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Abstract

How should a forward-looking policy maker conduct monetary policy when she has
a finite set of models at her disposal, none of which are believed to be the true data
generating process? In our approach, the policy maker first assigns weights to models
based on relative forecasting performance rather than in-sample fit, consistent with her
forward-looking objective. These weights are then used to solve a policy design prob-
lem that selects the optimized Taylor-type interest-rate rule that is robust to model
uncertainty across a set of well-established DSGE models with and without financial
frictions. We find that the choice of weights has a significant impact on the robust
optimized rule which is more inertial and aggressive than either the non-robust single
model counterparts or the optimal robust rule based on backward-looking weights as
in the common alternative Bayesian Model Averaging. Importantly, we show that a
price-level rule has excellent welfare and robustness properties, and therefore should
be viewed as a key instrument for policy makers facing uncertainty over the nature of

financial frictions.

JEL codes: D52, D53, E44, G18, G23.
Keywords: Bayesian estimation, DSGE models, Financial frictions, Forecasting, Predic-

tion Pools, Optimal Simple Rules.

*Corresponding author: Paul Levine, School of Economics, University of Surrey, Guildford, GU2 7XH,
UK. Email: p.levine@surrey.ac.uk. We acknowledge financial support from the ESRC, grant reference
ES/K005154/1 and from the EU Framework Programme 7, grant agreement number 612796.



1 Introduction

“All models are wrong, but some are useful.”

— George Box

We study the problem of designing simple policy rules when all models are wrong yet
every model can be useful. We consider an environment with three forms of uncertainty.
The first is standard and derives from uncertain future shocks; the second is parameter un-
certainty within each competing model, which we refer to as “within-model uncertainty”;
the third source of uncertainty is the existence of multiple competing models, referred to
as “across-model uncertainty.”

The novelty of our paper lies in the way we handle this third form of uncertainty
in the design of optimized Taylor-type monetary policy rules. Specifically, we follow the
procedure of Geweke and Amisano (2012) to form prediction pools where weights are
assigned to models on the basis of their forecasting accuracy, rather than in-sample data
fit as in the common alternative Bayesian Model Averaging (BMA). These weights are
then used to solve a policy design problem that selects the optimized Taylor-type interest-
rate rule that is robust to all three forms of uncertainty. Unlike BMA which assumes that
one of the models is the true data generating process, prediction pools allow us to consider
that all models among a comparative set are misspecified, but they all may be useful at
different periods of time.

We apply our methodology to investigate the welfare consequences of alternative mon-
etary policy rules using three medium-scale new Keynesian DSGE models. The Smets and
Wouters (2007) model (henceforth, SW) is the workhorse model in policy-making institu-
tions for forecasting and policy analysis. The other two models build financial frictions
into the SW model along the lines of Gertler et al. (2012) (henceforth, GKQ) and Bernanke
et al. (1999) (henceforth, BGG), respectively. These two models represent the leading the-
ories in modelling financial frictions in the macroeconomic literature. Hence, our model
pool can be motivated by considering a policy maker who is uncertain how to incorpo-
rate financial frictions into a DSGE model, or if they should be incorporated at all. We
estimate the models with Bayesian methods using US data on seven key macroeconomic
variables over the sample period 1966:1-2017:4.

Our main results are as follows. First and foremost, the choice of model weighting



strategy matters for the optimized rule. Using the optimal prediction pool weights leads
to a more persistent policy rule that also responds more aggressively to changes in inflation
and output growth compared to the policy rules obtained using the BMA weights. Second,
within-model uncertainty has only a small impact on the optimized rule. This provides
support for the practice of using only the mean or the mode of estimated posterior mode
or mean of the parameters for policy design. Third, we find that both within-model and
across-model robustness results in more inertial and more aggressive rules than the non-
robust single model counterparts. Fourth, a special case of our interest-rate rule is a simple
price rule and this has particularly good robustness features.

We restrict our attention to optimized simple rules, that is to find the optimal pa-
rameter values in a Taylor-type monetary policy rule. There are several reasons for this.
First, simple rules are transparent and easy to implement and to communicate. Second,
a large literature has arrived at a consensus that they mimic the Ramsey-optimal policy.
Finally, the same literature suggests that they already contain good robustness properties
compared with Ramsey-optimal policy.

Overall, our methodology is suited to a policy maker who does not believe any one
model to be correct. She would then be advised to use a forward-looking procedure such
as prediction pools to weight models rather than a backward-looking one such as Bayesian
model averaging (henceforth BMA) which is based solely on in-sample model fit. Since
the former is less likely to see one model completely dominate, she is then more cautious
in rejecting models that appear to be inferior. The intuition is that such models, while
not particularly accurate most of the time, may well be very useful some of the time.
Optimal policy should take this into consideration rather than rejecting the use of models
that perform poorly simply from an in-sample likelihood perspective (BMA). Moreover,
we find that prediction pooling is a far more robust method for attaching weight to models
as these are less sensitive to outliers and therefore evolve more smoothly over time than
corresponding weights from BMA.

The rest of the paper is organized as follows. Section 2 locates our contribution in the
extensive literature on model selection and robust policy design. We survey three strands
of literature that our paper draws upon. The first is related to the extensive statistical

literature on Bayesian predictive methods for assessing, comparing and selecting mod-



els. The second is the current generation of Bayesian-estimated micro-founded dynamic
stochastic general equilibrium (DSGE) models, which are frequently employed in Central
Banks for forecasting and for the computation of optimal policy. The third is the literature
on robust policy. Section 3 outlines the weighting strategy based on model forecasting per-
formance and how the model weights and the posterior distribution are combined to design
policy that is robust with respect to both within-model and between-model uncertainty.
Section 4 describes the models in our application and summarizes the characteristics of
the posterior distribution that are most important for optimal policy design. Section 5
discusses the optimal weights in our prediction pool while Section 6 reviews the optimal
policy rules that are robust within- and across-models. Full details of the models and their

estimation are provided in Online Appendices along with additional results.

2 Related Literature

This paper is related to three strands of literature. First, it is related to the extensive
statistical literature on Bayesian predictive methods for assessing, comparing and select-
ing models (see Vehtari and Ojanen, 2012, for a survey). Within this literature model
selection (including more than one model) proceeds via maximization of an expected util-
ity /loss function using the predictive distribution. A broad range of loss functions and
various types of mis-specification errors have been considered in the literature. Following
Bernardo and Smith (1994), all methods can be classified in accordance with the type of
mis-specification error that the method seeks to address. In their terminology, M-closed or
M-completed refer to methods that assume the true data generating process to be within
the set of models that are considered. Techniques that fall into these categories include
BMA, and using an encompassing model. The latter can be viewed as a more general
version of the former with a continuous rather than a discrete distribution over priors. On
the other hand, our method which is based on prediction pooling as in Geweke (2010a) and
Geweke and Amisano (2011) falls into the M-open category where the true data generating
process is not assumed to be among the candidate models.!

One particular criterion used in the literature is a scoring rule that measures forecast

'In the language of Geweke (2010b), for BMA the model space is ‘complete’, i.e., the space includes
the DGP whereas for prediction pools the space is ‘incomplete’. See Section 5.1 for a rigorous treatment
of this point.



accuracy. A particular form of selection then amounts to combining density forecast
estimates as a means of improving forecasting accuracy as measured by a scoring rule (see
for example Gneiting and Raftery, 2007; Hall and Mitchell, 2007). In Geweke and Amisano
(2011), the utility/loss function is a scoring rule that maximizes forecast accuracy, and
they compare BMA with linear combinations of predictive densities, so-called ‘opinion
pools’, where the weights on the component density forecasts are optimized to maximize
the score, typically the logarithmic score, of the density combination as suggested in Hall
and Mitchell (2007).

Kapetanios et al. (2015) develop an extension of this method whereby the weights can
vary by region of the density to allow additional focus on the variable one is attempting
to forecast. We use the method proposed by Geweke and Amisano (2011) to combine the
forecasts from different models as it allows us to be agnostic about the variables that need
to be forecast, and also as it is straightforward to implement. Our paper is most closely
related to Del Negro et al. (2016) who develop a methodology for combining forecasts
across two DSGE models, one with and one without financial frictions. The dynamic
nature of their procedure, whereby the relative weights placed on forecasts across models
vary over time, leads to an improvement over real-time forecasts produced by alternative
methods. Importantly, they use the improved forecasts to carry out a novel counter factual
analysis that re-examines how policy makers should respond to labour market conditions
following a financial shock. Our paper departs from Del Negro et al. (2016) in that we
seek to use the forecasts to design robust optimal policy across models rather than focus
on a counter factual exercise. As such we take the analysis in Del Negro et al. (2016) a
step further by asking how policy ought be designed when the policymaker is aware that
models are mis-specified.

Second, our paper is also related to the current generation of Bayesian-estimated micro-
founded dynamic stochastic general equilibrium (DSGE) models. These models are fre-
quently employed in Central Banks and used for forecasting and for the computation
of optimal policy in the form of optimized Taylor-type rules (see, for example Christiano
et al., 2005; Smets and Wouters, 2007; Schmitt-Grohe and Uribe, 2007; Levine et al., 2007).
Optimized constrained simple rules were first proposed by Levine and Currie (1987) in a

linear-quadratic framework. Woodford (2003, Chapter 7) discussed and modified the wel-



fare loss criterion in that paper so as to minimize only the stochastic component leading
to a time-consistent policy choice. We follow this approach in our computation of robust
optimized rules.

Third, this paper is also related to a large literature on robust policy. Sims (2002,
2007, 2008) in particular has argued that policy makers are still very far from exploiting
the full richness of the Bayesian (or “probability models”) approach.? A related literature
compares optimized constrained simple rules with their optimal unconstrained counter-
parts (see, for example Levine and Currie (1987), Schmitt-Grohe and Uribe 2007; Brock
et al. 2007b; Orphanides and Williams. 2008; a review is provided by Taylor and Williams
2010). A common finding in this literature is that simple rules can closely mimic optimal
policies and perform well in a wide variety of models. By contrast optimal policy can
perform very poorly if the policymaker’s reference model is mis-specified. The reason for
this is that optimal polices can be overly fine tuned to the particular assumptions of the
reference model. If the model is the correct one all is well; but if not, the costs can be
high. In contrast, our chosen simple monetary policy rules are designed to take account of
only the most basic principle of monetary policy of leaning against the wind of inflation
and output movements. Because they are not fine tuned to specific model assumptions,
they are more robust to mistaken assumptions regarding the parameters of the model
(‘within-model robustness’) or to basic modelling features (‘between-model robustness’).

