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Shear Strength of Fiber Reinforced Reactive Powder Concrete I-Shaped Beam without 1 

Stirrup 2 

Ling-Zhi Jin1, Xuan Chen2, Feng Fu3, Xiao-Fang Deng4, and Kai Qian5 3 

ABSTRACT 4 

Due to the high compressive strength of steel fiber reinforced (SFR) and Reactive Powder concrete (RPC), 5 

higher degree of prestressing is available for the beams using fiber reinforced reactive powder concrete. Hence, 6 

a slenderer structural component can be designed, which could save self-weight, work spacing, and potential 7 

reducing the costs. However, comparing to conventional reinforced concrete (RC) beams, studies on post-8 

tensioning SFR-RPC beams subjected to shear failure are fewer. In this study, a series of shear tests for four 9 

large-scale beams (one SFR-RPC beam and three post-tensioning SFR-RPC beams) are made to quantify the 10 

effects of levels of prestressing on shear load capacity of SFR-RPC beams. Finally, the test results together 11 

with data published from existing literatures are compared to the design strength calculated in accordance to 12 

different standards. It is found that the current code provisions will underestimate the shear load capacity 13 

significantly. In addition, an analytical model is proposed to predict the shear load capacity of the test 14 

specimens. A good correlation is observed with a mean analytical model to experimental strength ratio of 1.02 15 

and coefficient of variation of 0.12. 16 
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INTRODUCTION 3 

Reactive powder concrete (RPC), which was first developed in the mid-1990s by the Bouygues’ laboratory in 4 

France (Richard and Cheyrezy 1994), has attracted considerable attentions from engineering and academic 5 

communities due to its excellent mechanical performance. The studies on material behavior (Farhat et al. 2007, 6 

Graybeal and Tanesi 2007, Yoo et al. 2014, and Li and Liu 2016) had indicated that structural components 7 

built by RPC exhibited better durability, energy dissipation capacity, and fatigue behavior comparing to 8 

conventional concrete materials. Moreover, due to its  higher compressive strength , it is more suitable for 9 

prestressed concrete which could further reduce the weight of the structural components and subsequently, the  10 

costs. Thus, RPC has been widely used in bridge engineering, i. e. Sherbrooke Pedestrian Bridge with 60 m 11 

span crossing the river of Magog in Canada; the Seonyu Bridge with an arch spanning 120 m etc. (Voo et al. 12 

2006).  13 

In the past decade, extensive studies had been carried out on application of RPC materials in modern 14 

structures, not only on enhancing the mechanical properties of RPC. Extensive studies (Graybeal 2008, Chen 15 

and Graybeal 2012, Yang et al. 2010, Yoo and Yoon 2015, Dancygier and Berkover 2016, Chen et al. 2018, 16 

Lu and Chu 2019, Kotsovos and Zygouris 2019, Yang et al. 2019, Azam et al. 2019, and Mun and Yang 2019) 17 

had been carried out to investigate the flexural behavior of reactive powder concrete (RPC) beams with or 18 

without prestressing strands. However, comparing to flexural behavior of RPC beams, studies on shear load 19 

capacity of RPC beams are few. Voo et al. (2006) tested seven prestressed I-shaped RPC girders without 20 

stirrups. The variables investigated are types and amount of fibers in RPC mix. It is concluded that the type 21 

and amount of fibers has little effects on the initial shear cracking load but increasing the fiber volume will 22 

enhance the shear load capacity significantly. Ji et al. (2018) tested twelve T-shaped girders to study the 23 
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influence of shear span-to-depth ratio, longitudinal reinforcement ratio, and stirrups ratio on the shear load 1 

capacity and failure mode. Moreover, an improved softened truss model is developed based on test results. 2 

However, it should be pointed out that few studies had been carried out on quantifying the impact of degrees 3 

of prestressing on shear load capacity of RPC I-shaped beams. Therefore, in this paper, one SFR-RPC beam 4 

and three post-tensioning SFR-RPC beams are tested for above purpose. The ultimate load on inclined plane , 5 

width of inclined crack, deflection and failure pattern of the test beams are investigated. Moreover, based on 6 

test results, the reliability of existing design equations for shear load capacity of RPC is evaluated. Furthermore, 7 

analytical models are derived  to predict the shear capacity of post-tensioning RPC I-shaped beams.  8 

RESEARCH SIGNIFICANCE 9 

The primary objective of this paper is to experimentally evaluate the shear load capacity of post-tensioned 10 

RPC T-shaped beams with various effective prestress. The significance of the test lies in the fact that such 11 

large-size tests of post-tensioned T-shaped RPC beams, which are more representative of the complex 12 

mechanisms in real RPC beams, are rare in literature. Moreover, the test results may help researchers and 13 

design engineers to understand the effects of effective prestress in RPC beams subjected to shear test. 14 

