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A Unified Framework for Graduation
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Abstract: This paper presents a unified approach to the main methods of graduation. Included
within this framework are parametric graduation (linear and non-linear, including splines),
Whittaker graduation, moving-weighted-average graduation, and kernel graduation. The
approach is based on the framework of Generalised Linear Models, extended to include non-
parametric smoothing. The extended framework is called Generalised Additive Models. The
advantages of this approach is that it is possible to perform and compare parametric and non-
parametric graduations within the same framework, using the same statistical package, S-PLUS.
Also, it suggests possible extensions to the standard theory of graduation theory.
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1. Introduction

Classical (non-Bayesian) graduation theory is usually divided into two parts: parametric and non-
parametric graduation. Within each of these, there are a variety of seemingly unrelated methods.
For example, parametric graduation would include linear models, generalized linear models, non-
linear models and splines, and non-parametric graduation would include moving-weighted-
averages, Whittaker graduation and kernel smoothing. The purpose of this paper is to bring all of
these methods (both parametric and non-parametric graduation) within a unified framework.
There are many advantages for this approach. It allows the practitioner to compare and contrast
the assumptions made by each method on an equitable basis. It removes the misconception that
the many and diverse graduation techniques are completely unrelated. It makes it possible to
perform most graduations using a single statistical package, and to compare the results from
using different graduation methods, also within a single package. It suggests possible extensions
for graduation theory. These include local polynomial smoothing such as the method outlined in
section 3.5. A useful reference on local polynomial smoothing is the book by Fan and Gibjels
(1996). It is also possible‘to use non-parametric smoothing methods (in conjunction with
parametric graduation) for assessing the goodness-of-fit of a graduation and for preliminary
exploration of the data (see section 5).

In this paper, graduation theory will be presented within the general framework of statistical
models in S-PLUS. This has the advantages of unifying the theory as mentioned above. Many
non-parametric graduation methods are better formulated as Generalized Additive Models
(Hastie and Tibshirani, 1990, 1993) than as in existing actuarial theory. Recent papers on
parametric graduation have developed unifying theories for graduation, developed modern
statistical methods for graduation and shown connections between different methods. For
example, Renshaw (1991, 1992, 1995) showed how parametric graduation can be expressed as
generalized linear and non-linear models, and how certain of the particular features of mortality
data can be modelled. These papers also showed how the package Glim (Francis et al, 1993)
provides a convenient vehicle for performing parametric graduation. The importance of these
papers for a unified framework for graduation is that they expressed mortality models as
generalized linear (and non-linear) models. Generalized Additive Models use the same
distributional structure, but apply different smoothing techniques (a parametric model can also be
viewed as a method of smoothing the data). '
Verrall (1993, 1994, 1995) showed how Whittaker graduation can be expressed as a dynamic
generalized linear model. Estimation can then be performed recursively, using a method related
to the Kalman filter. These papers showed how Whittaker graduation is closely related to
parametric methods, and can be regarded as an extension of a particular linear model. They also
showed how Whittaker graduation can be placed within the framework of generalized linear
models, instead of using a normal approximation to the likelihood which Whittaker (1923) and
subsequent authors have used for computational convenience. These papers also showed how
many different modelling assumptions can be incorporated, using the same basic philosophy as
Whittaker graduation. A different approach to Whittaker graduation is advocated in this paper, in
order that the estimation may be performed in the same package as other graduations. This
approach utilises natural cubic smoothing splines, and the equivalence between this method and
Whittaker graduation is covered in some detail in Green and Silverman (1994).

Gavin er al (1993, 1994, 1995) studied the relationship between moving-weighted-average
graduation and kernel smoothing. It was shown that kernel methods provide a more satisfactory



approach, and that many recent developments in the statistical literature can be usefully
incorporated into the practice of graduation. However, it was also found that other smoothing
methods could provide more satisfactory graduations.

Hence this paper will describe how the present theory of graduation can be incorporated and
extended within the framework of Generalized Additive Models. The paper is set out as follows.
Section 2 contains an outline of the approach to graduation using Generalized Linear Models.
Section 3 briefly describes Generalized Additive Models, and shows how the well-known non-
parameteric graduation methods can be incorporated.

2. Generalized Parametric Models for Graduation

2.1 Introduction

This section contains an outline of the theory of generalized linear models in the context of
graduation. For a fuller exposition, see Renshaw (1991).

