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ABSTRACT

The paper investigates the robustness of theoretical results on the existence of a range
of optimal spread periods for a defined benefit pension scheme funded by the projected
unit method. These earlier results (see Dufresne (1988), Haberman (1994a), Haberman
and Wong (1997)) have been derived using an analytical approach to investigating the
behaviour of a simplified model of a defined benefit scheme in the presence of
stochastic investment returns. The paper uses a simulation based approach to
investigate the distributions of fund level and contribution rate for a defined benefit
scheme with a liability structure that includes pensions in payment to be uprated in line
with wages inflation, RPI or limited price indexation and an asset structure where
investment return are represented by the “Wilkie Model”. The effects of including a
selection of asset classes, changing from annual to triennial valuations, changing the
initial funding level and of using a lower spread period if the fund is in deficit are also
investigated. One of the key conclusions is that a range of optimal spread periods
continues to exist as these model complexities are introduced.

KEYWORDS: stochastic investment models, pension funding; simulation; Wilkie
model.






1 Introduction.

The purpose of this project is to investigate further the theoretical results derived by
Dufresne (1988), Haberman(1994a) and Haberman and Wong (1997) on the range of the
optimal spread periods for a defined benefit pension scheme funded by the projected unit
method. These analytical results are based respectively on the following stochastic
models:-

a) annual investment returns being independent and identically distributed (IID)

b) force of interest cormresponding to the investment returns following an
autoregressive process of order 1 (AR(1))

c) force of interest corresponding to the investment return following a moving average
process of order 1 (MA(1)),

and a simplified model of a defined benefit scheme (the structure is described in the
appendix).

The use of such simple models is justified on the grounds of mathematical tractability and of
providing definitive (usually analytical) results. If the models are constructed on the basis
of reasonable, underlying assumptions then there is the possibility that the results will be of
relevance to more complex models, which provide a clear representation of the 'real world".
1t is unlikely that any such definitive results could be discovered directly from complex and
more realistic models, without the prior investigation of simpler models. In particular, it
can be difficult to discern conclusively the properties of a system just from the results of
simulations. The results from simple models can provide insight but also identify avenues
worthy of further investigation based on more complex models (and perhaps with the
assistance of simulation). This scenario applies here, with the results of Dufresne (1988),
Haberman (1994a) and Haberman and Wong (1997), based on simple models, providing
the focus for the follow up investigations presented in this report.

The model of the pension scheme in this project uses the stochastic investment model
derived by Wilkie (1995) and the distributions of the fund and the contribution rate are
obtained by performing a suitable number of simulations and generating the investment
returns for the number of years in each simulation. The model then calculates the fund and
contribution rate for each year of each simulation and hence the distribution of the fund and
contribution rate are calculated. For each model, a selection of spread periods is tested to
investigate the effect that the length of the spread period has on the standard deviation of
both the fund and the extra contribution.

In this report, the model of the pension scheme is refined in stages in an attempt to make it
as realistic as possible. For the first part of this project (Model I (section 4) - Model VI
(section 9)) the theoretical results to be tested are the relationship between the standard
deviation of the investment model and the optimal spread period which is described in
section 2. Our objective is to see if the results hold as the model becomes more realistic
and hence more complex. The later models (Models VII - IX) are used to test other
theoretical results derived from the IID investment model.



Model VII changes the pension scheme from annual to triennial valuations and the results
are compared with the relevant theoretical results for IID investment returns (see section
10).

Model VIII alters the initial funding level and again the results are compared with the
corresponding theoretical results based on IID investment returns (see section 11).

Finally, Model TX (see section 12) uses two different spread periods depending on whether
the fund is in surplus or deficit. This enhancement of the model is a natural development, as
we seek to move closely to real world practice. No theoretical results are currently
available for comparison.

In section 13, three of the models (Models TI, IV and VI) are tested to see whether a log-
normal approximation can be used to represent the distribution of the fund.

Section 14 presents a summary of the conclusions reached from the results obtained from
this project.



2 Background Results.

The main theoretical result to be tested by Models I - VI is the relationship between the
range of ‘optimal’ spread periods and the standard deviation of the investment return.
Dufresne (1988) has identified a trade-off between fund security and contribution stability,
as measured by the relationship between the limiting variances of the fund level, Var F(c0),
and the contribution rate, Var C(e) (as t — ), in the presence of IID investment returns.
A curve of Var C(0) v. Var F(e) exhibits a minimum. Then, spread periods greater than
the ‘optimal’ value M’ are unacceptable because there will always be a shorter spread
period for which both Var C(e0) and Var F(e) are reduced. In this restricted sense, the
desription ‘optimal’ is used. Further details are provided in section A3 of the Appendix.
Table 2.1 shows the value of the optimal spread period for different values of i, the mean
return, and o, the standard deviation of the investment return for the IID model.

Table 2.1 - Value of the Maximum Optimal Spread Period, M, for

the IID Model as i and ¢ Vary.
1
o -0.01 0 0.01 0.03 0.05
0.05 - 401 60 23 14
0.10 - 101 42 20 13
0.15 158 45 28 16 11
0.20 41 26 19 13 10
0.25 22 17 14 10 8

Table 2.1 clearly shows that the maximum optimal spread period, M, for the
theoretical IID model decreases as either i, and/or o increases. Therefore, we would
expect the spread period for the pension model to change between different versions of
the model if these have different values of i or ¢ or both. The expected effect on the
length of the maximum spread period, M, will depend on whether i and/or G increase
or decrease as we move from one version of the model to the another.

Section A5.1 of the Appendix introduces the theoretical AR(1) model (Haberman
1994a). Table 2.2 shows the standard deviations of the fund and the extra contribution
for this model for a selection of spread periods.

)



Table 2.2 Relative Standard Deviations of F(t) and C(t) as t—>
With i = 0.01, v = 0.05 for the AR(1) Investment Returns Model.

Spread 12 2
Pre):riod (Var F| (oo)) (Var C (oo))
|E F(e)] |E C(eo)|
©=01]0=03]0=05]0=07]0=01]0=03[0=05]0=07
1 5.0% 5.0% 5.0% 5.0% 170% 170% 170% 170%

9.1 10.8 12.7 14.2 63.9 77.0 93.8 108

10 12.9 15.7 19.6 25.9 46.5 58.4 77.0 114

20 18.8 234 303 443 35.7 46.5 65.9 121

30 23.9 30.2 40.3 64.6 31.8 42.8 64.7 148

40 28.7 36.7 50.8 943 30.2 42.0 68.3 213

50 33.4 43.7 63.1 160 29.6 42.8 76.3 421

60 383 51.1 78.5 * 29.8 45.0 90.2 *

80 48.8 69.2 100 * 31.6 53.5 114 *

(* indicates that there is no limiting value).

Table 2.2 shows that a range of optimal spread periods exists for the AR(1) Model as,
for each set of parameters, the standard deviation of the fund increases as the spread
period increases whereas the standard deviation of the extra contribution decreases at
first and then increases as the spread period increases.

Section A5.2 of the Appendix gives a description of the theoretical MA(1) Model
(Haberman and Wong 1997). The relative long term standard deviations of the extra
contribution and the fund of this model are given in Table 2.3.

Table 2.3 Relative Standard Deviations of F(t) and C(t) as t—>w
With i = 0.01, v = 0.05 for the MA(1) Investment Returns Model.