Furthermore, the findings from this study may provide evidence to establish more convincing design 15 

guidelines, the reliability of design equations from main standards or codes is evaluated and a semi-analytical 16 

model is proposed. 17 

DESCRIPTION OF TEST PROGRAM 18 

Test Specimens 19 

As aforementioned, seven SFR-UHPC beams with different level of prestress force were loaded 20 

monotonic until failure to investigate the contribution from each component of the beam to shear  capacity 21 

and to quantify the effects of level of prestress on shear behavior of SFR-UHPC I-shaped beams. Fig. 1 shows 22 
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the dimensions and reinforcement details of test specimens, while Table 1 tabulates the main characteristic of 1 

test specimens. The specimens are denoted as follows: PC-2.0-0.46 represents post-tensioning specimen with 2 

shear span-to-depth ratio of 2.0 and level of prestress of 0.46 while RPC-2.0-0.0 means non-prestressed RPC 3 

beam with shear span-to-depth ratio of 2.0.  As shown in Fig. 1, the beams have a total length of 2.6 m and a 4 

single span of 2.0 m. The height of the beam is 400 mm, with a web thickness of 70 mm and flanges width of 5 

200 mm. For Specimen RPC-2.0-0.0, the flange is reinforced by 3Φ25. However, the flange of PC specimens 6 

is reinforced 2Φ25. The yield strength and ultimate strength of Φ25 is 548 MPa and 728 MPa, respectively. 7 

For post-tensioning specimens, 2Φ15.2 strands are designed. The ultimate strength and nominal area of Φ15.2 8 

strand is 1860 MPa and 139 mm2, respectively.  9 

Material Properties 10 

Table 2 gives the SFR-RPC mixes in detail. The SFR-RPC used in this study is produced by a high energy 11 

concrete mixer. The mix proportions of SFR-RPC are: cement (c) equals to 872 kg/m3, silica fume (SF) equals 12 

to 262 kg/m3, coarse quartz sand (0.6 mm to 1.25mm) equals to 174 kg/m3,  medium quartz sand (0.3 mm to 13 

0.6 mm) equals to 698 kg/m3, fine quartz sand (0.16 mm to 0.32mm) equals to 174 kg/m3, water (W) equals 14 

to 200 kg, superplasticizer (Sup) equals to 17 kg. Straight fiber with length ranged between 12 mm to 15 mm, 15 

and diameter of 0.2 mm is used in this study. The designed tensile strength of the steel fiber is 2000 MPa. All 16 

beams have dosage of steel fiber of 0.75 % (volume) and about 60 kg/m3. The mix proportion is identical for 17 

all RPC specimens; however, natural and steam curing conditions were considered in the test. The temperature 18 

of natural curing is from 30 to 40˚c and with covered and watering to 28 days. 19 

The results of the material for test specimens are summarized in Table 3. The mean compressive strength 20 

(fcm) is measured by six 100×100×300 mm prism using load control method with a rate of 1.3 MPa/s. The 21 

modulus (E0) and Poisson’s ratio (υ) are also measured as the stress-strain curve is measured when we test the 22 

100×100×300 mm prisms. The cube compressive strength (fcu) was obtained from 100 mm cubes stressed 23 



 

5 

 

under load control at a rate of 1.3 MPa/s. The cubic tensile splitting strength (ft) is obtained from tests on six 1 

100 mm cubes at a rate of 0.2 MPa/s. Then, the flexural tensile strength (ftm) is measured from 100 mm square 2 

prisms spanning 400 mm with a notch depth of 25 mm.  3 

Test Setup 4 

Fig. 2 shows the setup and instrumentation layout in detail. The dimension of the bearing plate is 200 5 

mm×100mm while the dimension the loading plate is 300 mm×80mm. Before testing, the strands were post-6 

tensioned with allowance of  the prestress losses. As the specimens were tested 15 mins after prestressing, 7 

the loss due to anchorage can be  considered as Eq. 1.  8 

                                    
1l ps

a
E

l
 =                                   (1) 9 

where 1l is the loss due to anchorage; a is the gap of anchorage (3 mm is assumed); l is the length of 10 

the beam (2600 mm);  EPs is the elastic modulus of the strands.  11 

   Therefore, the applied prestressing stress for Specimens PC-2.0-0.46, PC-2.0-0.65, and PC-2.0-0.3 are 12 

1077 MPa, 1477 MPa, and 777 MPa, respectively. After prestress force loss, the measured average effective 13 

prestressing stress in the two strands of Specimens PC-2.0-0.46, PC-2.0-0.65, and PC-2.0-0.3 are 863 MPa, 14 

1244 MPa, and 570MPa, respectively. 15 

   As shown in Fig. 2, simple supported SFR-RPC beams were tested under asymmetric three-point bending 16 

setup as shear behavior of test specimens was the main concern (Voo et al. 2010, Meszoly and Randl 2018). 17 