In the traditional approach to graduation (not using generalized linear models) weighted least
squares estimation, or maximum likelihood estimation with a normal approximation to the
likelihood function is sometimes performed using the crude mortality rates. Transformations are
also sometimes applied to the crude rates before they are graduated to allow for the fact that it is
more likely that the transformed values follow a smooth progression. These considerations are
paramount for modelling life tables and are the subject of the seminal paper by Cox (1972). The
structure most appropriate for graduation is that of a generalized linear model (Nelder and
Wedderburn, 1972). When a generalized linear model is applied there is no need to apply any
preliminary transformations to the data. The standard text on generalized linear models is
McCullagh and Nelder (1989). Extensive experience in graduation using generalized linear
models has been built up in the actuarial literature: see, for example Renshaw (1991), Rénshaw
and Haberman (1995), Renshaw and Haberman (1996), Renshaw and Hatzopoulos (1996),
Renshaw et al (1996), Haberman and Renshaw (1996).

In this paper, the structure of generalized linear models will be used, and the smoothing will be
extended from solely parametric models to include non-parametric smoothing. In order to
introduce the necessary framework, the generalized linear models usually used in graduation will
be briefly described before non-parametric smoothing is addressed.

2.2 Models for
Consider the graduation of the probability of death at age x, g, . This is based on the number of
deaths at age x, 4,, and the initial exposed to risk, R,. Using the usual model for the number

of deaths,
4, ~independent Binomial (R, , ¢,) 2.1

and the observed death rate, which is the maximum likelihood estimate of g, (treating the ages
as entirely separate) is

= .2)



The likelihood is

=exp {2(14, log(l q*q j +R, log(1- qx)ﬂ . 2.3)

x=1 Ty

This is in the form of a likelihood of a member of an exponential family (see McCullagh and

Nelder (1989), for more details of the properties of exponential families). log(1 9 ) is the logit
-9

transformation of g, , and it is natural to apply a parametric model to this. One of the reasons for

x

this is that log[1 95 ] can take any value on the real line, while still constraining g, to lie in
'

the interval (0,1). It is straightforward to apply parametric models of this within the framework
of generalized linear models, and the purpose of this paper is to extend the smoothing to include

non-parametric smoothing. This will also be applied to log[1 E

), using the binomial error

x

structure as before. The natural framework for this is generalized additive models.
The transformation of g, , usually known as the link function, is denoted by g (g, ). In this case,
the link function is the log-odds or logit link function,

g(q,)= log(1 2 ] 2.4)
q

T4k

Note that, in the theory of generalized linear models, it is more usual to define the link function
as a function of E| (Ax) = R.q, . This is a trivial reparameterisation, but we do not do it here to
avoid confusion with the model for 4, in section 2.3.

A generalized linear model is applied by equating g(g,) to a linear predictor (see section 2.4),

which is then substituted into the likelihood (2.3). The parameters in the linear predictor are then
estimated by maximising the likelihood numerically.

2.3 Models for 4.

Consider next the graduation of u, . To graduate the death rate, central exposures are used, so
that in this section R, denotes central exposures, whereas in section 2.2 R, denoted initial
exposures. The usual model for 4, is



4, ~ independent Poisson with mean R, . (2.5)

The likelihood is

n R . A"e’Ry/lx
L(/_1)=l_[————( ’ﬂl)‘l,
-1 :

X

o« exp[z (Ax logR, + A, logu, — R p, )] . (2.6)

x=1
Again, this is in the form of a member of an exponential family and it is natural to model log x,
rather than .
AX
R

X

Note that the crude rate is u, =

. The link function in this case is the log link,

glp, )=log(u,). 2.7

In this model, the linear predictor is usually augmented by a fixed term known as the offset,
log R, . This automatically allows for the exposure term 4, log R, in the log-likelihood. An
offset is a fixed, known term in the linear predictor which does not contain a parameter to be
estimated. It simply corrects for the exposure.

2.4 The Linear Predictor.
Parametric models for graduation generally use a linear (or even non-linear) predictor,

77, . Note that this includes graduation by parametric splines. For example, a straight line model
(ignoring the offset) takes the form

. =P+ Bix. (2.8)

[Note that this is in the simplest form: often x is re-expressed in terms of orthogonal polynomials
in order to improve the estimation properties of the model (see below).] The linear predictor is
equated to g(u,) or g(q, ) and the parameters in 77, are estimated using the likelihood function
as the objective function in an optimisation procedure. In this way, maximum likelihood

estimates are obtained. The straight line linear predictor (2.8) can be extended to a polynomial in
X,

n=Y8 . @9)
j=0

A parametric spline can be defined and inserted into the linear predictor, or non-linear models
can be applied, as described by Renshaw (1991).



It is, of course, possible to investigate the use of other link functions from those mentioned in
sections 2.2 and 2.3 to further extend the range of models which may be applied. Again, this is
discussed in detail by Renshaw (1991).