Our approach differs from the existing literature in several important respects. A recent
literature draws on Hansen and Sargent (2007) in assuming uncertainty is unstructured,
with malign Nature ‘choosing’ exogenous disturbances to minimize the policymaker’s wel-
fare criterion (“robust control”).® Robust control may be appropriate if little information
is available on the uncertainty facing the policymaker. But are policymakers ever in

such a “Knightian” world? CBs devote considerable resources to assessing the forecasting

2Formally, a probability model is a mathematical representation of a stochastic phenomenon, defined
by its sample space (i.e., the set of all possible outcomes), events within the sample space, and probabilities
associated to each event, Ross (2006). He views the probability-models approach as reflecting policymaking
in practice by committees comprising individuals with separate views (models) of how the economy works
and of the likely outlook (in the context of that model). Each model (or outlook) has an estimated param-
eter probability distribution which embodies its own measure of within-model uncertainty. Aggregating
those views mirrors and substantiates the probability-models approach. Although any model is imperfect,
the greater the uncertainty the more policymakers may benefit from pooling information across and within
models, as we do in this paper. Our paper follows Levin and Williams (2003); Orphanides and Williams
(2007); Ilbas et al. (2012) and Tetlow (2015) in focusing on simple, robust optimized Taylor-type rules.

3See, for example, Dennis et al. (2009) and Ellison and Sargent (2012).



properties of the approximating model, those of rival models, and estimates of parameter
uncertainty gleaned from various estimation methods. To then fail to fully utilize the
fruits of such exercises seems incongruous and a counsel of despair. Also, robust control
pursues fully optimal rather than simple optimal rules. Yet Levine and Pearlman (2010)
show if one designs simple operational rules, that mimic the fully optimal but complex
one, then they take the form of highly unconventional Taylor Rules which must respond
to Nature’s malign interventions. Furthermore, robust control in general satisfies a supre-
mum condition rather than a maximum condition; this implies that the supremum may
well on be on the edge of being an unstable solution. Rules with these properties may be
very hard to sell to policymakers.?

Our paper also differs from studies that design robust rules across competing models,
but attach probabilities to models under the assumption that one of the models is the true
data generating process. For instance, the ‘rival models’ approach (e.g. Coté et al., 2004;
Levin et al., 2003; Adalid et al., 2005) arbitrarily calibrate the relative probabilities of
alternative models being true. They define a robust rule as one that “works well” across
several (though not necessarily all) models. However, without accounting for how well
different models fit the data, it is difficult to assess the value of implementing a rule which
performs well in M — 1 models but poorly in the M*" most data-compatible one.

Bayesian model averaging (e.g. Brock et al., 2007a; Cogley and Sargent, 2005; Levine
et al., 2012; Binder et al., 2017, 2018) promotes models with good in-sample fit over models
with good forecasting performance by using estimated model probabilities. However, mod-
ern monetary policy practices among the inflation-targeting countries are forward-looking
and rely heavily on forecasts. This is reflected in our approach which uses a forecasting
accuracy criterion to pool models. The main contribution of our paper then is to exploit
both within-model and across-model uncertainty as in Levine et al. (2012) and Cogley
et al. (2011), but using a forward-looking perspective based on prediction pools, rather

than a backward-looking perspective based on Bayesian model averaging.

“As Svensson (2000) and Sims (2001) comment, the worst-case outcome is likely to represent a low
probability event and, from the Bayesian perspective, it would be inappropriate to design policy heavily
conditioned by it. Further Chamberlain (2000) shows the conditions under which a Bayesian and worst-case
policymaker would correspond are highly restrictive.



3 Methodology: Designing Robust Rules

We restrict our attention to optimized simple rules, that is to find the optimal pa-
rameter values in a Taylor-type monetary policy rule. The main reason is tractability
since a Ramsey-optimal policy would involve the complete state vector in the model. In
medium-scale estimated DSGE models, like those in our empirical analysis, finding the
Ramsey-optimal policy can be a very challenging task numerically. Moreover, a large liter-
ature has arrived at a consensus that optimized simple Taylor-type monetary policy rules
mimic the Ramsey-optimal policy and they already contain good robustness properties
compared with Ramsey-optimal policy.

The goal of the policy maker is to choose the parameters of a Taylor-type monetary
policy rule to maximize welfare that are robust to both within- and across-model uncer-
tainty. Suppose the parameters the policy rule are collected in the vector p. We use the

expected lifetime utility of households

Qi(p,¥) = Eqg [Z B'U(p, w>] VeV (1)

t=0

in model M; as our welfare measure, where f is the discount factor, ¥; is the parameter
space for M; and U;(p, 1)) denotes utility in period ¢ given the vector of estimated param-
eters 1 € ¥; and policy rule p. We allow the parameter space ¥; to differ, but require the
policy rule p to be the same across models.

We use the estimated posterior distribution from the Bayesian estimation of the model

to account for within-model uncertainty. For a policy rule p, welfare in model M, is given

by

0up) = [ Q. p0IYEr MY &)

where p(¢)[ Y7 7, M;) is the joint posterior probability distribution of the model parameters
estimated for model M; given observations Y7, = {yf Lreeo ,yZT}. Notice that, unlike
BMA, prediction pools do not require the models to have the same vector of observed
variables.

We attach weights to each model to account for across-model uncertainty. Given



weights w = {w;}", the policy maker seeks a common rule p* across every model that

maximizes

’LU) = Z wiQZ(ﬂ)?
=1

a welfare measure that incorporates both within- and across-model uncertainty.

The novelty of our paper lies in the way the weights are constructed for the above
policy problem. We use forecasting performance as a criterion for assessing the value of
different models. Specifically, we follow the procedure of Geweke and Amisano (2012) to
form prediction pools where weights are assigned to models on the basis of the accuracy
of their k-period ahead forecasts. Unlike in the case of Bayesain model averaging which
assumes that one of the models is the true data generating process, prediction pools allow
us to consider that all models among a comparative set are misspecified, but they all may
be useful at different periods of time.

Let p(y% +k’Y§,T7Mi) be the k-period ahead predictive density of model M; for a

vector of model variables y% 41 8iven observationsY7 -

p(yéc“.;_k’Yio,TvMi) :[II p(yT.;.k‘YzT? ; ) (¢‘Y1T7 z)dwa (3)

k3

where p(y:]; x| Y7 1,0, M;) is the density of k-period ahead predictions of the model given
a parameter vector ¢ € W;. Notice that we require all models to share the same vector of
forecast variables yf_,i 41> but not the observables used for estimation. The predictive density
characterizes out of sample observations that have not been used to estimate the posterior
density of the parameter vector v. Furthermore, the predictive density is independent
of the parameter vector 1) which we have integrated over using the posterior. As such
this provides predictions about future observations that fully incorporate the information
regarding within-model uncertainty in the data.

We assess each model using the log predictive score function. Given a sample YL =
{y{ yee s ,yé} of forecast variables, the log predictive score of model M; is given by

T-K

K
LS(Y}, M > logp(yl, ,[Y?, M;) (4)
t=h k=1



where 1 < h < T ensures that there are enough observations in the first subsample to
estimate the model. The log predictive score function measures the track record of out-
of-sample predictive performance of a model.

We use linear prediction pools to assess the predictive performance of a combination of
models.® Given a sample Y; and a model pool M = {My,..., M,,}, the log predictive

score of the pool is given by

T-K K m m
LS(Y{F,M) = Z Zlog Zwip(y{+k|Ygt,./\/li) ; Zwi =1 w;>0. (5
t=h k=1 i=1 i=1

The log predictive score function measures the out-of-sample predictive performance of
a convex linear combination of the models in the pool. The optimal prediction pool has

weights chosen such that the log predictive score of the pool is maximized®
w; = arg max LS(Y?,M) (6)
w;

Before we turn to our empirical analysis to demonstrate the methodology in practice,
let us highlight the differences between prediction pools and BMA (Table 2). First, BMA
attaches weights to each model based on their marginal data density. These weights can
be interpreted as the posterior probability that a given model is the true data generating
process. Prediction pools however, assume that all models are misspecified and attach
weights to each model by choosing the prediction pool with the best forecasting accuracy
out of all possible convex linear combinations of these models. Second, BMA requires all
models to have the same set of observable variables while prediction pools require them
only to share the same set of forecast variables. Finally, it is unlikely that a single model
M; € M will consistently produce the best forecasts. Thus, non-zero weights are typically
assigned to several models since there will be less tendency for one model to dominate all

the others (some w} — 1) as in the case of BMA.

5Del Negro et al. (2016) use the terminology static pools to reflect the fact that weights are time
invariant.

5Logs are used in general since they make the densities globally concave, making the maximization
easier.
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Table 1: BMA versus Optimal Pooling
BMA Prediction Pools

Attaches weights to each model based on their Attach weights to each model by choosing the pre-
marginal data density. diction pool with the best forecasting accuracy.

Assumes a complete model space - one of the mod- Assumes an incomplete model space - all models

els is the true DGP. are misspecified.

Same set of observable variables Same set of forecast variables only

Tendency to assign all weights to a single model Less of a tendency that a single model dominates
4 Models

To illustrate our method, we investigate the welfare consequences of alternative mone-
tary policy rules using three medium-scale new Keynesian DSGE models. The first is the
Smets and Wouters (2007) model which is the workhorse model in policy-making institu-
tions for forecasting and policy analysis. The other two models build financial frictions
into the SW model along the lines of Gertler et al. (2012) and Bernanke et al. (1999), re-
spectively. These two models represent the leading theories in modelling financial frictions
in the macroeconomic literature. Hence, our model pool can be motivated by considering
a policy maker who is uncertain how to incorporate financial frictions into a DSGE model
or if they should be incorporated at all.