Spread § 2 ] 12
o (Vm F (oo)) (Val C(oo))
|E F() |E ()
©=-03]0=01]0=01]0=03]0=03]¢=01[0=01]0=03
1 5.0% 5.0% 5.0% 5.0% 157% 157% 157% 157%
10.2 9.1 7.7 6.3 66.5 58.7 492 395

10 14.5 12.8 10.7 8.3 49.1 42.6 34.7 26.5

20 213 18.7 15.2 11.6 383 32.6 259 19.2

30 273 23.7 19.1 143 34.7 29.1 22.7 16.4

40 33.0 28.4 22.7 16.8 334 27.5 21.1 15.0

50 38.8 33.0 26.2 19.2 334 27.0 20.2 14.2

60 44.9 37.8 29.7 21.6 343 27.1 19.9 13.6

70 51.5 42.8 33.2 23.9 359 27.7 19.8 13.2

80 58.8 48.1 36.8 26.2 384 28.6 19.9 13.1




Table 2.3 shows that for the MA(1) investment returns model the existance of a range
of optimal spread periods is again a feature as for ¢ = -0.3, @ =-0.01, ¢ = 0.01 the
standard deviation of the fund increases as the spread period increases and the standard
deviation of the extra contribution increases and then, beyond a certain point,
decreases as the the spread period increases Although this feature is not repeated for
¢ = 0.03, it can be seen that the standard deviation of the extra contribution is
increasing at a decreasing rate as the spread period increases. We would, therefore,
conclude that it is likely that an optimal spread period would exist if we continued to
increase the value of the spread period.

In section A2 of the Appendix there is also the theoretical result (for the IID Model)
that for given values of i and o there is a spread period of length My such that
increasing the spread period above this length will mean that the standard deviation of
the fund and the contribution rate will not converge as t tends to infinity. The
theoretical results of M are given in Table 2.4.

Table 2.4 - Maximum Length of Spread Period, My, for a<l

i
c 0.01 0.03 0.05
0.05 223 111 78
0.10 112 68 51
0.15 66 46 37
0.20 42 33 28
0.25 30 25 21

This theoretical result also holds for autoregressive and moving average models: for
numerical examples and for further discussion, readers are referred to Haberman
(1994a) and Haberman and Wong (1997).

The results in Table 2.4 are not going to be tested in this project but are included for
completeness. The main reasons why they will not be tested here are because the values of
the spread periods involved are larger than most pension schemes would use in practice and
these long spread periods require simulations over very long periods of time before the long
term position (of convergence or divergence) would be established.



3 The Investment Model.

The economic data for this reasearch is generated using the stochastic asset model
derived by David Wilkie and published in Wilkie (1995)

In this project, stochastic models are required for different types of investment. These
are described below (the models in respect of indexed-linked gilts and conventional
gilts are described when these particular asset classes are introduced: see sections 7
and 8). The parameter values stated with the description of each model are those
derived by Wilkie (1995) using historic data. For certain parts of this project, these

parameter values have been modified: the details including the reasons for any changes
are described in later sections where appropriate.

Inflation Model.

:I‘he model used for the retail price index where Q(t) is the value of the index at time t

o 0) = O(-1).exp {10}

Therefore I(t) is the rate of inflation over the year (t-1, t). Wilkie’s model for I(t) is:-
I() = OMU + QA.(I(t-1) - OMU) + QE(Y)

where QE(r) = OSD.QZ(1)

and it is assumed that QZ(%) ~ iid N(0,1)

The parameter values used are (Wilkie (1995)):-

QMU =0.0473
QA =0.5773
QSD =0.0427 .

Wage Inflation Model.

Defining I(t) as the rate of wage inflation over the year (t, t-1), then Wilkie’s model for
J(t) is:-

JO) = WWLI() + WW2.I(1-1) + WMU + WE(1)
where WE(1) = WSD.WZ(1)

and WZ(t) ~ iid N(0,1) -



The parameter values used are (Wilkie (1995)):-
WW1 =0.6021
WW2 =0.2671
WMU =0.0214
WSD =0.0233

Share Dividend Yield Model

Defining Y(t) as the dividend yield on ordinary shares at time t, then Wilkie’s model
for Y(t) is:-

Y() =exp{YW.I(9) + YN}

where YN(t) = In YMU + YA.(YN(t-1) - In YMU) + YE(1)
and YE(@) = YSD.YZ(1)
and YZ(t) ~ iid N(0,1)
The parameter values used are (Wilkie (1995)):-
YW =1.7940
YA =0.5492
YMU =3.77%
YSD =0.1552
Share Dividend Model.

Defining D(t) as the value of the ordinary share dividend index at time t, then Wilkie’s
model for D(t) is:-

D(1) = D(t-1).exp{DW.DM{(1) + DX)I(t) + DMU
+ DY.YE(t-1) + DB.DE(-1) + DE(1)}

where DM(t) = DD.I(1) + (I - DD).DM(t - I)
and DE()) = DSD.DZ(1)

and DZ(1) ~ iid N(0,1)



The parameter values used are (Wilkie (1995)):-

DW = 0.5793
DD = 0.1344
DMU =0.0157
DY =-0.1761
DB =0.5733
DSD = 0.0671

Share Price Index and Determining the Value of the Company’s Assets.

Defining P(t) to be the price index at time t, then it follows that:-
P(1) = D()/Y(1)

However, we are assuming that the company is going to invest the dividends it
receives to buy more shares so we can create an index that represents how the value of
the fund is growing. If we define PR(t) to be the value of the index at time t then:-
P+ D(¢
PR(fy= PR(t - 1) *M
P(i-1)

with PR(0) = 1.



4. Model I - Simple Pension Scheme Model with Wages Indexed
Pensions

4.1 Description of Model 1.

We begin our analysis with a basic model of a defined pension scheme, making the
following simplifying assumptions :-

The workforce, both active and retired, is a stationary population.

There is a single age of entry.

There is a single of retirement.

There are no benefits paid except for the annual pension.

Pensions in payment increase at the same rate as wages.

Entry into the scheme, retirement from the scheme, birthdays and payments of

contributions and benefits all occur on the 1st January each year.

o The scheme is an N/60ths final salary pension scheme.

e All the assets of the scheme are invested in equities that perfectly track the equity
index.

o The value of the assets is always the market price at any given time.

e The final salary of a member is not increased just prior to retirement i.e. it is the
exact salary he/she was earning in the year prior to retirement.

e The assumed rates of interest and wage inflation do not change during the

simulation.

Valuations of the pension scheme are carried out at discrete time t (for integer values
t=0, 1,2 ....) and the year t is defined as being from time t > t + 1.

To calculate the annual contribution rate to the scheme, the expected present value of
the pension liability and the expected present value of the active liability the following
symbols need to be defined:-

C% - the annual contribution to the scheme as a percentage of salary.

w - the expected annual wage inflation.

W - the actual wage inflation for year t.

i - the expected annual return on the scheme’s assets.
it - the actual annual return on the assets for year t.

| - the number of people alive at age x in the scheme.
Sx - the salary scale at age x.

Sal, - the salary of a member aged 25 at time t.

4.1.1 Calculation of the annual contribution rate C.

The contribution is derived by assuming that, on the basis of the assumed rates of
interest and wage inflation, the expected present value of each member’s contributions
is equal to the expected present value of their pension.