All beams had a total length of 2.6 m and a single span of 2.0 m. As shown in Fig. 2, linear variable 18 

displacement transducers (LVDT) were installed at the position of the supports to monitor the movement of 19 

the supports during tests. Moreover, LVDTs were also installed underneath the loading point, middle span, 20 

and one-quarter span of the beam to measure the deflections. A series of strain gauge rosettes were attached 21 
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to obtain the principal strain direction. At the section of loading point, a series of concrete gauges were installed 1 

parallel to monitor the strain distribution. Strain gauges were also attached along the longitudinal 2 

reinforcement.   3 

EXPERIMENTAL RESULTS 4 

Global Behavior 5 

Non-prestressed Specimen RPC-2.0-0.0 — Fig. 3 shows the load-displacement curve of test specimens. 6 

When the vertical load reached 83 kN, flexural crack was first observed at the bottom flange of the beam, 7 

which was 80 mm distance from left support. The width of the crack was less than 0.01 mm. At a load of 99 8 

kN, first diagonal crack occurred at the web of the beam, which was 400 mm from left support. The angle of 9 

the diagonal crack was about 49 degrees and the crack width was only 0.02 mm. Further increase of the load 10 

to 128 kN, more diagonal cracks were also observed at the web nearby the right support with maximum width 11 

of 0.04 mm. When the load reaching 160 kN, more diagonal cracks occurred at the web nearby the left support. 12 

And these diagonal cracks were developed towards the loading point and left support. When the load reached 13 

279 kN, those small diagonal cracks were developed into a large diagonal crack with maximum width of 0.82 14 

mm. Moreover, vertical cracks formed along the interface between the top flange and the web at this loading 15 

stage. The width of diagonal crack increased to 1.25 mm at a load of 318 kN. Sounds due to fracture of steel 16 

fibers occurred continuously when further increase of the load. The main diagonal crack suddenly opened up 17 

at a load of 345 kN and test was stopped. The failure mode of this specimen is shown in Fig. 4. As shown in 18 

the figure, the inclination angle between the main diagonal crack and beam axis is 39 degrees. 19 

Prestressed Specimen PC-2.0-0.3— This specimen was prestressed with a controlling stress of 0.3fsu. 20 

fsu was the ultimate strength of strands (1860 MPa). The first flexural crack occurred at a load of 138 kN, 21 

which was 166 % of that of RPC-2.0-0.0, at a distance of 70 mm away from left support. The width and length 22 
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of the flexural crack was 0.01 mm and 80 mm, respectively. Then, when the load reached 178 kN, the first 1 

diagonal crack with inclination angle of 37 degrees formed in the web. The width of the crack was about 0.11 2 

mm. Further increasing the load to 185 kN, more diagonal shear cracks formed at the short span side. When 3 

the load reached 268 kN, 8 diagonal shear cracks were observed in the left side and the maximum crack width 4 

was 0.59 mm. After that, more cracks occurred in the beams including flexural and shear cracks and the cracks 5 

were developed and connected. Two main diagonal cracks with width of 0.76 mm formed in left side at a load 6 

of 304 kN. Further increasing the load, no new cracks formed but the width of the cracks kept increasing. At 7 

a load of 364 kN, which was 106 % of that of RPC-2.0-0.0, the diagonal shear crack suddenly opened with a 8 

maximum width of 1.5 mm. The specimen was failed and test was stopped. Fig. 5 shows the failure mode of 9 

the Specimen PC-2.0-0.3.    10 

Prestressed Specimen PC-2.0-0.46— This specimen was prestressed with controlling stress of 0.46fsu. 11 

Different to PC-2.0-0.3, the first crack formed in PC-2.0-0.46 was a diagonal shear crack at a load of 213 kN, 12 

rather than flexural crack. The diagonal shear crack formed in the web with an inclination angle of 36 degrees. 13 

After that, flexural cracks formed at the bottom flange in the left span. When the load reached 258 kN, diagonal 14 

crack was also observed in the web of right span. The 0.53 mm wide diagonal shear crack in the left side were 15 

developed at a load of 348 kN, the diagonal shear crack in the left side became much wider and extended into 16 

the left support. At this stage, a number of flexural-shear cracks formed in the right span. The width of main 17 

diagonal shear crack in the left side reached 1.6 mm and sounds due to fracture of steel fiber occurring 18 

continuous at a load of 370 kN. The ultimate load of 390 kN was obtained at a vertical displacement of 5.5 19 

mm. The failure mode of this specimen is illustrated in Fig. 6. 20 

Prestressed Specimen PC-2.0-0.65— This specimen is prestressed with controlling stress of 0.65fsu. 21 

