous functions. objects within images can be described as curves. In this
section, the concept of a digital image remains, in which the number of levels is binary,
L = 2, and normally the levels are integers. Each pixel will take a value, 0 or 1, where
contiguous areas of pixels with the same value will form areas and objects. In this
work, the contiguous areas of pixels with a value of 1 will be considered to be objects
or sets. This section will be referred to when exploring the fundamentals of image
segmentation and when discussing postprocessing.

In the case of images, the entirety of the ordered pixels within it can be referred to
as the universe as it contains all possible sets of pixels in it. Thus, each pixel p = I(x, y)
will be an element of the universe. A collection of pixels, will be called a set or a region
within the image and represented by A ⊂ U. Table A.1 shows a brief description of
the basic set operations.

Table A.1 Basic set operations. Let A,B be sets within the universe U, this table summarises
the basic set theory operations adn their definitions.

Name Symbol Definition
Union A ∪ B p ∈ A OR p ∈ B

Intersection A ∩ B p ∈ A AND p ∈ B
Complement Ac p ̸∈ A

Difference A− B p ∈ A ∩ Bc

In the context of images, pixel positions with a particular intensity —commonly
1— will correspond to elements in the sets. Therefore, the regions in an image that
constitute a set will be described by positions. In turn, this representation of sets
allows for size to be measured in set as the number of elements in the image region.

As mentioned in section 2.1, connected regions in binary images with a value of 1
can be modelled as sets in which the elements correspond to the pixel locations and
the universe set corresponds to the entire collection, of pixels, i.e. the image I. Let
the set A be a connected region in the image I, then the set will be defined as the
collection of points (x, y) in where A = {(x, y)|I(x, y) = 1}. Therefore, cardinality of a
set |A|, also referred to as size of the set, is defined by the number of connected pixels
in a given region. Basic set operations are defined in Table A.2.
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Table A.2 Basic set operations. Let A,B be sets within the universe U and let p ∈ U be
an element in the universe. This table summarises the basic set theory operations and their
definitions.

Name Symbol Definition
Union A ∪ B p ∈ A OR p ∈ B
Intersection A ∩ B p ∈ A AND p ∈ B
Complement Ac p ̸∈ A
Difference A− B p ∈ A ∩ Bc

To avoid confusing notation, only this section, uses the notation of sets to present
the operations in abstract; however, in practical terms, the sets will be referred to as
regions and computations, like the ones described in section 3.1, will be described in
terms of binary images.

Probability and statistics. In image analysis, probability and statistics appear
in numerous occasions, from simple descriptive statistics of the distributions of the
intensities, to modelling of the shapes and boundaries of objects in the image. This
section is focused on the descriptive operations and graphics in images.

To illustrate basic concepts in statistics, let {px}n
x=1 be the set of pixel intensities

in an image I ∈ RNr,Nc , then the mean, µI and variance σ2
I are defined by equation

(A.3),

µI =
∑

x

px

NrNc

, σ2
I =

∑
x

(px − µI)2

NrNc

. (A.3)

Considering sets of images, {It}T
1 , then the previous definitions can be extended,

and the mean and variable frames can be computed. Consider the images to be aligned
in a 3D array I3D of size Nr ×Nc × T , then in equation (A.4), the extensions of the
statistics are outlined,

µ3D
I = 1

T

∑
t

It, (σ3D
I )2 = 1

T

∑
t

(It − µ3D
I )2. (A.4)
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Figure A.3 Representation of the mean and variance frames in the Artemia Franciscana
dataset. (a) Represents the collection of frames It of which the mean and variance are
calculated. The operations for mean and variance are performed per pixel. Notice the mean
frame (b) in the Artemia Franciscana dataset displays parts of the image frames without
movement, while the variance frame (c) represents the areas of the image where movement
was involved.

Statistic descriptive graphs are also recurrent in analysis of datasets. Two classical
graphs that aid in the visualisation of the observed distribution are the histogram
and box-plots. Such representations can be intuitive to some extent to describe the
distribution variable. In sections 2.2 and 2.2, histograms are displayed describing
the distribution of the pixels present in each presented frame. In formal terms, a
histogram is a graphic in which the values of the variable, such as the pixel intensities,
is categorised into ranges of values called bins. On the other hand, a box-plot is a
graphic which shows the quartiles of the variable, the minimum, maximum values and
the outliers.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure A.4 Representation of a histogram of the intensity values of an image. (a) Shows a
frame in the Artemia franciscana dataset. (b) Shows the histogram of the intensity values in
the image and (c) its boxplot graph
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Appendix B

Preliminaries of image analysis

In this appendix, an overview on the broad field of image analysis is presented. Classical
approaches are overviewed and in some cases tested on generic images. The techniques
discussed here present a thorough explanation of the methods used as exploration of
the data in chapter 3.

B.1 Classical image analysis

In this work, three main stages in image processing can be recognised, which will be
analysed in the following sections. The stages are preprocessing, which refer to the
intensity based operations performed on an image to aid in the segmentation techniques
perform better. Then, the core process of image segmentation will be discussed; such
process involves the classification of each pixel into one of two categories: background
and foreground. Finally, a postprocessing stage follows in which small errors in
segmentation are addressed, this stage usually involves some type of binary operation.
Sections 3.1, 3.1 and 3.1 show the relevant techniques in each category, applied to the
data presented in sections 2.2, 1.8 and 2.2.

Preprocessing

Preprocessing of an image in this report refers to the operations performed on an
image that allows for a more precise segmentation or analysis of the data. These
operations can highlight some of the images’ features, remove noise, modify dimensions
and should improve the results of posterior operations. One classical classification
of preprocessing techniques is from the work by Sonka et al. [76], which classifies
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such techniques into pixel brightness transformations, geometric transformations and
transformations in local neighbourhoods. Pixel brightness transformations refer to
modifications in the image regarding the pixels themselves, which normally address
brightness or grey-scale corrections. Geometric transformations are made to address
different types of distortion an image may present. Finally, local-preprocessing involves
the operation in the neighbourhood of a given pixel in order to produce a new value
for that location.

Furthermore, another approach in the work by Gonzalez and Woods [67] classifies
the techniques into transformations of intensities and spatial filtering. Transformations
of intensities, refer to transformations to the intensity levels I = 1, 2 · · · , L in each pixel,
which produce modifications of the statistical distribution of the intensities. Spatial
filtering refers to the local neighbourhood operations discussed in [76]. Techniques
which involve the convolution of the image with a filter kernel, to produce a new image
in which each pixel is the result of a local operation. In this work, the preprocessing
techniques used fall into the local-preprocessing and pixel brightness categories. Figure
B.1 shows a graphical overview of the techniques analysed in this work and the
classification it has in classical literature.

Figure B.1 Overview of the preprocessing methodologies analysed in this work. In the
centre of the diagram (double line) all the techniques as studied in the upcoming sections.

Histogram modifications

Every pixel of the image will change its own value based in a determined in a function.
The transformation T [I(x, y)] can be rewritten as a one-dimensional function applied to
each pixel T (p), it is worth noting that the location is not relevant to this transformation,
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only the intensity level at each point. Some examples of histogram modification are
described in Table B.1.

Table B.1 Histogram modification functions. Let pr be a pixel in an image, which can be
one of the intensity levels I = 1, 2, . . . , L; and let ps be the modified value after applying the
function T (·), ps = T (pr).

Function on pixel Description
ps = L− pr Negatives, used to invert the levels

ps = c log (1 + pr) Logarithms
ps = cpγ

r Power-law or Gamma corrections
Contrast stretching Changing the range of pixel intensity values.

Histogram equalisation Increase the global contrast of an image.

Size transformations

The objective of this section is to observe different features in the image which at
each resolution, it can also aid by increasing the signal to noise ratio of the image
and decreasing the computational complexity as this would reduce the number of
computations performed on the image. Two alternatives are overviewed: first, a more
simplified reduction in size of an image by interpolation and then a Gaussian pyramid,
which includes a more sophisticated way of using the values in the original image to
create the lower resolution ones. Further implementations of scaling and operations at
different scales involve sort of filters and scale space analysis [104], both fall out of the
scope of this work.

Reduction in size and Interpolation A common transformation is to reduce the
size of the image in order to increase the signal to noise ratio [77]. The reduction can
be as straightforward as taking windows of size m× n pixels and, just like in spatial
filtering techniques, calculating some statistic of the values inside the window, for
example the mean, the maximum or minimum.

Reduction with a Gaussian pyramid. In their work, Burt and Adelson [77] devel-
oped an algorithm to reduce an image. Given an input I0 ∈ Rm×n, then the image will
be reduced to an output I1 of size ⌈m/2⌉ × ⌈n/2⌉, which will be a reduced, low-pass
filter version of I0. The way the reduction is performed is through averaging each collec-
tion of 5× 5 pixels with the weights found by a matrix in which each entry is given by
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W (q, r) = ŵ(q)ŵ(r), r, q = 1, 2, · · · , 5, where ŵ = (1/4− a/2, 1/4, a, 1/4, 1/4− a/2),
figure B.3.

Figure B.2 Illustration of size reduction in an image. The image is represented in the
left with a vertical change in colour and an n × n window moving through it. The centre
image shows the n× n window and its n2 values which are summarised by some function like
mean or maximum. The output of the procedure is an image reduced in size, with reduced
resolution.

Figure B.3 Representation of the process which generates a Gaussian pyramid in one
dimension. (a) Displays the reduction process, where dots represent locations (pixels) in the
image, each of which is weighed by the values of pyramid kernel (b). In it, the value of a can
be changed to alter desired effects; in the case of a Gaussian reduction, a specific value of
a ≈ 3 is used to simulate the shape of a Gaussian.

