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Abstract

The Analysis of Actuarial Investment Risk considers the theoretical foundations of different measures
of investment risk in an historical context. It begins by looking at the justifications of variance of
investment returns as a measure of risk. Utility functions which are not as restrictive as those which
lead to the choice of variance of returns as a measure of risk are then discussed. Actuaries have long
considered risk control from a practical viewpoint. Canons of investment have been proposed by
various authors. The underlying utility functions and investment risk measures which relate to practical
and theoretical contributions in the field of actuarial science applied to institutional investment are
analysed. Criticisms of utility theory are then discussed and the application of expected utility
maximisation models, as methods of risk control is proposed. Practical applications of those models are
considered. .
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THE ANALYSIS OF ACTUARIAL INVESTMENT RISK

Introduction

In recent years, in the actuarial literature, there has been some discussion of the

meaning of investment risk. Some of this discussion has concentrated on asset
risk, for example Clarkson (1989) and some of the discussion has empbhasised the
importance of the interaction of assets and liabilities. Much of the United
Kingdom actuarial literature on investment risk has bypassed the wealth of
financial economics literature on the subject. This is probably, in part, due to the
unfamiliarity with the work in that area. However, it is also due to the fact that
the applications of financial economics, emphasised in the literature, have seemed
remote from the problems faced by actuaries.

In particular, the capital asset pricing model, developed from work by Sharpe
(1963), Tobin (1958) and Sharpe (1964) is often seen to be built on unrealistic
assumptions and to employ an unrealistic view of risk (variance of short term
returns). Also, work by Markowitz (1952, 1987 and 1991) has tended to emphasis
variance of short term investment returns as a measure of risk. However, much of
the work undertaken by financial economists does allow for a broader definition
of risk than variance of investment returns. There is, for example, important
work, undertaken by Markowitz, demonstrating that many other measures of risk,
approximate to variance of investment returns in most situations [see Levy and
Markowitz (1979)]. Financial economics has also been criticised by actuaries for
ignoring liabilities although some of the problems have, more recently, been
addressed by Sharpe and Tinte(1990).

These criticisms of some of the applications of financial economics and of some
of the simplifying assumptions should not prevent actuaries from using some of
the precepts of the discipline for the analysis of investment decisions. This paper
therefore takes a step backwards and discusses the body of literature on utility
theory, which is the backbone not only of financial economics but also of
insurance and investment risk. The use of variance of investment returns as a
measure of risk is analysed and criticised by relating it to its original utility theory
origins. The implicit assumptions which justify the use of variance as a measure
of risk are analysed explicitly.

The different measures of risk, which have been proposed in an actuarial context,
are analysed in a utility theory framework. The applications of utility theory to
actuarial investment problems are then discussed. Non-utility theory approaches
to risk control are also considered. Indications are given as to how future research
can lead to a more analytical approach to investment risk being taken by actuaries.
This paper can be seen as taking one aspect of the papers by Smith (1995) and
Clarkson (1996) on financial economics, developing that aspect and drawing out




its uses to actuaries. It can also be seen as a review paper, tracing the origins of
investment risk measurement and reviewing the applications of different
approaches to risk to the solution of current actuarial problems.
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The Basis of Utility Theory

Utility theory was first used by Bernoulli (1738) to explain the “St. Petersburg
paradox”. It appeared, from empirical observation, that gamblers were unwilling
to stake money on a “fair game”, which had a finite probability of a large loss.
Bemoulli, in offering an explanation for this paradox, suggested that the
determination of the value of wealth was not based on its monetary amount but on
the utility that monetary amount of wealth provides. An investment corollary of
this observation is that the value of an investment is not based upon its expected
pay off but on the expected utility that may be yielded from the various pay offs.
Bemoulli suggested that to value a set of possible pay-offs from a risk we should
determine the amount of money which, when paid with certainty, has the same
value as the risky set of pay offs.

The utility function is an attempt to put a numerical value on different levels of
wealth. The legitimacy of attempts to do this will be discussed in Section 8.
There are two principles which are normally used when postulating a utility
function. If the utility of a given level of wealth (X) is defined as U(X), then it is
normally assumed that:

U'(x)zo

That is, we assume that we do not prefer less wealth to more. Any individual who
did prefer less wealth to more could presumably find ways of disposing of wealth
until this position was rectified. It is also normally assumed that:

U"(X)<0

That is, the value we put on a given increment in wealth does not increase as our
level of wealth increases. If the value we put on a given increment in wealth
decreases as wealth increases, then we have diminishing marginal utility of
wealth.

The utility functions described in Section 3 have the above properties. They also
have the property that the same functional form is assumed throughout relevant
regions of income. The assumptions of a continuous functional form and of
diminishing marginal utility of wealth are later relaxed.
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Utility Functions: The Basis of Variance as a Measure of Investment Risk

Consider the simplest form of a utility function is such that I/”(X) =0, to give:
UX)=a+bX  b>0.

An investor taking decisions involving risk will look to maximise the expected
value of the function a+,X where X denotes the wealth after the outcome of the
investment.

Let the starting value of wealth = ¥ and the random accumulation of an
investment = 4. We choose an investment portfolio so that we:

Max E[a+b(W + 4)]
ie. Max[a +bW+bE(A)]

Given that 4 is the only random component, the utility maximising investment
strategy is the one which maximises the expected investment return. This arises
because a linear utility function indicates that the investor is not at all risk averse.
Such a trivial form of utility function may have applications over certain ranges of
wealth or in special situations.

Now consider the utility function:

U(X)=a+bX +cX? with ¢<0,h>0

Again, if we let the starting value of wealth = ¥ and the random accumulation =
A, we choose a portfolio that maximises the expected utility of the accumulation
so that we:

Max E|a-+b(W + )+ c(W + A)’]
i.e. Max[a+bW +bE(A)+cW? +2cW E(A)+ cE(47)]

Three points are worthy of note here. The elements of the function to be
maximised are functions of E(4) and E (Az): the maximisation of utility

therefore depends only on the mean and variance of the probability distribution of
the accumulation (and therefore of investment returns). Secondly, W simply
becomes a constant and, although the value of W helps determine the portfolio
which maximises utility, for a given level of W we do not require the initial wealth
explicitly in the function of mean and variance of return which we maximise.
Thirdly, for a given level of expected return, a reduction in variance increases
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expected utility and for a given level of variance an increase in expected return
increases expected utility.

Utility theory thus provides a justification for mean-variance efficient frontier
analysis. It should be noted that the quadratic utility function should not peak in
the relevant range of investment returns.

The utility function suggested by Bernoulli (1733) was logarithmic. In its
simplest form, this would require:

U(X)=In(X)

Letting the starting value of wealth = I and the random accumulation = 4, we are
required to choose a portfolio which maximises the expected utility of the
accumulation so that we:

Max E[in(W + 4)]
if we use Taylor’s expansion [see Markowitz (1991)]:

E[U(W + A)] = E[ln(W + A)| = U[E(W + A)|+ U [E(W + A)[EW + A- p)]+
UrE(W + A)]E(KJT—“Y+
where 4 is the first moment of W+ 4 i.e. E(W + A)

Var(W + A)

therefore E|In(W + A)|=In|W + E(A)|-
in ) =l () 2w+ E(4)]

Thus, ignoring higher order terms, we can approximate a log utility function by a

quadratic utility function which relies on the maximisation of a function of the

mean and variance of the accumulation. The approximation will tend to work

quite well at most realistic levels of investment returns: this is an issue to which

we will return later.

The particular feature of a log utility function, which may make it attractive in
practical use over significant ranges of wealth, is that it assumes that an investor
believes that a given proportionate increase in wealth is equally valuable at all
initial levels of wealth. It therefore leads people, over such levels of wealth, to
take the same investment decisions if they are investing the same proportion of
their wealth.
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An alternative is a fractional utility function of the form U(X)= X*

0<a<1. Specifically Cramer proposed a fractional utility function with a= 4.

Thus, if the investor has wealth /¥ and a random accumulation A4, he should
choose the portfolio so that it:

Max E(JW+ A)

Another class of utility function which has well defined properties is the class of
exponential functions. Defining W and A4 as before, we can consider two possible
exponential functions:

U(X)=-e*  ¢>0 and
UX)=e™  ¢<0
therefore, we:
Max E [—exp(—c(W+ A))] c>0
or Max E[exp—c(W+A)] c<0.

Where ¢ is known as the ‘risk tolerance parameter’ that is, it indicates the
investor’s tolerance to risk. The most important feature of exponential utility
functions is that they exhibit “constant absolute risk aversion”. The concept of
risk aversion will be discussed in Section 4. This property means that all investors
will take exactly the same decisions if they invest the same amount of money,
regardless of their starting value of wealth W.

For any given statement about the moments of the distribution of investment
returns, which are considered by an investor, we can postulate the class of utility
functions which the investor will consider and vice versa. It is useful to consider
the rationale of the linear, quadric and log utility functions. An investor who is
simply interested in maximising expected return and is not at all risk averse will
have a linear utility function. An investor who solely considers expected return
and variance of returns (so that variance is the measure of risk) will prefer a
quadratic utility function: such an investor would only ever work in a mean
variance framework. An investor who is risk averse and judges an equal
proportionate gain (or loss) in his income to be of equal value, whatever his initial
income, would prefer a logarithmic utility function. Such a utility function may
be approximated by one depending only on mean and variance, over a certain
range of income.