In common with actuarial graduation practice (see, for example, Forfar et al, 1988), we will
apply orthogonal polynomials together with age scaling to the age. Thus, throughout this paper,

. X-u .
the age, x, has been transformed in the models to —— for suitable values of u and v, and then
v

Chebycheff polynomials have been used.

2.5 Non-Lin els

Forfar et al (1988) defined the “Gompertz-Makeham” and “Logit Gompertz-Makeham™ formulae
for graduation. A Gompertz-Makeham formula of order (¥,s) is defined as

r-1 s-1
GM(r,s) =) a,x' + exp(z,ﬁ,xf) ,
i=0 i=0
interpreting the sum as 0 if =0 or s=0.
Thus, for example, a GM(2,2) formula can be written as
GM(22)=a, +ox+ exp(ﬂ0 + ,le).
A Logit Gompertz-Makeham formula of order (#,s) is defined as

GM(r,
LGM(r,s)= & .

1+ GM (r,s)
Note that if 7=0 or s=0, these can be expressed as linear models. It is usual to use GM formulae
for graduating 1 and LGM formulae for graduating ¢, and we consider the likelihood for each of

these cases. Consider graduating g, using LGM(#,s). The log-likelihood (up to an additive
constant) can be written as

ZAxlog( £ )—Rxlog( ! ]
P 1-g, 1-g,

GM (r, s)

From the LGM(7,s) f laforg,, g, =———,
(r,s) formula 9, 9 1+GM(r,s)



95~ GM(r,s) and —— =1+ GM(r,s) .
1-q, 1-g,

Thus, the parameters may be estimated by minimising

Z R, log(1+GM(r,s)) — A, log GM(r,s).

For u,, the log likelihood is (up to an additive constant)
Z Ax log/ux - Rx#x :

Hence, if u, is graduated using a GM(#,s) formula,
u, =GM(rs),
the parameters can be estimated by minimising

D [R.GM(r,s)— A, log GM(r,s)].

x

These may be minimised using a standard routine in S-PLUS, although some care must be taken
with the initial values for the parameters in order to ensure that the optimisation converges to a
global minimum.

2.6 Degrees of Freedom.

A well-known concept from parametric regression is the number of degrees of freedom
associated with a model, and it will be useful to extend this to non-parametric smoothing
methods. For parametric regression, the definition of degrees of freedom is clear: if there are n
observations and & parameters in the model, then the model degrees of freedom are k and the
degrees of freedom for noise are n-k. To extend this to a non-parametric smoother a different, but
equivalent, definition is required. To facilitate this, consider a linear regression model for
normally distributed data:

Y=Xf+e

where Y is the observation vector of length n,
P is the parameter vector of length £,
X is the design matrix,

and e is a vector of independent, zero mean, homoscedastic, normally distributed random
variables.

Then the fitted values are given by



=AY where 4= X(XX)" X".

The matrix 4 is known as the “hat matrix” since it maps the observations to their fitted values.
The diagonal elements of 4 are called the “leverage values” (see Cook and Weisberg, 1982).

The model degrees of freedom are equal to the trace of the matrix 4, tr(4), and for this model
will be k. The degrees of freedom for noise are tr(/-4), where [ is the identity matrix, leading to
the same value as above, n-£, for the standard linear regression model.

A similar approach can be taken for non-parametric smoothing, leading to the definition of
equivalent degrees of freedom. These are useful for comparing different smoothers, and will be
used in section 3. If a non-parametric smoothing method can be written as Y=A4Y for some
matrix A, then the equivalent degrees of freedom can be defined as above. In other cases, it is

possible to define a suitable quantity or an equivalent linear approximation to the degrees of
freedom (see Green and Silverman, 1994).

3. Generalized Additive Models.
3.1 Introduction

In generalized linear models, a linear model is postulated which is equated to g(u,) or
g(q,). For example, a straight line fit could take the form

g(qx)=ﬂ0+ﬂl x (3.1

or  g(p)=By+px. (G2

This model is then inserted into the likelihood function and the parameters o and B are estimated
by iterative maximum likelihood estimation using a procedure known as Fisher scoring. This is
conveniently performed within a statistical package such as Glim (Francis et al, 1993). A rich
variety of models may be tried, and the statistical basis of these techniques allows a rigorous
assessment and validation process to be carried out.