Similar to PC-2.0-0.46, the first crack in PC-2.0-0.65 is diagonal shear crack at a load of 290 kN. The diagonal 22 

shear crack is formed in the web with an inclination of 31 degrees and the crack width is less than 0.11. At a 23 
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load of 370 kN, more diagonal cracks with maximum width of 0.13 mm formed in the left shear span. And no 1 

diagonal cracks were observed in the right shear span at this loading stage.  Then, further increasing the load 2 

to 388 kN, cracks were observed along the interface of top flange and web. At a load of 450 kN, three parallel 3 

diagonal shear cracks were formed in the left shear span with maximum crack width of 0.76 mm. The ultimate 4 

load capacity of 487 kN was reached at a vertical displacement of 4.6 mm (beneath the loading point). The 5 

failure mode of Specimen PC-2.0-0.65 is shown in Fig. 7.  6 

Strain Gauge Readings 7 

Fig. 8 illustrates the strain gauge readings on the longitudinal reinforcement of the beam. The location of 8 

the strain gauges is shown in Fig. 9. As shown in Fig. 8, it is found that the maximum strain reading was less 9 

than 2500 με for all beams that represented, and no longitudinal reinforcement yielded.  For Specimen RPC-10 

2.0-0.0, Z5 and Z6 achieved the maximum tensile strain as these strain gauges were mounted close to the 11 

loading point. Moreover, considerable tensile strain was measured at Z1, which was mounted at the left support, 12 

after severe diagonal shear crack occurred in the web. This means the dowel action of longitudinal 13 

reinforcement could provide certain shear resistance. For prestressed specimens PC-2.0-0.3, PC-2.0-0.46, and 14 

PC-2.0-0.65, considerable compressive strain was obtained initially due to prestress force, especially for PC-15 

2.0-0.65. Similar to RPC-2.0-0.0, the tensile strain increased faster after shear failure occurred in the web. 16 

However, post-tensioning strands had minimal effects on the maximum tensile strain of the beam longitudinal 17 

reinforcement.  18 

Load-Crack Width Curve and Stress in Strands 19 

Fig. 10 illustrates the relationship between applied load and crack width. As shown in the figure, the first 20 

diagonal crack was observed in the web of Specimen RPC-2.0-0.0, PC-2.0-0.3, PC-2.0-0.46, and PC-2.0-0.65 21 

at the loads of 99 kN, 178 kN, 213 kN, and 290 kN, respectively. Therefore, it can be concluded using the  22 
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post-tensioning strands can increase the crack load up 193.0 %. Consequently, the maximum width of 1 

Specimen RPC-2.0-0.0, PC-2.0-0.3, PC-2.0-0.46, and PC-2.0-0.65 is 1.9 mm, 1.6 mm, 1.5 mm, and 1.0 mm, 2 

respectively. Therefore, the post-tensioning strands with controlling stress of 0.65fu could reduce the width of 3 

the diagonal shear crack by 47.4 %.  4 

    Fig. 11 gives the change of stress in post-tensioning strands of PC specimens. It can be seen that, the 5 

stress in strands is linearly increased with the increase of the displacement at the loading point. The increment 6 

of stress in strands for PC-2.0-0.3, PC-2.0-0.46, and PC-2.0-0.65 are only 91 MPa, 91 MPa, and 72 MPa, 7 

respectively. Therefore, comparing to the initial stress in strands, the increment is negligible. This could be 8 

explained as the three-point loading method led to much less deformation capacity of the beam.  9 

ANALYTICAL ANALYSIS AND DISCUSSION 10 

Comparison of the Ultimate Load from Major design Codes and Test Results 11 

To evaluate the reliability of existing codes for predicting the ultimate load of T-shaped SFR-RPC beams 12 

without stirrups, the ultimate load measured from test  andsimilar specimens from literature was compared 13 

with the analytical values from the classic codes, such as ACI 318-08 (2008), JSCE (2006), and AFGC (2013). 14 

As all specimens were designed without stirrups, the contribution of stirrups was not included in their formulas.  15 

    ACI 318-08 (2008):  16 

, 0.29 +0.3 )u ACI cm pc pV f f bd V= +（                 (2) 17 

where cmf is concrete cylinder strength; b is width of web;
 

d  is beam effective depth, 
pV is vertical 18 

component of effective prestress force. 19 

   AFGC (2013): 20 
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0.24

tan

Rd f

u AFGC cm

cf E
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V f bd



  
= +                        (3) 1 

where
cf E   is a structural safety factor; z is the length of internal force arm;

,Rd f  is the residual tensile 2 

strength of UHPC fiber;  is the angle between principal compressive stress and beam axis. 3 