A further rationale, which can be put forward to justify mean-variance analysis,
arises from the results obtained if we assume that the accumulation of an
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investment follows a normal distribution. Let the utility function U/(.X') be any
function of X which fulfills the properties stated in Paragraph 2.2. If the

investment accumulation is normally distributed with mean g and variance o2,
the expected utility from a financial decision which involves the adding of a
random quantity 4 to wealth W is:

EHuw+4)={" [ J;Ta]exp|:— %(“ ;”)Z]U(W + A)da

where the random variable 4 is the accumulation of the investment.

E[UG+ A =U[E® + A+ U"[E(u; Aot | U"'[E(I/:!+ s,

Where 4, is the third central moment of W+ 4. In general o? is the second

central moment of W + A, but this is equivalent to &, the second central moment
of A. Because A4, and therefore W + 4, follow a normal distribution, all the
central moments of W + A depend only on z and o: the mean and variance of
the random accumulation (and hence depend only on the mean and variance of
investment returns). Thus, we choose our investment portfolio to maximise a
function of the mean and variance of investment returns. The particular function
of mean and variance that we maximise depends on the utility function and its
differentials.

If the investment accumulation from an investment decision follows a lognormal
distribution, finding a utility maximising portfolio also only depends on the values
of the mean and variance of the accumulation as all other parameters can be
defined from these. However, combinations of investments which each have a
lognormal distribution do not necessarily give rise to portfolios the accumulation
from which follows the lognormal distribution.

Thus, we have two justifications for the use of variance of returns as a measure of
investment risk: quadratic utility functions and normal returns. The latter is an
empirical matter but, given that, in an actuarial context the variable under
consideration is likely to derive from the complex interaction of assets and
liabilities and the actuary will be more interested in extreme events, it would be
bold to assume that the normality assumption is reasonable, prima facie. We
should therefore turn to whether a quadratic utility function is a good
approximation to the investor’s preference set. One way of considering this is by
looking at the risk premium and pattern of risk aversion which is implied by a
quadratic utility function.
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Risk Aversion and Risk Premiums

Risk aversion was defined by Pratt (1964). For a given utility function U (X ) , it
is necessary to require U/’(X)> 0 for an individual to prefer more money to less.
Furthermore, the requirement {/"(.X) <0 ensures that an individual is risk averse.
However, neither U'(X) nor U"(X), indicate how risk aversion is changing.

However, we can see how risk aversion changes by looking at the risk premium an
investor demands for an actuarially neutral investment.

Consider an individual with a given amount of wealth # and random
accumulation A. The individual can be said to be risk averse if:

E[UW + 4)| < U[w + E(4)]

That is, the individual prefers an investment with a known payout of E(A) to one

which has a random payout 4 with the same expected value. The extent of this
aversion to risk can be determined by looking at the risk premium the investor
requires from a risky investment. Adapting Pratt’s notation, the risk premium can
be said to be equal to 7(/, A): for a given utility function, it is a function of the

starting wealth (W) and the distribution of the random additions (4). The risk
premium for an investment is such that:

UW + E(4) - (W, 4)|= E[U(W + 4)]

That is, 7(W, A) is the deduction which can be made from the expected value of

the investment return which leads the investor to be indifferent between
E(A)- n(W, A) with certainty and the random variable 4 under conditions of

uncertainty. E(4)- 7r(W, A) can be regarded as the risk free accumulation
equivalent to the risky investment. It is they way in which #(W, 4) varies with W/
that determines the pattern of changing risk aversion.

The investor’s local aversion to risk is measured first by looking at the risk
premium for a small, actuarially neutral risk (so that £(4)=0). Thus we look at

(W, A) such that:

Ulw - ={w, 4)|= E[U(w + 4)]



To measure local aversion to risk, we also require the small variance of the
investment o%. Thus, we consider ;r(W, A) with E(4)=0, o — 0 and the
third central moment of 4 being of smaller order o

UW = (W, 4)|=UW)-z(w, AU (W) +[z(w, A)] U"(W)-...

E[U(W + ) =UW)+ E(4)T (W) + % E(A)U (W) + ..

=UW)+ Y% 0% U(W)

2 U"(7)
“umwy

Therefore: Il'(W, A) ~-Yo

Thus, the risk premium is proportionate to:

_ur(w)
u(w)
when considering risks of given variance — U’((W)) = r(W) is defined as the

measure of risk aversion in Pratt (1964). The measure of risk aversion will
indicate how the risk premium for similar risks will change with wealth. As r(7)

becomes higher, it implies a higher required risk premium and therefore lower risk
tolerance.

4.4  TItis therefore of interest to consider the risk aversion properties of some of the
utility functions we have looked at so far. With a starting value of wealth ¥ and
random accumulation 4, the linear utility function is defined by:

UMW+ A)=a+b(W+ A)
U'W)=b and U"(W)=0

uw)
“uw)

rw)=

0 for all values of W.

Thus, using Pratt’s measure of risk aversion, the well known result that the linear
utility function has constant (zero) risk aversion is confirmed.
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Considering now the quadratic form:

UW+A)=a+bW+A)+c(W+A) c<0
h>0

we have
U'(W)=b+2cW  and

U"(w)=2c

2¢
W)=
== 5

This measure of risk aversion (given ¢ < 0) increases until such point that
b=-2cW . This is the point at which the quadratic utility function peaks and we
are not interested in the quadratic utility function after it has peaked, as it implies
marginal disutility of income. Thus the quadratic utility function implies
increasing risk aversion over all relevant values of the starting value of wealth.
Therefore, for initial starting values of wealth W, and W,, where W, > W, the
measure of local risk aversion will always be higher at W, + 4 than at W, + 4, for
any particular value taken by the random variable 4. This is a serious
disadvantage of the quadratic function as it would appear intuitive that investor’s
become less risk averse (or at least no more risk averse) as they become wealthier.
This perhaps undermines one of the foundations of the mean-variance framework.
Indeed, Pratt (1964) states, “This (feature) severely limits the usefulness of

quadratic utility, however nice it would be to have expected utility depend only on
the mean and variance of the probability distribution” (Page 132).

Let us now consider one of the exponential forms.
U(W+A)=—exp[—c(W+A)] c>0
U'(W) = c exp(—cW)

U"(W)=—c® exp(-cW)  and therefore

C2

r(W)=7=C.

Thus, we have constant risk aversion, measured by the investor’s risk tolerance
parameter c. This feature of constant risk aversion would seem to imply that,
whatever the starting value of wealth, W, the investor would take the same
investment decision if a given amount of the initial wealth was invested.
However, this result is only intuitive because the measure of risk aversion is a
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differential which only considers the risk premium for an infinitesimal, actuarially
neutral investment. Let us consider the relationship between the portions of the
utility function allowing the investor to invest in a random risk 4 which is not
constrained to be actuarially neutral. If the investor has initial wealth, W,, the

utility of wealth can be written as:
U(W, + A) = —exp[-c(# + 4)] c>o0.

If the investor has initial \;vealth W, , the utility of wealth can be written as:
U, + 4) = —exp[--c(W2 + A)] c>0.

A is a random variable which can take positive or negative values.

UW,+4) =-exp(-cit,) exp(-cA)
=—exp = (cT1) exp(eth) expl—c(; + 4)]
= b exp[—c(W; + 4)]
where b= ~cxp - (c¥;) exp(cH,).

A utility function is unaffected by any linear transformation in the sense that no
linear transformation of a utility function will affect any investment decisions.
The utility after any increment in wealth 4 (for any value of 4), if the starting
value of wealth is 17, is a constant multiple of the utility caused by the same
increase in wealth 4 if the starting value of wealth is #,. The investment decision
which leads to the greatest expected utility if the starting value of wealth is W,

must be the same as that which leads to the greatest expected utility if the starting
value of wealth is . Thus, if investors are assumed to be risk averse to the same

degree, whatever their wealth (that is they demand the same risk premia from the
same size investments) they are likely to have exponential utility functions. They
will then take identical investment decisions regardless of their initial level of
wealth if they invest the same amount of money. The use of an exponential utility
function is intuitively appealing because of constant risk aversion and it has been
used in the actuarial literature by Sherris (1992), Booth and Ong (1994) and Ong
(1996). However, the risk aversion properties of the log utility function are
perhaps even more appealing.



4.8  Consider an investor with a log utility function so that:
UW + A) = In(W + A)
We have:

U =% and

2

ur(w)= _WL therefore:

r(w)= %’V

As W increases, r(W) falls, thus the required risk premium falls. Interestingly,
the required risk premium is inversely proportionate to income.

4.9  The risk premium can also be expressed in proportionate form. Paragraphs 4.1
and 4.2 looked at the absolute risk premium for a fixed investment. Consider an
investor, with starting wealth , who undertakes a risk WA. For a given value of
A the risk would give rise to a set of payoffs which would be defined in terms of a
given proportion of wealth rather than by a given amount of wealth.