We estimate the models with Bayesian methods. For all three models we use the same
seven time series as observable variables as in Smets and Wouters (2007): the log difference
of real GDP, real consumption, real investment and the real wage, log hours worked, the
log difference of the GDP deflator, and the federal funds rate. We use US quarterly data
over the sample period 1966:1-2017:4.7 The parameter prior and posterior distributions are
reported in Table D1 in the Appendix, while further details on the estimation procedure
are given in Appendix D.

We calibrate several parameters in the estimation procedure that are hard to identify
in the models. We estimate the posterior distribution of the remaining 26 parameters,
which are common in all three models. The reason that all three models have the same

parameter vector estimated is to accommodate BMA in our exercise. BMA requires the

"We use the same sample as Smets and Wouters (2007) extended to the last full year observations are
available for. We have also estimated the model with a sample that stops just before the financial crisis,
but parameter estimates are robust to the sample size.
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models to share the same set of observable variables, but the SW model has no empirical
implications for financial variables. Since parameters specific to the banking sector in the
GKQ or the BGG model are hard to identify without including financial variables among
the observable variables, we had to fix those parameters and estimate only parameters

common in all three models.

4.1 The workhorse New Keynesian model

Our first model follows closely Smets and Wouters (2007). It is a stochastic neoclassical
growth model augmented with price and nominal wage stickiness, price and nominal wage
indexation, habit persistence and investment adjustment costs. Household welfare in the

model is defined by their expected lifetime utility

> C - Xthl]l_ac Htl—Hp
Q=E, Z B exp | (o, — 1) (7)
pard 1—o0, 14+

where (4 is real consumption, H; is hours supplied, [ is the discount factor, x controls habit
formation, o, is the inverse of the elasticity of intertemporal substitution (for constant
labour), and v is the inverse of the Frisch labour supply elasticity. The monetary policy

rule for the nominal interest rate R, ; in the model is given by the Taylor-type rule

log Ry = plog Rni1
R, " R,

II Y Y,
+(1—=pp) (97r log (Ht> + 6, log <Yt) + 04y log <Yt>> + MPS;, (8)

t—1

where II; is inflation, Y; is real output, and M PS; is a monetary policy shock that follows
an AR(1) process. The rest of the model is described in detail in Appendix A.

We review here the estimates for the parameters that are important for our policy
problem; the estimated posterior distribution for the rest of the parameters can be found
in Table D1 in the Appendix. The estimated Calvo parameter for price setting implies
that prices are updated on average every 2.07 quarters, but price indexation is rather
weak given that the indexation parameter is estimated to be lower than the prior mean.
Nominal wages are updated more frequently, on average every 1.67 quarters, but they are

also indexed more strongly to inflation. The Taylor rule parameters are very close to the

12



original estimates of Smets and Wouters (2007) and correspond to the typical estimates

in the DSGE literature.

4.2 The banking model with outside equity

Our second model extends the SW model with a banking sector along the lines of
Gertler et al. (2012). In the model banks raise deposits and issue outside equity to finance
loans to firms. To motivate an endogenous constraint on the bank’s ability to raise funds,
Gertler et al. (2012) assume that the banker managing the bank may transfer a © fraction
of assets to their family. Hence, only 1 — © fraction of assets can be pledged as collateral.
Recognizing this possibility, risk averse households limit the funds they lend to banks.
Our setup for the banking sector follows closely Gertler et al. (2012), and embeds in our
SW model in a similar fashion to Gertler and Karadi (2011). For a detailed description of
the model see Appendix B.

The posterior distributions of the estimated parameters are close to the estimates in
the SW model. The only exceptions that are important for our policy problem are the
parameters characterizing intermediate firms’ price setting behaviour. Prices are updated
less frequently, on average every 2.91 quarters, but they are indexed to inflation more

weakly than in the SW model.

4.3 The financial accelerator model

Our third model extends the SW model with a banking sector along the lines of
Bernanke et al. (1999). In the model banks collect deposits and lend to entrepreneurs
who are subject to idiosyncratic shocks that affect their ability to repay their loans. The
financial market friction in this model, which is between the entrepreneur and the bank,
is driven by private information. Banks pool loans to protect themselves against credit
risk and charge a spread over the deposit rate. The household welfare function and the
Taylor-rule is the same as in the SW model. For a detailed description of the model see
Appendix C.

The posterior distributions of the estimated parameters resemble the estimates of the
SW model, but there a few notable exceptions that are important for our policy problem.

Prices are even less flexible as in the GK model and updated on average every 3.34 quarters.
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Nominal wages are more flexible and are updated on average every 1.76 quarters.

5 Model Weights

We estimate our models repeatedly with an increasing window of data, and compute
log predictive scores (4) and (5) for predictions made by our estimated models. Each
estimation sample starts at 1966:1. The first sample ends at 1970:4 (h = 20). We assess
our models based on how well they predict all seven observable variables jointly up to
four quarters ahead (K = 4).8 We increase the sample size by four quarters each time
and repeat the same steps.? Our last sample ends at 2016:4 (7' = 208) as to allow for the
computation of predictive densities using data up to 2017:4.

The top panel of Figure 1 shows the log predictive score function for each model.
These are similar across models throughout most of our sample period, indicating that
the predictive performance of all models is similar. There are exceptions to this at various
periods, for example from the mid 1990’s until the mid 2000’s (where the financial frictions
models dominate the SW model), and in the years around 1980 (where the SW model
does particularly well relative to the financial frictions models). Importantly, we employ
prediction pooling to aggregate the relative predictive performance differences over time.

The middle panel of Figure 1 shows the optimal prediction pool weights over the
sample period 1970:4-2017:4. To obtain these weights we solve the optimization problem
(6) recursively. At each point in time we use the log predictive scores up to that point to
determine the weights as if our full sample ended there. As is clear from the figure, the
BGG model predicts the best in the earlier part of the sample while in the later part of
the sample a larger weight is assigned to the SW model. Weights of approximately 42, 36
and 22 percent are assigned to the SW, BGG and GK(Q models, respectively, by the end
of the sample period.

The bottom panel of Figure 1 shows an interesting contrast to the middle panel. It
shows how the Bayesian odds evolve over our sample, given a uniform prior belief of the

policy maker over the competing models. While for most of the sample period the GKQ

8We modify Dynare’s estimation routine to calculate the predictive densities.

9We reestimate the models only every four quarters to reduce the computational complexity of the
task. This way we need to estimate each model only 47 times, and our forecasting periods do not overlap
each other.
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Figure 1: Pooling figure
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model provides the best fit and gets the highest odds, it receives much lower weight in
the optimal prediction pool. Had the policy maker used BMA to attach weights to the
models, he would have put most of her faith in the GKQ model while ignoring the other
two models entirely. In fact, with the exception of the years in the early 1990’s, BMA
have the tendency to assign almost zero weight to at least one model in our model pool.
Moreover, the optimal prediction pool weights seem to change slowly over time while large
changes in Bayesian odds can be brought by adding only a handful of observations to the
sample.

The difference in rankings across models between prediction pooling and BMA is due
to the standard trade-off between in-sample fit and out-of-sample predictive performance.
The financial frictions models fit the in-sample data quite well relative to the SW model
(and therefore have higher marginal log-likelihoods) yet they tend to predict poorly (es-
pecially in non-crises periods) in comparison to the SW model as they tend to over-fit
the data. As a result, the prediction pools assign a significant weight to the SW model.
Nevertheless, the situation is reversed at particular times (e.g. crisis times) when model
complexity may be beneficial for forecasting and therefore prediction pools should also
attach significant weight to the financial frictions models.

Figure 2 shows how the weights assigned to the SW, BGG and GK(Q models at the
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Figure 2: Optimal prediction pool weights at the end of our sample period using different
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end of our sample period depend on the forecast horizons used. Irrespective of the forecast
horizon used, all three models are useful in terms of predictability and ought to be em-
ployed by a policy maker when designing policy even though the forecasting performance
of the GKQ and BGG models are inferior to the SW model at most horizons.

Overall, our results suggest that if the policy maker does not believe any model to be
correct, she must nevertheless be much more cautious in rejecting models that appear to
be inferior. The intuition here is that such models while not particular accurate most of
the time, may well be very useful some of the time, and thus the optimal policy should take
this into consideration rather than rejecting the use of such models. Moreover, prediction
pooling is a far more robust method for attaching weight to models as these are more robust

to outliers and therefore evolve more smoothly over time than corresponding weights from

BMA.

6 Optimal Robust Rules

This section analyses the optimal simple rules for our model economies. First, we define
the different types of optimal simple rules we compute. Then, we examine optimal simple

rules designed for individual models. Then, we proceed to study optimal simple rules
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using different ways to attach weights to models. Finally, we examine the welfare cost of
suboptimal policy using two different sets of criteria: i) the cost of implementing the rule
designed for model i in the environment of model k # i and ii) the cost of implementing

a rule with deviations from the optimal parameter values.

6.1 Computation and Welfare Measures

We seek policy parameters p = [Pr Qr ady] in the Taylor-rule

Rn,t o Rn,t—l H Y th
log <Rn> = p, log ( R, > + ay log < H) + oy log <Y> + gy log <Yt1> (9)

that maximize the unconditional lifetime utility of households. We estimate the model
using the same form of the Taylor-rule (8) and the same priors on its parameters as in
Smets and Wouters (2007). However, we reparametrize the feedback coefficients by setting
ar = (1= pp)br, ay = (1 = p)0y, and agy = (1 — p;)04, to allow for the possibility of a
price level rule (p, = 1) when computing optimized simple rules.

We evaluate policies by computing the welfare in model ¢ associated with a particular

policy rule. Let

Qilp, i) = Eo Zﬁf (Cilp, i), Hi(p, i) i €7, (10)

denote the unconditional lifetime utility of households from a second-order approximation
around a deterministic steady state in model M; conditional on a particular rule p and
a parameter vector ;. Then given weights {w;},, the policy maker seeks a rule p*

common to every model in the pool that maximizes

m N

=3 / (o (i Yo MY = S w3 Qulpriy). (1)
=1 =1 j=1

where ; ; is a draw from parameter space ¥;. The optimization problem defined by
maximizing (11) can incorporate both a within-model robustness, by averaging of N draws
for each model M; and an across-model robustness by using a weighted average of model
specific welfare measures. Calculation of (11) is numerically facilitated by MCMC methods

that allow the sampling of a given distribution by simulating an appropriately-constructed
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Markov chain. Thus, the integral can be approximated by a sum.