JSCE (2006):                                                                                             4 

,

sin0.18

tan

vd e
u JSCE cm

b b u b

f bz P
V f bd



   
= + +

                 
  (4) 5 

where b  is a component safety factor; vdf is design tensile strength of UHPC at shear diagonal cracks; 6 

u  is the angle between diagonal crack and beam axis; 𝑃𝑒 is effective prestress force; 𝛽 is the angle between 7 

prestressed tendon and beam axis.  8 

Table 5 compares the analytical results with the test ones. As shown in the table, the formulas proposed 9 

from ACI 318-08 (2008), and JSCE (2006), and AFGC (2013) underestimate  10 

the ultimate load capacity for various reasons. For ACI 318-08 (2008), and JSCE (2006), the lower 11 

estimation mainly due to the ignorance of the contribution of fibers and the arch action due to short shear-12 

span/depth ratio. Although AFGC (2013) achieved best prediction, it overlooks of the effects of prestressing 13 

forces and arch action resulting too conservative results. Therefore, to give a commonly accepted formula for 14 

prediction of shear load capacity of SFR-RPC beams, a semi-empirical model is proposed by including the 15 

effects of prestressing force and arch action due to relatively lower shear-span/depth ratio.  16 

Analytical model for shear load capacity  17 

Similar to conventional reinforced concrete beams, the effects of shear span ratio, concrete strength, 18 

longitudinal reinforcement ratio, volume of steel fibers, and dimensions of the beams on the shear load 19 
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capacity of SFR-RPC should be incorporated into the proposed formula. Similar to existing codes (such as 1 

AFGC 2013), the formula is expressed as the superposition of the concrete term and prestressing force term., 2 

which can be written as Eq. 5. 3 

pcu VVV +=
 
                             (5) 4 

   The first term cV in Eq. 5 is the concrete term, which considers the effects of shear span ratio, longitudinal 5 

reinforcement ratio, and volume of steel fiber. As the shear capacity of RPC beams decreases with the increase 6 

of shear-span ratio, the shear load capacity of the RPC beam is proportional to


1

.
 Thus, for generalization, 7 

the effects of shear span ratio are expressed as Eq. 6.  8 

                              
( )2

1

k

k
K

+
=




                     

  (6) 9 

where  is the shear span ratio, 1k and 2k are the constants, K is a influencing factor for shear span 10 

ratio. 11 

    Moreover, the effects of the longitudinal reinforcement ratio should be considered as the feature of RPC 12 

and steel fibers in RPC could ensure the longitudinal reinforcement to contribute shear resistance by dowel 13 

action, which is related to the ratio of longitudinal reinforcement ratio to compressive strength of concrete. 14 

Therefore, based on correlation analysis, the effects of shear span ratio and longitudinal reinforcement ratio 15 

could be expressed as:  16 

                          
cmcm

c

f
KK

bdf

V 
 +=

'

                 (7) 17 
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   where 
cmf


represents the characteristic of the longitudinal reinforcement ratio, K is an influencing 1 

factor for longitudinal reinforcement ratio.  2 

      Furthermore, as the steel fibers could partially maintain the residual strength even the cracks were 3 

formed, the effects of steel fiber are considered by an increasing factor fvv+1
.
 4 

where v is an influencing factor of steel fiber, which could be obtained by Table 6, fv is the 5 

volume ratio of the steel fiber.  6 

      Thus, the concrete term is expressed as )1(' fvcc vVV += . 7 

As mentioned above, existing design equations proposed in ACI 318-08 (2008), JSCE (2006), and 8 

AFGC (2013) did not take into account the difference of arch action for short beams and beam action for 9 

slender beams. Therefore, as suggested by Rebeiz (1999), an interpolation function is proposed to account to 10 

effects of arch action. Thus, the concrete term is finally expressed as ))(1( 43

'

dfvcc AkkvVV ++=  . 11 

where 3k and 4k are the constants, dA is shape adjustment factor( =dA  for 5.20.1   , 5.2=dA  12 

for ≥2.5), similar to Rebeiz (1999). 13 

     For the term of prestressing force pV , as the effective prestressing force could delay the forming of 14 

cracks and increase the compression zone of the concrete, the enhancement factor is expressed as: 15 

 03 pp NkV =                            (8)  16 

where 0pN is the effective prestressing force. 17 
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    Based on regression analysis, the factors of
1k ,

2k , and 3k were determined and the formula for no 1 

stirrups SFR-RPC T beams with prestressing strands were expressed as: 2 

     
0258.0)054.0755.0)(1()

086.49

852.0

070.0
( pdfvcm

cm

u NAvbdf
f

V ++++
−

= 



       (9)  3 

Comparison of the Predicted Ultimate Loads from the Proposed Formula and the Test Results 4 

Table 6 and Fig. 12 show the comparison of the ultimate load predicted from proposed formula and that 5 

from the test results of literatures of RPC beams without stirrups. As shown in the table, in general, the ratio 6 

of predicted load to tested counterpart has mean value of 0.998 and standard deviation of 0.129. Thus, the 7 

proposed formula could predict the shear load capacity of the RPC beams with convention or steel fiber 8 

reinforced concrete with high level of confidence. To evaluate the accuracy of proposed formula for special 9 

parameters, the comparison of theoretical values of the shear load capacity from Eq. 9 with the experimental 10 

value obtained from tests is shown in Fig. 12. For special parameters, the model works well for shear 11 

span/depth ratio ranged from 1.2 to 4.5. For prestressing force at bottom flange ranged from 200 kN to 900 12 

kN and beam longitudinal reinforcement ratio ranged from 1.5% to 3.0%, the model could give well prediction. 13 