4.10 Adapting the notation of Pratt (1964), 7 *(W, 4) can be defined as the
~ proportionate risk premium. Thus 7 *(W, A) can be defined such that the
investor is indifferent between the risk WA and the certain amount:

E(WA)-Wr* (W, 4)

The concept of a proportionate risk premium is perhaps less intuitive than that of
an absolute risk premium so it is worthwhile considering a particular example. An
individual with initial wealth of W would define the risk in terms of a proportion
of that wealth. If we set W =100 and 4 =0.1, the risk premium T*(w, A)
would be a prqpoxtionate deduction from wealth which would be accepted by the
investor for taking the expected accumulation of wealth with certainty, rather than
the random accumulation. Thus, if the expected value of the return from the
random investment is 10%, then E(WA) is 111=(100+0.1x 100+0.01x 100).

The proportionate risk premium could be a number such as 0.001, so that the
investor was indifferent between 110.9 with certainty (111—100x 0.001) and the
starting wealth of 100 and risk A which give an expected accumulated wealth of
111. The proportionate risk premium is defined in terms of a proportion of wealth
(W) for an investment of a given proportion of wealth (4): for a given value of 4
it can also be written in terms of a proportion of 4.

>
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Utility of What to Whom?

Most of the financial economics literature has concentrated on the maximisation
of the utility of the accumulation of (generally short term) investments." This is
clearly inadequate in the actuarial context.

If we consider the shareholders of a proprietary life company, one of the aims of
the company should be to maximise the expected utility of the real value of the
distribution to shareholders. This is the approach taken by Sherris (1992) and by
Ong (1996). The liabilities of the company will consist of non-profit and with-
profit liabilities and shareholders’ and policyholders’ funds together with future
expenses. The investment decisions should be taken so that policyholders’
liabilities are met and the dividends paid to shareholders prov1de them with the
highest expected utility, given their utility function.

Three qualifying points are necessary here. If this policy does not simultaneously
provide a close to expected utility maximising situation for with-profit
policyholders, it would have to be reconsidered. Secondly the shareholders have
limited liability. Thirdly, there can be said to be a number of other interested
parties in the life office: non-profit policyholders, with-profit policyholders,
management and regulators. This paper, nor other literature in this field, has
attempted to reconcile the claims of with-profit policyholders and shareholders, in
so far as they conflict: that is a rich research area in its own right.

The interests of shareholders are satisfied if the expected discounted utility of the
real income flow to shareholders is maximised. At first sight, it could be thought
that this implies that shareholders are indifferent to how insolvent an insurance
company becomes in the event of it becoming insolvent (due to limited liability).
This is not a reasonable interpretation. The insurance company is likely to be
closed to new business (or lose new business) well before the company has a
negative net present value as a going concern. It will therefore be critical not to
fall below this particular level of solvency at which it would lose new business or
be closed to new business: otherwise expenses would rise and profits fall very
quickly.

The recognition of this position can help us draw inference about the sort of utility
function which could be used to accord with the preferences of the professionals
who run the company and the management and regulators. The actuaries taking
financial decisions are charged with a professional duty to policyholders. In
fulfilling this duty they will have a particular aversion to becoming insolvent.
Other management will share the aversion to the business ceasing to be a going
concemn, and so will the regulators. Modelling the sharp drop in profits that
occurs when the office is closed to new business and the utility drop of the various
parties when the office ceases to be a going concemn is difficult. It also leads to
philosophical difficulties regarding whose utility we should be maximising. Ong
(1996) has suggested some practical solutions.
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The situation pertaining to a non-life office is rather similar to that described
above. In many ways the use of utility theory in determining investment strategy
is easier as there are no with-profit policyholders to consider and the labilities
will tend to be of shorter duration. The modelling of a non-life company, using
utility theory to aid the asset allocation decision has not been pursued by the
author: it is, however, a possible fruitful area for further research.

For a pension fund, a number of variables could be put forward for optimisation.

One possibility would be to try to minimize the expected utility of the
contributions into the fund. This approach would be very difficult to understand
and model. An alternative would be to work within a framework similar to that
proposed by Wilkie (1985) and to maximise the expected utility of the ultimate
surplus for a given level of initial surplus and contribution rate (the contribution
rate could be ignored if we only considered liabilities accrued to date). It is
important to express money amounts in real terms.

As far as personal investors or investors in money purchase pension schemes are
concerned, we can look at the expected utility of the accumulation of the real
value of the fund. The utility function is likely to have a complex shape with one
or more discontinuities. Some experiments in risk measurement for personal
pension investors are described in Booth (1995},

To talk about maximising the expected utility of the various cash flows to
interested parties may seem esoteric and impractical. However, every measure of
risk proposed by actuaries or financial economists has a utility function behind it,
if only implicitly. In the following sections, we will therefore discuss some of the
historical actuarial measures of risk and their implicit utility functions; we will
then discuss the value of using a utility maximisation approach and alternative -
measures of investment risk in the context of actuarial management of institutions.
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Actuarial Utility Functions

In this section we look at approaches to risk, taken by actuaries, where a specific
utility function or risk measure has not been stated explicitly. We use the
principles which are used by actuaries in determining preferences for different
investments to find implicit utility functions and risk measures. We can derive an
implied utility function from any set of investment canons which allow us to order
all possible investments. Bailey (1862) proposes a number of canons of
investment. The first two, which relate risk and return, are:

~

1. That the first consideration should invariably be the security of capital.

2. That the highest practicable rate of interest be obtained but this principle
should always be subordinate to the previous one: the security of capital.

It is clear that by “security of capital” Bailey was referring to a requirement to
ensure that the capital value of investments varied as little as possible. Pegler
(1948) indicated that Bailey’s canons had been generally accepted from 1862 to
the time of Pegler’s paper in 1948. Merely concentrating of “the security of
capital” of the investments is, however, inadequate. This emphasis may have
arisen from the relatively slow response of liability valuations to changes in asset
market values in the middle of the 19th century. If asset market values fell, there
may not have been a response in terms of changing the valuation rate of interest of
the liabilities and the insurance company may have appeared insolvent. Bailey
proposed increased investment in fixed interest mortgages which provided the
security of income but, not being marketable, did not suffer from fluctuations in
market value. Pegler proposed different canons and suggested that the first two of
Bailey’s canons were inappropriate. However, Swaminathen, in a written
contribution to Pegler (1948) suggested a modemisation of Bailey’s canons. A
slightly different modemnisation, in fact, gives rise to a pair of canons which are
remarkably durable.

Thus, updated, Bailey canons might say:
1. The first consideration should invariably be the security of the
capital of the insurer after all liabilities have been met (including

reasonable expectations of with-profit policyholders).

2. Subject to the above, the aim of life office investment should be to
obtain the maximum expected yield.

(The second proposed modernisation is taken directly from Swaminathen).
These revised canons have some similarities with the decision making paradigm

for life companies proposed in Section 5. The protection of the insurer’s capital is
paramount (this reflects the utility of policyholders whom actuaries protect and of
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the managers and regulators). Having satisfied this, we look for the highest
expected return. In utility theory terms, this could be represented as follows:

Utility
/ |
Value of
/ shareholder’s wealth

Figure 6.1
Above the discontinuity the function is of the form:
UX) = a+bX b0, X:-0.

Any utility function such as this, with a discontinuity, has the difficulty that it
implies that the insurance company, once insolvent, will be particularly keen to
become solvent again even if this involves risking the remaining policyholders’
funds. This is clearly not what Bailey had in mind.

The best way to deal with this difficulty is to incorporate the ideas of Friedman
and Savage (1948). In an attempt to explain why people both insure and gamble
(when a continuous concave utility function would imply that rational people
should not), Friedman and Savage put forward two hypotheses. Firstly, the utility
function was possibly partially convex. Secondly, that people may put a very high
utility on being able to break into a higher income bracket (considerably above
their current income) but, once there, people face concave utility functions.

There is an analogy here with actuarial decisions: the actuary puts a very high
disutility on becoming insolvent. Having become insolvent, there is not such a
high utility on returning to being solvent that the actuary is willing to turn to the
roulette wheel. Thus the modernised Bailey canons can be interpreted as implying
that the utility function is as shown in Figure 6.1, as long as the company is taking
the decision whilst it is solvent.

Pegler (1948) criticised the emphasis on security of capital in the Bailey canons.
He suggested that the life office should obtain the maximum expected return
whilst spreading assets across the widest possible range (presumably whilst not
reducing the expected return significantly). This principle is implicitly imposing a
linear utility function across all ranges of investment return. In the author’s view
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it does not allow sufficiently, either for the security of capital or for diminishing
marginal utility of wealth.

Clarke (1954) suggests that the investor should, “maximise the expected yield
with the minimum of error, having regard to the nature and incidence of the
liabilities”. This approach, in a sense, defines the “efficient” portfolio which an
investor may choose without giving any indication as to how the investor may
trade risk and return. Clarke believed that this approach could not be avoided. It
should be noted that Clarke brings in liabilities in a way similar to Bailey’s
modemnised canons. Also, because "minimum” of error is defined in terms of the
risk of not meeting the expected yield (rather than in terms of standard deviation
of return) the downside risk is also brought in.