The contribution rate for a member entering the scheme at time t is therefore:-

C% 1+w 1+w)”
Sal, ﬁ{lﬁsﬁ +(Tﬁjlz“536+""+( ) 164564} =

1+w)* ?
Sal, @SLLL)—[@ +166(1+—‘_”] +16,(l+—w) +}

' 60 1,455 (1+i)40 L+i 1+i7

1 39 9
( -HTJ)J,O 165+166(M)+157(1+‘f/) +....
40 , (1+9) 1+i 1+i

= C% =—375,,

60 1+w 1+w »
L.S +(-———)I, S t.... (——) l,S
[_5 25 1+’ 26426 + 1+l 64" 64 .

1t can be seen that Sal, disappears from the calculation as we are assuming that salary
growth during the period of employment does not change with t and hence the
contribution rate should not change as it is expressed as a percentage of salary.

(1)

4.1.2 Expected Present Value of the Liability of the Pension Population.

For a person retiring at time t the expected present value of their pension is :-

PV = Sail,, Se.40 1+fﬁ(lﬂ)+fé’—(lﬂ,’) .
S, 60 [ N 1+i/ L N\ 1+i

]6)
= Sal S 40,4

——( g 2
5 g @

R . . 1+1
where d is calculated at the rate of interest = (1—+——) -1
w

Of course, the retired population of the scheme also contains members aged 66, 67,
and so on where the people who are now aged 66 retired at time t-1, the people aged
67 retired at time t-2, etc. Under the rules of this first version of the pension scheme,
pensions in payment are increased at the same rate as wages. It is, therefore possible
to determine the annual payment of each pension in terms of the current salary. As
each pension is annually increased at the rate of salary inflation the only difference
between the annual pension payments for pensioners of different ages is the rate of
wage inflation during their last year of employment. This is because their salary was
not increased before the value of their initial pension is calculated. If we define Peny,
to be the pension paid to a pensioner aged x at time t, then:-

Sal
Pen,_ = 408  Sal 3)
T60 Sy (T W)

10



Therefore the expected present value of the total liability of the retired population at
time t which we shall define as Rl, is:-

R = Ses ﬂz(i&?h la)
Sy 60 Ze\(1+W 65 )

1+65-x

= i(}’en‘:_‘lxéix) 4)

X=65

4.1.3 Expected Present Value of the Pension Liability of the Active Population.

For each current employee, the expected present value of their pension liability is the
present value of their pension minus the expected present value of their future
contributions. The present value of this liability for an employee aged x at time t which
we will define as Al is therefore:-

40,  Se L 1+W)T 0 Cc% (& (1+w)”
Al =20 qp S b (4) dgs - ‘(Zsy/y(——)) )

60 sy L (14) a5l 1+i

y=x

The total active life liability at time t, which we will define as Al, is simply the
summation:-

64
All = ZIXAIXZI

x=25

40 Sal, & (1+w)“‘“ Seydi & (1+w)’"“
=3 —] - C% 1| — 6
60 s, ZS{ S\1+i (+w) " 2.5 1+i ©

y=x

4.1.4 Net Cost.

For the model to work it is also necessary to calculate the net cost due at time t. This
is simply the difference between the value of the pension payments due and the
contributions to be paid at that time. If we define NC, to be the net cost due at time t
then:-

» 64
NC, =Y Pen, ], - C%Sal, Zf‘—]\ @)

Xx=63 Xx=23925



4.2 Simulating the Results.

As stated earlier, the purpose of the model is to investigate the behavior of the
contribution rate and the size of the fund of the scheme over time. To explain how the
model works it is useful to introduce some further terminology:-

As - Value of the assets held by the scheme in year t of the simulation just
before contributions and pension payments for that year are made.
T, - The value of the total liabilities of the scheme in year t just before the

contributions and pension payments for that year are made. This is
thus defined as:- Tl = Al, + R},

Ul, - The unfunded liability of the scheme at time t which is defined as :-
UI( = Tl( - AS[
Ec, - The extra contribution paid in year t (see below).

Asl, - Value of the assets held by the scheme in year t of the simulation just
after the contributions and pension payments of the scheme have been
made. Asl,= As, - NC,;+ Ec,

The model assumes that contributions and pension payments are made at the start of
each scheme year.

4.2.1 Extra Contribution

The extra contribution occurs because it is highly unlikely that the actual investment
returns and wage inflation figures are exactly as those expected and hence an unfunded
liability, as defined above, will arise. The value of the extra contribution is determined
by the size of the unfunded liability and the spread period being used.

The spread period is defined as the number of years over which the extra contribution
should be paid in order that the unfunded liability returns to zero if the rates of wage
inflation and interest rates experienced over the period were the same as those
assumed. We will assume that the value of the extra contribution increases by wage
inflation over the spread period of n years and hence the rate of interest use to derive
the initial value of the extra contribution would be equal to (1-+i)/(1+w) - 1. Hence we
can define Ec; as :-

t

U 1+i
Ec, =—* calculated at the rate of interest ( ])

i, (l + w)

-1 ®)



4.2.2 Generation of Results
The model generates the results in a number of different stages.

1. The model first generates the economic data required, in this case the wage inflation
and the investment return of the fund (i), for each year of the simulation using the
Wilkie model previously described, with the input of random numbers where
appropriate.

2. Alp and Rly, the present value of the active and retired life liabilities for the scheme
when we start the investigation, are calculated.

3. The assets of the scheme at time 0 are set equal to the total present value of the
liabilities of the scheme i.e. Aso=Tlp

4. Because Aso = Tly the unfunded liability and extra contribution for time 0 are also
equal to 0.

5. Nl is calculated and hence Asl, can also be calculated.

For the rest of the years of the simulation the results are generated as follows:-
1. As = Ashg * (1 Hi)

2. Al, Rl and NC, are calculated as described in the previous section.

3. U]g = Al( - ASt

4. Ec, is calculated as described above.

5. Asl,= As, - NC, + Ec,

The theroretical results discussed in section 2 and the appendix refer to ultimate values
of the moments of the fund and contribution rate. We have tended to run simulations
for 149 years as an expedient approximation, taking note that in many practical
applications projections would be run for up to a maximum of 40 years only.

A problem with the format of these results is that, because wages tend to increase, we
would expect the fund of the scheme and the size of the extra contributions also to
increase. As the value of the fund and extra contribution increase, so will the
magnitude of the variance if it is left unscaled, in which case we would be unable to
identify if the extra contribution were truly becoming more volatile as the simulation
progresses. To avoid this problem the extra contribution at time t is expressed as a
percentage of the total salary at time t, and the size of the fund at time t is expressed in
real terms using year O as the base year. Although the required fund in real terms will
change slightly, because of the differences in wage inflation in past years affecting the
pensions in payment, this should not provide too much variation.



4.3 Results from Model I

The results for Model I were generated with different lengths of spread period. Each
set of results was derived from 2000 simulations with each simulation creating 119 or
149 years of results depending on the spread period used.

For each spread period, key statistics were recorded from the distributions of the fund
in the different years of the simulation. The data recorded are the mean of the fund for
that year, the standard deviation and the 1%, 5%, 10%, 25%, 50%, 75%, 90%, 95%
and 99% percentiles along with the inter-quartile range. Similar statistics were
recorded for the distribution of the extra contribution. These values are all expressed
as percentages of the total salary (i.e. payroll) of the scheme.