However, the model could not give reasonable results for concrete cylinder strength less than 80 MPa or larger 14 

than 150 MPa.   15 

CONCLUSIONS 16 

Following conclusions can be made from the experimental study conducted in this study: 17 

1. The prestressing force will not affects the shear failure mode of T-shaped RPC beams but have a 18 

significant influence on the initial stiffness, crack load capacity, crack propagation, and ultimate load 19 

capacity.  20 
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2. Because of the bridging effect from steel fiber, the formation and propagation of diagonal cracks are 1 

reduced.  2 

3. The strain gauge results confirmed that the dowel action of longitudinal reinforcement could provide 3 

additional load resistance after diagonal crack occurred. 4 

4.  The prestressing force will affect the stress distribution of longitudinal reinforcements, but it has little 5 

effects on the maximum tensile strain.  6 

5. The ultimate load obtained from the tests was compared to the one from typical standards or codes. It  7 

indicates that ACI 318-08 (2008)  achieves much lower prediction as the contribution of prestressing 8 

force and steel fibers are ignored. However, the prediction of AFGC (2013) and JSCE (2006) are better 9 

off, although the contribution of prestressing force is also ignored.  10 

6. Based on the test observations and analysis of the influencing factors, a semi-empirical analytical 11 

model is proposed for the T-shaped SFR-RPC beams without stirrups. By comparison of the prediction 12 

values with the test results, it could accurately predict the shear load capacity of the T-shaped SFR-13 

RPC beams with stirrups generally. The proposed semi-empirical model could predict the shear load 14 

capacity of short beam with low shear-span/depth ratio and slender beam with large shear-span/depth 15 

ratio well. Moreover, the model predicts the shear load capacity of RPC beams with different 16 

prestressing force at bottom flange and longitudinal reinforcement ratio fairly well. However, the 17 

model is not suitable for the beams with normal concrete strength (less than 80 MPa).  18 
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FIGURE CAPTIONS 17 

Figure 1. Dimensions and reinforcement detailing of test specimens: (a) non-prestressed specimen, (b) 18 

prestressed specimens 19 
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Figure 2. Overview of a specimen ready for test 1 

Figure 3. Load-displacement curve of test specimens 2 

Figure 4. Failure mode of Specimen RPC-2.0-0.0 3 

Figure 5. Failure mode of Specimen PC-2.0-0.30 4 

Figure 6. Failure mode of Specimen PC-2.0-0.46 5 

Figure 7. Failure mode of Specimen PC-2.0-0.65 6 

Figure 8. Strain gauge results along beam longitudinal reinforcement: (a) RPC-2.0-0.0, (b) PC-2.0-0.3 (c) 7 

PC-2.0-0.46, and (d) PC-2.0-0.65 8 

Figure 9. Locations of the strain gauges on longitudinal reinforcement 9 

Figure 10. The relationship between applied load and crack width 10 

Figure 11. The relationship between stress in strands and displacement at the loading point 11 

Figure 12. Evaluation the accuracy of proposed model for different parameters: (a) shear span/depth ratio, 12 

(b) prestressing force at bottom flange, (c) compressive strength of concrete, (d) longitudinal reinforcement 13 

ratio 14 
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Table 1. Specimen properties 13 

Test ID Shear Span 

(mm) 

Effective 

Depth        

(mm) 

Targeted 

λ* 

True λ Amount of 

Strands 

Amount of 

Longitudinal 

Rebar 

RPC-2.0-0 700 350 N/A N/A N/A 3Φ15.2 

PC-2.0-0.30 700 350 0.3 0.31 2Φ15.2 3Φ15.2 

PC-2.0-0.46 700 350 0.46 0.46 2Φ15.2 3Φ15.2 

PC-2.0-0.65 700 350 0.65 0.67 2Φ15.2 3Φ15.2 

Note: λ* is defined as the effective controlling stress in strands 14 

 15 

 16 
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 1 

 2 

Table 2. Fiber reinforced RPC mix design (material quantities in kg per of m3 RPC) 3 

W/B C/kg SF/kg CQ/kg MQ/kg FQ/kg Water Sup Fiber 

0.23 872 262 174 698 174 200 17 60 

Note: RPC represents reactive powder concrete; C represents cement; SF represents silica fume; CQ represents coarse quartz sand 4 
with size ranged between 0.6 mm to 1.25 mm; MQ represents medium quartz sand with size ranged between 0.3 mm to 0.6 mm; 5 
FQ represents fine quartz sand with size ranged from 0.16 mm to 0.32 mm.  6 