We compute two types of optimal simple rules which we will refer to as robust opti-
mal simple rules and mean optimal simple rules. Robust optimal simple rules incorporate
both within- and across-model uncertainty. For each model ¢, we draw N = 500 param-
eter vectors 1; j,j € [1,N] from the estimated posterior distributions of each model to
approximate the integral above. Mean optimal simple rules on the other hand are based
on a single parameter vector (N = 1). They are computed by fixing the parameter vector
at the estimated posterior mean of each model. Comparing the two types of rules allows
us to assess what happens if the policy maker ignores within-model uncertainty in the
policy design.

We compare alternative policies in terms of consumption equivalent welfare changes.
Consider two alternative policies p; and p2. The consumption equivalent welfare cost of
adopting po in model M; is the fraction w’ of the consumption stream households are
willing to give up to be as well off under po as under p;. It is implicitly defined by the

indifference condition
Qi(pa, i) = Eo | > BU((1—w)Cilpr, ), Hilp1,14)) (12)
t=0

This welfare measure allows us to compare the effect of the same policy in different model
economies directly or aggregate the effect of the policy across models. To compute the
welfare cost of a policy rule common to all models in a pool, we calculate the weighted
average of the associated welfare cost from each model using the weights assigned to each

model

3
w= Z Wiw; (13)
i=1

6.2 Optimal Within-model Robust Rules

Table 2 compares three policy rules and their outcomes for each of the three models in
our prediction pool. The first is the estimated rule which are very similar across models.
The second is the robust optimal simple rule in the ‘Robust’ column and the third in the
‘Mean’ column is the mean optimal simple rule.

Both types of optimal simple rules are considerably different from the estimated
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rule. The sub-optimality of the estimated rules is well-established in the literature. Our
consumption-equivalent measure w’ indicates that using either the robust or the mean
optimized rules provides a welfare gain over the estimated rule ranging from around 0.05
percent for the GKQ model to 0.10 percent for the SW model.

The two types of optimal simple rules are very similar. The small difference between
them suggests that ignoring within-model uncertainty has only a small impact. The dif-
ference between the welfare gains of the robust and the mean optimal simple rules over
the estimated rules shows that if the policy maker ignores within-model uncertainty, then
she underestimates the gains from optimal policy for each model. Moreover, when we
compare the robust and the mean optimal simple rules to each other directly we find that
the welfare cost associated with the mean optimal simple rule is about ten-thousandth of
one percent of consumption.!® Comparing the welfare gains associated with the robust
and mean optimal simple rules reported in Table 2 directly is misleading. The welfare gain
in the ’Mean’ columns shows the fraction of the consumption stream households need to
be given to be indifferent between the mean optimal simple rule and the rule fixed at the
estimated posterior mean. The welfare gain of the robust optimal simple rule, on the other
hand, is computed as the average welfare gain of the robust optimal simple rule across
the N = 500 parameter vector draws from the estimated posterior distributions of each
model. Hence, the differences in the welfare gains reported in Table 2 reflect the effect of
within-model uncertainty on the estimated rule and not on the optimal rule.!!

Across-model differences of optimal rules are considerable. The optimal simple rules,
both robust and mean, designed for the SW model are close to a pure inflation targeting
rule. They have almost zero interest rate smoothing parameter p, but see a very ag-
gressive immediate response to changes in inflation captured by the feedback parameter
a-.'? Consequently, the welfare gains are closely related to the large decrease in inflation
volatility implied by the optimal rules: the standard deviation of inflation decreases by
a factor of three from 0.00584 to 0.00187. By contrast the optimal rules for the GKQ

and BGG models have considerable interest rate smoothing but far more muted response

0The welfare cost associated with the mean optimal simple rule is 0.16, 0.54 and 1.87 ten-thousandth
of one percent of consumption in the SW, GKW and BGG models, respectively.

" This difference is due to Jensen’s inequality given that the welfare function is concave.

2We do not impose an upper bound on the policy parameter o, during optimization. Imposing the
upper bound a, < 3 as in Schmitt-Grohe and Uribe (2007) for example would reduce the welfare gain for
the SW model slightly, but would be binding for this optimal simple rule only throughout our paper.
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to inflation. The welfare gains from decreased inflation volatility, which works through
agents’ inflation expectations, are much smaller.

The lack of interest rate smoothing in the optimal policy for the SW model results
in a higher nominal interest rate volatility than under the estimated rule. An important
consequence of the wider interest rate distribution is that the unconditional probability
of hitting the zero lower bound pzrp is much higher than with the estimated policy rule—
over 9 percent per quarter or about once every 3 years.'> This contrasts with about 2
percent per quarter for the optimal rules in the GKQ and BGG models, or about once
every 12.5 years. Available data suggest that zero lower bound episodes are rare but long-
lived (Dordal-i-Carreras et al., 2016a). The U.S. post-WWII experience (seven years at
the zero lower bound over seventy years) indicates that unconditional probabilities below
10 percent are empirically plausible. However, a policy maker may want to set an upper

bound on this probability as part of the policy mix.

6.3 Optimal Across-model Robust Rules

We now turn to optimal across-model optimal rules. We compare two sets of policy
rules computed using two different set of pooling weights. The first uses BMA and the
second we call ‘Prediction Pool’ uses optimal prediction pool weights.'4 Table 3 shows the
results for robust optimal simple rules which incorporate both across-model and within-
model uncertainty. The mean optimal simple rules, which are only across-model robust
with parameters in each model set at their estimated posterior means and are very similar
to the robust simple rules, are reported in Table E3 in the Appendix.

The contribution of within-model robustness, just like in the case of individual models
in the previous section, seems small regardless of which sets of weights we use to account
for across-model uncertainty. Comparing the welfare gains from robust and mean optimal
simple rules shows again that the policy maker underestimates the gains from optimal

policy if within-model uncertainty is ignored. But the resulting optimal rules are very

13The unconditional probability of hitting the zero lower bound is computed from a normal approxima-
tion of the gross nominal interest rate’s ergodic distribution. Let Ry and or, denote the deterministic
steady state and the unconditional standard deviation of the gross nominal interest rate, respectively,
computed from a second-order approximation around a deterministic steady state. Then the probability
of hitting the zero lower bound, pzrp is given by the probability that the gross nominal interest rate is
below one in the normal distribution ./\/(RN7 O'RN).

14We have also experimented with an equally weighted pool, but the results are very close to those
obtained using the prediction pool weights.

20



Table 2: Optimized simple rules

SW GKQ BGG

Estimated Robust Mean Estimated Robust Mean Estimated Robust Mean
Pr 0.668 0.001  0.001 0.665 0.707  0.704 0.706 0.797  0.782
form 0.663 8.621  8.195 0.653 1.176 1.156 0.565 1.270  1.170
ay 0.002 0.042  0.048 0.002 0.003  0.004 -0.002 0.004  0.004
Qgy 0.060 1.062  0.985 0.060 0.188  0.178 0.064 0.156  0.124
wi(%) 0.000 0.102  0.096 0.000 0.050  0.041 0.000 0.082  0.066
oRry (x100)  0.695 1.008 1.016 0.788 0.652  0.659 0.757 0.640  0.665
o-(x100) 0.584 0.187  0.192 0.620 0.351  0.356 0.599 0.281 0.300
oy 0.178 0.178  0.169 0.179 0.178 0.170 0.135 0.137  0.132
O’dy(X].OO) 0.862 0.832  0.830 0.835 0.808  0.803 0.841 0.841 0.839
pzre(%) 2.818 9.274  9.486 4.573 2.102  2.165 3.962 1.938  2.267

Note: The simple rules in the "Robust’ column are optimal robust simple rules based on 500 draws
from the estimated posterior distribution of each model. Every variable in the column is computed
for each draw then averaged across draws. The simple rules in the 'Mean’ column are optimal
simple rules computed at the estimated posterior mean of each model. w; shows the fraction
of the consumption stream households need to give up to have the same welfare as under the
estimated rule. og,, om, oy, and o4y denote the unconditional standard deviation of the gross
nominal interest rate, the inflation rate, output and output growth computed from a second-order
approximation around a deterministic steady state. Some of the standard deviations are scaled by
100 for ease of presentation. pzpp is the probability that the gross nominal interest rate is below
one in the normal distribution N(Ry,0R, ), where Ry is the deterministic steady state of the
nominal interest rate.

similar in Tables 3 and E3 and ignoring within-model uncertainty has only a small impact.
A direct comparison of the robust and mean optimal simple rules to each other reveals
that that the welfare cost associated with the mean optimal simple rule is again about
ten-thousandth of one percent of consumption.'®

The choice of pooling weights matters for the optimized rule. The optimal simple rule
obtained using the optimal prediction pool weights implies a higher welfare gain over the
estimated rule compared to the policy rules obtained using the BMA weights. This higher
welfare gain is explained by a combination of two factors: differences in i) the weights
and ii) in the rules. The first is a composition effect since the weights used in (13) to
aggregate the welfare gains from the individual models are different. If we aggregated

the welfare gains of the prediction pool optimal rule from the individual models using the

BMA weights, then the aggregate welfare gain would be 0.045 only. Hence, differences in

15The welfare cost associated with the mean optimal simple rule is 0.49 and 0.90 ten-thousandth of one
percent of consumption using the BMA and prediction pool weights, respectively.
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the optimal rules would imply a higher difference in welfare gains were the weights the
same.

The second factor is the differences in the rules themselves. Using the optimal predic-
tion pool weights implies a more persistent policy rule that also responds more aggressively
to changes in inflation and output growth compared to the policy rules obtained using the
BMA weights. The welfare gains from the individual models in the w’ row reveal that the
prediction pool rule trades-off welfare gains from the GKQ model for welfare gains from
the SW model given that it attaches more weight to the latter. Interestingly, inflation
volatility is reduced in all three models the most by the prediction pool optimal rule, but
the likely welfare gains from this reduced volatility are partly negated by the interest rate
smoothing parameter being above its optimal level in all three models.

Finally, across-model robustness removes the high probability of hitting the nominal
interest rate lower bound seen in Table 2 for the SW model with only within-model robust-
ness. Since the optimal values for the interest rate smoothing parameter are well above
the estimated values regardless of the weights we use, interest rate volatility decreases for

every optimal policy and so does the probability of hitting the zero lower bound.