Also recorded was the number of times that the fund and the extra contribution go
above or below certain levels. For the fund, the lower levels are 80%, 85%, 90% and
95% of the required fund for year 0, i.e. the value of the fund at the beginning of the
simulation. So the data recorded show the number of times that the real value of the
fund fell below these levels during the 2000 simulations. Similarly, the data recorded
for the upper levels which are 105%, 110%, 115% and 120% of the initial fund, record
the number of times that the real value of the fund was greater than these levels.

For the extra contributions, the corresponding lower levels chosen are -150%, -100%,
-50% and -25% of the regular contribution. So if, for example, the regular
contribution rate were 10% of salary then the lower levels for the extra contribution
rate will be -15%, -10%, -5% and -2.5% of salary. The upper levels for the
contribution rate simply mirror the lower levels i.e. 25%, 50%, 100% and 150% of the
regular contribution.

For each spread period, the economic data generated by the Wilkie Model was the
same in each case in order to enable a true comparison to be made.

As stated above, the model was run 2000 times for 149 years and this was carried out
on a number of different bases. In this report, we consider two bases only. For each
the main parameters of the Wilkie model were the ones given in the previous section.
For the first run, however, we decided to run the model with the values of each
standard deviation parameter halved. This is because preliminary simulations showed
that, for the longer spread periods, the model became too volatile in the later years of
the simulation. For the second run, the full values of the standard deviation parameters
were used.

4.3.1 Results With the Standard Deviation Parameters Halved (Run 1).

The modified parameters values are thus :-

QSD =0.0213
WSD =0.0116
YSD =0.0776
DSD =0.0335



The model was set-up with the assumed rate of interest i = 10.87% and the assumed
rate of wage inflation w = 6.25%. These figures are the rates derived from the Wilkie
Model when there are no random deviations, so that the model is run deterministically.
This gives a contribution rate of C = 6.35%.

Certain trends are apparent from the detailed results (not presented here). With a
spread period of three years, by the seventh or eighth year of the simulation the values
of all the characteristics of the distribution of the fund have either reached or are close
to their long term values. As the length of the spread period increases, the year of
simulation by which these long term values to be reached increases and when the
spread period is 60 years the long term values do not appear to have been attained by
the end of the 149 years.

Another feature is that as the length of the spread period increases, the value of the
median fund in the last year of the simulations decreases. With the exception of moving
from a spread period of 3 years to a spread period of 5 years, this downward trend is
also true of the mean value of the fund. However, whereas the median value of the
fund in the last year is always less than the starting value of the fund, the mean value of
the fund for the last year is actually higher than the starting fund for spread periods less
than 40 years.

The results for the variability of the fund show that, as the spread period increases, the
long-term standard deviation of the fund also increases and that this long-term value
takes longer to be realised. The values of the different percentiles of the fund show
that the value of the fund for the lower percentiles decreases and the value for the
upper percentiles increases as the spread period increases. However, the shape of the
distribution of these fund values appears to change as we consider different spread
periods. Tables 4.3.1a and 4.3.1b show the median values in the final year of
simulation and the difference between the median and each of the percentiles for the
different spread periods. The percentiles are grouped in corresponding pairs for easy
comparison.



Table 4.3.1a - The Difference Between the Fund Percentiles and the Median for
the Different Spread Periods.

Difference Between the Median and the
Respective Percentile

Spread Period | Median 25% 75% 10% 90%
3 25.71 1.86 2.27 3.43 4.27
5 25.70 2.20 2.40 3.98 4.89
10 25.50 2.78 3.05 4.88 6.22
15 25.15 3.13 3.82 5.51 7.79
20 24.82 3.60 4.61 6.10 9.42
30 24.17 4.56 5.91 7.46 12.76
40 23.37 5.44 6.72 8.96 16.39
60 21.93 6.37 8.26 10.54 21.06

Table 4.3.1b - The Difference Between the Fund Percentiles and the Median for
the Different Spread Periods.

Difference Between the Median and the
Respective Percentile

Spread Period | Median 5% 95% 1% 99%
3 25.71 4.26 5.62 5.96 8.01
5 25.70 4.87 6.58 6.38 9.45
10 25.50 5.78 8.44 7.44 12.59
15 25.15 6.70 10.48 832 16.36
20 24.82 7.54 12.38 9.34 20.49
30 24.17 8.80 17.28 11.03 27.70
40 23.37 10.73 23.66 13.13 41.73
60 21.93 12.43 32.82 15.12 61.93

Tables 4.3.1a and b show that, for each spread period the lower percentile of each pair
always has the smaller difference between it and the median than the higher percentile
and that this gap increases as the percentiles become more outlying. This gap between
the lower and upper percentiles becomes more prominent as the spread period
increases. For example, for the 5 year spread period, the difference between the
median and the 25% percentile is 2.20 and for the 75% percentile it is 2.40. The upper
percentile difference is therefore 9% larger than for the lower percentile. For the 1%
and 99% percentiles, the difference for the upper percentile is 48% larger than for the
lower percentile. Considering the 40 year spread period, the difference for the 75%
percentile is 24% larger than that for the 25% percentile and the difference for the 99%
percentile is 318% larger than that for the 1% percentile. The distribution of the fund
would therefore appear to become more skewed as the spread period is increased.

Considering the contribution rates, some of the results mirror those for the fund while

others show different features. For example, the shorter the spread period, the more
quickly the long term values of the distribution of the fund are reached. This, of
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course, should be expected as it is the size of the fund that determines the extra
contribution required. Hence, the median contribution for the larger spread periods
has an upward trend as we move further into the simulations because the median fund
for these spread periods has a downward trend. Although it is not a strictly one-to-one
correspondence, the extra contribution rates for the 1% percentile are generally
determined by the level of the funds that determine the 99% percentile statistic of the
fund. The magnitudes of these two statistics are thus very similar.

The interesting statistic, however, is the standard deviation of the extra contribution.
For spread periods up to and including 20 years, the volatility of the extra contribution
decreases as the spread period increases for each year of the simulation. However, this
trend does not fully continue when the spread period is 30 years or more. Comparing
the standard deviations of the extra contribution for each year recorded when the
spread period is 20 years and when the spread period is 30 years, we note from the
detailed results (not presented here) that for each year up to and including the 49th
year of the simulation the standard deviation of the extra contribution is lower for the
30 year spread period. For the 59th and subsequent years, however, the standard
deviation of the extra contribution is greater when the spread period is 30 years.
Comparing the spread periods of 30 years and 40 years, we note that the same pattern
occurs once again, with the standard deviation of the extra contribution being greater
for the 30 year spread period until the 59th year, at which point the standard deviation
becomes greater for the larger spread period. In the final comparison between the 40
year and 60 year spread period, the same pattern is repeated, only this time by the 49th
year of the simulation the standard deviations are equal. Therefore, increasing the
spread period to 30 years or more will, in the long run, make both the extra
contribution and the fund more volatile.

Table 4.3.2 highlights this point by showing the standard deviations of the extra
contribution in the 119th year of the simulation along with the standard deviation of
the fund.

Table 4.3.2 - The Standard Deviations of the Fund and the Extra Contribution.