Figure B.4 Examples of size reduction using both things proposed. From the original image
(a), size reduction is performed twice, to create an image of half the size, and an image of
25% the size. (b) Shows the outputs for the image when using interpolation and (c) shows
the images when using a Gaussian pyramid.
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Geometric transformations

In this section, geometric transformations are described as modifications of the spatial
relationship between the pixels in an image. Linear transformations are described
by a matrix T ∈ R3×3. From definition 7 in appendix A.2, three types of linear
transformations can be identified:

Affine transformations. There are no restrictions in matrix T. Such transfor-
mations can cause the loss of information such as the area of the object inside the
boundary.

Euclidean transformations. When T = (u1, u2) is such that ⟨u1, u2⟩ = 0 and
|u| = 1.

Equi-affine transformations. When det(T) = 1, then the area of the curve trans-
formed will be preserved.

Geometric transformations are shown for completeness, although they are not a
part the scope of this work. Transformations can be defined via matrices which alter
the positions (x, y) in an image, allowing it to change its size, the ratios of their rows
and columns and translating it to a different point. The transformation matrix T is of
size 3× 3. Table B.2 represents the different matrices used for transformations.

Table B.2 Geometric transformations represented in 3× 3 matrices. The linear transforma-
tions are represented by the matrices T.

Matrix T Description

Translation


1 0 0
0 1 0
tx ty 1

 (tx, ty) are the displacements along the axes.

Scale


sx 0 0
0 sy 0
0 0 1

 (sx, sy) specify the scales along the the axes.

Rotation


cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 Rotation by angle θ.

Shear


1 hx 0
hy 1 0
0 0 1

 (hx, hy) specify the shear factor along the axes.
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Figure B.5 Examples of transformations on detail of a frame. The top row shows the
transformations with an abstract 2D object, with the dotted lines representing the original
shape. White lines have been added for visualisation purposes.

Filtering

This section provides an overview of the techniques in which each pixel in the image is
assigned a specific neighbourhood in which a predefined operation is performed, [67,
Chapter 3]. Filtering can be viewed differently depending on the field of study. Apart
from reducing noise in the images, other filters can be used to enhance some properties
or features of the image, extracting relevant information from it. The term filtering
is taken from the field of digital signal analysis and processing in which properties
of a signal are selected, enhanced or suppressed through convolution with a finite
function with special characteristics. For a thorough review of convolution in 2D digital
signals, the reader is referred to section A, while for Signal Analysis and Processing,
the classical works by Oppenheim et al. [78] and [67] are recommended.

Filter kernels consist of matrices commonly of small sizes that can have different
parameters that determine the values within them. Throughout this work, it can be
assumed that all kernels, represented with letter K, are square matrices of size n, with
n = 2a + 1, a ∈ N, unless explicitly determined.
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Figure B.6 Simplified diagram of a 2D convolution of an image and a 5× 5 kernel. This is
a simplified version of the diagram in figure A.1. In this case, the kernel, K, is represented
by a 5× 5 matrix (yellow) as it moves onto different parts of the image. The position of the
origin in K will be the position in the resulting image.

Depending on the type of filter applied, the values will change to highlight certain
features in the image, like edges or corners. The following sections discuss two of
the principal filtering approaches: smoothing and sharpening of image features. The
difference lies in the properties of the kernels chosen to perform the convolution.

Smoothing filters

In this section, examples of smoothing filters are presented, as well as its application
on relevant images for this work. The filters are presented in terms of the kernels that
contain them.

Averaging kernel In this type of kernels, the values of the elements in K represents
a weight or proportion, that is, the values are between (0, 1) and the sum of all the
values in the kernel add up to 1. With the previous explanation in mind, in the
convolution I⊛K = imfilt(I,K), every pixel value is replaced by the weighted average
of the pixels in the n-neighbourhood.

The most straightforward implementation of this filter is what is known as a box
filter, which has uniform weights assigned to all the pixels K(i, j) = 1/n2. The only
parameter is the size of the filter, which at each point in the resulting matrix produces
the mean of the intensity values contained within the scope of the filter. Another
example of the weight distribution in the kernel is the disk filter, an averaging filter
acting upon a circular area. The circle is or radius r and the size of the kernel is 2r + 1.
The filter highlights circular structures which match the size of the radius of the circle.
The principle is the same as the one in the box filter, given the size of the filter, taking
the central element K(r + 1, r + 1), all elements within the radius will contain a value
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higher than zero. As it is a discrete filter, the edges of the circle will not coincide with
the finite grid of the kernel.

Gaussian filtering The Gaussian filter is another type of smoothing filter in
which the values follow a discrete 2D Gaussian of the size of the kernel. The parameters
in the filter are zero mean (0) and variance (σ2), as well as the size of the filter (n).
As seen in section A, the 2D shape of the Gaussian resembles a bell, where the width
of it is determined by the variance. It is important to note that the Gaussian kernel
must consider a value for n large enough for an adequate discretisation of K.

Order statistic filtering. Most filtering is performed through convolution. As
shown in figure B.6, the convolution can be interpreted as a moving window of the
size of the kernel, which at every step, selects the pixels in the input image that will
contribute to the new intensities certain position in the output; normally through the
sum of the array multiplication of the elements in the kernel by the elements in the
image.

Order statistic filtering, the same idea of a moving window is taken, but at every
stage, the calculation of a percentile is performed in the pixels selected at a certain
moment. The most common calculations are the minimum, maximum and median
filters. Figure B.8 displays the detail of three examples of order statistic filtering:
minimum, median and maximum filtering with various different sizes. Finally, figure
B.7 displays different cases in greater detail.
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Figure B.7 Representation of order different statistic filters with varying sizes. Detail of a
frame is presented after applying three types of order statistic filters: minimum (top row:
(a-d)), median (middle row: (e-h)) and maximum (bottom row: (i-l)). Each filter was tried
using different sizes, and applied to each of the two channels to showcase the behaviour of
each technique. A yellow box was superimposed to the image to aid the visualisation of the
size of the filter. From the left: first column (a,e,i) 3× 3; second column (b,f,j) 7× 7; third
column (c,g,k) 11× 11; fourth column (d,h,l) 15× 15

In general, smoothing filters are useful if the data presents high frequency noise,
and thus serve as low pass filters, in the context of signal analysis. However, some
features in the image are also of high frequency, like abrupt changes in the intensities,
which could be due to the presence of an edge or points in the image. For that purpose,
sharpening filters are described in the following sections.

211



Preliminaries of image analysis

 10 [ m]
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Intensity along profile (Minimum size = 7)

Red channel Green channel

 10 [ m]
0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28

(a) Minimum filter.
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Figure B.8 Test frame after applying smoothing through different Order statistic filters.

Sharpening filters

To analyse a digital image, it is sometimes useful to locate certain geometric objects,
such as lines which could correspond to edges and ridges in the image where certain
key objects are located. Thus, highlighting transitions in intensity, with a sense of the
magnitude of such transitions becomes key to image processing [67].

In calculus, the operator that describes the rate of change at a certain point is the
derivative, or in multivariate calculus, the gradient. As images were constructed as
discretisations of continuous functions of two variables, applying the numerical concepts
of differentiation to the images would provide an insight to the characterisation of
intensity transitions. On the other hand, as an image can be observed as a signal in
the spatial domain, abrupt transitions could be linked to locations of a high frequency.
In figure B.9, a combination of both ideas is represented, as this section describes the
tools used to highlight transitions in images.

212



B.1 Classical image analysis

Figure B.9 Relationship between derivatives and filters. In this section, the relationship
between a derivative approximation for a 2D discrete function and a filter approach in which
local operations performed for each point —or pixel— in the function.

The notion of differentiation comes from the analysis of continuous variables in
calculus, therefore, a numerical interpretation of the derivative in a discrete space
must be made to adapt to the discrete images. The notion then needs to be extended
into multiple variables, to account for the two directions present in images, rows and
columns. Finally, the notion of local will emerge, which will in turn provide the
background to present an approach which can be linked to spatial filtering.

Figure B.10 Explanation of the image gradient, recalling figure A.2. Given a pixel at a
position (x, y), the neighbourhood close to it can be determined by the pixels at positions
x− 1, x + 1 and y − 1, y + 1, such a neighbourhood is shown in (a). A representation of the
two different partial derivatives can be seen in (b), where a pixel can show changes in both
directions. (c) Shows a representation of the gradient in the direction x, ∇xI and in direction
y, ∇yI.
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Methods based on derivatives

In this section, methods based on derivatives will be described. The derivatives will be
outlined both in terms of the gradient and the filter which can be used to perform the
analysis.

Central differences and image gradient. This section will build on the principles
used for upcoming filter implementations. The central differences approximation to the
derivative has already been presented in equation (A.2). To extend it to two variables,
the procedure is calculated separately in both directions, at each position (x, y),

∂xI(x, y) = I(x + 1, y)− I(x− 1, y)
2 , (B.1)

∂yI(x, y) = I(x, y + 1)− I(x, y − 1)
2 . (B.2)

In this work, the symbol used for partial derivatives applied to an image,

∂xI(x, y), ∂yI(x, y),

will refer to the pointwise estimation of the derivative. While the symbol for gradient
∇xI will refer to the image which contains all the partial derivative calculations per
position, i.e. ∇xI = (∂xI(i, j)). Consider a kernels given by the matrices Kx = (1, 0, 1)T

and Ky = (1, 0, 1). Centred around position (x, y), a convolution of certain filters in
the image would produce at each pixel the approximation of the derivative per point.
The image gradient will consist of both images containing all the partial derivatives
per point, and per direction: Gx = ∇xI,Gy = ∇yI. It is common to produce the image
gradient magnitude, calculating per element G = |∇I| =

√
∇xI2 +∇yI2.