However, generalized linear models are restricted to parametric models. To apply non-parametric

models, a relaxation of this method is required. To achieve this, we replace equations (3.1) and
(3.2) by

g(a.)=f () (3.3)

and g(,ux) =f (x) 34

which indicates that the likelihood function depends in some smooth way on x. Note that f{ x )
could be a parametric model, as before, so that this framework includes generalized linear
models. However, f{ x ) is, in general, an unspecified smooth function. Note also that this is the
simplest form of model: it is possible to introduce other factors into the model, such as duration.
In this case, the function is bivariate (see for example Currie and Waters, 1991 and Renshaw and



Haberman, 1996). The aim of the graduation is to obtain an estimate of f{x), f (x) There is a

wide range of methods for obtaining f (x) known in general as smoothers. We describe below
the smoothers that are already used in graduation theory, together with some other useful
smoothers which have not yet been applied in graduation. Note that the non-parametric
smoothers in the actuarial literature are usually applied to the crude rates, using a normal
approximation to the exact likelihood. This is unnecessary, and is more complicated (since the
variance of the crude rates must be estimated).

A full description of generalised additive models and smoothers, together with details of the
estimation algorithms (which is again an iterative scoring algorithm), can be found in Hastie and
Tibshirani (1990). However, these models can again be easily fitted within a statistical package,
S-Plus. S-Plus can also estimate generalized linear models, and hence it is possible to perform
both parametric and non-parametric graduation within a single package. This gives an extremely
useful unified framework for graduation. All graduations (within the scope of the models given
by equations (3.1) to (3.4) ) can be performed within the same package and their results
compared.

The remaining subsections of this section of the paper will describe some of the useful
forms for the non-parametric smoothing. Thus, the method of obtaining f (x) will be discussed
in more detail. In order to describe the smoothers as straightforwardly and clearly as possible, we
will consider first the simple regression model. Suppose we have a set of observations of a
response variable Y and a single predictor X, and we wish to obtain an estimate of

E(Yx) = f(x). 3.5)

The aim is to obtain an estimate f (x) of the arbitrary unspecified smooth function f{x). In
relation to the models described in section 2 for graduation, this model is simpler because we
will assume that the data are homoscedastic, and use an identity link function. The smoothing
procedures are described below for the simple model, and have then to be inserted into the
numerical optimisation algorithms for the generalised linear models described in section 2.

3.2 Bin Smoothers

This is a very simple method for smoothing, and is unlikely to be useful in graduation.
However, it is described here as an introduction to smoothers. The estimate f (x) is obtained by
finding the average value of Y in each of a number of disjoint and exhaustive regions for the
predictor variable. i.e. choose a number of cutpoints ¢, < ¢, <...< ¢, with ¢; =—0and ¢, =,
Then calculate the average of Y in each region. Figure 3.1 shows the results of applying this
procedure to the data from table 17.4 of Forfar et al (1988). The regions have been chosen to
contain 8 points each: (up to 25), (26-33), (34-41), etc. The graduation is affected by the widths
of the regions and the starting points. As can be seen from Figure 3.1, the resulting estimate is
not very smooth. The problem is caused by the sudden changes from one region to the next. The
more successful smoothers described below do not change abruptly like this, but this smoother
illustrates an obvious difference from parametric graduation in that the estimate in each region
uses only the data in that region and not the complete data set.



log(deaths/exposure)

20 30 40 50 60 70 80
age

Figure 3.1 Bin Smoother.

We could make this more satisfactory by increasing the number of regions. This is
possible for all smoothers: there is always a way of changing the smoother to alter the
smoothness and goodness-of-fit of the graduation. The resulting graduation would be a better fit,
but would be less smooth than the graduation in Figure 3.1. This illustrates the fundamental
trade-off between smoothness and goodness-of-fit, or between variance and bias.

No matter what regions we choose, this method will not give a satisfactory graduation,
and we need to consider more sophisticated smoothers.

33 ittaker Graduation and Cubic Sm ing Splines

Whittaker graduation specifies the trade-off between smoothness and goodness-of-fit
explicitly by specifying the function below to be minimised:

Yr-f@) +ax (V) (3.6)

where V2 f(x) indicates second differences in the estimates.
ie. V2 f(x)= f(x)-2f(x-1)+ f(x-2) .
Note that we have assumed here that the values of x are equally spaced (as in graduation),

although this is not necessary. It can be shown (Reinsch 1967) that the estimate f’ (x) is a natural
cubic spline with knots at each value of x (also known as a smoothing spline). The exact results

10



of the usual Whittaker graduation as described in the actuarial literature can be obtained by using
a normal approximation to the crude rates (and estimating the variances). However, it is argued
by Verrall(1993) that this is inconvenient and unnecessary and that it is better to use the
appropriate sampling distribution for 4, . This can be done by applying a smoothing spline
within the framework of generalised additive models. Figure 3.3 shows a typical such graduation.

2

log(deaths/exposure)

20 30 40 50 60 70 80
age

Figure 3.3 Whittaker graduation with 4 degrees of freedom (--), and 10 degrees of freedom (—).