Standard Deviation of | Standard Deviation of
Spread Period | the Extra Contribution the Fund in the
(Years) in the Final Year (%) Final Year

3 14.20 3.01

5 10.19 3.46

10 7.16 4.41

15 6.37 5.34
20 6.20 6.31
30 6.63 8.48
40 7.38 11.31

60 8.63 15.61

Table 4.3.2 shows that although the standard deviation of the fund continues to
increase as the spread period increases, the standard deviation of the extra contribution
falls for the spread periods 3 through to 20 but then increases as the spread period



increases beyond this value. Referring to the theoretical results summarised in section
2, we can see that 20 is the maximum optimal spread period for this model and hence
the theoretical result that a range of optimal spread periods exists has been
demonstrated.

Currently, our model makes no provision for any limitations on either the size of the
fund or the contribution and so our results are likely to infringe both the MFR
(Minimum Funding Requirement: Pensions Act 1995) and Inland Revenue restrictions
(Finance Act 1986) on the size of scheme surpluses. There are two reasons we have
allowed this to happen.

Firstly, our current model has the entire fund invested in equities. This means not only
that it is more volatile than a diverse fund investing in stocks such as indexed-linked
and conventional gilts but also that the size of both the contribution rate and the
starting fund are much smaller.

Secondly, the only benefit paid in this scheme is a pension on retirement. Therefore, it
is possible for someone to have made contributions from the age of 25 to the age of 64
but if they then die or retire through ill health no benefit is paid. This of course, has
made the contribution rate and the size of the actuarial fund smaller still. As a result,
limiting the contribution at this stage of the development of the model has been
regarded as being a major hindrance to achieving stability:

If these constraints were included into the model, then their effect would be to lower
the standard deviation of the extra contribution and increase the standard deviation of
the fund.

4.3.2 Results With the Full Standard Deviation Parameters (Run 2).

Simulated results were also obtained when the standard deviation parameters were
restored to their full values. Because of the increased variability, all spread periods
have data for 149 years, unlike before, and also extra spread periods of 7 and 25 years
have been included.

The results indicate that the main effect of using the full standard deviation parameters
is (as one would expect) that the standard deviation of the fund increases compared to
the same spread period when using the halved deviation parameters. Also, the lower
percentiles (i.e. those below the median) all have lower values for the full deviation
parameters compared to the halved deviation parameters and likewise the upper
percentiles all have higher values. However, the trends for both the median and the
mean have changed.

When we were using the reduced deviation parameters, there was a downward trend
for the mean value of the fund in the final years of the simulation as the length of the
spread period increased (this was true apart from moving from a spread period of three
years to a spread period of five years). For example, at the end of 119 years, the mean
fund value when using a three year spread period was 25.96 whereas the value at the
end of 119 years when the spread period was increased to sixty years was 25.68.
Using the full deviation parameters however, there is an upwards trend in the mean
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value and it is far more definite i.e. after 149 years the mean value of the fund was
26.63 for the three year spread period and 47.73 when the spread period was 60 years.

The reason for this trend in the mean becomes apparent when we take a closer look at
how the values of the percentiles have actually changed. Table 4.3.3 below shows the
changes in the values of the percentiles for the spread periods of 3 years and 60 years.
For this table, the values of the parameters used to calculate the differences are simply
those from the last year of the simulation.

Table 4.3.3 - The Change in the Value of the Fund Percentiles Between the Two
Models.

The Difference in the Value of the Percentile of the Two
Models for the Respective Spread Period
Percentile 3 Year Spread Period 60 Year Spread Period

1% -4.63 -3.16 .

5% -3.73 -3.82

10% -3.21 -4.23
25% -1.83 -3.67
50% +0.30 +1.66
75% +2.38 +21.06
90% +5.02 +58.21
95% +6.19 +108.43
99% +10.36 +307.71

The changes in the values of the percentiles demonstrate why the mean value of the
fund has increased and also why the increase has been far more dramatic for the larger
spread periods compared to the smaller spread periods.

Of particular note, though, is that the long term median value for all spread periods is
greater with the full standard deviations. The reason for this may be a change in the
probability of the fund reaching a critical point i.e. a level where it is impossible to get
back towards the desired fund. Table 4.3.3 shows that it is clear that the increase in
the probability of having a very large fund is greater than the increase in the probability
of having a very small fund. In the long-term, this will lead to a greater increase in the
number of very large funds compared to the increase in the number of very small funds
and thus the median value will increase. :



5 Model II - Price Inflation Linked Pensions.

5.1 Description of Model I1.

In this and subsequent sections, we consider improvements to the simple model, Model
I, presented in section 4. The first limitation of the simple model that we are going to
address is the fact that the pensions in payment have been linked to wage inflation
rather than price inflation as is the case in most real schemes. Model I, therefore, has
the same assumptions as Model I with the following modifications:-

e Pensions in payment increase at the rate of price inflation.

o The rate of price inflation used in the calculation of the contribution rate and
liabilities is kept constant throughout the simulation.

5.1.1 Calculation of the annual contribution rate C%.

The calculation of the annual contribution rate to the new scheme is very similar to
before although we now need to define:-

inf - the expected annual inflation rate.
infy - the actual inflation rate for year t:

The contribution is once again derived by assuming that the assumed rates of interest
and wage inflation are the rates that occur, and that the expected present value of each
member’s contributions is equal to the expected present value of their pension (see
equation (1) in section 4.1).

Allowing for the fact that the member still loses a year of salary growth for the year

he/she retires, the formula for the contribution rate for a member entering the scheme
at time t becomes:-
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1t can be seen that Sal, still disappears from the calculation as we are assuming that
salary growth during the period of employment does not change with t and hence the
contribution rate should not change as it is expressed as a percentage of salary.

5.1.2 Expected Present Value of the Liability of the Pension Population.

For a person retiring at time t, the present value of their pension is :-

. . 2
PV = Sal,, 5540 1+"i(1+"’_f]+§7—(1+"'f) o
S, 601 L\ 1+i I\ 1+i

Se, 40
-1 'Sﬁgass
2

= Sal (10)

.- . 1+i
where d,; is calculated at the rate of interest = ( - j -1
1+inf

It should be noted that equation (10) is identical to equation (2) from section 4.1, with
only the interest rate used to calculate the perpertuity being different.

We must once again consider the retired population of the scheme which contains
members aged 66, 67, etc. where the people who are now aged 66 retired at time t-1,
the people aged 67 retired at time t-2, etc. Under the rules of the new scheme,
pensions in payment are increased only at the rate of price inflation. It is still possible
to determine the annual payment of each pension in terms of the current salary.

For this scheme, the annual pension for the pensioners of different ages is still affected
by the rate of wage inflation during their last year of employment as once again they
are not covered for this because their salary was not increased before the value of their
initial pension is calculated. However, this time the value of the pension also loses
value with each year of payment at a rate equal to the difference between wage
inflation and price inflation. So keeping the definition that Pen,., is the pension paid to
a pensioner aged x at time t, we obtain the following:-

408, Sal, o (1+ing,)
60 SZS (1 + wl+65-x) y=1466-x (1 + W_v)

an

Pen, =

Having redefined the value of Pen,, we can define the expected present value of the

total liability of the retired population at time t, as before (equation (4) in section 4.1),
as Rl;:-

Rl = i(Pen,:xl_‘c'ix) (12)

x=63
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5.1.3 Expected Present Value of the Pension Liability of the Active Population.