In the following paragraphs, different experimentations of the idea derived here will
be presented.

Sobel gradient. In the Sobel gradient, the corresponding kernels are given by
equation (B.3):

Kx =


−1 −2 −1
0 0 0
1 2 1

 Ky =


−1 0 1
−2 0 2
−1 0 1

 (B.3)
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Using the previous kernels, it can be observed that the value estimated for ∂xI(x, y)
will be given by equation (B.4).

∂xI(x, y) = I(x + 1, y − 1)− I(x− 1, y − 1)
+2 (I(x + 1, y)− I(x− 1, y))
+I(x + 1, y + 1)− I(x− 1, y + 1) (B.4)

This will give the pixel ∂xI(x, y) a sum of the estimations of the derivatives at (x, y− 1)
and (x, y + 1). The equation for ∂xI(x, y) would be analogue to the one presented in
equation (B.4).

Prewitt gradient. The process with the Prewitt gradient is similar to that of Sobel’s.
The difference comes with the kernel, which are given by equation (B.5),

Kx =


−1 −1 −1
0 0 0
1 1 1

 Ky =


−1 0 1
−1 0 1
−1 0 1

 , (B.5)

comparing the Prewitt kernel to Sobel’s, note the central row/column point has a
higher value assigned to it.

Roberts gradient. Finally, the Roberts’ gradient presents a variant, however fol-
lowing the same idea. A cross gradient operator is introduced to highlight diagonal
transitions in intensities. The kernels used are given by equation (B.6),

Kd1 =
1 0
0 −1

 Kd2 =
 0 1
−1 0

 . (B.6)

To showcase the different implementations of the derivatives, figure B.11 includes
the detail of a frame in the MACROS1 dataset in which each channel has been processed
with each of the filters. In all cases, the image gradient G = |∇I| =

√
∇xI2 +∇yI2 is

shown.
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(a) (d)(c)(b)

Figure B.11 Representation of different sharpening filters. Detail of a frame is presented
after applying the different sharpening filters analysed in this section, each one presenting
the gradient’s magnitude G =

√
G2

x + G2
y. (a) Central differences, (b) Sobel, (c) Prewitt and

(d) Roberts.
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(a) Sobel gradient.
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(b) Prewitt gradient.
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Figure B.12 Test frame after applying smoothing through different filters.

Laplacian filter. The construction of the Laplacian filter is done from the definition
of the Laplacian operator and the intermediate difference estimation of the gradient

—as opposed to the central differences used before. The Laplacian operator is given by
equation (B.7),

∇2f = ∂2
xxf + ∂2

yyf. (B.7)
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The first order intermediate difference estimator with respect to x is ∂xf = f(x +
1, y)− f(x, y). Thus the estimator for the second order partial derivative with respect
to x will be given by

∂2
xxf = ∂xf(x + 1, y)− ∂xf(x, y)

= f ((x + 1) + 1, y)− f(x + 1, y)− [f(x + 1, y)− f(x, y)]
= f(x + 2, y) + f(x, y)− 2f(x + 1, y)

Evaluating the previous equation in x− 1 yields the estimator

∂2
xxf = f(x + 1, y) + f(x− 1, y)− 2f(x, y),

and thus, using the analogous estimator for ∂2
yf into equation (B.7), yields the following

equation (B.8):

∇2f = f(x + 1, y) + f(x− 1, y) + f(x, y + 1) + f(x, y − 1)− 4f(x, y). (B.8)

Notice that the values included in the filter will correspond to the values within the 8
neighbours of position (x, y), which can be visualised in figure B.10(b). The kernels
formed will be given by equation (B.9),

K1 =


0 −1 0
−1 4 −1
0 −1 0

 K2 =


−1 −1 −1
−1 8 −1
−1 −1 −1

 , (B.9)

where K1 is the one described in this section, and K2 is an extension which includes the
cross sectional elements. To highlight the gradients differently, the arithmetic inverse
of each kernel can be used. Figure B.13 shows an image after applying both kernels
and their negatives.
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Figure B.13 Representation of the different implementations of the Laplacian filter for K1
and K2. (a) K1, (b) K2, (c) −K1 and (d) −K2.

Applications of the Hessian matrix. Other implementations of second order
derivatives include the Hessian matrix, which is a 2× 2 matrix containing the second
order derivatives with respect to x, y and the cross derivatives:

H(f) =
∂2

xx ∂2
xy

∂2
yx ∂2

yy

 =
Gxx Gxy

Gxy Gyy

 .

As this matrix is produced per point, then four matrices will be calculated per image.
This procedure is useful when some operations of the Hessian values are needed. For
example, blob detection, done by the determinant of the Hessian DoH = Gxx ·∗Gyy −
Gxy ·∧2, or in ridge detection, where the eigenvalues of the Hessian per pixel are
found by

λmax(H) = Gxx + Gyy ±
√
Gxx ·∧2 + Gyy ·∧2− 2GxxGyy + 4Gxy ·∧2.

0 5 10 15 20 25 30 0 2 4 6 8 10 12

Figure B.14 Example of the minimum eigenvalue of the Hessian matrix per pixel.
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Edge detection An important problem in image analysis is the detection of contours
of objects or edges. Note that filtering highlights edges and points of abrupt changes,
however edge detection refers to the creation of a binary image where positive values are
located where changes are more abrupt. In particular, the Canny [79] edge detection
algorithm has been a widely referenced image analysis technique with almost 30
thousand citations since its publication in 19861. As it is relevant to this work, an
overview of the algorithm is provided and some examples of its implementations, while
varying its key parameters. The overview of the algorithm is described in Algorithm 3.
Let I be an image, then its edges are found by looking for local maxima in its gradient,
G = |∇I|. The function used to highlight the transitions is the derivative of a Gaussian
filter with zero-mean and a variance σ2 provided by the user. The Canny [79] performs
a hysteresis threshold, which involves the definition of two thresholds, weak and strong,
where all intensities above the strong threshold are kept, and intensities between the
thresholds are only kept if they are in contact with a strong edge. The process of
hysteresis is overviewed in section 3.1.

Algorithm 3: Canny algorithm
Input: Image: I, Standard deviation of Gaussian: σ
Output: Binary image with selected edges: BI,σ

1 Let Kσ ∼ N (0, σ2) of size a× a, a = 2n + 1;
2 IK = I⊛Kσ % Gaussian filter to smooth the image
3 [Gx,Gy] = imgradient(IK) % Compute gradients of the image in each direction (x, y)
4 G =

√
Gx ·∧2 + Gy ·∧2 % Compute magnitude of gradient

5 Ḡ = Non-maximum suppression of G
6 BI,σ = Hysteresis thresholding of Ḡ using thresholds k⋆

1, k⋆
2.

The two main advantages of the algorithm involves the ability to modify the
Gaussian kernels, which allows different edges to be visible and the non-maximum
suppression which allows to select the more relevant ones. The technique would be
better classified as a segmentation of the edges in the image, as the output is a binary
image with two levels, I = 0, 1. It is included in this section to provide context of
the application of sharpening filters and because the term Segmentation, in this work,
refers to the distinction of cells from other cells and from the background.

1Consulted in Google Scholar, August 2018
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Figure B.15 Detail of output of Canny algorithm on macrophages data. Different values of
σ2 are presented to showcase the output of the algorithm. Notice that the size of the variance
σ is inversely proportional to the level of detail being analysed by the algorithm.

Image segmentation

As mentioned in previous sections, segmentation is the process of classifying pixels
into one of two categories: foreground, or objects of interest, and background. In a
way, segmentation provides context to an image selecting the regions which —given
an application— are important. In particular, cell segmentation is a widely studied
problem which has produced considerable amount of research output, like the works
by Maška et al. [68] and Ulman et al. [64].

Segmentation by intensity thresholding is central in this work, the technique is
explored. However, due to its simplicity, it introduces ambiguity in the segmentation
when used with the macrophages datasets, due to the interacting cells, which cause
overlapping. Thus, more sophisticated approaches are explored to resolve the ambiguity.
Apart from intensity thresholding, and to solve segmentation in overlapping cases,
more complex techniques are explored. Starting these with a naïve approach based in
Voronoi Tesselations, and then moving on to curve evolution techniques such as active
contours and level set methods. Then, methods categorised as machine learning are
described, ranging from Active Shape Models (ASM), Self-Organising Maps (SOM)
and Convolutional Neural Networks (CNN).

Intensity Thresholding

Intensity thresholding is a segmentation technique in which the intensity levels of a
signal, or image, are divided into groups allocated based on a set of one or more levels
against which the intensities are compared. In the simplest case of one threshold,
elements of the signal that are below or above the threshold are considered as background

220



B.1 Classical image analysis

and the opposite are considered as the foreground or objects of interest. This is a
simple and effective method, since, when considering greyscale images, one can imagine
that an object should be different in intensity from the background, assuming that
the feature that discriminates them is the grey level intensity. In cell analysis, the
underlying assumption is that cells have a consistent and significant difference in
intensity than the background. The algorithms that are studied in this report separate
the images into classes, with grey level intervals corresponding to different classes.

Considering the definitions in section 2.1, intensity levels on an image are referred to
be a finite set of L levels, {1, 2, 3, . . . , L}. Thus, performing a segmentation by intensity
thresholding implies finding a value k which separates the intensity levels into groups:
{1, 2, 3, . . . , k− 1} and {k, k + 1, k + 2, . . . , L}. Let CR be the set of intensities in which
the intensities of an image are categorised, where R refers to the region in which the
image will be segmented, and can be either a subscript or a number depending on the
context. It is important to remember that the segmentation output of a method will
be a binary image which takes the value 1 at the detections of foreground and 0 at
the background. As it is relevant to this work, the concept of hysteresis thresholding

—mentioned in section 3.1— is explained below.