The above descriptions of investment risk provide indications of how an actuarial
utility function may look. Iam grateful to Lipman (1990) who made this link
although some of Lipman’s interpretations are different. For a given utility
function and probability distribution of investment returns, we can determine the
parameters of the distribution of investment returns which are relevant when
taking investment decisions. The other proposed methods of looking at
investment risk (see Sections 3 and 7) take us in the other direction. They begin
by looking at the parameters of the distribution of investment returns in which we
are interested: we can then define the utility function.

Hemstead (1968), suggested that a reasonable measure of risk would involve
looking at the sum of probabilities associated with financial loss of various levels.
In particular, he regarded risk as the probability of loss of capital or, at a more
acute level, the probability of loss of all capital. This is moving towards the
Clarkson (1989) approach in which a downside risk measure was explicitly
defined. This will be discussed in Section 7.

Markowitz (1952) began the flood of literature on financial economics. His
principles were well grounded in utility theory. His work included a consideration
of semi-variance as a risk measure but the mean variance framework was
preferred partly because of the ease of calculation of the variance of returns from
a portfolio, given the variance of returns from its constituent parts. Much of
Markowitz’s work (eg Levy and Markowitz 1979) demonstrated that the mean
variance framework is a good approximation in practice, regardless of the
distribution of investment returns or the utility function. It may not work well,
however, if the utility function of the investor has a discontinuity. Nevertheless
the remaining parts of this section consider actuarial research which has analysed
investment decisions in a mean-variance framework.

Wise (1984) made a substantial contribution by considering an investment
optimality problem in an asset-liability context. The decision variables Wise
considered where the expected value and variance of ultimate surplus, after
allowing for liability payments. Problems which had analytical solutions or which
could be illustrated by example were discussed. Using simulation it is possible to
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expand the range of problems that can be analysed in this framework.
Covariances, not only between investment returns, but between the asset and
liability values can be used to determine optimal investment solutions.

Inflation linked assets and liabilities were considered alongside fixed money
assets and liabilities. The only extension here is the inclusion of a further
stochastic variable. This logic could, perhaps, have been extended by Wise to
consider, as the decision variable, the mean and variance of the real value of

" ultimate surplus.

Wilkie (1985) noted that Wise’s decision criterion did not lead to efficient
portfolios, in the mean-variance sense, being selected. Wilkie (1985) will be
discussed further below. Here, we demonstrate the mean-variance inefficiency of
Wise’s decision criteria by deriving the characteristics of the underlying utility
function.

In Wise (1984), E; was defined as the expected ultimate surplus (at the end of the
time horizon) and E; as the second moment of the ultimate surplus. There were
two suggested decision criteria. The unbiased matched portfolio was defined as
that which minimised [E] subject to £, being zero. The best matched portfolio
was defined as that which minimised [E;].

The unbiased match condition implies that the portfolio which gave the lowest
variance of surplus should be chosen from those portfolios which gave an
expected surplus of zero. It is not necessarily the most efficient portfolio as it is
conceivable that another portfolio could have a higher expected ultimate surplus
but the same variance of surplus: particularly if the initial level of surplus was
high. This particular case arises from the limiting nature of the unbiased match of
condition and will not be considered further.

The best match condition involves minimising the second moment of the ultimate
surplus i.e. minimising E,” + ¥, where V is the variance of ultimate surplus. If the
ultimate surplus is assumed to be normally distributed, there are a number of
different utility functions which could give rise to this particular decision
criterion. However, normality is not given as a justification for the decision
criterion and therefore we will assume that it was to apply generally. We
therefore need to find the general utility function which leads to a decision
criterion based on minimising the second moment of surplus.

Again, regarding final wealth X, as the sum of initial wealth ¥ and the random
accumulation A4, consider a quadratic utility function:

UW+A) = [a+b(W+A) + c(W+A)?) (6.1

so that we are required to:
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max E[U(W+A4)] or max E[a+b(W+A) + c(W+A4)?).
This is equivalent to:
max [E(b+2cW)A + cA’].
If we use the quadratic utility function, with ¢ = -1 and b = 2W¥ so that we:
| max -E(A’) or min E(4°).
This produces Wise’s decision criterion.

There are a number of features worthy of note. Firstly, the parameters of the
utility function are dependent upon initial wealth #. It was shown in Section 3.3
that, if there were a quadratic utility function, the decision criterion (based on the
first and second moments of the random accumulation) would vary depending on
the starting value of wealth, for given parameters. A corollary is that, if a
quadratic utility function is used with the same decision criterion for all investors
with different initial wealth, the underlying parameters must be different for the
different investors.

This is not a major difficulty with the utility functions implicit in Wise’s decision
criteria. It is quite conceivable that investors with different initial wealth will
have utility functions of the same functional form but with different parameters.
There will be further, possibly offsetting, complications due to investors with
different initial wealth who invest different amounts of their starting wealth. The
issue is also complicated by the fact that the pension plan sponsors, if we are
looking at the surplus of pension schemes, will be companies and not individuals.

The greater difficulty is with the properties of the utility function. Setting a =0
(this is just a scaling parameter which does not affect investment decisions),

b=2W and c=-1, the utility function, for a given starting value of wealth W is:

UW+A) = 2W - W - 4. (6.2)

The marginal utility dUMW+A4) =-24
dA

This utility function would appear to have negative marginal utility of wealth.
This is confirmed if we look at the decision criterion equivalent to Min E (4°) this
would be:

min (E,> + »).

A decrease in expected return, for a given variance appears to be beneficial.
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Differentiating again:

FUMWA)=-2
da?

This implies increasing marginal disutility. Although this also runs counter to the
usual characteristics of utility functions, it is from this property that the intuitively
reasonable aversion to variance arises. As long as the fund sponsor has a given
level of E}, this decision criterion leads to fund sponsors trying to reduce the
variance of surplus: this may, in many ways, be a realistic situation. Thus, rather
than applying the Wise criterion directly (which leads to inefficient mean variance
portfolios being chosen using an illogical utility function), it would probably be
better, to apply the Wise criteria by chosing the mean level of surplus initially and
then choosing the minimum variance portfolios for a given mean surplus. This
would lead to efficient choices. This leads us on to the contribution of Wilkie
(1985).

Wilkie put the asset allocation problem in the presence of liabilities into a more
traditional mean-variance framework. The framework can best be described
briefly, as follows. If we let S be the ultimate surplus; R;, R; and R; be the
amount at the time the last liability is paid of the accumulation of assets 1 and 2
and of the ultimate liability respectively. E,, E; and E are the expected values of
those variables; x; and x;, are the number of units nominal of assets 1 and 2 which
are purchased; V}, V5, Vi, Cj3 C)p and Cy are the variances and covariances
relating to the assets and liabilities. E is the expected ultimate surplus; Vis the
variance of the ultimate surplus and P is the price of the portfolio. P, and P; are
the prices per unit nominal of securities 1 and 2 respectively. Extension to more
than two securities is not difficult in principal.

In the Wilkie formulation, x; and x; are chosen in order to find an optimal
combination of P, E and V. Thus, the following equations are important:

S=x;R; +x:R;-R; (6.3)
E=xE; +xFE;-F; (6.4)
V=x/V;+ 2xx:Cpa+ x37Vs- 20,C 1 - 20,Co + V (6.5)
P=x,P; + x5P, (6.6)

Thus x; and x; are chosen to determine the optimal levels of E, V/ and P. There is
much of the original Markowitz framework in this formulation. The two
important advances, as far as investment actuaries are concerned are the inclusion
of the price of the portfolio and the inclusion of a stochastic liability which can be
correlated with the assets. This second facet can, for example, lead to results
which are counter intuitive in the standard portfolio selection models but which
are well understood as being intuitive to actuaries. For example, an asset type
with a high variability of returns, such as equities, but with a high covariance with
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a liability (for example equity returns with increases in pension liabilities) can
reduce the variability of surplus for a given expected surplus. An increase in the
proportion invested in that asset type can lead to a more efficient portfolio.

It is, perhaps, the price of the portfolio which is the most difficult part of the
Wilkie formulation to understand. This is, in fact, an implicit way of bringing in
inter-temporal considerations. The prices P, and P; are the prices of the assets.
The expected accumulations per unit invested in asset types 1 and 2 (E; and E,)
allow for re-investment or sale before maturity on a different yield basis. Thus,
the price of the security and the expected accumulation define the expected return.

Let us assume that the investor is acting in the face of a fixed budget constraint, so
that P is no longer a decision variable. Then equation (6.6) must hold for a fixed
value of P. The expected surplus equation (6.4) can then be written as the
expected surplus per unit invested:

E_xE+%E-E, 6.7)
P B +x,P

Replacing E; with E /P, and E, with E»/P, and multiplying x, and x, by P, and P,
respectively, we have:

E_(__fﬁ_)ﬂ{ *:Fy ]&- Ec
P \x,P+x,P,) P, \xP+x,P,) P, x,P +x,P,

Replacing the coefficients on E,/P; and E/P;, by oc; and oc; respectively, where o,
and oc; represent the proportion of the total budget invested in each asset type, we
obtain:

£ aFora B b 9
F- Py B P
a,£+a2§1 = E~NE (6.10)
A A P

Thus it can be seen that, taking the expected surplus equation (6.4), we can find
an expression for the expected total fund per unit invested in terms of oc; and o,
(the proportions invested in each asset type). The particular division of the total
fund between E and E} is not relevant in this case as maximising expected surplus
is equivalent to maximising the expected return or total fund for a given price or
amount invested.
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Thus for a fixed budget constraint P, the investor has to choose the proportions
invested in the asset classes (a; and o) to find the optimal mix of return on the
fund and variance of ultimate surplus (which is equivalent to variance of return on
the fund). The “efficient” combinations of proportions invested in each asset type
for a given budget constinant, are those which give the highest expected return on
the fund for a given variance of ultimate surplus. In economic terms the “optimal”
portfolio for the investor is that where the “marginal rate of substitution (of
expected surplus for variance of surplus) in investment” is equal to the “marginal
rate of transformation (of expected surplus for variance of surplus) in the
investment market”.