The definition of this expected present value is the same as the previous model, apart
from the annuity now being calculated at the rate of interest given above. The
expected present value of this liability for an employee aged x at time t, Al, is
therefore:-

1 64~-x 0 64 y-x
=V s&!ﬁi%aﬁ —%(Zsyly(H—w) J (13)

60 sy b (140)T Syl \ims 1+i

The total active life liability at time t, Al,, is simply the summation:-

64
All = Z IxAlx:t

x=25

64 65-x . 64 y-X
_ 40 Sal, 5 l“(l+w) Sesdss _ Y (1+u") ] (14)
60 5,5 S| TN 1+i (1+w) Y 1+i

y=x

5.1.4 Net Cost.

Once again the definition of this remains the same as the value of the parameters in the
equation have changed. Therefore the net cost now due is:-

@ 64
NC, =" Pen I, - C%Sal,y 1, (15)
x=65: x=25925

5.1.5 Simulating the Results.

The model works in exactly the same way as the first model with the modified
definitions of some of the parameters involved, as noted above.
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5.2 Model II Results - Pensions Linked to RPIL.

As stated in section 4.3, we are going to use the Wilkie model with the standard
deviation values halved so that they are the same as for Model 1. Model II was
simulated 2000 times for 149 years with the same spread periods as for the second part
of Model L.

The parameters chosen were i = 10.87%, w = 6.25% and inf = 4.73%. These results
give a contribution rate of C = 5.86% and an initial fund of 22.8782.

As previously, the model was started in equilibrium with all past values of wage and
price inflation equal to the assumed rates.

The overall results are very similar in their trends to the results obtained from the first
model. For example, the mean value of the fund varies only slightly between the
different spread periods although the longer spread periods generally have slightly
lower values. However, as for Model I, there is a definite trend with the median value
of the fund decreasing as the spread period increases i.e. in the final year of simulation
the median value is 22.96 when the spread period is three years falling to 19.32 when
the spread period is sixty years.

Similarly, increasing the spread period makes the long term values of the upper
percentiles increase and the lower percentiles decrease. The standard deviation also
increases.

In the discussion of the results for Model I (section 4.3), it was mentioned that because
of the use of a portfolio of equities and because there were no benefits except a
pension at normal retirement age, the contribution rate and fund were particularly small
and volatile. Now that we have made pensions increase by price rather than wage
inflation the contribution rate and initial fund have decreased further. This might lead
to the expectation that the new model may be more volatile than the first. This
hypothesis is supported by the fact that we are using another parameter, namely price
inflation, in the derivation of pension liabilities. However, this hypothesis does not
appear to be supported by the detailed results (not shown here): comparing any spread
period with its counterpart from the first section of Model I, shows that the new model
has a lower standard deviation for both the fund and extra contribution rate.

Of course, the principal explanation for the smaller standard deviation is that the
standard fund and contribution rate for this new model are smaller. For example, for a
three year spread period, if we assume that the standard deviation of the fund is 3 then
dividing by the starting fund for Model I we obtain 0.1166. Assuming the standard
deviation of the fund for Model Il is 2.65 then dividing by the starting fund we obtain
0.1158. So, if we place some form of scaling on the standard deviation values, the two
models appear to have very similar levels of variability.

This feature of the models appearing to have the same relative standard deviation is

backed up when the frequency that the fund passes through the defined levels is
considered. It appears from these results that the frequency with which the new
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model passes through the various levels is very similar to the results for the
corresponding spread periods with the Model 1. However, for the outlying levels of
both the fund and the contribution the frequency of Model II appears to be less than
that of Model I. Tt would appear, therefore, that the greater stability of Model II may
be due to the fund not reaching ‘critical levels’ as often as Model L.

This more stable fund may be explained by the fact that we are using the assumed rate
of wage inflation to calculate the extra contribution rate even though our liabilities are
only rising by price inflation. Therefore, the extra contribution brings the actual fund
back towards the correct level of the fund more quickly than before and hence there is
less chance that the fund will reach a level which is too high or too low from which to
recover. The removal of some of these extreme levels of fund will, therefore, lower
the variability of both the fund and the extra contribution rate.

The similarity of the variability of the two models is also confirmed when we examine
the relationship between the variability of the fund and the extra contribution rate. As
before, the standard deviation of the extra contribution falls at first as the length of the
spread period increases. When the spread period exceeds 20 years, however, the long
term variability of the extra contribution also increases which is identical to the result
in Model 1. In fact, the results very closely mirror each other when we consider the
years where the standard deviations for the larger spread period become greater than
those for the shorter spread period. For Model I, the standard deviation for the 30
year spread period becomes greater than that for the 20 year spread period in the 59th
year of simulation. The standard deviations for Model II in the 59th year of simulation
are 5.42% for the 30 year spread period and 5.43% for the 20 year spread period so
that the two values are effectively equal.

A comparison of the standard deviations for the 30 and 40 year spread periods shows
that the results for Model I and Model II are similar with the standard deviation of the
extra contribution for the 40 year spread period becoming greater than that for the 30
year spread period by year 59 of the simulation.

Finally, a comparison of results for the 40 and 60 year spread periods shows that for
Model I the standard deviations for simulation year 49 are the same, while for Model II
the standard deviations are effectively the same with the standard deviation for the 60
year spread period being just 0.01% less.

Table 5.2.1 shows the standard deviations of the extra contribution and of the value of
the fund in the final year of the simulation for each spread period. This highlights how
the standard deviation first falls as the spread period increases and then rises when the
spread period goes above 20 years whereas the standard deviation of the fund
increases as the spread period increases. This indicates the existence of a range of
optimal spread periods, with a maximum value equal to 20 years (as for Model I, see
Table 4.3.2).
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Table 5.2.1 - The Standard Deviations of the Extra Contribution and the
Fund in the Final Year of the Simulation.

Standard Deviation of | Standard Deviation of
Spread Period the Extra Contribution the Fund in the
(years) in the Final Year (%) Final Year
3 12.28 2.61
5 8.97 3.05
7 7.50 3.43
10 6.43 3.96
15 5.74 481
20 5.60 5.70
25 5.72 6.65
30 5.98 7.66
40 6.74 9.78
60 8.18 13.38 -

Table 5.2.2 compares the standard deviation of the extra contribution for the final year
of the simulation for Model I, using the halved standard deviation parameters, and

Model 1L

Table 5.2.2 - The Standard Deviations of the Extra Contribution in the Final
Year of the Simulation for Models I and IL

Standard Deviation of the Extra Contribution
Spread Period in the Final Year (%)
(years) Model I Model 1T
3 14.20 12.28
5 10.19 897
10 7.16 6.43
15 6.37 5.74
20 6.20 5.60
30 6.63 5.98
40 7.38 6.74
60 8.63 8.18

As has been noted earlier, a possible reason for the standard deviations for Model II
being less than the corresponding values for Model 1 is that Model II has a smaller
standard contribution. Table 5.2.2 highlights the point that the variations in the
standard deviation for Model II as the spread period increases follows a very similar

pattern to that of Model 1.

For completeness, Table 5.2.3 shows the standard deviation of the fund in the final
year of the simulation for Models T and II.
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Table 5.2.3 - The Standard Deviations of the Fund in the Final Year
of the Simulation for Models I and II.