6.4 The Welfare Cost of Suboptimal Policy

In this section we examine the welfare cost of suboptimal policy using two different
sets of criteria. First, we quantify the cost of implementing the rule designed for model ¢
in the environment of model j # i. Then, we analyse the cost of implementing a rule with
deviations from the optimal parameter values.

Table 4 shows the welfare cost of using a rule optimized for a specific model in another
model. This is a counterfactual exercise that shows the cost of incorrectly identifying
the data generating process. For example, if we use the robust simple rule optimized for
the SW model in the BGG model, then the welfare loss is 0.052 percent of consumption
relative to the robust simple rule optimized for the BGG model itself. The results confirm
that that the robust simple rule optimized for the GKQ and BGG models are very similar,
and they both are very different from the robust simple rule optimized for the SW model.
Using the rule optimized for the GKQ model in the BGG model, or vice versa, imply very

small welfare losses. Using the robust simple rule optimized for the SW model in the other
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Table 3: Optimized robust simple rules

BMA Prediction pool

NK GK BGG NK GK BGG
w(%) 1.72 98.27 0.00 41.71 35.98 22.31
Or 0.708 0.800
Qo 1.185 1.634
Qyy 0.003 0.005
Oy 0.189 0.269
W' (%) 0.068 0.050 0.079 0.083 0.044 0.080
w(%) 0.050 0.068
Ry (x100) 0.617 0.651 0.687 0.597 0.628 0.646
o (x100) 0.360 0.348 0.333 0.286 0.277 0.261
oy 0.178 0.178 0.136 0.178 0.178 0.137
0y (x100) 0.815 0.808 0.819 0.810 0.809 0.828
piZLB(%) 1.612 2.090 2.676 1.356 1.751 2.027
pzrB (%) 2.082 1.648

Note: The robust optimal simple rules in the table are based on 500 draws from the estimated
posterior distribution of each model. Every variable in the table is computed for each draw then
averaged across draws. w; shows the fraction of the consumption stream households need to give
up to have the same welfare as under the estimated rule in ach model. ogr,, om, oy, and oqy
denote the unconditional standard deviation of the gross nominal interest rate, the inflation rate,
output and output growth computed from a second-order approximation around a deterministic
steady state. Some of the standard deviations are scaled by 100 for ease of presentation. pzrp
is the probability that the gross nominal interest rate is below one in the normal distribution
N(Ry,0Ry), where Ry is the deterministic steady state of the nominal interest rate.

two models, however, implies much larger welfare losses than the other way around. This
explains why the robust simple rule optimized for the prediction pool is so close to the
rule optimized for the GKQ and BGG models. The final row shows the welfare cost of
using the robust rule optimized for the prediction pool in Table 3 relative to the model
specific robust optimal rules reported in Table 2. These now avoid the large costs of the
single model optimized rules and the costs are generally small relative to the gains from
using optimal rules.

Figure 3 shows how sensitive welfare is to changes in the coefficients in the robust
optimal simple rule in each model. Each panel in the graph shows the consumption
equivalent variation in welfare when changing a single parameter in the robust optimal

simple rule at a time in a given model. Each column shows the welfare consequences
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Table 4: Welfare cost of robust optimal policy 7 in model j # i

SW GKQ BGG
SW 0.000 0.140 0.052
GKQ 0.035 0.000 0.003
BGG 0.028 0.002 0.000
Pool 0.019 0.006 0.001

Note: The table shows what happens when an optimal simple rules optimized for model ¢ is used
in model j # i. The first column shows the consumption equivalent welfare loss in the SW model
relative to the welfare attained using the robust simple rule optimized for the SW model if, for
example, we use the robust simple rules optimized for the SW, GKQ, BGG models, respectively.
The last row shows the welfare cost incurred in model ¢ when instead of using the robust simple rule
optimized for model ¢ we use the robust optimal simple rule obtained with the optimal prediction
pool weights.

of changing a parameter in the Taylor rule, while each row shows the welfare costs of
deviating from the optimal parameter values in a given model.

In the SW model welfare is quite flat around the optimal point along every dimension.
Deviations have small effects and welfare is most sensitive to changes in the output feed-
back parameter ozy.16 In the financial friction models deviations from the optimal value «,
still dominate the policy maker’s objective: deviations can have large welfare consequences
that can reach as much as a 5% consumption equivalent. However, welfare in those models
is also very sensitive to deviations of the interest rate smoothing parameter, p,, from its
optimal value. The panels in the last row show the welfare cost of deviating from the
optimal parameter values of the common robust rule in all three models at the same time
optimized for the prediction pool. These panels are essentially weighted averages of the
three panels above them using the weights assigned to each model in the prediction pool.
The numbers here are considerably smaller than in the second and third rows due to the

fact that the SW model receives the largest weight in the prediction pool.

6.5 A Price Level Rule

Our results then show that even small deviations of p, and «, have serious welfare
consequences with losses far greater than any gains relative to the estimated rule reported

so far. So suppose that the monetary policymaker commits to a rule with p, = 1 and

16Schmitt-Grohe and Uribe (2007) termed this result the 'importance of not responding to output’.
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Note: The graph shows the welfare cost of deviating from the optimal value of c,; in in the optimal
robust price level rule. Price level rules use the restriction p, = 1 and oy = aq, = 0. The first
three panel show the welfare cost of deviating from the robust price level rule optimized for that
particular model. The last panel shows the welfare cost of deviating from the common robust price
level rule in all three models at the same time optimized for the prediction pool. Welfare costs
are measured in consumption equivalent welfare changes. The vertical red line shows the optimal
value of the parameter that is changed in each column.

ay = agy = 0. Then integrating (9) and putting % = B/Po1 where P is the price trend

T P/Pi

in the constant inflation rate steady state, we arrive at the rule
Rn,t Pt

— o it 14
R, P (14)

which is a price-level rule that adjusts the deviation of the nominal interest rate to changes
in the price level relative to its long-run trend. The benefits of price-level targeting versus
inflation targeting have been studied in the literature now for some time. (See, for example,
Svensson (1999), Schmitt-Grohe and Uribe (2000), Vestin (2006), Gaspar et al. (2010),
Giannoni (2014)). These papers examine the good determinacy and stability properties
of price-level targeting. Holden (2016) shows these benefits extend to a ZLB setting. The
intuition for the benefits of price-targeting is as follows: faced with of an unexpected
temporary rise in inflation, price-level stabilization commits the policymaker to bring
inflation below the target in subsequent periods. In contrast, with inflation targeting, the
drift in the price level is accepted.

Our results in Table 5 and Figure 4 indicate a further benefit of price-level targeting:
when the robust rule is implemented, even with departures from its optimal setting of the
single feedback parameter a.; that defines the policy, it remains robust across models with

and without financial frictions.
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Table 5: Optimized simple robust price level rules

SW GKQ BGG BMA Prediction Pool

SW GKQ BGG SW GKQ BGG

Pr 1.000 1.000 1.000 1.000 1.000

Qi 4.988 1.217 1.229 1.223 1.452

Qy 0.000 0.000 0.000 0.000 0.000

Qay 0.000 0.000 0.000 0.000 0.000

w (%) 0.092 0.022 0.064 0.075 0.021 0.063 0.077 0.020 0.063

w(%) 0.023 0.053

ORry(x100) 0.738  0.535 0.565 0.520 0.553 0.582 0.526  0.559  0.588
o-(x100) 0.116 0.269 0.232 0.257 0.246 0.213 0.249 0.239 0.207
oy 0.179 0.180 0.142 0.179 0.180 0.143 0.179 0.181 0.143
o4y(x100) 0.902 0875 0919 0.876 0.876 0.924 0.876 0.876  0.926

pzre(%) 3.630 0.689 0.983 0.577 0.854 1.166 0.626 0.918 1.240

Note: Simple price level rules use the restriction p, = 1 and o, = agy = 0 and only the value
of a,; is optimized. All rules in the table are based on 500 draws from the estimated posterior
distribution of each model. Every variable in the column is computed for each draw then averaged
across draws. w; shows the fraction of the consumption stream households need to give up to have
the same welfare as under the estimated rule in each model. or,, o, oy, and o4y denote the
unconditional standard deviation of the gross nominal interest rate, the inflation rate, output and
output growth computed from a second-order approximation around a deterministic steady state.
Some of the standard deviations are scaled by 100 for ease of presentation. pz 5 is the probability
that the gross nominal interest rate is below one in the normal distribution N'(Ry,or, ), where
Ry is the deterministic steady state of the nominal interest rate.

7 Conclusion

This paper studies the problem of designing robust simple rules when the policy maker
has at her disposal a finite set of models, none of which are believed to be the true
data generating process. We assign weights to models on the basis of the accuracy of
their 4-period ahead forecasts rather than their in-sample fit, consistent with the forward-
looking viewpoint of the policy maker. We study the robust optimal policy problem
in the form of an optimized Taylor-type nominal interest rate rule under this weighting
scheme using three estimated models exemplifying the policy makers’ uncertainty about
how to incorporate financial frictions into the canonical DSGE model of Smets and Wouters
(2007). In comparison with Bayesian model averaging, we find that our prediction pool
choice has a significant impact on the robust optimized rule.

Our approach provides a very general framework for the combination of models in a
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policy design problem. It only requires models to share the same policy instrument, to
provide a k-period ahead predictive density given macro-economic data, and to have a
welfare criterion to rank alternative policies. The models in the pool do not need to share
the estimated parameter vector, nor even the observables; they can be nested as well as
non-nested. Thus, the methodology can be applied to a wide range of macroeconomic
models from mainstream DSGE, behavioural to agent-based, and indeed to other non-
macroeconomic settings as long as these three requirements are met.

Several open questions offer possible avenues for further research. First, our policy
problem can be extended to accommodate macro-prudential instruments where banks are
subjected to a common capital, or equivalently leverage-ratio, requirement.

Second, whereas the results we have obtained in the paper examine the possibility of
a hitting a zero-lower bound for monetary policy, they are not designed to minimize this
outcome as in Levine et al. (2012). In a recent paper Dordal-i-Carreras et al. (2016b)
demonstrate that a regime switching representation of risk premium shocks can generate
a realistic distribution of zero-lower bound durations in a standard New Keynesian model.
Incorporating zero-lower bound considerations into our policy problem may reveal policy
trade-offs that are not present in our results.