Hysteresis thresholding Hysteresis thresholding is a technique for image segmen-
tation that uses two levels to segment an image, a higher one that determines what will
be part of the foreground and a lower one that will distinguish what will be considered
as background. The original idea was proposed by Schmitt [80] and has been extended
to a two (or three) dimensional space. Regions that are below the lower threshold and
are connected to the higher threshold will be retained; while the regions below the
lower thresholds surrounded by background will be discarded.

Formally, let I = {1, 2, 3, . . . , L} the levels of intensity in an image I and let
k0, k1 ∈ I, such that k0 < k1. Then, the interval gets partitioned into three classes:
C0 = {1, 2, 3, . . . , k0−1}, C1 = {k0, k0 +1, k0 +2, . . . , k1−1} and C2 = {k1, k1 +1, . . . L}.
Given the intensity px = I(x, y), three possibilities can be observed for the corresponding
pixel in the output image b = B(x, y).

1. p < k0 − 1, then p ∈ C0, and b = 0.

2. p ≥ k1, then p ∈ C2, and b = 1.

3. k0 ≤ p < k2, then p ∈ C1, then:
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(a) b = 1 if the region surrounding p is connected to a pixel in C2, or

(b) b = 0 if p is surrounded by pixels in region C0.

Figure B.16 shows a diagram of hysteresis performed in a 1D signal. The same concept
can be applied in 2D trivially, to showcase this, figures B.17 and B.18 show an example
using a frame of the green channel in a macrophages dataset in different regions of
interest of different sizes.

Figure B.16 Diagram of hysteresis in one dimension. The threshold levels k0 < k1 are
shown in shades of grey. Diamond markers (⋄) represent the signal and the different colours
represent their relationship to the thresholds; blue colour represents values belonging to C0
and are assigned 0, green shades represent points in C1, with a lighter shade representing the
markers that will be assigned 1. Finally, yellow markers show the points which belong in C2
and are automatically assigned 1. The output binary signal is displayed in red.

Figure B.17 Detail of hysteresis threshold in macrophages frame. From the RGB macrophage
frame (a), the green channel is selected (b). Two thresholds are selected and the resulting
example is shown in (c), three classes are thus created. Positions where the levels of intensities
fall within a certain class are marked in a different colour, blue for C0, green for C1 and yellow
for C2. The result of the hysteresis process appears in (d).

222



B.1 Classical image analysis

Intensity 1st thres 2nd thres Hysteresis

Figure B.18 Illustration of a hysteresis threshold in a 2D image.

Otsu’s threshold

Otsu [81] developed an algorithm for differentiating between classes, i.e. finding a
threshold, by maximising the quotient of between and within variances of the classes.
In simple terms, the algorithm would select a threshold that would distinguish the
classes as much as possible, while at the same time would make the intensity levels
within the class as alike as possible, one advantage is that this procedure can simply
be extended to more than two classes. The derivation of the algorithm is presented for
a single threshold as the extension to multiple thresholds is straightforward.

Let N = n1, n2, · · · , nL be the number pixels of an image I, i.e. nL = Nr × Nc,
then each ni corresponds to the number of pixels of intensity i ∈ I where I is a
finite set of grey level intensities, normally I = {1, 2, 3, · · · , L}. Thus, the probability
of a pixel qx = I(x, y) in the image to belong to each level can be computed as
pi = P {x = i} = ni/N . As the goal of this method is to determine the two disjoint
classes C0, C1, separated by a threshold 1 ≤ k ≤ L, then the probability of a pixel qx

belonging to each class is computed by

P {x ∈ C0} =ω0 =
k∑
i

pi, and (B.10a)

P {x ∈ C1} =ω1 = 1− ω0 (B.10b)
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The main objective of the method consists in finding k⋆ that maximises the quotient
σ2

B/σ2
W , where:

σ2
B =ω0(µ0 − µT )2 + ω1(µ1 − µT )2, (B.11a)

σ2
W =ω0σ

2
0 + ω1σ

2
1. (B.11b)

The pairs of parameters (µj, σ2
j ), j = {0, 1} correspond to the conditional mean and

variance of the intensity level. The total mean and variance of the intensities in I is then
µT = ω0µ0+ω1µ1. The work by Otsu [81] can be generalised in a straightforward manner
to two or more thresholds by expanding all the definitions in equations (B.10) and
(B.11) to having different thresholds. In this work, two thresholds will be determined
to perform then a hysteresis threshold, then the classes would be extended in terms
of two thresholds k0, k1, as 1 ≤ k0 < . . . < k1 ≤ L, simply by redefining the classes as
C0 = {1, . . . , k0}, C1 = {k0 + 1, . . . , k1} and C2 = {k1 + 1, . . . , L}.

The adaptation of the equations is simple enough, and in the end, the quotient that
must be maximised remains the same, and the terms from equations (B.11) change
into those in equation (B.12):

σ2
B =ω0(µ0 − µT )2 + ω1(µ1 − µT )2 + ω2(µ2 − µT )2, (B.12a)

σ2
W =ω0σ

2
0 + ω1σ

2
1 + ω2σ

2
2, (B.12b)

the process previously described can easily be rewritten for more thresholds that,
depending on the application, could lead to better segmentation, or a better visualisation
of the data. Figure B.19 displays the detail of a macrophages frame and the regions
created after intensities get classified after applying different Otsu thresholds. Then,

Figure B.19 Detail of two macrophages after applying different Otsu thresholds. The Otsu
algorithm was applied to the same section of a frame. Different number of thresholds were
applied, producing different number of classes Ci. (a-d) show the results of applying 1,2, 4
and 8 thresholds selected by the Otsu method.
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Otsu’s method, while very fast, is very sensitive to outliers on the data. One
example can be studied on the ISBI datasets, with the Fluo-N2DH-GOWT1 dataset.
It can be observed in figure B.20(b) how the difference between the most and least
intense is too high for the algorithm to segment both cells. Also, it can be noted in
B.20(b) that even taking a robust approach like a hysteresis threshold is not enough
for cells of this kind.

Figure B.20 Limitations of the Otsu algorithm in frame from the ISBI dataset. (a)
Represents a frame from the Fluo-N2DH-GOWT1 dataset, recalling section 2.2. One and
two thresholds were applied to the image, and the resulting classifications of the pixels
are presented in (b) and (c), respectively. It is important to notice that the variability of
intensities in the foreground is too large, and the algorithm is incapable of segmenting some
of the darker cells.

Entropy based thresholding

Entropy-based thresholding [106] is a methodology in which a threshold is selected
based on optimising an objective function, like in the past section, but changing the
function to be optimised. The algorithm, originally described by Kapur et al. [116],
has the same premise as Otsu’s method, but instead of selecting the threshold that
maximises the quotient of the between and within variances, the objective function
becomes Shannon’s entropy. Using the same notation as before, the entropy of a class
C can be defined by (B.13):

H (C) = −
∑
i∈C

qi log (qi) , (B.13)

where C is a class, and qi = pi/
∑

i∈C pi. The algorithm exploits the notion that there
is a relationship between the entropy of an image region with the information it can
hold. Therefore, the difference in the classes selected would differ from the classes
selected by Otsu’s algorithm. The mechanism of maximising a function that depends
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on the threshold selected remains, but the driving force of the method is significantly
different.

Adaptive thresholding

Variations of the thresholding technique is presented in the works by Pappas [82] and
Bradley and Roth [83]. In this work, a thorough derivation of the work by Pappas [82]
is presented, however a brief summary of the work by Bradley and Roth [83], along
with results on the data are presented for comparison.

In [82], the segmentation achieved was different from the traditional ones, as the
threshold level chosen is dependant on the local pixels at given positions. Instead of
selecting a set of thresholds that take into consideration the statistical properties of the
entire image, the method starts with global estimates of the levels and slowly adapts
them to the local characteristics of each region.

The concept of an adaptive threshold becomes relevant to this problem, as the
objects of interest in fluorescent images can vary considerably, and a single threshold
might not be enough, even a robust one like a hysteresis threshold, as seen in figure B.20.
In addition, it is possible that the images suffer from shading due to a variety of reasons
[84]. The work by Pappas [82] can be seen as a generalisation of the k-means algorithm
[85] that include spatial constraints and account for local variations of intensity. The
algorithm works through the estimation of the regions of an image (segmentation) and
the parameters in an a posteriori density function that computes the probability of the
distribution of regions (x) given the observed image (y) as shown in equation (B.14)

p (x|y) ∝ p (y|x) p(x), (B.14)

where y|x ∼ N (µ, σ2) and p(x|y) is the conditional density of the observed image
given the distribution of regions and p(x) is the a priori density of the region process.
Equation (B.15) shows both p (y|x) and p(x):

p(y|x) ∝ exp
{
−
∑

s

1
2σ2 (ys − µxs

s )2
}

, (B.15a)

p(x) ∝ exp
{
−
∑

c

Vc(x)
}

, (B.15b)

where the subscript s corresponds the location of a pixel on the image, xs corresponds
to the region assigned to pixel s, so µxs

s is the mean value of the image region xs centred
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at s. Finally, the a priori density of the region process is modelled with a Gibbs density
that sums over the cliques C of the region, which compares the similarities of the
neighbouring pixels, thus introducing accountability on local regions and restrictions.
Figure B.21 shows the process of computing µxs

s where the image is divided into regions
and a window scans the image and computes the mean intensities of the selected area.
It is important to understand that the superscript in µxs

s is not related to the power
operation, but as an index of the different regions that have been selected on the image.
The region process density is the element that gives the spatial constraints to the
algorithm, and it is modelled as a Gibbs Markov random field.

s i

i
i

i

Figure B.21 Graphical explanation of the calculation of parameter µxs
s . For the example,

the region belonging to pixel s is defined by number i, so xs = i. To compute µxs
s , one selects

a window inside the image and takes the mean from the areas that belong to that particular
region xs = i.