Figure 3.3 shows the result of applying cubic smoothing spline smoothers to the data from table
17.4 of Forfar et al (1988). It can be seen that the greater the model degrees of freedom, the less
smooth is the graduation.

Note that we are able to use the exact distribution for 4, , and we replace the linear predictor 7,
in a GLM by a cubic smoothing spline smoother. In order to reproduce exactly the results of the

usual Whittaker method, it is necessary to model the crude rates (¢, or u, ) using a normal
approximation. For example, for graduating ¢, , the model would be



0

q, ~ approx. N(q,,

R

x

Thus, qu would be defined as the response variable and weights would have to be defined (and

estimated) to account for the variance of ¢, . A cubic smoothing spline used to smooth the
crude weights would then reproduce exactly the results from a Whittaker graduation and would

2
o 2 o .
minimise Z(‘L - qx) +AY. (qux) . However, it is inconvenient and unnecessary to resort to

a normal approximation. It is better to use the exact distribution of 4, and apply the cubic
smoothing spline within a generalised additive model.

The parameter A governs the trade-off between goodness-of-fit and smoothness (bias and
variance), and can be chosen subjectively. Alternatively, an automatic method, such as cross-
validation, may be used.

3.4 Moving-Weighted Averages and Kernel Graduation.
Moving-Weighted-Averages (MWA) have a long history in graduation, one of the most famous
examples being Spencer’s 21 point formula (Spencer, 1904):

n 1 o o o o 4 o o o 4 o o
L O I PR FEE PR ISE PR B PRy

—2(%6 + qxfs) - S(qm + q,-7) - 5((1“8 + qx_s) - 3(qx+9+ qx_gj - (qmo + qx_m)}

For regression problems kernel smoothers were first suggested by Watson (1964) and Nadaraya
(1964). In the actuarial literature, kernel smoothing methods were first used by Copas and
Haberman (1983) and Ramlau-Hansen (1983). The connection between kernel smoothing and
MWA graduation was expounded in detail by Gavin et al (1993), and further aspects and
extensions were explored in Gavin ef al (1994, 1995). These last three papers, which contain
some illustrations of the methods, are recommended as an introduction to the subject. More
general texts which give introductions to kernel smoothing in a statistical setting are Silverman
(1986), Scott (1992) and Wand and Jones (1995).

Consider a set of crude mortality rates, ¢; for each age x; (i = I, . .., n). The Nadaraya-Watson
(N-W) kernel estimate is defined as

R Z‘;: K,,(x—x,)
i=1
q, = n
ZK,,(x - x,.)
i=1

3.7

12



where K, (x)=5"'K(x/b), and K is a kernel function. A kernel function must satisfy

J'K(x)dx =1. Note that any probability density function may serve as a kernel function, and a

-0

commonly used kernel function is the standard normal density function. However, there is no
requirement that the kernel function should be non-negative, and in fact the optimal smoothing
kernels, such as the Epanechnikov kernel (Epanechnikov, 1969) can take negative values (see
Gavin et al, 1993).

By rewriting (3.7) as

9. = szi qai (38)
i=1
K,,(x—-x,.)

ZKb(x—x,.)
i=1

it can be seen that kernel graduation is very similar to MWA graduation. This is explained in
greater detail in Gavin et al (1993), where the relationship between Spencer’s formula and
optimal smoothing kernels is also explained.

The parameter b, which is known as the bandwidth, governs the amount of smoothing in the
graduation process, in much the same way as A in Whittaker graduation (see section 3.3). It is
well-known from the statistical literature (see Gavin et al, 1994, for a discussion of this) that the
choice of bandwidth is of much greater significance than the choice of the kernel function. This
is somewhat at variance with the actuarial literature, in which much attention has been paid to the
choice of kernel function (or equivalently to the form of the weights in MWA graduation). The
bandwidth may be chosen subjectively or by a data-driven method such as cross-validation
(Stone, 1974). The cross-validation bandwidth minimises

where S, =

1o N2
- Z(qi - (éz )(_'))
niig

where (zj,.)(_') is the estimated value at x, calculated without using the data at that age.

There is evidence from the statistical literature that the cross-validation bandwidth may under-
smooth the data (see for example Scott, 1992), and this will be of even greater significance in
graduation since actuaries generally require a higher degree of smoothness. Scott (1992) has a
good discussion of the methods of selecting a value for b. For a description of cross-validation in
the context of graduation, see Gavin et al (1994).

In the examples in this paper, the standard normal density will be used as the kernel function.
Copas and Haberman (1983) suggested an alternative form of kernel graduation:



iA,Kb(x —x,.)