 7 

 8 

Table 3. Mechanical properties 9 

Test ID fcu (MPa) fcm (MPa) ft (MPa) ftm (MPa) Ec (GPa) υ 

RPC-2.0-0 119.2 106.5 5.8 17.8 41 0.2 

PC-2.0-0.30 111.3 103.7 5.6 19.7 40 0.2 

PC-2.0-0.46 117.8 105.7 5.8 19.8 41 0.2 

PC-2.0-0.65 125.1 105.1 5.7 16.6 42 0.2 

 10 

 11 

 12 

Table 4. Test results                                      13 

Test ID Fcr (kN) Crack width 

(mm) 

Fu (kN) Vu (kN) 

RPC-2.0-0 99.0 1.9 345 224.1 

PC-2.0-0.30 178.0 1.6 364 236.9 

PC-2.0-0.46 213.0 1.5 390 253.5 

PC-2.0-0.65 290.0 1.0 487 316.4 
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Note: Fcr and Fu are the crack load and ultimate load, respectively; Vu is the shear load capacity.  1 

 2 

 3 

 4 

Table 5. Comparison of test results with the values calculated by foreign codes 5 

Reference No. Specimen Vu,exp(kN) 𝑉𝑢,ACI/𝑉𝑢,exp  𝑉𝑢,AFGC/𝑉𝑢,exp  𝑉𝑢,JSCE/𝑉𝑢,exp  

This study  1 RPC-2.0-0 224.1 0.33 0.65 0.52 

 2 RPC-2.0-0.30 236.9 0.50 0.86 0.67 

 3 RPC-2.0-0.46 253.5 0.57 0.82 0.64 

 4 RPC-2.0-0.65 316.4 0.55 0.78 0.60 

   Average 0.49 0.78 0.61 

   COV 0.22 0.12 0.11 

Note: Vu,exp represents the measured ultimate shear load; Vu,ACI, Vu,AFGC, and Vu,JSCE represent the predicted 6 

shear load capacity based on ACI 318-08 (2008), AFGF (2013), and JSCE (2006), respectively. 7 

 8 

 9 

 10 

 11 

Table 6. The value of v   12 

Types of fiber Deformed  Milling  Cut by Steel Wire Shear Flat  

v  0.7 0.9 0.6 0.5 

 13 

 14 

 15 
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1 

Table 7. Summary of beam specimens 2 

Reference No. Specimen 
cmf  

(MPa) 

b  

(mm) 

d  

(mm) 
/a d  



(%) 
fV

(%) 
v  ,e botP

(kN) 
,expuV  ,expu uV V  

This study  1 RPC-2.0-0 106.5 70 350 2 2.9 0.75 0.5 0 224.12 1.02 

 2 RPC-2.0-0.30 103.7 70 350 2 1.9 0.75 0.5 216.0 236.86 1.07 

 3 RPC-2.0-0.46 105.7 70 350 2 1.9 0.75 0.5 299.4 253.5 1.09 

 4 RPC-2.0-0.65 105.1 70 350 2 1.9 0.75 0.5 396.7 316.42 0.95 

Zhou.(2017) 5 L1 105.8 70 350 1.3 1.9 0.75 0.5 299.4 573.5 0.99 

 6 L2 105.8 70 350 1.7 1.9 0.75 0.5 299.4 345.1 0.97 

 7 L4 105.8 70 350 2.6 1.9 0.75 0.5 299.4 202.4 1.08 

Dinh et al.(2011) 8 B27-5 44.4 203 610 3.5 2.1 1.5 0.5 0 433.41 0.98 

 9 B27-6 42.8 203 610 3.5 2.1 1.5 0.5 0 421.02 0.99 

 10 B27-7 37 203 610 3.5 1.6 0 - 0 160.98 1.21 

Voo et al.(2010) 11 X-B1 125 50 620 3.2 0 1 0.5 1200 330 1.22 

 12 X-B2 126 50 620 3.2 0 1 0.5 1200 355 1.14 

 13 X-B3 135 50 620 3.2 0 1 0.5 1200 360 1.15 

 14 X-B4 122 50 620 2.5 0 1 0.5 1200 456 1.01 

 15 X-B5 140 50 620 3.5 0 1 0.5 1200 423 0.95 

 16 X-B6 140 50 620 4.5 0 1 0.5 1200 391 0.92 

 17 X-B7 122 50 620 2.5 0 1.5 0.5 1200 522 0.95 

 18 X-B8 122 50 620 1.8 0 1 0.5 1200 582 1.04 

 
Dupont et al.(2003) 19 13 40.3 200 260 1.5 1.81 0 0.5 0 210.08 1.08 
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 20 25 29.4 200 262 2.5 1.15 0 0.5 0 70.22 1.20 