On the other hand, the work by Bradley and Roth [83] presents an adaptive
threshold methodology that takes into account spatial variations in illumination. It
achieves its purpose by selecting a threshold value based on local mean intensity in the
neighbourhood of each pixel. A neighbourhood of 1/8th of the size of the image is used
around each pixel. Each pixel gets assigned a different threshold value in which each
pixel is compared against. A parameter called sensitivity is included, which allows for
some control from the user into the threshold taken by the algorithm.

Postprocessing

Postprocessing is the set of operations performed on binary images which aid the
segmentation to reduce noise or over-detection. For example, in the case of thresholding,
some of the high frequency noise within the image could cause some noise to be detected.
However, such detected regions would not have the same shape properties as true
detections. Therefore, operations in binary images become relevant to filtering out
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some of the noise detected by the segmentation; in other applications, the segmentation
requirements could be of analysis of simpler shapes, so some simple morphological
techniques could be used to modify the detected objects.

In this section, some techniques of morphology are overviewed. Morphology in
this work refers to mathematical morphology, the branch of mathematics that deals
with the representation and description of region shapes in a space [67]. As mentioned
before, the images are assumed to be binary, i.e. the number of intensity levels is two,
and thus represented by the set I = {0, 1}. The positions of each pixels are still given
by (x, y) where x = 1, 2, · · · , Nr and y = 1, 2, · · · , Nc. In the context of segmentation
of cells, some of the operations can aid in reducing noise, smoothing the edges of the
shapes and help give a more robust segmentation. Measurements can be performed on
the binary images, like area and orientation.

In section 3.1, the construction of filter kernels and the notion of convolution was
explored in order to modify the intensities by assigning an operation performed on
a neighbourhood of a pixel. To extend the notion into binary images and sets, some
operations must be defined in the context of sets, and then translated into binary
arrays to define each of the operations.

Structuring elements and notation

In this work, sets are represented by connected regions in an image with the same value.
The equivalent of a kernel, will be a small binary matrix which containing a region
which would highlight some properties in regions of a binary image. As mentioned
in the classic work [67, Chapter 10], a structuring element is a small set of subimage
used to probe an image under study for properties of interest. Such objects can be
thought of in abstract as sets with a centre, or reference point, or as a binary kernel,
represented by the symbol S.
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Figure B.22 Representation of a structural element in abstract terms and as a binary kernel
S. The diagram shows the abstract representation of a structuring element as a set with a
particular shape. The notion of a centre refers to a point of reference in which the element
can pivot and from which it can move in a plane. (a) Shows the operation of reflection while
(b) shows translation. Notice that if the structural element is symmetric, and the centre is in
the midpoint of the element, then Ŝ = S.

Figure B.22 shows a structuring element from a theoretical representation with
its centre, and its representation as a binary kernel S. It also shows the two basic
operations taken from section A: reflection (Ŝ) and translation (Sx,y) which allow for
the kernel to be moved along the binary image. In this work, the structuring elements
will be square matrices of odd sizes, 2n + 1, and the centre will be the element at
position (n + 1, n + 1).

Figure B.23 Examples of structural elements. Representations of structural elements in
abstract form (top) and represented as discretisation in matrices (bottom). (a) Diamond. (b)
Line. (c) Circle. (d) Rectangle. (e) Square.
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Morphological operations

In most cases, morphological operations are performed similarly to convolution, as
seen in figure B.6, as a structuring element will be translated along a binary image,
performing set operations as it moves. In this section, the following operations will be
defined: (i) erosion, (ii) dilation, (iii) opening and closing; as well as some algorithms
like (iv) boundary extraction and (v) hole filling. For the coming definitions, let I
be an image and S a structuring element of size 2n + 1, with a centre at position
(n + 1, n + 1). For simplicity, assume that I contains only one set —or detected object—
in it. The operations will result in new sets, described by the elements in it. In terms
of images, the positions that belong to a particular set will have a value of 1 in the
resulting image.

Erosion. The erosion of an image can be interpreted as an operation in which the
chosen structural element will reduce in area the regions present in the image. The
operation is useful in some cases, when disjoint regions corresponding to the same
object to be joined together. The erosion of I by S will be represented by the symbol
I⊖ S and defined as

I⊖ S = {(x, y)|Sx,y ⊆ I} . (B.16)

Equation (B.16) can be read as the set which contains all points (x, y) in which the
translated kernel S is fully contained in a set within I. A diagram to illustrate this
procedure can be observed in figure B.24, which shows a diagram of the erosion process.

Dilation. The operation of dilation can be interpreted as expanding the area of a
region. In some cases, it allows for disjoint areas to be joined to others. Represented
by the symbol I⊕ S, the dilation the image I by the element S is given by

I⊕ S =
{
(x, y)|Ŝx,y ∩ I ̸= ∅

}
, (B.17)

the set can be described as the positions (x, y) in which the translated and reflected
element Ŝx,y has a non-empty intersection with the set in the image I. Figure B.24
displays the way erosion and dilation from a structural element S into a set with disjoint
regions A. The structural element present in the picture will be translated throughout
the plane containing the set A, and the output produced will follow equations (B.16)
and (B.17). Then, figure B.25 show the output of performing the corresponding
operations by using different structural elements. The image where the operations are
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performed correspond to the binarisation by hysteresis thresholding of a section in a
macrophages frame.

Figure B.24 Diagram of erosion and dilation operations. The set A, is represented by
different disjoint regions, while the structural element, S, is represented as a circle, with its
centre in its midpoint. The outputs of erosion and dilation are shown in (a) and (b). In
erosion (a), only positions where the contention S(x,y) ⊂ A is proper. In dilation (b), as long
as the intersection is non-empty (S)(x,y) ∩ A ̸= ∅.

Figure B.25 Example of erosion and dilation outputs based on the different structural
elements shown in B.23. All images present a binary image overlapped on a section of a
frame in the macrophages dataset. The actual size of each structural element is highlighted
in yellow, and marked with arrows, and the shape of the structural element kernel S, is
shown amplified at the lower right corner of each image. The output of a binarisation of
a macrophages dataset is shown at the far left (Original). Erosion is shown in (a-d), and
dilation is shown in (e-h). The different structural elements used are: a rectangle (a,e); a
line (b,f); a diamond (c,g) and a circle (d,h).

Complex operations can be implemented from the previously described ones, as seen
in figure B.25, one operation on its own might not provide optimal results, however,
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combinations of the techniques could be useful. For example, dilation is useful to join
two separated parts of a same object while erosion is useful when eliminating granular
noise. Such complex operations are opening and closing.

Opening and closing. Both operations combine erosion and dilation, in different
order, and are used to produce a smoothening effect in the set in the image. The
difference lies in the order the operations are performed. Opening is represented by the
symbol I⃝ S and involves an erosion of I by S, followed by the dilation of the result
by S,

I⃝ S = (I⊖ S)⊕ S. (B.18)

Closing is the analogous operation to opening, in which a dilation is followed by an
erosion. The operation is represented by the symbol I⊙ S,

I⊙ S = (I⊖ S)⊕ S. (B.19)

Figure B.26 Diagram of morphological opening and closing operations. (a) shows the
process of opening, where an erosion is performed to eliminate the sections with a small
area and then a dilation to increase the size of the remaining set. (b) shows the process of
closing, where a dilation allows sections to be joined and then an erosion reduces the overall
size of the shape.
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Figure B.27 Example of opening and closing performed using different structural elements
on B.23.

Feature extraction

Another useful way to analyse images, involves extraction of certain characteristics in
the image called features. Feature extraction is common in problems of texture analysis,
where detection of objects is based on characterisation of regions in an image by the
variations of intensity values of an image, sometimes modelled through its statistical
properties. Texture analysis provides a quantitative description of qualities —such as
smooth or rough— in image regions.

Features are extracted by filtering an image with a number of specific kernels
to produce different related images, {Iq}q, all images contain information extracted
locally by the different kernels applied. Thus, per pixel, a vector of length q holds
local information extracted from the local characteristics of the image. Each pixel
could then be grouped with similar pixels through the similarity of the feature vector
extracted. As a continuation of the data exploration, two techniques are considered to
the analysis, Gabor filters [86] and SIFT/SURF techniques, [87, 88].

Gabor filters

Gabor filters [86] refer to kernels which —as seen in the filtering section of this work—
assign to each pixel local information about it. The kernels have a specific orientation
and frequency, or wavelength. A common application for texture classification [86]

233



Preliminaries of image analysis

involves using a bank of filters with varying frequencies and orientations to extract
a large vector which contains different information on each pixel, and then using a
statistical technique such as k-means [85] to cluster them.

Implementation. Figure B.28 show an example of a standard Gabor filter bank, in
which the variation of wavelength and orientations can be observed. The orientations
shown are increments of 30 degrees from 0 to 150. The wavelengths were chosen in
increasing powers of two, starting at λ0 = 4/

√
2 and up to the hypotenuse length of

the input image, in this case λmax =
√

N2
r + N2

c , as stated in the work by Jain and
Farrokhnia [89]. This would produce six wavelengths and six orientations, for a total of
q = 36 kernels. In figure B.28, only a fraction of such kernels are shown for visualisation
purposes with different sizes. Note that the sizes displayed in the figure were chosen
arbitrarily, and are not to scale.

Figure B.28 Example of a Gabor filter bank for feature extraction. Notice the change in
orientation of the kernels and the change in size and resolution as the wavelengths increase.

After obtaining the filter bank, each filter is convolved with the frame to produce
q = 36 images, {Iq}q. Figure B.29 shows the different instances of Iq, after convolving
with the Gabor filters in the bank. Notice how each kernel, due to the wavelength and
orientation highlights different areas of the original frame.