ACH _ =1

) ‘Z‘R,K,,(x—x,.)
i=1

3.9

This can be regarded as the estimator which maximises the local binomial log likelihood using a
kernel-weighted likelihood approach (see Staniswalis, 1989 and Copas, 1983). Gavin et al (1994)
section 2.3 compare the two approaches, (3.7) and (3.9) and give reasons why (3.7) is likely to
have a superior performance. In many cases, a more satisfactory graduation can be obtained by
first transforming the crude rates using, for example, the logit, Weibull, Gompertz or other
transformation. The aim is to find transformed crude rates which broadly follow a straight line,
so that the bias inherent in any graduation is reduced over much of the range.

Thus, the usual form of kernel (or MWA) graduation is

n o,

!
A Z‘L Kb(x_xi)
¢ _ il

qX—

 SK(-x)

i=]

(3.10)

where K(x) is the standard normal density function, and ¢ denotes a transformation.

At the boundaries of the graduation (low or high ages), the kernel function increasingly overlaps
the end of the table, which results in increased bias. This problem has been studied in detail in
the actuarial literature for MWA graduation (see Greville 1981a,b,c and Hoem and Linneman
1988). Gavin ef al (1995) show how a boundary-correcting kernel suggested by Jones (1993) can
be used to overcome problems in the tails of the graduation.

Gavin et al (1995) also studied the use of adaptive kernel estimates. The idea underlying these is
to allow the bandwidth (and hence the amount of smoothing) to change over the range of the
graduation to reflect the exposure. Thus, where the amount of exposure is large, the crude
mortality rate will be more reliable, and a lower value for b is used. This results in an estimate
which more closely reflects the crude rate. When the exposure is small, b will be larger which
results in a greater degree of smoothing being applied. The results from both the above
refinements are quite promising and are reported in detail in Gavin et al (1995).

Local polynomial modelling (see Fan and Gijbels, 1996) overcomes the boundary problems of
graduation in an extremely elegant way. An example of this type of graduation is given in the
following section.

3.5 Local Polynomial Graduation.

There are a number of other non-parametric smoothers available which are potentially very
useful for graduation and which can be applied within the general framework set out above. Of
these, a method which fits low-order polynomials locally appears to be the most promising. The
“locally-weighted regression smoother” (Joess) (Cleveland, 1979), is described below. Since this
method fits (using a local smoothing method) a straight line, or a quadratic instead of a constant,



it has the advantage of automatically adjusting for bias at the boundaries. This feature of local
polynomial smoothers is discussed in detail in Fan and Gijbels (1996).

We define loess by considering the case of a single predictor, X, for a normally dlstnbuted
response variable Y (as in simple linear regression). It can be used in the context of generalized
additive models as outlined in section 3.1. Consider a sample of size m:

{3 (ka9 (s )}

The fitted values at some point x,, f’ (xo) , is an estimate of the underlying smooth trend in ¥

and for loess, f (xo) is obtained as follows.

Define N(xo) to be the set of & nearest neighbours of x, . k may also be defined by
deciding the percentage of the data points to include in N (xo) : this is called the span.

Calculate A(xo) = xrgﬁ )|x0 -x|.
Calculate weights, w;, for each point in N(xo) , Where

=15

and T is the tri-cube weight function:

T(u):{(l_u3)3 for0<u<l

0 otherwise.

Regress Y on X in N(xo) using the weights {wl S Wyt m} This regression can be

linear, quadratic, cubic, etc. The fitted value at x, is f (xo) .

The default setting in S-PLUS (see the example in section 4) is a local linear regression, which
may not be satisfactory in the context of graduation. It can be seen that this is similar to a
standard regression, except that the contribution of the points to the fit at x, depend on their
distance from x, . In practice, it may be better to use a local quadratic regression, by changing
the degree of the curve in the loess command.

This method of graduation has some similarities with the dynamic generalized linear models
suggested by Verrall (1993), and with Whittaker graduation, which can be regarded as a straight
line model whose gradient varies smoothly with age (see Verrall, 1994).



4. Implementation in S-PLUS.

The generalized linear models and the generalized additive models can all be implemented in S-
PLUS. This is a very flexible environment which combines an object-oriented programming
language, a diverse and coherent collection of tools for statistical analysis and extensive
graphical facilities. This makes it highly suitable for graduation, and it is possible to design a
graduation programme which fits, evaluates and compares all the above methods of graduation.
Books which contain detailed descriptions of the S-PLUS system and its use in statistics include
Chambers and Hastie (1992) and Venables and Ripley (1994). The purpose of this paper is to
emphasise the possibility of introducing a significant amount of coherence to graduation
techniques. It also makes it possible to use non-parametric graduation methods in conjunction
with parametric methods. For example, there is a developing field of research into the use of non-
parametric smoothing methods to assess and improve parametric models. One way to do this is
to fit a parametric model and then smooth the residuals using a non-parametric smoother. This
was briefly considered in Gavin et al (1995) and will be investigated further in section 5.