Third, we have confined our study to one standard form of interest rate rule responding
with interest rate inertia to inflation, output and output growth. This nested a price level
rule which many papers in the literature have found to have good robustness properties.
Other rules, such as wage inflation targeting, need to be explored.

Fourth an aspect of the robustness approach, largely ignored by the literature, is the
scope for expectation differences between private and public sectors. There is a need
to consider the possibility that the private sector may also believe there are competing
models. By assuming that each model has RE with model-consistent expectations our
application has ruled out this possibility. This case of model-inconsistent expectations
needs to be factored into truly robust Bayesian rules. An alternative is to pursue a
behavioural approach and drop the RE assumption altogether.!”

Fifth, the use of real-time data when analysing the out-of-sample forecast performances

of competing models to compute weights would be an interesting exercise. An application

'7Candidates for such an exercise can be found in the survey Calvert Jump and Levine (2019).
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of density forecasting using real time data, but without model pooling, is provided by
McAdam and Warne (2019). Another important technical issue that may arise is that the
state space over which the two models are stable may not coincide. This is a problem as
then in both the determination of the optimal pool and the robust optimal policy, one

model may be favoured over the other.
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How should a forward-looking policy maker conduct monetary policy when she has
a finite set of models at her disposal, none of which are believed to be the true data
generating process? In our approach, the policy maker first assigns weights to models based
on relative forecasting performance rather than in-sample fit, consistent with her forward-
looking objective. These weights are then used to solve a policy design problem that selects
the optimized Taylor-type interest-rate rule that is robust to model uncertainty across a
set of well-established DSGE models with and without financial frictions. We find that
the choice of weights has a significant impact on the robust optimized rule which is more
inertial and aggressive than either the non-robust single model counterparts or the optimal
robust rule based on backward-looking weights as in the common alternative Bayesian
Model Averaging. Importantly, we show that a price-level rule has excellent welfare and
robustness properties, and therefore should be viewed as a key instrument for policy makers
facing uncertainty over the nature of financial frictions.How should a forward-looking
policy maker conduct monetary policy when she has a finite set of models at her disposal,
none of which are believed to be the true data generating process? In our approach,
the policy maker first assigns weights to models based on relative forecasting performance
rather than in-sample fit, consistent with her forward-looking objective. These weights are
then used to solve a policy design problem that selects the optimized Taylor-type interest-
rate rule that is robust to model uncertainty across a set of well-established DSGE models
with and without financial frictions. We find that the choice of weights has a significant
impact on the robust optimized rule which is more inertial and aggressive than either
the non-robust single model counterparts or the optimal robust rule based on backward-
looking weights as in the common alternative Bayesian Model Averaging. Importantly, we
show that a price-level rule has excellent welfare and robustness properties, and therefore
should be viewed as a key instrument for policy makers facing uncertainty over the nature

of financial frictions.
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Appendices

A The SW Model

Final good producers The representative final good producer uses a continuum of

intermediate goods Y;(m) to produce a homogeneous final good

)Cp/(Cp—l)

1
Y, — (/ ¥y(m) =D/ g, (A1)
0

Final goods producers are perfectly competitive and choose output to maximize profits
PY,; — fol P,(m)Y;(m)dm, where P,(m) is the price of intermediate good m and P; is the

aggregate price index. This implies the standard demand function

Pt(m)

Yi(m) = (Pt)_c” v, (A2)

Intermediate good producers Intermediate good m is produced using the technology

Yi(m) = (AeH{ (m)*Ke-1(m)' = (A-3)

where H(m) and K;(m) are labour and capital demand, respectively. Labour productivity
is decomposed into a cyclical component and a deterministic trend A; = A; A§, where the

cyclical component follows the process
log Af —log A = pa(log Af_| —log A°) + €a4. (A4)

Intermediate producer m maximizes profits P, (m)Yy(m) — Wy Hi(m) — rf K;—1(m),
where W, and ¥ are the real wage and return on capital, respectively. This implies the

marginal cost
MC; = a (1 — a)” U=l (A.5)

which is the same for all intermediate producers.

Following Calvo (1983) we assume that each period the price of retail good m is set
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optimally to P?(m) with probability 1 — &p. If the price is not re-optimized, then prices
are indexed to last period’s aggregate inflation, with indexation parameter «y,. Each retail

producer m chooses P?(m) to maximize discounted profits

> PY(m) [ Pyp—1\"
EE:’“A Y, m[t (* — MC, A6
tkzoﬁp £tk Yk (M) P Py t+k (A.6)

subject to demand (A.2) given the stochastic discount factor As ;) of the households.

The solution to the above problem is the first-order condition

o PO(m) P\ P 1
k ¢ k-1 1 _
E, k;ogp/\t,t—&-kn—kk(m) [ Pror ( Py ) A-1/G,) MCt+kMSt+k] 0 (A7)

where we have introduced a mark-up shock M S; that follows the process
log M S; —log M'S = prrs(log M Si—1 —log MS) + enrs - (A.8)

Note that this is a small departure from the original SW model where the elasticity of
substitution ¢, is the sum of its long-run mean and a mark-up shock the follows an AR(1)
process; i.e. the shock is hitting the elasticity of substitution directly.

Labour markets Households supply their homogeneous labour to trade unions that dif-
ferentiate the labour services. A labour packer buys the differentiated labour from the
trade unions and aggregate them into a composite labour using the Dixit-Stigliz aggrega-
tor Hy = (fol Ht(j)(gw_l)/gwdj) Cw/(gwil), where H; is aggregate labour supply, (,, is the
elasticity of substitution among different types of labour, and we index trade unions by
j. The labour packer minimizes the cost fol Wyt (3)H(j)dj of producing the composite

labour service, where W,, ;(j) denote the nominal wage set by union j. This leads to the

standard demand function

Hy(j) = (W>_C ay (A.9)

where W, ; is the aggregate nominal wage.
Sticky wages are introduced through Calvo contracts supplemented with indexation.

At each period there is a probability 1 — &, that trade union j can choose W,%(j) to
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maximize

[ee]
E¢ Z Equt,t+kHt+k (4)
k=0

W2,(5) (Pt+k—l > T
i - W, A.10
Pror P btk (A.10)

subject to the demand function (A.9), where 7, is the indexation parameter.

The solution to the above problem is the first-order condition

E, Z E N rwHirn ()

W (5) (Pt+k—1>%” 1
)

Piik P4 N (1—1/Cw)Wh’t+k] =0 (A.11)

where we have introduced a mark-up shock M RSS; that follows the process

log MRSS; —log MRSS = pyrrss(log MRSS; 1 —log MRSS) + €MRSS,t (A.12)

Note that this is a small departure from the original SW model where the elasticity of
substitution ¢, is the sum of its long-run mean and a mark-up shock the follows an AR(1)
process; i.e. the shock is hitting the elasticity of substitution directly.

Households Household j maximizes its expected lifetime utility

(A.13)

N 1 (S 16) RN A 1E) i Hy(j)"+
Q(j) =Eo ;5 T exp (06_1)1—1—1/1]

where C} is real consumption, H; is hours supplied, 5 is the discount factor, x controls
habit formation, o, is the NEW: inverse of the elasticity of intertemporal substitution
(for constant labour), and 1 is the inverse of the Frisch labour supply elasticity. Note
that, unlike in the original SW model, we use internal instead of external habit formation.

The household’s budget constraint in period ¢ is given by

BG) | g Bal)

N
Ci(j) + t(‘])+7RPStRn,tPt B,

+rEK () + WhiHe(5) + T (A14)

where I; is investment into physical capital, B; is government bonds held at the end
of period ¢, R,;—1 is the nominal interest rate paid on government bonds held at the
beginning of period ¢, RPS; is an exogenous premium in the return on bonds that follows

the process

log RPS; —log RPS = prps(log RPS;—1 —log RPS) + €rps.t, (A.15)
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T; is lump-sum taxes, r/ is the real rental rate, Wi+ is the real wage rate, and I'; is profits
of intermediate firms distributed to households. Notice that we deviate from the original
SW model and do not allow for variable capital utilization in the model. The capital stock

K, accumulates according to

Ki(j) = (1= 6)Ki1(j) + (1 = S(Xe(5))) e (5) I St (A.16)
where I.S; is an investment specific technological shock that follows the process

log IS, —log IS = prs(log ISi—1 —log IS) + €154, (A.17)

X:(3) = Li(j)/Li—1(j) is the growth rate of investment, and S(-) is an adjustment cost
function such that S(X) =0, S(X) =0, and S”(-) = 0 where X is the steady state value
of investment growth.

The solution to the household’s problem imply the arbitrage condition

Et[Ap i1 Res1] = Ee[Apri1 R ) = 1. (A.18)
where
Ryt K [TtK + (1 - 5)Qt]
R, = — =1 RE =
! I, ! Q-1

are the real gross returns on government bonds and physical capital, and @) is the price of
capital (Tobin’s q). The modelling strategy when we introduce financial frictions into the
model will be to break the above no arbitrage condition and introduce a wedge between
the two returns.

The Government Problem A monetary policy rule for the nominal interest rate is given

by the Taylor-type rule

log % = p, log Ln’t_l
R, " Ry,

11 Y: Y
+(1—=pp) <¢97r log (H) + 0, log <Y> + 04y log (Y)) + MPS;, (A.19)

t—1
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where II; is inflation, and M P.S; is a monetary policy shock that follows the process

log MPS; —log MPS = pyrps(log MPS;_1 —log MPS) + enpsy (A.20)

The government budget constraint is

B
PG+ By =T+ — (A.21)
n,t
where G, is government spending that follow the process
log Gy —log G = pg(log Gi—1 —log G) + g ¢ (A.22)

B The GKQ Model

The GKQ model extends the SW model with a banking sector to introduces a wedge
between the expected ex ante cost of loans from households, R; and the return on capital
r&. Our setup follows closely Gertler et al. (2012) but embeds in our SW model in a
similar fashion to Gertler and Karadi (2011). Apart from the arbitrage condition (A.18),
the details of the model are unchanged, so we concentrate here on the banking sector only.