It is useful to specify the problem in terms of both expected ultimate surplus and
variance of ultimate surplus (as Wilkie did) and in terms of expected return and
variance of return (as we have reformulated it above), as different parties to the -
investment decision may see the problem in different ways. Fixing the price of
the portfolio, using a budget constraint, illustrates the similarity between the
Wilkie approach and traditional portfolio selection approach. The mean-variance
emphasis implicitly assumes either a normal distribution of investment returns or a
quadratic utility function. In reality, the asymmetric position of trustees, in the
face of surpluses and deficits in a pension fund, may make the mean variance
approach inappropriate. In particular the difficulties caused by a pension scheme
becoming insolvent, and the pressure on companies to use surpluses to increase
benefits, together with the Inland Revenue’s surplus retention rules are likely to
lead to a company funding a pension scheme having a complex utility function
with at least one discontinuity. Nevertheless, the inclusion of liabilities is an
important step forward.

The other achievement of Wilkie (1985) was to include the “price of the
portfolio”. So far, we have hidden this by fixing the budget constraint. The

implications of incorporating the price are best uncovered by re-writing equation
(6.6) as:

C=xP; +xP;-L

where C is the excess value of the assets over and above the minimum
recommended by the actuary to meet future liabilities. L is therefore the
actuarially determined liability, in a one period, one contribution model which
will be assumed to be independent of the actual asset portfolio held. The price of
the portfolio is thus seen to be related to the initial surplus.

This reformulation has the advantage of treating C and E in a consistent and
comparable way. The investor has a choice to increase the excess contribution
(and therefore surplus) over and above that which is necessary (i.e. increasing C)
and then to expect more surplus at the end (i.e. increasing E, as can be seen from
equation 6.4). If we include the initial contribution as a decision variable, it is
sensible to concentrate on the cash flows, rather than the investment returns. The
investor can now change the values of x; and x;, x, and x; can be determined in
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order to choose the optimal level of initial excess contribution, expected ultimate
surplus and variance of ultimate surplus. It should be pointed out that L is not a
marketable liability, otherwise it could just be treated as a negative asset in the
portfolio selection model.

Three qualifications of the framework are necessary: firstly, using a mean
variance framework may be inappropriate; secondly further guidance is needed as
to how the fund may deal with variability of surplus and trade it off against -
expected surplus; thirdly, the preference for C against E is inherently a time
preference function: if this is recognised, it is possible to determine the investor’s
optimal contribution and also extend the model into a multi-period model without
increasing the number of decision variables. This brings us to the work of Sherris
(1992).

We can consider the contribution of Sherris in three stages. Firstly, he tackles the
problem of optimising investinent strategy over a single period where the initial
level of surplus is fixed; secondly he considers the optimal level of initial surplus
so that initial surplus, expected ultimate surplus and some measure of variability
of ultimate surplus are decision variables; thirdly, he extends this into a genuine
multi-period model by allowing for the possibility of changing investment policy
and varying the level of contributions and/or surplus to be distributed at different
times. This framework is a generalisation of the Wilkie approach but the
generalisation 1s limited in its power if a mathematically tractable utility function
is to be used. '

If the level of initial surplus (which in the Wilkie formulation corresponds to
fixing the price of the portfolio) is fixed, the optimal outcome is that which
maximises the expected utility of ultimate surplus. Sherris used an exponential -
utility function, implying constant absolute risk aversion. Maximising an
exponential utility function is equivalent to maximising the moment generating
function of the distribution of ultimate surplus: see Booth and Ong (1994) for a
demonstration of how this is done. Although Sherris’ approach is not necessarily
a “mean-variance” framework, his particular application tumns out to be one, as the
two parameter normal distribution of investment returns is used.

Sherris then takes account of the size of the initial contribution which must be
“traded” against the expected ultimate surplus and the variability of ultimate
surplus. Thus the optimal investment allocation is that which maximises the
expected discounted utility of all cash flows, with later cash flows being
discounted to allow for the investor’s time preference. Thus the function to be
maximised is:

E[U(-K)+U(S)/(1+5)]

where K is the initial cash outflow (or the cash outflow over and above some
minimum funding level) and S is the ultimate surplus. b is a discounting factor
which relates the utility of money received in one time period to that received in
another. b is not necessarily a discount rate of the type used for discounting
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monetary amounts but it may be observable from a consideration of the market
pricing of investments. The decision variables are the proportions to be invested
in different asset classes.

The model was then extended to be a genuine multiperiod model. Here we
maximise:
=T
[U-Ky) + X E{U(S)/(1 + b)'}]

=0

where S; is the surplus withdrawn from the fund (or additional contribution if
negative) at time ¢ and K is the initial contribution. The fund is wound up at time
T. The optimal investment policy is that which maximises the expected
discounted utility of surplus.

The Sherris approach effectively generalised the Wilkie formulation by suggesting
a way in which expected ultimate surplus, variability of ultimate surplus and the
initial cash flow could be traded against each other. However, the desire to obtain
analytical results led to a restrictive utility function (the exponential function)
being used which could be regarded as dealing inadequately with investors’ risk
preferences. It is also undesirable to impose restrictions on the distribution of the
decision variable.

A different approach was taken by Krinsky (1985). He used data to estimate the
utility functions of Canadian insurers. The “profit” of the insurer is defined as the
return on the equity of the business and it is assumed that the insurer’s utility
function is defined in terms of the expected value and standard deviation of the
insurer’s end net worth. The problem for the insurer is to determine the
proportion invested in each asset class to maximise the expected utility. Krinsky
finds expressions for the impact of a change in the return on one asset on the
demand for the other asset, and of the impact of a change in the riskiness of one
asset on the demand for the other asset. This is relatively straightforward, for the
two asset case and when the asset allocation problem is defined in terms of
maximising a function of the mean and variance of the surplus (indeed, Wilkie
(1985) finds similar expressions in the three dimensional model).

Krinsky then worked backwards through the optimisation problem. The
assumption was made that investment returns were normally distributed (this
assumption was tested but at a weak level). The expected values and variance of
returns from different asset classes were estimated from recent levels of
investment returns and current index levels. Non-linear maximum likelihood
methods were then used to estimate the utility function which would have led the
insurer’s asset distribution to be a utility maximising one: the data were used to
derive maximum likelihood, utility maximising parameter estimates for different
functional forms of the utility function; the functional forms were then tested
against each other. The two findings of greatest interest were that: six out of eight
insurers appeared to have square root or quadratic utility functions; secondly
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mutuals appeared to have riskier asset distributions. The two major problems of
this work were the normality assumption and the fact that it assumes that the
insurers are optimising their investment strategy in an informed manner.

Thus, we see in this analysis of actuarial contributions to the analysis of
investment risk a number of features:

@) In the early contributions, a recognition that expected return, variability of
return and avoidance of insolvency were important.

(i) A number of important contributions which drafted the consideration of
liabilities into a mean-variance framework.

(iii)  In the work of Sherris, a move towards consideration of expected utility,
which allows us to view risk more generally and more realistically.
However, in the particular examples used by Sherris restrictive assumptions
were needed to obtain analytical solutions.

Most of the remaining actuarial contributions to investment risk concentrate on
downside risk measures (which recognise the strengths of the early contributions
and the limitations of the mean variance framework). We consider these in
Section 7.
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Downside Risk Measures: Relationships with Utility Functions

In this section, we look at the explicit downside risk measures that have been
proposed. Clarkson (1989) proposed a measure of investment risk which was a
generalisation of semi-variance. His general axioms regarding risk could be
paraphrased as:

1. Risk is a function both of the probabilities of return being below a certain
level and the severity of the financial consequences of these values of
return.

2. A measure of risk ( R ) was proposed where:
L
R= L W(L-r)P(rydr

where P(r) is the density function of return ; W(L-7) is a function of (L-r)
which increases with (L-r) and L is the value of return above which no
adverse consequences arise.

3. For a given expected return an investor prefers the investment with the
lowest risk.
4, Each investor has a threshold level of risk and will not make an investment

which involves risk higher than this level: the investor makes the
investment with highest return given that the risk does not exceed the
threshold.

A number of points can be made about this approach. Firstly, when assessing
risk, the measure does not use the information above the level of return above
which no adverse consequences arise. The utility of income function is therefore
linear beyond the level of wealth implied by investment return L. If L is a
particularly high level of investment return, the linear portion may be irrelevant in
practice. The utility function implied by the risk measure below the threshold is
determined by the function W(L-r).

Considering point 4 in section 7.1, the risk measure is ignored if the function is
below the threshold level of risk. Furthermore, the investment is rejected, if the
risk measure is above the threshold, even if the expected return is extremely high.