As an example of how S-PLUS can be used the code is given below for carrying out a parametric
straight line regression graduation and a Whittaker graduation (using the exact likelihood rather
than the normal approximation usually used in the actuarial literature). It is assumed that ¢, is
being graduated, using a binomial distribution and a logit link function. The numbers of deaths,
the exposure and the ages are assumed to be in the vectors deaths, exposure and age
respectively.

We illustrate the results using the data from table 17.4 of Forfar et al (1988).

crude.rate <- deaths/exposure
binmat <- cbind(deaths, alive = exposure - deaths)
g.glm <~ glm(binmat ~ age, family = binomial)

g.whit <- gam(binmat ~ s(age), family = binomial)
win.graph()

par (mfrow = c(1, 2))

plot (age, crude.rate, main = "Straight Line")
lines(age, fitted.values(g.glm))

plot (age, crude.rate, main = "Parametric Graduation™)

lines(age, fitted.values(g.whit))

The function g1m fits a generalized linear model, in this case the distribution is specified to be
binomial using the fami1y= option. In S-PLUS, binomially distributed data is handled by
defining a matrix whose first column contains the number of successes (deaths) and whose
second column contains the number of failures (alive=exposure-deaths). This is the reason for the
cbind command which binds together the vectors column-wise. It is straightforward to use
other linear predictors. For example, a quadratic polynomial could be fitted (using orthogonal
polynomials) by the command )
g.glm <- glm(binmat ~ poly(age,2), family = binomial).

The results of this fit are assigned to an object, which is here called g . g1m. This object can be
used in a number of ways. The commands above show how a plot of the graduation can be
obtained (the result of this is shown below). The command summary (g.glm) gives the
following information:
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Call: glm(formula = binmat ~ age, family = binomial)
Deviance Residuals:

Min 1Q Median 3Q Max
-3.507917 -1.007146 0.02162252 0.7828463 2.334852

Coefficients:
Value Std. Error t value
(Intercept) =-8.87182491 0.0596038189 -148.8466
age 0.08428521 0.0008177627 103.0681

(Dispersion Parameter for Binomial family taken to be 1 )

Null Deviance: 9865.668 on 49 degrees of freedom
Residual Deviance: 84.95456 on 48 degrees of freedom
Number of Fisher Scoring Iterations: 3

Correlation of Coefficients:
(Intercept)
age -0.9966998

Some explanation is required for this output. The deviance residuals are defined in section 2.4 of
McCullagh and Nelder (1989), and are residuals defined to be suitable for generalized linear
models. The lowest, highest, lower and upper quartiles and median of these is given. The
parameter estimates are called coefficients in S-PLUS. The deviance (see section 2.3 of
McCullagh and Nelder, 1989) measures the goodness-of-fit and can be used for comparing
models. Model choice is a balance between the deviance and the degrees of freedom (goodness-
of-fit versus smoothness). The routine used to fit the models is called a Fisher scoring iteration.
To use Whittaker graduation, all that is necessary is to change from glmto gam and to use the
cubic smoothing spline smoother, s (). The command win.graph () opens a graphics
window, par (mfrow = c(1, 2)) divides this window into two so that two plots can be
shown together, and plot () and lines () are generic functions which plot the crude rates
and draw lines for the fitted rates. The graphical output is shown in Figure 4.1.
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Figure 4.1 Whittaker graduation with 4 degrees of fre straight line, quadratic and cubic
parametric fits.

To use a Poisson distribution for mortality rates, the following commands are appropriate:

g.glm <- glm(deaths ~ age + offset(log(exposure)), family =
poisson)

g.whit <- gam(deaths ~ s(age) + offset(log(exposure)), family =
poisson)

The locally-weighted regression smoother (loess) can be applied by replacing s (age) by

lo (age) in the gam functions. Thus, a loess smooth applied to the same data as above would
be obtained from

g.loess <- gam(deaths ~ lo(age) + offset(log(exposure)), family =
poisson) '

The loess smoother is used in the example below which illustrates non-linear graduation.
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To implement a non-linear graduation, the likelihood function itself must be specified explicitly
in order that the relevant calculations can be made. Consider first graduating g, using the
LGM(#,s) function. The following function calculates the likelihood for this model, where gm is
the non-linear predictor of the form

r-1 s-1

>ax +exp[zp’ix") .