234



B.1 Classical image analysis

Figure B.29 Convolution output of the different Gabor kernels on the green channel. Each
Gabor filter kernel shown in figure B.28 was convolved with the green channel of the test
frame. Notice that as the size of the filter increases, due to the wavelength increase, the
output of the convolution highlights different areas of the figure of different scales.

Feature vectors are then formed by aligning pixels at same positions in each of the
generated images, Iq. Therefore, each pixel in the original image has a vector in Rq

associated to it and the local information from it. K-means [85] is then used to group
the different vectors into one of two groups, foreground and background. Figure B.30
represents the output of the experiment.

Figure B.30 Foreground and background detected using Gabor features. (a) Represents the
binary image of foreground (white) and background (black). (b) Shows the original frame,
with the background suppressed for visualisation purposes. Notice that the technique was
able to identify areas where cells exist, but the segmentation is not done, as not even single
cells were detected.

Scale-Invariant Feature Transform and Speeded-Up Robust Features

In an image, a local feature refers to a pattern of specific structure like a point, edge
or a small image patch. The Scale-Invariant Feature Transform was introduced
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by Lowe [87] as a novel class of local feature detection, which were impervious to
transformations such as translation, rotation or even illumination changes. On the
other hand, the Speeded-Up Robust Features (SURF) [88, 90] were proposed by
Bay et al. [90] as a method to obtain a scale and rotation-invariant feature detector
that could outperform SIFT.

In this section, both algorithms are described and an illustration is provided to
highlight the algorithms’ advantages. Finally, an experimental study on the algorithms’
ability to follow single cells in consecutive frames is presented.

The SIFT algorithm is centred in finding keypoints in the context of their orienta-
tion. The keypoints can be understood as a point on an image chosen by some criterion,
in the case of SIFT, local maxima and minima on specific functions of the input image.
For it to be robust, it is necessary to guarantee that the image is considered at distinct
scales, which is achieved by convolving the input image with Gaussian kernels of varying
standard deviation σ. An overview of the algorithm is presented in 4, each step will be
explained throughout this section.

Algorithm 4: SIFT features Produces the SIFT features on image I.
Input: Image: I

1 Construct a scale-space S
2 Laplacian of Gaussians Approximation through Gaussian differences
3 Finding Keypoints KP
4 Assigning Orientation to keypoints
5 Generating a feature

Let I(x, y) an image, and let the scale space, S(I), of the corresponding image
be defined by the set of images L(x, y, σr, j) where σr represents the ith scale and j

represents the jth octave. The scale space can be defined with equation (B.21):

S = {L(x, y, σr, j)|σr = krσ0, j = 1, · · · , No} (B.20)
L(x, y, σr, j) = imresize(I, 2−j) ⊛ G(x, y, σr), (B.21)

where G(x, y, σr) is a Gaussian kernel with zero mean and standard deviation σr =
σr = krσ0, the function imresize(I, 2−j) produces what Lowe [87] refers to as octaves,
which are reductions of the image I by a factor of 1/2j, j = 0, 1, · · · , No. Generating
the scale space will produce a set number of scales, Ns and a set number of octaves No.
Normal parameters used for this include starting with σ0 =

√
2/2 and k =

√
2. The
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values for the scale space can be seen in Table B.3, it is common to have Ns = 5 scales
and No = 4 octaves.

Table B.3 Choice of parameters for the generation of a scale space.

Scale →
Octave

√
2/2 1

√
2 2 2

√
2

↓
√

2 2 2
√

2 4 4
√

2
2
√

2 4 4
√

2 8 8
√

2
4
√

2 8 8
√

2 16 16
√

2

The Laplacian or second order derivatives of the images in the scale space is a
technique to highlight edges and corners on the image. However, this operation is
computationally intensive. The second step in Algorithm 4 involves approximating the
Laplacian of Gaussians by calculating differences in consecutive scales within the same
octave. Given the Ns = 5 scales and No = 4 octaves, the differences of Gaussians will
produce four differences per octave. The process is known as finding the differences of
Gaussians (DoG).

Finding the Keypoints In the image, detecting the keypoints involves finding
the local maxima and minima in the DoG. A local maxima of a function f(x, y) is
a point (x⋆, y⋆) in which f (x⋆, y⋆) ≥ f (x, y) for all points in a ball or radius M

to the point (x⋆, y⋆), that is, BM (x⋆, y⋆) =
{
(x, y)| (x− x⋆)2 + (x− x⋆)2 < M

}
. In

this, the ball BM (x⋆, y⋆) represents a neighbourhood. A local maximum is a concept
which can be understood intuitively in the context of images, as a point which has
a intensity value than some of its neighbours. Particular to the SIFT algorithm, the
criterion for determining whether a pixel is considered a local maximum involves the
two adjacent octaves, in 3× 3 windows. Points with low contrast are then removed
from the keypoints, which involves a threshold of intensity per keypoint. Finally, the
orientations of each keypoints is obtained by finding the most prominent orientations
around the keypoint.

Generating features. Each keypoint is assigned a 16× 16 window, subdivided
into sixteen 4× 4 subwindows. Each of which contains 16 pixels whose orientations
are allocated into eight bins in a histogram. This produces a vector in R128 which
characterises each keypoint uniquely.
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The SURF algorithm uses the same idea as the SIFT algorithm, however it applies
key changes to the implementation of its parts in order to improve performance and
running time. While SIFT calculates image pyramids and then computes the DoG,
SURF creates a stack of images without downsampling which combined with the use
of integral images, filters the stack using a box filter approximation of the second order
derivatives of Gaussians, which allows for computation of rectangular filters in near
constant time [91].

Implementation. A normal implementation which exploits the features created
by SURF, involves two images, a reference one which contains the object of interest
and a secondary image which contains the object in a particular scene. The SURF
algorithm would be run on both images and two sets of features would be found. Since
SURF detects features regardless of transformations, the same features would be found
in both images, and the feature vectors could be compared between them, matching
points in the original image and the scene. Two tests implementing the SURF features
were performed, first on test images of books and then on the images of cells in the
MACROS1 dataset.

Figure B.31 Setup of generic SURF implementation. (a-c) Show the reference images of
the book covers. On the right, the scene with the books. Each book has a collection of SURF
features, and the features from each image can be compared to the features detected on the
scene.

In the figure B.31, the three books in the experiment are shown photographed
showing the full front cover, and a separate scene in which all books are present at
different angles, scales and shears. Some parts of the books are overlapped in the scene.
The SURF algorithm is run on each of the images, producing separate collections of
SURF keypoints. The same algorithm produces vectors associated to each point in each
image called features. Each feature corresponds to a vector, which provides a signature
of the point in the image. Thus, the features from a reference image can be matched
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to the features in the scene; and based on the similarity of them, the points can be
classified as strong, when the similarity is high or low when they are different. Finally,
A certain number of the strongest features is selected. The output of the experiment
is shown in figure B.32. Notice how some of the points in the reference images are
matched to points which do not correspond in the scene. This simple analysis, even
before analysing images of cells showcases a limitation.

Unique matched points (book) Unique matched points (scene)

Unique matched points (book) Unique matched points (scene)

Unique matched points (book) Unique matched points (scene)

Figure B.32 Illustration of SURF features detection and matching. On the left of each
image, three books were photographed. The SURF features were detected on each and
then matched to the SURF features in a scene which includes the books. In each case,
the 50 strongest matching points were plotted in the single book and matched with their
corresponding point in within the scene.
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B.2 Machine Learning Techniques

Machine learning techniques are a set of methods for the automated analysis of structure
in data[117]. For this work, an example of supervised learning and one of unsupervised
were studied. In particular, the Self Organising Maps (SOM) by Kohonen [105] is
presented as an example of an unsupervised approach to machine learning. On the other
hand, the supervised learning technique reviewed in this section is the Convolutional
Neural Network, with the classification of each of the pixels as expressed by Su et al.
[118] and Giusti et al. [119] fast-scanning neural networks was of particular interest to
this work.

Self Organising Maps A self-organising map (SOM), proposed by Kohonen [105],
is a type of unsupervised neural network in which features of an image, such as the
intensities, are related to their spatial context. In image analysis, self-organising maps
have been successfully used for image segmentation, like in the work by Reyes-Aldasoro
and Aldeco [120]. The methodology is simple, as it takes a network —or graph— in
which the nodes have some feature as well as spatial coordinates. The network is
defined in various topologies depending on the edges connecting the nodes. The most
common topologies include grids, rings or lines (figure B.33). For image segmentation,
the network will be initialised somewhere in the image, and the network’s organise
itself to match the input.

Figure B.33 Common network topologies used for SOM.

The algorithm is run sequentially, taking different pixels and their positions in the
input image, (x, y, I(x, y)). The basic principle takes the node closest to the input
and moves in response. The movement is normally attraction, however it can involve
repulsion of the node with the input particles. As the node moves, a subset of nodes
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connected to it, moves as well, the movement can follow certain rules, such as maximum
step size. After enough input points have been presented to the network, it will take
the desired form. Finally, since the distance function between the network and the
input can be determined by the user, customised functions can be implemented to
include the information of the node apart from the spatial context, such as the image
intensity.