Clarkson proposes that W(L-r) = (L-r); if a = 2 then the risk measure is
equivalent to semi-variance. An investment decision making criterion based on a
linear function of semi-variance and expected return is equivalent to a decision
based on variance and expected return when distributions of investment returns
are symmetrical. In any event, it is equivalent to using a quadratic utility function
below L and a linear one beyond L as is demonstrated in Markowitz (1991).
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The decision criteria 4 of Clarkson has some inconsistent implications for the
implied utility function.

If the decision making criterion were simply to:

max f{RE| (r))

and R is based on semi-variance measured below the expected return, this is
equivalent to the investor having a quadratic utility function below E(r)and a
linear utility function thereafter. However, this is not the decision criterion
proposed by Clarkson. Let us illustrate some of the inconsistencies in the
Clarkson decision criteria by way of example. We will construct a number of
investments, A to D. We will assume that:

L=005 and W(L-r)=(L-r)
and the level of R above which the investment is not considered is 0.00285.

Investment A: this has returns -0.04, -0.01, 0.10 and 0.15 with probabilities 0.2,
0.3, 0.25 and 0.25 respectively. In this case, R = 0.0027 and the expected return is
0.0515.

Investment B: this has a return of 0.05 with certainty. Investment A is chosen
over investment B due to Clarkson Axiom 5 (described in 7.1 condition 4).

Investment C: this has returns -0.06, -0.01,0, 0.15 and 0.25 with probabilities 0.1,
0.3, 0.25, 0.25 and 0.1 respectively. R =0.0029 E(r) =0.0535. This investment
is rejected in favour of both A and B due to Clarkson Axiom 4 also described in
7.1 condition 4.

There is no inconsistency, in terms of utility theory, in preferring Investment A to
Investment C. The loss of utility from the possibility of a low return is not
compensated by the gain in utility from the higher returns. However, now
consider Investment D.

Investment D: this is a compound investment which provides Investment A with
probability 0.5, and Investment C with probability 0.5. The distribution of returns
is now: -0.06, -0.04, -0.01, 0, 0.1, 0.15 and 0.25, with probabilities 0.05, 0.1, 0.3,
0.125, 0.125, 0.25 and 0.05 respectively. R = 0.0028,E(r) = 0.0525. Investment
D is preferred to all investments. :

Thus the investor prefers Investment A to Investment C but prefers a 50% chance
of either Investment C or A to both Investment A and Investment C. Using a
sporting analogy developed in Clarkson (1989): the sportsman will not partake in
hang-gliding because it is too risky and prefers football instead (in all
circumstances). Yet the sportsman would prefer to have the decision taken out of
his hands and toss a coin to see which sport he pursues. There is a clear
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inconsistency in any decision criterion which leads the investor to unambiguously
preferring one investment to another yet preferring of 50% chance of obtaining
either. The explanation for this in utility theory terms is that the investor, when
looking at the two situations does not evaluate the utilities of wealth in the same
way, when approaching the investment from a different perspective.

In recent years, there has been an increase in the volume of literature on downside
risk measures. As has been mentioned, Markowitz (1952) put forward the
possibility of using semi-variance but did not pursue it further. Clarkson (1989)
proposed a general risk measure which had semi-variance as a special case.
Clarkson (1994), Albrecht (1994) and Ferguson and Rom (1994) also consider
downside measures of risk. It has already been noted that the use of semi-
variance as a risk measure, if no assumptions are made about the distribution of
investment returns implies quadratic utility functions below the threshold level of
return and linear utility functions above that level. It was also shown that the
Clarkson decision criterion could lead to inconsistent results. Here we certainly
evaluate downside risk measures more thoroughly.

There are two classes of downside risk measures which can be considered:

a) Downside risk measures which only use information below a threshold
return but where risk is still traded against return in the investment
decision.

b) Decision criteria of the type used by Clarkson (1989) and Booth and Ong
(1994) which reject firmly any portfolio which does not satisfy a particular
constraint (for example if it has a probability of a negative return which is
greater than a particular value).

Methodologically, these two characteristics bear no relationship to each other.

The first characteristic can be reconciled in a utility maximisation framework, the
second cannot.

Using the framework defined by Albrecht ( 1994), if we let R be the one period
return of a single financial investment or portfolio, R has a density function f77)
and distribution function F(7). Let m be the threshold return, above which an
investment out-turn makes no contribution to the risk measure.
R =m+R.(m)-R(m)
where R.(m) = max(R-m,0) and
R.(m) = max(m-R,0)

The shortfall return is concerned with R_(m). The distribution function of R.(m)
is:
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/ 0 r<o0
{

1-F(m-r) r<o0

[i.e. the shortfall return cannot take a value below zero and the probability that it

takes a value less than 7, where 720, is the probability that the return is greater
than (m-r)].

dr<0
f_()1-F(@m) r=0
fm-rr>0

The shortfall return cannot be less than zero, and is zero if the return is greater
than m.

A more generalised downside risk measure can be measured by E (R'). In terms
of the notation developed in paragraph 7.10.

E(Rz) =[" (m-r) £()dr

We will now examine further properties of downside risk measures of this form,
in terms of utility theory.

If n= 0, the measure of risk is simply probability of shortfall or probability of
loss. If the investment decision is based only on a linear combination of expected
return and probability of loss the utility function is two discontinuous linear
segments with a discontinuity at m. Any given increase in expected return, which
does not affect the probability of loss benefits the investor to the same extent.
Thus the discontinuous lines must have the same slope. Any increase in the
probability of loss with an unchanged expected return must reduce utility, hence
the discontinuity. Thus the probability of shortfall measure of risk gives rise to
the following utility function.

U /

~




7.13

7.14

7.15

7.16

7.17

Interestingly, this measure of risk leads to the same utility function as that implied
by the revised Bailey conditions (see Section 6). If, however, the investor chooses
the portfolio to limit probability of loss to a given value (say 5%) and does not
“trade” probability of loss with expected return, he is not acting, in any sense, in
an expected utility framework. This is similar to the “shortfall controls”
mentioned in paragraphs 7.8 and 7.23.

If n= 1, then the measure of risk is the expected loss EL, where:

EL= ji(m-r) £ (r)dr

A decision based purely on expected loss and expected return leads to a
combination of two linear functions, with different slopes, joining at point m.
This is demonstrated by Markowitz (1952).

If n=2, then the risk measure is the semi-variance (SV) measure below point m,
where:

SV =[" (m-r)1(r)dr

As has been mentioned, Markowitz (1952) demonstrates that if the investment
decision is based on expected return and semi-variance, it is equivalent to
assuming a quadratic utility function below m and a linear function thereafter. A
discontinuity could also be manufactured in the case of n=1 and n =2 by also
basing the decision on the probability of shortfall.

Simple shortfall measures of risk have two major drawbacks: they all imply linear
utility functions beyond the threshold return and they assume restricted forms of
utility function below the threshold. However, the inclusion of “probability of
shortfall”, to manufacture a discontinuity, is attractive.

Ferguson and Rom (1994) suggest the use of semi-variance as a shortfall risk
measure. They derive “efficient frontiers” in an expected value/semi-variance
framework. Portfolios which provide a known rate of return (i.e. zero variance),
where that known rate of return is below the threshold from which semi-variance
is measured are not necessarily efficient (portfolios of treasury bills or other risk
free assets could, for example, be below the efficient frontier). The use of semi-
variance is justified on two counts: firstly, it is felt to provide a better description
of risk than variance; secondly, optimisation techniques now allow the use of the
semi-variance risk measure, which is difficult to deal with analytically.

Whilst it may be felt that semi-variance is a more appropriate risk measure than
variance, it is less than ideal, for the reasons discussed above. In addition, if
applied generally and in market pricing models, it would require the additional,
restrictive assumption that all investors were close to the point where the quadratic
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and linear portions of the utility functions meet. Semi-variance however may be
an appropriate risk measure for fund managers whose major fear was
underperforming a specific benchmark [see Booth and Sandford (1996)].

There are other properties of semi-variance which are of interest. If investment
returns are normally distributed, with mean p and variance 0'2, Albrecht ( 1994)
shows that the shortfall semi-variance (measured from threshold m) is:

[om- 1% + 020 (my) + (=~ wplemy)

where @ and ¢ represent the distribution and density functions of a standard
normal distribution and my is the standardized quantity (m-u)/o.

Thus, for a given threshold m, a decision based on semi-variance is ultimately
based on mean and variance: the only two moments in the above expression.
Therefore, if investment returns are normally distributed (and all linear
combinations of investments have normally distributed returns) we are back in the
mean-variance decision making framework.

The second property of interest is apparent, if we consider the behaviour of the
semi-variance measure when n1 = . Then we see that, in fact, that semi-variance
is proportional to variance. The second term is zero and the first term is %o,

If accumulations are log normally distributed then the accumulation of an
investment compounded over several years will be log normally distributed.
Albrecht gives expressions for the shortfall semi-variance of an investment
accumulation in these circumstances. Again, given that there are only two
parameters in the log normal distribution (both functions of mean and variance),
the investment decision takes place in a mean-variance framework.