Standard Deviation of the Fund
Spread Period in the Final Year
(years) Model I Model 11
3 3.01 2.61
5 3.46 3.05
10 441 3.96
15 5.34 481
20 6.31 5.70
30 8.48 7.66
40 11.31 9.78
60 15.61 13.38

Again, we can see that, taking into account the differences in scale between the desired
funds of the two models, the trend in the standard deviation of the fund, as the spread
period increases, is very similar for the two models.
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6 Model III - Limited Price Indexing.

6.1 Description of Model II1.

We note that the 1995 Pensions Act, contains the requirement that, for pensions
accruing after 1st April 1997, occupational pension schemes must provide increases to
pensions in payment at the rate of 5% per annum or at the rate of increase of RPI if
this is lower.

The previous model, Model II, improved on the first model by linking the increases in
the pensions in payment to the Retail Price Index rather than the level of wage
inflation. Model III takes this one stage further by using Limited Price Indexing (LPI)
for the pensions in payment. With LPI, the annual increase for each pension is still
linked with the RPI. However, in years where the inflation rate exceeds 5%, the
increase in pensions is limited to 5%.

The way this model works is, therefore, identical to the preceding model apart from
the value for inf; which is now changed to:-

inf, = Min (the inflation rate in year t, 5%)

As we are assuming an inflation rate for our calculations (of contributions and
liabilities) of 4.73%, (i.e. below 5%), this new model has the same contribution rate
and standard fund as the previous model. This, of course, allows a straightforward
comparison between the new results and the previous results in determining the effects
of introducing LPI on the variability and distribution of the fund and extra
contribution.

6.2 Model III Results

Using LPI has the effect of limiting the annual increase in the pension liability which
would lead to the expectation that the new model should be slightly more stable than
the previous one. However, as both wage inflation and the return on equities are
linked to price inflation (in the Wilkie Model), there is also an argument that in periods
of high inflation there could be an increase in the chance of over funding which would
lead to an increase in instability.

The detailed results for Model III (not shown here) indicate that introducing the LPI to
the pensions in payment has indeed increased the likelihood of over-funding. This
follows from the structure of the Wilkie model which is autoregressive so that, once
we have entered a high period of inflation, it is possible for this period of high price
inflation, linked to high wage inflation and equity returns, to be sustained for a long
period of time. During such periods, the gap between the rate of inflation and the rates
of wage inflation and equity returns would be larger than for Model II, which would
lead to over-funding.
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An analysis of how the fund behaves concentrating on the mean, standard deviation
and median value of the fund, shows that the differences between Models I and III
appear to be very similar to the effect of increasing the standard deviation parameters
from half to full values in Model I (though not to the same extent) as both the mean
and standard deviation have increased and the median has remained relatively stable.
For Model I, increasing the standard deviation parameters has the effect of making the
distribution of the fund for all spread periods retain a similar shape, with the upper
percentiles increasing and the lower percentiles decreasing. However, a close
examination of the distribution of the funds under Model III shows that this is not the
case as the effect of the spread periods depends on the length of the spread period and
we note that the shape of the distribution of the fund has changed.

From an examination of the standard deviations in the last year of the simulation, we
can see that the standard deviation of the fund size increases as the spread period
increases and there is the customary pattern of the standard deviation of the extra
contribution firstly decreasing and then increasing as the spread period increases.
Table 6.2.1 shows the standard deviations of the extra contribution in the final year of
the simulation for the previous model (Model II - no limitation on the price indexing of
wages) and the current model, Model T11.

Table 6.2.1 - The Standard Deviations of the Extra Contribution and Fund for
the Final Year of Simulation for Models II and IIL

Standard Deviation of Standard Deviation
the Extra Contribution | of the Fund in the Final
Spread Period | in the Final Year (%) Year
(years) Model IT | Model I | Model II | Model III
3 12.28 12.41 2.61 2.62
5 8.97 8.94 3.05 3.03
7 7.50 7.46 343 3.40
10 6.43 6.47 3.96 3.97
15 5.74 5.97 481 4.99
20 5.60 6.05 5.70 6.15
25 5.72 6.42 6.65 7.45
30 5.98 6.96 7.66 8.90
40 6.74 8.22 9.78 11.92
60 8.18 10.30 13.38 16.83

The way in which the introduction of LP1 has affected the distribution of the standard
deviations of the fund and extra contribution can be seen by examining Table 6.2.1.

For spread periods of 10 years and below, the standard deviation of the extra
contribution in the final year of simulation is very similar for both models. However,
when the spread period increases to 15 years or above the standard deviation is larger
for Model TII and the gap between the standard deviations increases as the spread
period increases. We, therefore, conclude that Model 111 is more unstable than Model
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II for the higher spread periods but appears to have the same level of stability for
shorter spread periods.

The other thing to note from this Table 6.2.1 is that the length of the critical spread
period, M’ (identifying the maximum of the range of the optimal spread periods), has
been reduced from 20 years to 15 years which we would expect as Model 1II has a
greater variability than Model II (appendix, Section A2).

Tables 6.2.2a and 6.2.2b show how the fund in the final year of the simulation is
distributed. For each spread period, the tables give the values of the median and the
difference in value between each of the recorded percentiles and the median for the
final year of the simulation.

Table 6.2.2a -The Difference Between the Median and the Percentiles
of the Fund for Models II and IIL

Difference Between the Median and the
Respective Percentile

Spread Period | Median 25th 75th 10th 90th
3 22.54 1.65 1.89 2.94 3.73
5 22.68 1.82 2.18 3.40 435
7 2291 2.12 2.33 391 4.88
10 23.04 2.38 2.84 432 5.76
15 23.36 2.90 3.72 5.08 7.19
20 23.92 343 438 6.03 8.98
25 24.23 3.86 5.35 6.65 10.91
30 24.64 431 6.20 7.58 13.31
40 25.37 5.43 7.95 9.20 17.86
60 26.42 7.15 10.53 11.80 24 .47

Table 6.2.2b -The Difference Between the Median and the Percentiles
of the Fund for Models IT and Il

Difference Between the Median and the
Respective Percentile

Spread Period | Median 5th 95th 1st 99th
3 22.54 3.84 490 5.10 6.85
5 22.68 432 5.73 5.96 7.90
7 2291 493 6.33 6.75 9.01
10 23.04 5.44 7.57 7.37 11.41
15 23.36 6.26 9.50 8.66 15.98
20 23.92 7.52 12.08 10.18 20.14
25 24.23 8.29 14.89 11.03 2493
30 24 .64 942 17.91 12.20 32.94
40 25.37 11.38 2427 14.17 4471
60 26.42 13.69 34.29 17.33 63.15
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Tables 6.2.2a and 6.2.2.b show two important features. Firstly, the median value of
the fund increases as the spread period increases. This is the opposite trend to that
reported for the median value in Model I This reversal in trends is identical to that
which occurred in Model T when the standard deviation values were changed from
their reduced to their full values (see Sections 4.3.1 and 4.3.2).

Secondly, we see that, as the spread period increases the skewness of the distribution
increases in a similar way to before. However, the way in which the distribution has -
changed when we move from Model II to Model IIT is more clearly demonstrated if we
compare the distribution of the fund in the final years for these models based on three
particular spread periods viz. 5, 20 and 40 years.

Tables 6.2.3a and 6.2.3b show the difference for the key fund value distribution
characteristics between Model II and Model TII in the final year (year 149) of the

simulation.