Formulation. In broad terms, let the network R = (V ,L), where V are nodes
assigned to positions in the plane and L are some edges linking the some of the nodes
in V . The nodes are specified in equation (B.22),

V =
{
mi = (xi, yi) ∈ R2 : i = 1, · · · , nv

}
. (B.22)

Let the tuple (xt, I(xt)) be an input to the SOM at iteration t. Then, the SOM
algorithm proposed by Kohonen [105] follows two basic steps: (i) identifying the closest
node in the network to the input, shown in Equation (B.23), and (ii) update the
positions of the nodes inside a neighbourhood, determined by a distance ne to the
winner node mc, (B.24),

mc(t) = arg min
c∈{1,··· ,nv}S

∥xt −mi(t)∥2
2 (B.23)

mi(t + 1) =
 mi(t) + αt (xt −mc(t)) , (i, c) ∈ L and Dist(mi, mc) ≤ ne

mi(t) , otherwise
, (B.24)

where Dist(mi, mj) refers to the distance from node i to node j in the shortest path
determined by the edges L. The shortest path in the network is determined by the
number of jumps from the winner node to its neighbours.

Convolutional Neural Networks Convolutional Neural Networks (CNNs), as a
part of the deep learning techniques has become really popular amongst researchers
because of the ease of use and relatively easy implementation, like on the work by Jia
et al. [121], where a framework for developing production-grade CNNs is explained. As
mentioned before, the work performed involved the work by Su et al. [118], that involved
the network shown in figure B.34. The input of the network were 28×28 patches,
with the pixel of interest being the middle one, which on this work was interpreted
as the pixel at coordinates (14,14). As seen on figure B.34, the first convolutional
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stage has 12 kernels of size 5×5, followed by a max pooling stage. These steps occur
twice, and end in a two hidden layers, fully connected stages that classify the pixel in
question. In general, CNNs require a large amount of data, and because of the numbers
of parameters in all the layers, the processing of each one has increased significantly.

12x12x12

24x24x12

28x28 
patch

Cell image

8x8x12x12

4x4x12x12
Unrolled

Fully connected layers

12 5x5
Kernels

12 5x5
Kernels

Max pooling Max pooling

Figure B.34 Layout of the CNN architecture. It has two convolutional stages, each with
twelve 5×5 kernels and two max pooling stages. After the second max pooling completed,
there are two fully connected neural network layers.

B.3 Segmentation performance metrics

Figure B.35 shows the possible characterisation of the output of a segmentation
algorithm, given its output and the value of the same pixel in the ground truth. Four
possibilities, depending on the comparisons: (i) True positive (TP ) as the pixels
where both the output and ground truth show a positive or 1; (ii) True negative,
(TN) in pixels where both images show a negative or 0; (iii) False positive, (FP )
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where the segmentation shows a 1 but the ground truth shows a 0, and (iv) False
negative (FN) where the segmentation shows a 0, but the ground truth shows a 1.

Figure B.35 Diagram of comparison of ground truth (a) against segmentation output (b).
(c) Shows in dark reed the pixels which correspond to True Positives or hits, in cyan the false
positives, in yellow the false negatives and in black the true negatives.

Counting the number of pixels that correspond to each category can produce metrics
for the performance of a segmentation, or how close the automatic output is from a
given manual annotation. In the works by Jaccard [73], Fawcett [74] and Randen and
Husoy [75], such measures are provided. First, the Jaccard similarity index [73], or
simply Jaccard index, is defined in terms of sets and their sizes, as the ratio of the
intersection by the size of the union. In terms of the statistics described before and in
figure B.35, it can be computed by the number of true positives divided by the sum of
true positives, false positives and false negatives.

On the other hand, in the work by Fawcett [74], two measurements are presented.
First of all, precision, which measures how many detected pixels are relevant, by
computing the ratio of true positives and the overall number of detected pixels, TP +FP .
Second of all, the work presents the recall measurement, which computes the ratio of
true positives with the sum of the true positives and the false negatives —or points
that should have been detected, but were missed—, this measurement can be seen as a
ratio of the relevant pixels that were detected.

Finally, Randen and Husoy [75] present accuracy or misclassification which
compares the number of correct detections, whether positives or negatives against the
overall number of pixels. Equation (B.26) shows all measurements previously described,
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and can be observed in figure 2.26,

jaccard = TP

TP + FN + FP
, precision = TP

TP + FP
, (B.25)

recall = TP

TP + FN
, accuracy = TP + TN

TP + TN + FP + FN
. (B.26)

Figure B.36 Graphical representation of the Jaccard index, Precision and Recall measure-
ments. The diagram shows an abstract representation of the sets of pixels in an image, and
how they can be classified. The ratios described in equation (B.26) is shown, based on this
graphical representation.
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Appendix C

PhagoSight and the Keyhole
tracking algorithm

The PhagoSight software [17, 59, 102] is a semi-automatic tool originally developed for
the analysis of fluorescent neutrophil and macrophage migration in a zebrafish model.
The tool is released open-source as a collection of Matlab® m-files that can be called
from the command-line or with a Graphical User Interface (GUI). PhagoSight is a
framework for cell tracking that uses the Keyhole algorithm and hysteresis thresholding
based on Otsu [81] for the segmentation.

C.1 Segmentation.

The segmentation stage occurs by taking a modified version of the Otsu [81] algorithm
that consists of finding a single threshold k⋆, and defining the two levels (k0, k1) shifting
in both directions, where k0 = 0.95k⋆ and k1 = 1.05k⋆. Then a hysteresis process is
done. The software allows the user to perform a manual modification of the thresholds
through a graphical user interface GUI, figure C.1. As post-processing, a parameter is
set to discard any regions below a given area. The parameter can either be set by the
user or taken as one quarter of the distance between the mean area and three standard
deviations. That is, if the mean of the areas detected by the segmentation is µB, and
the variance σ2

B, then the objects that will be discarded will be those that are less
than (µB − 3σB)/4. All the objects detected in the binary images within a dataset are
labelled and saved to disk.

245



PhagoSight and the Keyhole tracking algorithm

Figure C.1 PhagoSight user interface for selecting manual thresholds. This interface allows
the user to verify on the thresholds that were selected automatically and optionally change
them. A view of the classes defined by the thresholds selected is shown in the first image of
the dataset (top left), the original image of the dataset is shown (top middle) and a view of
the histograms corresponding to the first, middle and last frames is shown with the positions
of the thresholds (top right). On the bottom row, a zoom into the image is shown, for the
user to have a more detailed view of a given area of interest. The example shows the ISBI
N2DH-GOWT1 dataset.

C.2 Implementation of automatic thresholds for seg-
mentation module

PhagoSight allows for user modification of the thresholds used for the hysteresis. In
the context of the Cell Tracking Challenge (CT-Challenge), a fully automated software
was requred, which

Let (ltotsu, htotsu) be the original Otsu-based thresholds generated automatically
by Phagosight on an image I, and let MI = mode{I}, mI = min{I}. Then, the new
automatic thresholds (LT, HT ) will be produced by the introduction of parameters
(α, β) as seen in equation (C.2).

LT = MI + α (ltotsu −mI) , (C.1)
HT = MI + β (htotsu −mI) . (C.2)
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C.3 Keyhole Tracking Algorithm.

The parameters were optimised for the Challenge implementing the Particle Swarm
Optimisation algorithm [112], with the objective function taken as the sum of the
evaluation codes for segmentation and tracking provided by the Challenge organisation,
that is:

max
α,β

SEG(α, β) + TRA(α, β), (C.3)

where SEG and TRA are functions which evaluate the segmentation and tracking
results against the ground truth and give a value between 0 and 1. The algorithm was
chosen because it does not make any assumptions about the nature of the objective
function. The only modification made to the algorithm were made to accommodate for
feasibility in the particles generated, for instance, the levels had to be forced into the
0 < LT < HT interval. It was achieved by discarding any bad particle and generating
a new random one, which did not seem to have a negative effect on the results. The
parameter minblob, used to remove objects that were too small, was chosen. The
value would disregard objects with a small area a as noise. The discriminating size
was computed by the formula minBlob = min {60, (mean(a)− 3 std(a))/4} , where
minBlob is the discriminating value for the objects and 60 was chosen empirically.

C.3 Keyhole Tracking Algorithm.

The tracking process is done with the segmented images using the keyhole tracking
algorithm [101, 59] described in the previous section. As the objects have been detected
and labelled, the task of the tracker involves the generation of a correspondence between
the objects’ labels in the images with the tracks.

The keyhole tracking algorithm is a technique that links the segmented objects
in contiguous frames through the analysis of the velocity and direction of the object
at frames t − 1 and t and estimating the position of the object at frame t + 1. The
methodology assumes that the most likely position of the child object, i.e. the one at
t + 1, will follow on the same direction and velocity of the object at present frame, t,
and parent, object at t− 1. As changes in the velocity and direction are possible, the
algorithm generates two regions of probability set to anticipate for the child object’s
landing in frame t + 1.

The name of the algorithm follows the shape of the probability regions defined,
which together resemble an old style keyhole. The distance between the parent and
present objects, l, is used to define two regions: the wedge, which is an arc of length
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PhagoSight and the Keyhole tracking algorithm

θw = π/3 and radius rw = 3×l to accommodate for objects accelerating; and the circle,
which accounts for the rest of the θc = 5π/3 arc not covered by the wedge, and that
has a radius of rc = l/2. Figure C.2 shows the different regions defined previously. The
algorithm starts by defining just a circular region θw = 2π and no keyhole since no
information on movement is available at the moment. The radius of the circle rc is
defined by half of the minimum distance between objects.

Rows      
        

        
        

                         Columns
t

t+1

Cells at frames t-1, t-2, ...

Cells at frame t.

Predicted cell at t+1.

Actual cell at t+1.
tim

e t-2
t-1

Figure C.2 Keyhole algorithm explanation. Four different time frames are represented
vertically, from top to bottom: starting at t − 2, then the previous time frame t − 1, the
present frame t and the upcoming frame t + 1 at the bottom. Two examples of different
velocities are shown, cells represented with a blue square □ and a maroon circle ◦. A landing
position is predicted taking into account the velocity of the previous frame; and to account
for changes in direction, the keyhole algorithm incorporates the information from the position
at t− 1 and the position at t, to determine the size of the frontal wedge and circle.