The financial market friction in this model is driven by the costs of enforcing contracts.
Financial frictions affect real activity via the impact on funds available to banks but there
is no friction in transferring funds between banks and nonfinancial firms. Given a certain
deposit level a bank can lend frictionlessly to nonfinancial firms against their future profits.
In this regard, firms offer to banks a perfect state-contingent security.

Banks The flow of funds constraint of an individual bank is given by
Qist = ng + qrer + dy (B.23)

where s; denotes claims on non-financial firms to finance capital acquired at the end of
period t for use in period t+1, and (), is the price of a unit of capital. Therefore Q;s; is the
value of loans funded in period ¢, which equals the sum of bank net worth n;, household

deposits d; and outside equity raised from households g;e;.
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The net worth of the bank accumulates according to
ny = REQu-181-1 — Rydy—1 — Regqr1€4-1 (B.24)

where the real return equity is given by Re; = [rf + (1 — 8)q]/q—1.
Banks exit with probability 1 — op per period and pay dividends only when they exit.

The banker’s objective is to maximize expected discounted terminal wealth

)
Vi=E, Y (1-o0p)og Aeyinig (B.25)
i=1
subject to an incentive constraint for households to be willing to supply funds to the
banker.

To motivate an endogenous constraint on the bank’s ability to obtain funds, we intro-
duce the following simple agency problem. We assume that after a bank obtains funds,
the bank’s manager may transfer a fraction of assets to her family. In recognition of this
possibility, households limit the funds they lend to banks.

Divertible assets consists of total gross assets (Q:s;. If a bank diverts assets for its
personal gain, it defaults on its debt and shuts down. The creditors may re-claim the
remaining fraction 1 — © of funds. Because its creditors recognize the bank’s incentive to
divert funds, they will restrict the amount they lend. In this way a borrowing constraint
may arise. In order to ensure that bankers do not divert funds the following incentive
constraint must therefore hold:

Vi 2> O(z1)Qrst (B.26)

where x; = Cq?t;tt is the fraction of bank assets financed by outside equity, 0} >,0} >

0 captures the idea that it is easier to divert assets funded by outside equity than by
households. As before, the incentive constraint states that for households to be willing to
supply funds to a bank, the bank’s franchise value V; must be at least as large as its gain
from diverting funds.

The optimization problem for the bank is to choose a path for loans, {s;+;} to maximize

Vi subject to (B.23) and (B.24).
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Aggregation At the aggregate level the banking sector balance sheet is:
QuSt = Ny + qi By + Dy
At the aggregate level net worth is the sum of existing (old) bankers and new bankers:
Ny = Nyt + Nyt

Net worth of existing bankers equals earnings on assets held in the previous period net
cost of deposit finance, multiplied by a fraction opg, the probability that they survive until

the current period:
N07t = O'B{(T‘tK + (1 — 5)Qt)5t—1 — (T{( + (1 — (5)q1§)Et_1 — RtDt—l}

Since new bankers cannot operate without any net worth, we assume that the family
transfers to each one the fraction {g/(1 — o) of the total value assets of exiting bankers.
This implies:

Nui = Ep[r{ + (1 = 0)Q4]Si1 (B.27)

Links to the SW model In the absence of credit policy by the authorities the model is

closed by household arbitrage conditions
Ei[As 41 Ri+1] = Ee[A¢s1Re 1] = 1. (B.28)

Moreover, the market for loans clears implying that S; = K;.

C The BGG Model

In a ‘costly state verification model’ due originally to Townsend (1979), the modelling
strategy is once again to replace Ei[As 41 Riq1] = Ey [At7t+1Rﬁ1] with a wedge that arises
from the friction between a risk neutral entrepreneur and a financial intermediary. The
former borrows from the latter to purchase capital from capital producers at a price Q;
and combines it with labour to produce an intermediate good. In order to ensure they

cannot grow out of the financial constraint, entrepreneurs exit with probability op. As we
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shall see this setup introduces a wedge between the expected ex post (non-riskless) rate,
E;[R;11] and the expected return on capital E;[RL ;).
The entrepreneur seeks loans [; to bridge the gap between its net worth ng; and the

expenditure on new capital Q¢k;, all end-of-period. Thus
li = Qikt —npy (C.29)

where the entrepreneur’s real net worth accumulates according to

Ryt
1T,

K
npy = Ry Qr1ki—1 — li—1

where R;; is the nominal loan rate to be decided in the contract.
In each period an idiosyncratic capital quality shock, 1y results in a return Ry which
is the entrepreneur’s private information. Default in period ¢ 4+ 1 occurs when net worth

becomes negative, i.e., when ng ;41 < 0 and shock falls below a threshold Yy41 given by

Ry 41y

_ C.30
Ht+1Rfi1tht ( )

&t—l—l =

With the idiosyncratic shock, 1, drawn from a density f(1;) with a lower bound mn,
the probability of default is then given by

B Pey1
o) = [ s

In the event of default the bank receives the assets of the firm and pays a proportion
w1 of monitoring costs to observe the realized return. Otherwise the bank receives the full
payment on its loans, Ryl /Il;11 where R, is the agreed loan rate at time ¢.

At the heart of the model is the bank’s incentive compatibility (IC) constraint given
by

E, (C.31)

Y1 _ _
Rf Qiky ((1 - N)/ Y f()dy + g1 (1 — P(wtﬂ))) > Ryp1ly

min

The LHS of (C.31) is the expected return to the bank from the contract averaged over

all realizations of the shock, the RHS is the return from a riskless bond. To be incentive
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compatible, the expected return from the contract must be equal or greater than the
intermediary’s opportunity cost, which is the rate Ryyi.
Now define I'(;11) to be the expected fraction of net capital received by the lender

(the bank) and uG(¢11) to be expected monitoring costs where

_ Yr+1 _ _
D) = [ 0o+ dea(l - pli) (€32
G = [ wrw (€3

Then the optimal contract for the risk neutral entrepreneur solves

max By [(1—T (1)) R Qeke]
Y41,k

given initial net worth ng, subject to the IC constraint (C.31).

So far we have set out the optimizing decision of the representative entrepreneur. We
now aggregate assuming that entrepreneurs exit with fixed probability 1 — og. To allow
new entrants start up we assume exiting entrepreneurs transfer a proportion £g of their

wealth to new entrants. Aggregate net worth then accumulates according to

Npgi = (0p + &)1 — T (Y1) RE Qi1 K1

and on exiting the entrepreneur consumes

Cpi=1—-0p)1—E&r) (1 —T(W)REQi-1 K1
The resource constraint becomes

Vi =Cy+Cps+ Gy + I + uG(h)) REQi 1 Ky

D Bayesian Estimation

We estimate the three models in our pool with Bayesian methods. For all three models
we use the same seven time series as observable variables as in Smets and Wouters (2007):

the log difference of real GDP, real consumption, real investment and the real wage, log
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hours worked, the log difference of the GDP deflator, and the federal funds rate. The

corresponding measurement equations are

dIGDP, 8l Yt — Yt—1
dICON S; ~ Ct — Ci—1
dIINV; ¥ it — b1
diW AG; = 7| T |we —wiq (D.34)
IHOURS; I Iy
dl P T I
\FEDFUNDS,| |r] | n |

where 7 is the common quarterly trend growth rate of real GDP, consumption, investment
and wages, 7 is the steady state inflation rate, [ is steady-state hours worked and 7 is the
steady state nominal interest rate. The trend growth rate and all three steady state values
entering the measurement equations are not estimated, but set to their corresponding
sample means.

We fix several parameters in the estimation procedure that are hard to identify in the
model. The steady state value of the government spending-GDP ratio is set to 18 percent.
The depreciation rate is fixed at 2.5 percent per quarter and the output elasticity of labour
is set to 0.67. The elasticity of substitution among different types of intermediate goods
(p, and among labour types (,, are fixed at 7 and 3, respectively.

The parameters of the banking sector in the GK(Q model are calibrated the following
way. We choose the functional form ©(x;) = 0(1+ex;+kx?/2) for the fraction of divertible
funds. We follow Gertler et al. (2012) and set e = —2 which, together with the steady
state relationship ©'(z) = 0, implies that we can calibrate x to imply a target of 0.15 for
the steady state outside equity ratio z.'® We choose the values for # and ¢ in order to
match an economy wide leverage ratio of four and an average credit spread of 276 basis
points per year observed in the data. Finally, we choose o = 0.942 using micro data from
Bankscope, implying that bankers survive on average for 4.3 years.

The financial parameters of the BGG model to calibrate are oy, o, {g and p. These

four parameters are calibrated jointly to hit the following four targets: a default probability

¥Note that only the ratio < is pinned down in the deterministic steady state, so ¢ remains undetermined
using this calibration strategy.
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of p(¢) = 0.045, p(¢») = 1.0069 corresponding to a credit spread of 276 basis points per
year as in GKQ, an entrepreneur leverage % = 2 as in Bernanke et al. (1999), and an
entrepreneurial consumption to GDP ratio of C;,—E = 0.075.

The remaining 26 parameters, which are common in all three models, are estimated
using data over the sample period 1966:1-2017:4.19 We use the same priors as in Smets and
Wouters (2007), which are all reported in Table D1.2 To compute the log predictive scores
we estimate our models repeatedly with an increasing window of data. Each estimation
sample starts at 1966:1. The first sample ends at 1970:4 and increase the sample size by
four quarters each time. Our last sample ends at 2016:4. We estimate each model a total
of 47 times.

Table D1 reports the parameter priors and their estimated posterior distributions and

the loglikelihood values. Table D2 compares the moments of our observable variables

implied by our model at the estimated posterior mean to the data.

E Additional Results

This sections presents some additional results that are omitted from the main text to
conserve space.

Table E3 shows the results for mean optimal simple rules which are only across-model
robust with parameters in each model set at their estimated posterior means. We compare
three sets of policy rules computed using three different set of pooling weights. The
first termed ‘Naive’ weights the three models equally. The second uses Bayesian Model
Averaging (BMA) and the third we call ‘Prediction Pool’ uses optimal prediction pool
weights. These are to be compared with robust optimal simple rules in Table 3 which
incorporate both across-model and within-model uncertainty.