Where assets with different log normal distributions of returns are combined
together, the resulting distribution of returns may have more than two parameters.
Semi-variance may then be a function of parameters other than mean and variance
and could be a more appropriate risk measure than variance and lead to different
results. However semi-variance stil] suffers from the major weaknesses of
imposing a utility function on investors which is probably not realistic, although it
may not be as unrealistic as a simple quadratic. It is difficult to avoid coming to
the same conclusion, as Markowitz did, that any theoretical advantages of using
semi-variance alone as a risk measure are outweighed by practical disadvantages.
However, other approaches which take into account downside risk may be
appropriate.

Albrecht also suggested a “shortfall control”, equivalent to the probability
constraints of Booth and Ong (1994) and of Clarkson (1989). The nature of the
shortfall controls suggested by Albrecht were as follows, firstly:
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Pr(R<m)<E

That is, the probability that the return is less than or equal to a benchmark, m,
must be less than a particular value. This particular criterion has all the
difficulties associated with the Clarkson decision criteria, described earlier. It
leads to inconsistent decisions in the utility maximisation framework.

Secondly:
- SEn(R)<c E(R)

That is, the shortfall expectation, measured below m, should not exceed a given
percentage of the expected return. This criterion gives rise to:

I_': (m=r)f(r)dr < cE(R)

therefore:
mPr(R < m) - j " rf (r)dr < cE(R)

Thus, m times the probability of shortfall minus the first partial moment of R
should be less than a certain proportion of the expected return. The first term on
the left hand side will simply increase with the proportion of the probability
weight that is to the left of m. The second term on the left hand side will decrease
if the weighting to the left of m is moved further left in the distribution. Both
these eventualities will make it less likely that the criterion will be fulfilled.
Whilst these characteristics are desirable characteristics of a shortfall measure,
there is no clear intuitive justification for their combinations in this particular way.
It is also not clear how the parameter ¢ would be chosen. For a given expected
return, the first term on the left is affected by any increased tendency to fail to
meet the benchmark m. This is consistent with the idea of a discontinuity in a
utility function. The second term takes account of the expected extent to which
we do not meet the benchmark but only in a linear fashion. An increase in
expected return, for a given shape of the distribution of returns would appear to
make the shortfall criterion easier to fulfill. The right hand side would increase
and the first term on the left hand side would decrease. -

Overall, this particular shortfall control would appear to lose the generality of a
utility theory approach without having an immediate intuitive appeal. It is also
unclear why the expected return should come into a risk control criterion. If
shortfall measures of risk are considered suitable, the risk control criterion should
be defined only in terms of a given benchmark return, rather than the mean.

A shortfall control was also used by Stowe (1978). He suggested that the aim of
investment policy should be to maximise return on assets subject to a solvency
constraint (as well as institutional constraints). The shortfall control also
underlines the philosophy of value at risk models used to control market risk in
banking: see Allan (1995).



7.26 The use of summary downside risk measures has the disadvantage of taking a
limited view of risk. However, because variance of returns looks at the upside
variability in the same way as downside variability, downside risk measures may
be an improvement on the use of variance. However, downside risk measures do
not have the advantage of ease of mathematical manipulation that variance of
return has. Given that downside risk measures are neither all encompassing nor
easy to deal with mathematically, it would seem sensible to pursue methods of
analysing risk which look more closely at the full distribution of investment
returns, if a more generalised approach is to be used.

7.27 The second aspect of downside risk, the use of shortfall controls, has the
disadvantage of sometimes producing investment decisions which are inconsistent
with utility maximisation. However, they have the advantage of being simple to
use, with an understandable intuitive justification. They may therefore be useful
as a pragmatic device to alert the investor to potentially unsuitable investment
strategies. However, the maximisation of an appropriate utility function would
appear to be a better, more general method of selecting an investment strategy.

7.28 Traditional actuarial approaches have tended to use a mixture of mean-variance
approach; shortfall constraints; and shortfall risk measures. Often, there has been
an implied, underlying utility function. The use of an explicit utility function has
the advantage of allowing a general approach to the measurement of risk to be
taken. However, criticisms can be made of a utility theory approach to risk-return
analysis. : :
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Criticisms of the Use of Utility Theory in Actuarial Work

The use of utility theory when taking actuarial investment decisions can be
criticised on at least three grounds. Firstly, the possibility that the assumptions
underlying the development of the theory could be invalid. Secondly, it may be
impractical to find appropriate utility functions. Thirdly, utility theory may be
irrelevant to practical actuarial problems.

The first criticism was addressed by Friedman and Savage (1948) in their paper,
“The Utility Analysis of Choices Involving Risk”. The assumption which had
been attacked was that of the “rational man”, which also underlies much of
modern portfolio theory. If market participants are not rational, it does not make
sense to predict market outcomes using a utility theory model which assumes
utility maximisation. Economists who believed that diminishing marginal utility
must exist throughout the range of possible wealth outcomes could not accept that
individuals could insure and gamble (a rational individual who gambles must have
increasing marginal utility over a certain range of income). They therefore
concluded that individuals must behave in an irrational way.

Friedman and Savage, instead, questioned the continuous diminishing marginal
utility hypothesis. They suggested that investment activities could broadly be
divided into three categories: absolutely secure investments (for example bonds);
moderate risk investments (for example high grade shares); and high risk
investments or ventures (such as certain business undertakings). Canan (1926)
suggested that the highest expected monetary pay off arose from the second type
of investment: this suggested that most people were risk averse in the local part of
the utility function. However, some people would be happy to invest in the third
group of investments, despite lower expected returns than from the second group,
because they are risk loving at certain points in their utility functions.

This tendency for some people to be risk loving, regarding certain transactions, is
also evident from the observation of people buying lottery tickets (which normally
have a negative expected net pay off). Friedman and Savage put forward two
possible and related explanations which did not involve a dismissal of the rational
man concept. The first suggestion was that people have utility functions which
are partially convex: this would imply that, for certain gambles, and at certain
income levels, individuals can behave as if they were risk lovers. However, such
individuals may also insure as the utility of wealth curve would generally be
concave. The second suggestion is that individuals may attach great utility to
moving to a new “socio-economic” group: men take risks to distinguish
themselves. This perhaps suggests that individuals would have steeply convex
utility functions (or a discontinuity) at a particular level of wealth. Having
reached that new level of wealth, the utility function may then change or, at least,
the individual will be operating in a different area of utility curve. The ideas of
such a “status based” utility function and of a discontinuity have already been
proposed as being useful in describing risk preferences in an actuarial context.
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Thus Friedman and Savage provide an explanation for behaviour which was
previously thought to undermine the rational man concept. Three further points
can be made, however, the first two also identified by Friedman and Savage.
Firstly, utility theory is a model. It is not necessary for every man to behave
rationally for it to be useful in modelling behaviour in general. It is not even
necessary for any man to consult a utility function before deciding how to behave.
Friedman and Savage used the analogy of a billiard player. The result of any
billiard shot can be obtained from a consideration of the mechanics underlying the
shot. However; a billiard player, without consideration of mechanics, plays shots
as if he considered the mechanics. Mechanics still provides a good model.
Investors invest to their maximum advantage without, generally, explicitly
consulting a utility function. This does not rule out utility theory as a useful
model of investor behaviour. This philosophical consideration of the usefulness
of theoretical modelling is developed at greater length in Friedman (1953).
Secondly, Friedman and Savage note that, in fact, most people do insure. This is
an indication of generally rational behaviour in the face of generally diminishing
marginal utility. A third point to note is that the applications of utility theory in
the actuarial field generally relate to discovering how rational investors should
behave. For example, how an institution should rationally allocate its assets. The
results of any investigations (unlike many of the models in financial €conomics)
need not assume that everybody else behaves rationally.

We turn now to the difficulty of finding appropriate utility functions. Von
Neumann and Morgenstern (1947) made a comparison between utility theory and
the theory of heat. When the theory of heat was developed, it allowed physicists
to determine which of two bodies was the hotter but not by how much. Similarly,
there are clear difficulties adding and subtracting utilities in the same way that we
can add and subtract quantities of money. However, this is not a difficulty in
principle, as long as it is possible to derive, from empirical observation, a utility
function, the functional form of which describes the additional utility derived from
an increment to wealth.

Friedman and Savage (1948) again deal with this question. They suggest that we
can move towards the development of a cardinal utility function by observing
market behaviour (of investors or people who insure) under uncertainty. For
example, if investment A is preferred to investment B which is preferred to
investment C, we can say that investment A is preferred to investment C. If, in
turn, we are offered a 50:50 combination of investments A and C and this is
preferred to investment B, this shows that the difference between the utility of
investments A and B is greater than the difference between the utility of
investments B and C. This does not get us very far towards postulating a utility
function: particularly if the three investments provide a range of cash flows with
different probabilities. However, if we know the alternative cash flows we can
say something about the marginal utility of different income increments. Given an
unlimited number of investments and an investor’s preferences for those
investments, we can certainly derive his utility function (an analogy here would be
with the difficulties faced deriving a continuous spot rate yield curve from gross
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redemption yields on fixed interest securities). Even if deriving a precise smooth
functional form is impossible, given information about how investors behave in
the face of risk, we can certainly propose plausible utility functions which make
useful models.