The output of the PhagoSight framework consists of a large table containing
information from each of the tracks detected, given a particular segmentation. Table
C.1 shows the output information from the PhagoSight framework. It is important to
notice that PhagoSight does not account for overlapping objects or cellular processes
such as mitosis, thus the one of the two cells generated would be regarded as a new cell
and a new track identifier would be assigned to it. Finally, the PhagoSight framework
includes a set of tools to amend and manually edit the tracks, either in code or via a
GUI.

248



C.3 Keyhole Tracking Algorithm.

Table C.1 Track information retrieved from PhagoSight framework. The information utilised
for the analysis is highlighted: position provides the coordinates xt, yt, zt of the cell in the
image per frame t, time frame is the temporal position in the dataset, t, label in binary image
refers to the label assigned to the cell at segmentation and final track label corresponds to
the track identification, T .

Position (xt, yt, zt) Distance to closest Time frame
ID Parent cell Child cell
Velocity Volume Label in binary image
Keyhole Track ID Final track label
Bounding box information Volume to surface Sphericity
Neighbours at different Distance to disappear Distance to appear
distance brackets
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Appendix D

Introduction to partial differential
equations in image analysis

In this appendix, an overview of partial differential equations in image analysis. In
chapter 3, active contours level set methodologies are employed to analyse the data. To
provide some context, a brief summary of the mathematical theory of such techniques
in the context of image analysis is presented. The theory is taken from the classical
work by Sapiro [98].

D.1 Partial differential equations in image analysis

Considering images as discretisations of continuous objects or signals, partial differential
equations (PDE) in image processing is the result of infinitesimal operations done
through numerical analysis. The following convention will be made for the representa-
tion of a partial differential equation of a given curve c, any of the symbols in Table
D.1 will be used throughout this Section.

Table D.1 Different notations used to represent partial differential equations.

Original curve Notation 1 Notation 2 Simplified notation
c(s) ∂c/∂s ∂sc cs

Let c(p) ⊂ R2 be a planar, parametric, closed curve, i.e. c(p) = {x(p), y(p)}, with
parameter p ∈ [0, 1] and c(0) = c(1), then the tangent t to c with respect to p, is
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Introduction to PDEs in image analysis

represented by equation (D.1),

cp = ∂c

∂p
=
(

∂x

∂p
,
∂x

∂p

)T

= (∂px, ∂py)T , (D.1)

the unit vector will be considered, and for notation the tangent changed to cs = cp/|cp|,
i.e.

cs = (∂px, ∂py)T

∥(∂px, ∂py)T∥2
(D.2)

Equation (D.2) refers to a unit vector giving a |cs| = 1. Such parameter s which
produces a unit sized tangent vector cs will be called the arc length. Being a unit
vector, it follows that |cs|2 = ⟨cs, cs⟩ = 1. As it is equal to a constant, its derivative
would be zero.

⟨cs, cs⟩ = 1
∂⟨cs, cs⟩

∂s
= 0

⟨cs, ∂scs⟩+ ⟨∂scs, cs⟩ = 0
2⟨cs, css⟩ = 0

The tangent is a vector perpendicular to the normal n, furthermore, the curvature is
defined by the second derivative of the equation with respect to the curve. Since it has
been shown that ⟨cs, css⟩ = 0, then the curvature will be proportional to the normal at
a given point, s, in the curve:

css = ∂2c

∂s2 = κn,

where κ = |∂2
s c|.

Definition 8 (Tangent and Normal) Let c(p) a closed curve, then the tangent
and the normal to the curve are defined by

t = cs = cp

∥cp∥
css = κn,

where κ = ∥css∥ is defined as the curvature.

As mentioned before, curves represent boundaries of objects, in which the arc length,
s, and curvature, κ = |Css| have been defined. These two properties of the curve are
relevant because they are invariant to linear transformations. Linear transformations
can be affine or euclidean, and are described in Section A.2. In this section, a brief
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D.2 Curve Evolution.

summary of partial differential equations (PDE) in image analysis is outlined as an
introduction to curve evolution algorithms such as active contours and level set methods.

D.2 Curve Evolution.

Generally, in curve evolution, all the concepts presented before of a curve and its
derivatives are introduced to the notion of time. This approach allows to model
different behaviours of the curves which cause them to evolve and change their shape.

For every curve c, let v⃗ be the vector that describes its velocity through the partial
differential equation (D.3)

∂c(p)
∂t

= v⃗(p, t). (D.3)

Equation (D.3) show how at every point, and depending on the velocity, the curves
might change, and deform in time. As seen in the diagram in figure D.1, at each
point the tangent and the normal vectors can be expressed as a coordinate axis of the
velocity vector. However an interesting property is the velocity v⃗ = ct is such that
the tangential component does not affect the geometry of an evolving curve, Equation
(D.4).

Figure D.1 Tangential and normal components to the velocity of a curve. The tangential
component to the velocity vector will only influence the speed at which a particle travels
throughout the curve. The normal component to the velocity n, will deform the curve,
property of interest in curve evolution algorithms.

ct = v⃗ ⇒ ct = ⟨v⃗, n⟩n (D.4)
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As the tangent does not affect the shape of the curve, the velocity vector will be a
projection along the normal. Thus, in order to model the motion of the curve in time,
the value of such projection V = ⟨v⃗, n⟩ will be the starting point to a model. Figure
D.2 shows a diagram of examples of types of motion modelled through equation (D.4).

Figure D.2 Representation of two iconic curve evolution models: (a) Curvature flow and (b)
Constant flow. In both curves, three stages of the development of the curve can be observed
t0 < ti < tn. The solid lines represent the curve at each time stage, whereas the dotted line
(- -) represent the previous state of the curve, for visualisation purposes.

Implicit functions

In the context of Level Set Methods, curves are modelled in terms of implitic functions.

Definition 9 (Tangent and Normal with implicit function) Let ϕ be an implicit
function to a curve, then the normal N⃗ and the tangent T⃗ of the curve are defined by:

N⃗ = −∇ϕ

|∇ϕ|
, T⃗ = −∇ϕ

|∇ϕ|
, (D.5)

where ∇ϕ is the conjugate to ∇ϕ.
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D.2 Curve Evolution.

Furthermore, the curvature κ of the curve is defined as

κ = div
(
∇ϕ

|∇ϕ|

)
, (D.6)

where div(·) is the divergence. Including the definition in equation (D.4) taking into
consideration the implicit function ϕ. In order to move the curve, the level set ϕ(s) = 0
must be moved based on a velocity V based on equation (D.11):

ϕt = V |∇ϕ|. (D.7)

Curve Evolution Algorithms

Curve evolution algorithms are techniques used for segmentation in which the outline
of a detected object is considered as the contour at the level of a 3D function. The two
techniques overviewed in this thesis are Active Contours [122, 110], as seen in chapter 5
and Level Set Methods, in the implementation proposed by Lu et al. [99] from chapter
3. As stated in figure D.2, the methods will involve the general equation D.3,

ct = V n. (D.8)

Active Contours. Let ct = V n be specified by equation (D.9), where V is going to
deform the curve with a certain velocity given by,

ct = V n = [g(x, y)κ− ⟨∇g, n⟩] n. (D.9)

In equation (D.9), g(x, y) is a function of the image I, for example the reciprocal of
the gradient g(x, y) = 1/∇I. The following conclusions can be drawn from the choice
of V :

• If g(x, y) = 1/∇I, then at moments with well defined boundaries, g will take a
small value, which translates to a smaller velocity V and thus less movement
from the curve.

• The term ∇g involves both the reciprocal of the gradient of the image as well as
the second derivative of the image, which will promote the stopping point of the
velocity even more sensitive to edges, even if they are not as strong.
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• Taking the projection of the gradient against the normal n because of the nature
of moving curves.

From this initial approach, the function V presented would only need slight modifica-
tions, such as constant motion n to make the movement go faster.

Level set method formulation Consider a closed planar curve c : S → R2. The
curve can be parametrised, c(p), but another way to represent it is by taking all the
points in a function that hold a certain equation to zero.

Definition 10 (Level set) Let ϕ : R2 → R an implicit scalar function with two
variables (x, y) such that z = ϕ(x, y). The function ϕ will be understood as implicit,
because it depends on the curve c. A curve, understood as a shape in a plane is
represented by the level set

c = {(x, y) |ϕ(x, y) = c0} , (D.10)

where commonly c0 = 0.

In order to implement curve evolution algorithms, tangent and normal vectors, as well
as the curvature must be defined taking the implicit function ϕ into consideration.

Including the definition in equation (D.4) taking into consideration the implicit
function ϕ. In order to move the curve, the level set ϕ(s) = 0 must be moved based on
a velocity V based on equation (D.11):

ϕt = V |∇ϕ|, (D.11)

where ϕt defines the evolution of the curve as time evolves.
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clump, 77
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colour space
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RGB, 30

Filter, 60, 196
Filters
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Gaussian, 61, 198

fluorescence

definition, 17
fluorophores, 17

Green Fluorescent Protein, 19

Image gradient, 65, 202
imaging

definition, 16

junction
depth, 106

junction(s), 97
corners, 99
peak, 99

macrophages, 10
microscopy, 16

fluorescence, 16, 17
methods, 16

model organisms
definition, 19

Morphology, 71, 216

PDE
arc length, 240
curvature, 240

PhagoSight, 129
definition, 233
Keyhole algorithm, 235

pixel, 29
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Postprocessing, 71, 215

Self Organising Map(s), 228
Self Organising Maps, 228
Set theory

Universe, 188
SIFT

Difference of Gaussians (DoG), 225
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