 21 28 29.4 200 260 2.5 1.81 0 0.5 0 84.76 1.17 

 1 

Table 7. Summary of beam specimens (continue) 2 

Reference No. Specimen 
cmf  

(MPa) 

b  

(mm) 

d  

(mm) 
/a d  



(%) 
fV

(%) 
v  ,e botP

(kN) 
,expuV  ,expu uV V  

Voo et al.(2006) 22 SB1 161 50 600 3.3 0 2.5 0.5 0 430 0.64 

 23 SB2 160 50 600 3.3 0 2.5 0.5 900 497 0.93 

 24 SB3 149 50 600 3.3 0 2.5 0.5 450 428 0.82 

 25 SB4 164 50 600 3.3 0 1.25 0.5 450 337 0.88 

 26 SB5 171 50 600 3.3 0 2.5 0.54 450 440 0.91 

 27 SB6 157 50 600 3.3 0 2.5 0.6 450 330 1.19 

 28 SB7 169 50 600 3.3 0 2.5 0.52 450 400 0.97 

Kwak et al.(2002) 29 FHB1-2 62.6 125 212 2 1.48 0 0.5 0 80.03 1.30 

 30 FH81-3 62.6 125 212 3 1.48 0 0.5 0 67.05 0.97 

 31 FHB1-4 62.6 125 212 4 1.48 0 0.5 0 52.47 0.95 

 32 FHB2-2 63.8 125 212 2 1.48 0.5 0.5 0 134.89 0.98 

 33 FHB2-2 30.8 125 212 2 1.48 0.5 0.5 0 107.06 0.70 

 34 FHB3-2 68.6 125 212 2 1.48 0.75 0.5 0 144.16 1.07 

 35 FHB2-3 63.8 125 212 3 1.48 0.5 0.5 0 81.89 1.01 

 36 FHB2-3 30.8 125 212 3 1.48 0.5 0.5 0 67.58 0.75 

 37 FHB3-3 68.6 125 212 3 1.48 0.75 0.5 0 90.1 1.07 

 38 FHB2-4 63.8 125 212 4 1.48 0.5 0.5 0 63.87 0.99 
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 39 FHB2-4 30.8 125 212 4 1.48 0.5 0.5 0 53 0.79 

 40 FHB3-4 68.6 125 212 4 1.48 0.75 0.5 0 72.61 1.01 

 1 

 2 

 3 

 4 

Table 7. Summary of beam specimens (continue) 5 

Reference No. Specimen 
cmf  

(MPa) 

b  

(mm) 

d  

(mm) 
/a d  



(%) 
fV

(%) 
v  ,e botP

(kN) 
,expuV  ,expu uV V  

Yang.(2014) 41 FL-3a 45.2 155 362 1.5 1.75 0.8 0.9 0 424 1.09 

 42 FL-3b 45.2 150 362 1.5 1.81 0.8 0.9 0 454 0.99 

 43 FL-4a 45.2 175 362 2 1.55 0.8 0.9 0 340 0.97 

 44 FL-4b 45.2 150 362 2 1.81 0.8 0.9 0 304 0.97 

 45 FL-7a 46 150 362 3.5 1.81 0.8 0.9 0 174 1.01 

 46 FL-7b 46 150 362 3.5 1.81 0.8 0.9 0 160 1.09 

 47 FL-8a 49.6 152 362 2 1.78 0.8 0.9 0 310 1.03 

 48 FL-8b 49.6 150 362 2 1.81 0.8 0.9 0 280 1.13 

           Average 0.998 

           COV 0.129 



 

27 

 

Note: cmf is concrete cylinder strength; b is width of web; d is beam effective depth; a is shear span;  is reinforcement ratio; fV is fiber 1 

volume; v is influence coefficient of steel fiber on shear load capacity; ,e botP is prestressing force (bottom flange). 2 

Figure 1: Dimensions and reinforcement detailing of test specimens: (a) non-prestressed specimen, (b) prestressed specimens 3 

 4 

 5 

Figure 2: Overview of a specimen ready for test 6 

 7 
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Figure 3: Load-displacement curve of test specimens 2 
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 1 

Figure 4: Failure mode of Specimen RPC-2.0-0.0 2 
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Figure 5: Failure mode of Specimen PC-2.0-0.30 2 
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Figure 6: Failure mode of Specimen PC-2.0-0.46 2 
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Figure 7: Failure mode of Specimen PC-2.0-0.65 2 
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Figure 8: Strain gauge results along beam longitudinal reinforcement: (a) RPC-2.0-0.0, (b) PC-2.0-0.3 (c) PC-2.0-0.46, and (d) PC-2.0-0.65 5 
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Figure 9: Locations of the strain gauges in beam longitudinal reinforcement 3 
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Figure 10: The relationship between applied load and crack width 2 
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Figure 11: The relationship between stress in strands and displacement at the loading point 2 
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Figure 12: Comparison of the predicted and measured ultimate load 1 
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