Figure 5 shows how sensitive welfare is to changes in the coefficients in the mean
optimal simple rule in each model. Each panel in the graph shows the consumption

equivalent variation in welfare when changing a single parameter in the mean optimal

9We use the same sample as Smets and Wouters (2007) extended to the last full year observations are
available for. We have also estimated the model with a sample that stops just before the financial crisis,
but parameter estimates are robust to the sample size.

2°We implement the models in Dynare. Instead of log-lineariznig the equations by hand as Smets
and Wouters (2007), we include them in their nonlinear form and let Dynare do the log-linearization.
Consequently, we rescaled the priors on the standard deviations of the shock processes accordingly.
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Table D1: Parameter prior and posterior distributions

Prior distribution SW GKQ BGG

Parameter  Density = Mean  Std

Oc Normal 1.500 0.375 1.216 [ 1.047; 1.390]  1.357 [ 1.185; 1.524] 1.766 [ 1.443; 2.087]
W Normal 2.000 0.750 2.440 [ 1.635; 3.270]  1.858 [ 1.080; 2.611]  0.986 [ 0.403; 1.543]
X Beta 0.500 0.100 0.397 [ 0.318; 0.475]  0.422 [ 0.352; 0.493]  0.356 [ 0.287; 0.427]
bx Normal 2.000 0.750 0.564 [ 0.341; 0.782]  1.533 [ 0.889; 2.173] 2.512 [ 1.595; 3.420]
& Beta 0.500 0.100 0.605 [ 0.547; 0.663]  0.657 [ 0.610; 0.704]  0.701 [ 0.646; 0.755]
Ew Beta 0.500 0.100 0.518 [ 0.450; 0.590]  0.508 [ 0.429; 0.588]  0.433 [ 0.326; 0.540]
Yo Beta 0.500 0.100 0.357 [ 0.210; 0.499]  0.277 [ 0.157; 0.394] ~ 0.310 [ 0.170; 0.449]
Yw Beta 0.500 0.100 0.612 [ 0.462; 0.761]  0.608 [ 0.461; 0.757]  0.598 [ 0.449; 0.752]
PR Beta 0.750 0.100 0.671 [ 0.609; 0.732]  0.665 [ 0.597; 0.733]  0.709 [ 0.659; 0.759]
0r Normal 1.500 0.250 1.998 [ 1.771; 2.231]  1.953 [ 1.727; 2.183]  1.939 [ 1.711; 2.166]
0y Normal 0.120  0.050 0.005 [ -0.015; 0.026] 0.008 [ -0.012; 0.027] -0.007 [ -0.032; 0.017]
Oqy Normal 0.120 0.050 0.186 [ 0.119; 0.256]  0.180 [ 0.113; 0.249] 0.217 [ 0.147; 0.287]
pA Beta 0.500 0.200 0.978 [ 0.968; 0.987]  0.987 [ 0.981; 0.994]  0.976 [ 0.965; 0.987]
G Beta 0.500 0.200 0.961 [ 0.951; 0.970]  0.962 [ 0.951; 0.972]  0.965 [ 0.953; 0.977]
PMCS Beta 0.500 0.200 0.912 [ 0.881; 0.943]  0.925 [ 0.892; 0.959]  0.883 [ 0.835; 0.932]
PMRSS Beta 0.500 0.200 0.968 [ 0.952; 0.985]  0.967 [ 0.952; 0.982]  0.954 [ 0.933; 0.976]
PMPS Beta 0.500 0.200 0.294 [ 0.173; 0.412]  0.308 [ 0.188; 0.430]  0.238 [ 0.132; 0.346]
PRPS Beta 0.500 0.200 0.599 [ 0.476; 0.720]  0.552 [ 0.431; 0.674]  0.847 [ 0.770; 0.927]
PIS Beta 0.500 0.200 0.939 [ 0.906; 0.973]  0.861 [ 0.830; 0.892] 0.727 [ 0.642; 0.817]
oA InvGamma 0.001 0.020 0.009 [ 0.009; 0.010]  0.009 [ 0.009; 0.010]  0.009 [ 0.008; 0.010]
lofe InvGamma 0.001 0.020 0.032 [ 0.030; 0.035]  0.031 [ 0.028; 0.033]  0.029 [ 0.027; 0.031]
oMCs InvGamma 0.001 0.020 0.015 [ 0.012; 0.017]  0.016 [ 0.013; 0.019]  0.020 [ 0.015; 0.025]
OMRSS InvGamma 0.001 0.020 0.034 [ 0.026; 0.042]  0.030 [ 0.022; 0.038]  0.023 [ 0.016; 0.030]
oMPS InvGamma 0.001 0.020 0.003 [ 0.002; 0.003]  0.003 [ 0.002; 0.003] 0.003 [ 0.002; 0.003]
ORPS InvGamma 0.001 0.020 0.005 [ 0.003; 0.007]  0.006 [ 0.004; 0.009]  0.003 [ 0.001; 0.004]
o1s InvGamma 0.001 0.020 0.017 [ 0.013; 0.020]  0.037 [ 0.029; 0.045]  0.050 [ 0.033; 0.066]
Loglik 5294.4 5299.0 5286.7

Note: All estimations are done with Dynare version 4.4.3. A sample of 500,000 draws was created
and the first 125,000 draws were discarded. The numbers in the brackets show the 90% HPD

intervals.

simple rule at a time in a given model.

Each column shows the welfare consequences

of changing a parameter in the Taylor rule, while each row shows the welfare costs of

deviating from the optimal parameter values in a given model. The results in Figure 4

incorporate only across-model uncertainty, which is compared to the results in Figure 1

which incorporate both across-model and within-model uncertainty.

46



%10 %10 %107 %10
3 1 15
6
. > \\ 10 4
_
_
5
(2% //,/ \ 5 _— 2
o 0 4 ) 0 -
0 02 04 06 08 4 6 10 12 0 0.1 0.2 0.3 0.4 0.5 1 15
%10
20
1
4 0.1
o
10
505 / 2 0.05 P
~ _— _— _—
0 I — — o —+— ofF—— O —1—
0 02 04 06 08 1 12 14 16 18 2 0 0.1 0.2 0.3 0.4 0 02 04 06 08 1
-3
s %10
\ 10 0.1
1 2
2 '\
Bos| s / 1 - 005
~ - _— — _—
0 I — op ~—— (o — (o i
0 02 04 06 08 1 12 14 16 18 2 0 0.1 0.2 0.3 0.4 0 02 04 06 08 1
x10°%
1
0.1 10 0.04
3 _
0.5 0.02
a 0.05 5
\\\,, — > _— - -
0 DR — — 0 D e of—— o 1.
0 02 04 06 08 1 12 14 16 18 2 0 0.1 0.2 0.3 0.4 0 02 04 06 08 1
PR % dy

Figure 5: The cost of bad policy

Note: The graph shows the welfare cost of deviating from the optimal Taylor-rule parameters in

the optimal rule computed at the estimated posterior mean. Each column shows the welfare cost

of changing a single parameter in the Taylor-rule while keeping all other parameters constant.

The first three rows show the welfare cost of deviating from the rule optimized for that particular

model. The last row shows the welfare cost of deviating from the common rule in all three models

at the same time optimized for the prediction pool. Welfare costs are measured in consumption

equivalent welfare changes. The vertical red line shows the optimal value of the parameter that is

changed in each column.
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Table D2: Data and model moments
SW GKQ BGG

Observable Data Mode Mean Mode Mean Mode Mean

Second moments

diIGDP; 0.8017 0.8505 0.8554 0.8281 0.8274 0.8525 0.8336
dICON S, 0.6791 0.8120 0.8310 0.8012 0.8218 0.8224 0.8400
dlIINV; 2.1127 2.0545 2.0730 2.3075 2.2799 2.1389 2.0979
diW AG, 0.7531 1.0807 1.1089 1.0515 1.0869 1.0420 1.1002
IHOURS} 3.7669 4.2799 4.2745 4.7095 4.6099 5.1979 4.6158
dl P, 0.5855 0.5602 0.5743 0.5919 0.6031 0.5693 0.5913

FEDFUNDS; 0.9493 0.6658 0.6966 0.7599 0.7820 0.7278 0.7583
Correlation with dIGDP;

dlGDP; 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
dICON S; 0.6797 0.5187 0.5140 0.5434 0.5447 0.5906 0.5867
dlINV; 0.6791 0.7228 0.7128 0.6713 0.6555 0.6492 0.6175
diW AG; 0.0167 0.4726 0.4622 0.4285 0.4185 0.4318 0.4268
IHOURS; 0.1383 0.1225 0.1239 0.1280 0.1281 0.1283 0.1267
dl P, -0.1772  -0.1298  -0.1461 -0.0585 -0.0881 -0.1498 -0.2020

FEDFUNDS; -0.0675 -0.1555  -0.1660 -0.0984 -0.1154 -0.1706  -0.1960

Note: Data moments computed at the estimated posterior mean with second-order approximation
using Dynare version 4.4.3. The sample used for computing the data moments is 1966:1-2017:4.
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Table E3: Optimized simple rules at the estimated mean

BMA Prediction pool

NK GK BGG NK GK BGG
w (%) 1.72 98.27 0.00 41.71 35.98 22.31
Pr 0.704 0.791
QU 1.161 1.580
Qy 0.003 0.006
Qdy 0.178 0.254
W (%) 0.061 0.041 0.063 0.076 0.036 0.064
w(%) 0.041 0.059
O Ry (x100) 0.629 0.659 0.709 0.608 0.635 0.667
o (x100) 0.366 0.355 0.345 0.292 0.283 0.270
oy 0.169 0.170 0.130 0.169 0.171 0.131
04y (x100) 0.813 0.803 0.815 0.807 0.804 0.824
Py (%) 1.710 2.162 3.010 1.420 1.802 2.295
pzre(%) 2.154 1.753

Note: The mean optimal simple rules in the table are computed at the estimated posterior mean

of each model. or,, om, oy, and o4y denote the unconditional standard deviation of the gross

nominal interest rate, the inflation rate, output and output growth computed from a second-order

approximation around a deterministic steady state. Some of the standard deviations are scaled by

100 for ease of presentation. pzyp is the probability that the gross nominal interest rate is below

one in the normal distribution N (Ry,0Ry ), where Ry is the deterministic steady state of the

nominal interest rate.
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