i=0

lbin <- function(gm,deaths, exposure)
exposure*log (1+gm) -deaths*log (gm)

When graduating x, using the GM(#,s) function, the function below is appropriate.

lpois <- function(gm,deaths, exposure)
exposure*gm-deaths+*log (gm)

As is well known, great care must be taken with non-linear graduation to ensure that the
parameter estimates correspond to a global maximum. Starting values must be supplied which
avoid values for gm which are not feasible (for example gm cannot be negative). It is usual to
keep all the data for each graduation together in a dataframe which can be specified in the
appropriate functions for generalized linear or additive models. The same applies to non-linear
graduation, and in this case the parameters themselves must be explicitly specified in the
predictor and starting values included in the dataframe. For this purpose, the dataframe with the
parameters attached becomes a parameterised dataframe. We consider the graduation of the data
from table 17.4 of Forfar et al (1988). The complete sequence of functions for this graduation is
given below. It is assumed that the data have been imported into S-PLUS as the data frame fmw
with the names of the variables in the top line.

parameters (fmw) <- list (alpha0=0, alphal=0,beta0=0,betal=0)
attach (fmw, 1)

agel <- (age-70)/50

alpha0 <- -0.005

alphal <- -0.005

betal <- 4

betal <- -3.2

detach(1l, save="fmwnew”)

fit.fmw <-ms(~lpois(alphaO+alphal*agel+exp (beta0+betal*agel),
deaths, exposure), fmwnew)

This assumes that the function 1pois has already been created. The object it . fmw contains
... and the fitted values may be obtained as follows.

p.fmw <- fit.fmw$parameters
fv.fuw <- p.fmw[ll+ p.fmw[2] *agel+ exp(p.fmw[3]+p.fmw[4] *agel)



Thus, the graduation may be plotted using

plot (age, log (deaths/exposure))
lines (age, log (fv.fmw) )

We illustrate this and the loess smoother together. We will use the default settings for the
smoothing parameter in loess, and first consider the default smoothing function (locally linear
smoother). The plot below shows the loess smoother together with the non-linear graduation
used by Forfar et al.

-2
I

log(deaths/exposure)

20 30 40 50 60 70 80
age

Figure 4.2 Graduation of Forfar et al (solid line) and loess graduation (dotted line).

Clearly the Joess smoother does not produce a satisfactory graduation since the shape is not
captured satisfactorily. It would be possible to experiment with the smoothing parameter.
However, the shape of the graduation seems to indicate that a local quadratic smoother would be
more appropriate. This can be fitted using the following function.

g.loess <- gam(deaths~lo(age,degree=2))

The results of this graduation are shown in Figure 4.3.
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Figure 4.3 Graduation of Forfar et al (solid line) and loess graduation (dotted line).

Clearly this is more satisfactory, and it could represent an improvement on the parametric
graduation.

5. Practical Implications

This paper has shown how all the standard methods of graduation can be applied within a unified
framework. It has also suggested that there are other smoothing procedures which have great
potential benefits and represent improvements over existing methodology. However, it has not
been the aim to advocate one particular method in preference to any other. The advantage of
having parametric and non-parametric graduation techniques all available together is that they
can all easily be applied and compared in the process of arriving at a suitable graduation. There
are other uses to which the non-parametric smoothing techniques could be put, which are
discussed below.

For example, a practitioner may prefer to use a parametric graduation but might find a non-
parametric method with its greater inherent flexibility useful for exploring the data to decide the
range of parametric models to use. It is possible that a practitioner whose preference was for
parametric models might find that a non-parametric graduation was more satisfactory, were it
easily available.

Another important advantage of the approach outlined in this paper is in assessing the goodness-
of-fit of the graduated values. Naturally, it is possible to use all the standard goodness-of-fit
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criteria in S-PLUS ( 4 tests, runs tests, signs tests, etc.) as suggested by the standard actuarial
literature. It is also straightforward to examine residual plots, using the advanced graphical
facilities available in S-PLUS. But a further useful procedure which was first suggested by Gavin
et al (1995) is to apply a non-parametric smoother to the residuals as an aid to the identification
of departures from the fitted model.

Finally, it is possible to use parametric and non-parametric graduations together. A simple
parametric model might provide fairly reasonable overall graduation, but one which is not
completely satisfactory throughout the whole range of ages being graduated. Gavin et al (1995)
suggested applying a non-parametric graduation to the residuals (suitably defined) from the
parametric model and adjusting the parametric fit accordingly.

These new techniques for using non-parametric graduation in conjunction with parametric
graduation are under investigation by the author and will be reported more fully in subsequent
papers.
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