Thus, if we accept that utility theory, despite its imperfections, provides us with a
good model which we can use to analyse risk, is utility theory useful in actuarial
investment work? The starting point in answering this question must be to point
out that any view of risk, taken by an actuary involves, implicitly, expressing the
extent to which we prefer different increments to wealth. The Bailey, Markowitz,
Wise, Wilkie and Clarkson approaches to risk all have an underlying (if complex
or inconsistent) utility of wealth function.

If an actuary is to take a view on investment risk, it is natural that the view should
be based on a prior view of the utility of different increments to wealth. But the
difficulties of deriving a reasonable utility function for the individual are great
enough: are the difficulties of deriving a usable utility model for a corporation so
great that it is better to rely on intuition rather than some kind of formal model? A
number of points can be made in response to this question.

Firstly, the development of a utility function is easier the less complicated are the
interests in investment policy or the more easily interests can be separated. Thus,
the analysis of the optimal investment strategy for a unit linked fund only requires
a reasonable utility function for personal investors, this is analysed in Booth
(1995)." A mainly non-profit life office needs to be able to deal with the separate
interests of shareholders, policyholders, professionals, managers and regulators:
see Ong (1996). However the interests of all but the first group tend only to be
operative when a position close to insolvency is reached. Modelling with-profit
business may well be somewhat more difficult. Secondly, utility functions can be
used alongside concepts with which actuaries can feel more comfortable,
Clarkson (1989) for example rejects all investments which have a certain degree
of risk or greater. Lipman (1990) in discussion of investment policy for
Australian superannuation schemes suggests a generally smooth utility function
combined with either a discontinuity around a benchmark return or a probability
constraint requiring that benchmark to be achieved with a particular probability.
Booth et al (1993) and Booth and Ong (1994) use a utility function combined with
an insolvency constraint. It was seen in the discussion of Clarkson’s risk measure
that the use of probability constraints actually implies inconsistent utility
functions. However, this disadvantage may be outweighed by the advantage of
using concepts with which actuaries may feel comfortable.

It should also be remembered that it is not the role of the actuary to produce
incontrovertible, mathematically correct answers to financial problems. The role
of the actuary is to manage risk. Utility theory is proposed as a theoretically
correct method of managing risk: not of producing definitive answers to questions.
Utility models are a management tool. They can be used to discern the effect on
optimal investment policy of changing tolerance to risk or to understand the true
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risks to shareholders and policyholders of following mismatching investment
policies. They can aid managers of financial risk in choosing investment
strategies to maximise the benefit to policyholders. There are, in fact, only two
options other than using utility theory, to manage risk: one is to take no scientific
view whatsoever and rely on intuition; the other is the use of some other decision
criterion which does, in fact, imply some form of “hidden” utility function.
Actuaries have often been critical of mean-variance analysis for not taking a

 sufficiently realistic view of risk. It is better and possible to build a model which

removes the weaknesses of mean-variance analysis, without disposing of the
sound foundations which underlie it.

Clarkson (1994) also criticises the use of the expected utility maxim, using
evidence from Allais (1953). Allais provides evidence that individuals come to
investment or gambling decisions which are inconsistent with the utility
maximisation criteria. The Allais criticism is more serious than that which was
rebutted by Friedman and Savage because Allais’ evidence cannot be reconciled
within any expected utility maximisation framework, even if increasing marginal
utility is allowed. The use of downside measures of risk, does not help overcome
the objections raised by Allais (as downside measures of risk still imply an
underlying utility function). However, the use of probability constraints may be
compatible with Allais” evidence as they are themselves not consistent with the
utility maximisation criterion.

Allais’ objections can be countered in a number of ways. Firstly, the existence of
individuals who do not maximise expected utility is not incompatible with the use
of a utility maximisation model by somebody who does want to maximise
expected utility. Secondly, Allais’ evidence relates to questions about investment
decisions which are posed in a way which makes an understanding of the
implications of the responses difficult. Thirdly, Allais’ scenarios relate to
extremes of increments to wealth: as Friedman and Savage point out, decisions
relating to extreme movement in wealth will often be different from those relating
to smaller movements in wealth.

It is felt that the utility maximisation criterion provides a good model in which
investment risk can be understood. In addition, utility theory provides a robust
Justification for the use of different investment risk measures. The assumption of
a continuous smooth quadratic utility function, which would enable mean-
variance analysis to be used is probably inappropriate except as an approximation.
Its appropriateness or otherwise can be considered from a utility theory
perspective. The possibility of using simulation allows more general utility
functions and risk measures to be used, including utility functions which allow for
kinks and discontinuities. Despite its drawbacks, the use of a shortfall criterion as
an additional tool may also be very helpful. In practice, it may well be found that
shortfall criteria produce results similar to those produced by using discontinuities
in the utility function, if the range of possible investment returns is limited. This
is an area for further research.
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Practical Applications of an Appropriate Utility Model

For utility theory to be useful in the area of actuarial investment risk management
we must be able to develop a utility of wealth function which is a practical model
of reality.

il

With regard to an individual taking an investment decision (or institution taking a
decision on behalf of an individual), we can divide the proponents of different
measures of investment risk into three schools: those who give upside variability
the same weight as downside variability (in the main, mean-variance proponents);
those who give downside variability greater weight (oftenymean semi-variance
proponents); and those who wish to see much more weight given to significant
losses (often proponents of shortfall constraints). In an ideal model all three
strands should be taken in account.

An intuitively reasonable utility function for most investors, at most levels of
income, would be a log function. The implication of the log function is that all
investors view gives a proportionate increase in their wealth to be of equal value,
regardless of their starting level of wealth. In general, all moments of a
distribution of investment returns should be taken into account when considering
investment risk but the log utility function could be approximated as a function of
mean and variance over certain ranges. However it would seem reasonable to
include in the utility function a discontinuity which would be at the wealth point
below which the investor is believed to suffer particularly adverse consequences.
The log utility function with a discontinuity would capture all the considerations
described in paragraph 9.2.

An important advantage in applying a log utility function, in practice, is that it
leads to the same investment decision being taken by all investors, at any initial
level of wealth, if they invest the same proportion of their wealth. The
discontinuity can then be used to model the situation faced by investors who are
particularly averse to dropping below a given level of wealth. The practical
effects of a log function with discontinuity would be:

(a)  the investor would be averse to fluctuations in investment return above the
mean (as in the mean-variance framework).

(b)  the investor would be more averse to downside variability than upside
variability (as with the semi-variance measure).

(c)  the investor is likely to reject investments which have a high probability of
a level of return which would take the investor below a particular value of
wealth (as with shortfall controls). However such investments could
redeem themselves if they had other desirable characteristics.
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The development of mathematical aspects of the expected utility maximisation
problem in these circumstances is the subject of ongoing research. However, it is
of interest to note that in Booth (1995) a utility theory approach to asset
allocations was compared with a mean-variance and mean semi-variance
approach. The utility theory approach produced highly intuitive utility
maximising portfolios. This work is being developed to allow for discontinuities
in the utility function and using different investments model assumptions. Instead
of discontinuities, shortfall constraints were included to try to mirror the effect of
discontinuities. Possible levels of wealth at which a discontinuity of shortfall
constraint could be used are:

(i)  atthe level of wealth necessary to purchase a pension equal to a given
fraction of final salary at retirement

(i) for an investor with a particularly low level of income, there could be a
discontinuity at the level of wealth necessary to buy a “subsistence”
pension

(iii)  for the pension fund investment managers, there may be a discontinuity at
the point when the investments underperform'a competitor form of
investment (see Lipman (1990)).

It is the existence of these benchmark levels of wealth which can lead to optimal ,
investment policy being quite different for different individuals. Utility theory is

a very appropriate framework in which this can be investigated. Ludvick (1994)
uses a shortfall control or probability of loss, in the context of a defined
contribution pension scheme, instead of utility theory. This is a useful
management tool but can lead investors to take quite inconsistent decisions, if it is
applied rigidly. A

Mathematical aspects of the application of utility functions for institutions must
also be the subject of further work. As has been mentioned, Sherris (1992) and
Sharpe and Tinte (1990) have done some work in this field. It is of interest to
note that Booth and Ong (1994) obtained intuitive results using a utility
maximisation approach to life insurance company asset allocation. This work has
been developed much further by Ong (1996): one interesting aspect of his work is
the way in which classical results can be found (such as an immunised position) as
limiting cases of a general utility maximisation problem. The use of utility theory,
however, allows more general problems to be solved.

It is useful to conclude by drawing on some of the observations of Smith ( 1996).
Firstly, except in the analysis of unitised personal investment funds, liabilities
should always be taken into account in the consideration of risk. This is a feature
of most of the approaches to risk that have been discussed. Secondly, the use of
the concepts that have been discussed can be an aid to decision making and also
help us to understand the world about us. However, this does not mean that the
abstract pricing models developed from financial economics are necessarily



appropriate. To conclude on a philosophical note: historically, the actuarial
profession has used a mixture of science and art. The scientific techniques
discussed in this paper are important in managing risk. However, it would be
wrong to pretend that any particular scientific model or set of techniques can
capture all the features of the real world. There is ample scope for judgement,
dispute and for seeking an understanding of the true nature of the practical
problems actuaries face as well as for scientifically modelling what we know
about the world. '
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