Table 6.2.3a - Difference Between the Fund Distribution Characteristics of

Models IT and T1L
Difference in Value Between Model 111 and Model II
Spread Standard 1% 5% 10% 25%
Period Mean Deviation | Percentile | Percentile | Percentile | Percentile
5 -0.11 -0.02 -0.31 -0.07 0.02 0.00
20 1.72 044 031 0.92 1.16 1.50
40 527 2.14 1.71 2.26 2.88 3.55

Table 6.2.3b - Difference Between the Fund Distribution Characteristics of

Models IT and III.
Difference in Value Between Model III and Model I
Spread 75% 90% 95% 99%
Period Median | Percentile | Percentile | Percentile | Percentile
5 -0.14 -0.21 0.07 0.05 -0.20
20 1.74 2.18 2.50 2.88 3.27
40 4.89 6.69 8.49 8.18 14.00

We see from Tables 6.2.3a and 6.2.3b that the change in the distribution of the fund
between Models 1T and 111 is dependent on the length of the spread period. For the 5
year spread period, the differences in the values are small. Although the statistics for
Model II appear to be slightly larger than for Model 1II, this turns out to be simply a
function of the choice of the simulation year to make this comparison. We, therefore
conclude, that the introduction of LPI has had little effect on the distribution of the
fund when the spread period is 5 years.

When the spread period increases to 20 years, however, there is a marked difference in
the distribution of the fund. For all the distribution characteristics, the values for
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Model TII are larger than the corresponding values for Model IL. This is different to the
change in the distribution of the fund for Model I when we move from reduced
standard deviations to full standard deviations where the median and higher percentiles
increase in value but the lower percentiles decrease in value (see Table 433). It
should also be noted that the higher the percentile, the greater the difference between
the values for the two models. This would indicate that the distribution of the fund has
moved to the right and has become more skewed.

Extending the spread period to 40 years has the effect of magnifying the changes that
have occurred for a spread period of 20 years i.e. the values of all the distribution
characteristics of the fund have increased and, with the exception of the 90% and 95%
percentile, the difference between the values of the fund for the two models has
increased (and to a greater extent than for the extension of the spread period from 5 to
20 years). The effect of this on the long-term position of the fund has been to change
it from being under-funded to being over-funded. This is demonstrated most
effectively by looking at the frequency that the fund passes certain levels as shown
below.

Spread Period of Five Years

Table 6.2.4a - Frequency that the Extra Contribution in the Final Year Passes
Through the Specified Boundaries for Models IT and I

% of Optimum Fund
Model | 80% 85% 90% 95% 105% | 110% | 115% | 120%

I 4.45% | 11.60% | 21.65% | 35.25% | 35.75% | 24.30% | 14.35% | 7.40%
1 470% | 11.35% | 21.85% | 36.55% | 33.70% | 22.20% | 13.55% | 8.05%

Spread Period of Twenty Years

Table 6.2.4b - Frequency that the Extra Contribution in the Final Year Passes
Through the Specified Boundaries for Models IT and IIL

: % of Optimum Fund
Model 80% 85% 90% 95% 105% 110% 115% 120%

I 10.45% | 28.30% | 38.55% | 46.85% | 37.50% | 29.90% | 24.10% | 19.00%
1T 12.20% | 19.30% | 25.90% | 34.95% | 49.50% | 41.30% | 34.05% | 28.50%
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Spread Period of Forty Years

Table 6.2.4c - Frequency that the Extra Contribution in the Final Year Passes
Through the Specified Boundaries for Models II and TIL

% of Optimum Fund
Model 80% 85% 90% 95% 105% 110% 115% 120%

II 36.25% | 43.85% | 50.45% | 54.90% | 34.75% | 30.65% | 26.15% | 23.45%
I 17.80% | 22.70% | 27.30% | 35.55% | 56.50% | 50.85% | 46.45% | 41.80%

We can see from Tables 6.2.4a, 6.2.4b and 6.2.4c that the results noted earlier appear to be
borne out. There is little change for the spread period of five years (once again the
differences are due to the particular anomalies of the last year of simulation rather than any
underlying trends) whereas there has been a shift from under-funding to over-funding for
the case of the spread period of 20 years and an even more significant shift for the 40 years
spread period.



7 Model TV - Inclusion of Indexed Linked Gilts.

7.1 Description of Model IV.

So far, the improvements in the models have concentrated solely on the calculation of
the liabilities. However, as has been mentioned before, the assumption that the entire
pension fund is being invested in equities is certainly unrealistic. In reality, pension
funds invest in a mixed portfolio which may include indexed linked gilts (ILGs),
conventional gilts, property, etc. The next set of models, therefore, introduces a mixed
portfolio.

Indexed linked gilts were introduced by the UK government in 1981 with pension
funds as potential investors in mind. They were intended to provide protection against
price inflation (high inflation having been a problem throughout the 1970’s) as they
offer a very stable real return as payments are linked to the retail price index, although
there is an 8 month time lag. This class of asset would therefore help the pension fund
match its future pension liabilities, as both the pensions in payment and the pension
fund increases would be dependent on price inflation. Of course, this protection comes
at a price, namely that the expected return is less than from equities and so investing
the entire fund in ILGs would rapidly increase the contribution required. Thus, a
pension fund with a choice of two investment categories available (equities and ILGs)
would split its portfolio between equities and ILGs in order to harness the stability of
the ILGs without sacrificing the better return of equities.

Model IV uses the simplest type of split portfolio by having the fund invested in the
same proportions each year. For example, if a proportion x (0<x<1) of the portfolio is
invested in equities and a proportion 1-x is invested in indexed linked gilts then the
initial fund after the immediate liabilities have been met will be split between the two
asset classes, according to these proportions. At the end of the year, the fund is
recombined to give the value which is recorded. At the start of the next year the
annual contributions are received, the pensions are paid out and the remaining fund is
split between equities and indexed-linked stock according to the above fixed
proportions. This process is repeated each year and is the only difference in how
Model IV operates compared to Model III. This approach is often described as a re-
balancing strategy: Cairns (1995). Other investment strategies have been suggested in
the literature (e.g. constant proportion portfolio insurance - see Black and Jones
(1987) and Boulier and Kanniganti (1995)) but time does not permit us to investigate
their properties. In this discussion, we do not consider ‘going short’ in an asset and
hence we have the restriction that x>0.

7.2 Modelling of Index-Linked Stocks.

The modelling of the returns from index-linked stock is carried out by using the Wilkie
Model (1995 version) with the standard deviation parameter halved. This model for
the real yield, R(t), on index-linked stocks at time t, is as follows:-
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In R(t) = In RMU +RA.(In R(t-1) - In RMU) +RE(t)

where RE(t) = RSD.RZ(t)
and RZ(f) ~i.i.d N(0,1)
The parameter values used are:-

RMU = 3.86%

RA =0.4936

RSD =0.0365

The total nominal returns at time t are RR(t), defined as:-

RR(f) = RR(t-1).{1/R(}) + 1}.R(+-1).{Q(@)/Q(t - 1)}

7.3 Results.

Model TV was tested using the spread periods of 5, 7, 10, 15, 20, 25, 30 and 40 years.
The outlying spread periods of 3 and 60 years were omitted in order to save time as
results from earlier models, and preliminary testing of Model IV, showed that the
trends displayed by these extreme spread periods could be identified from an
examination of the other spread periods.

Model IV was tested for two different portfolios: the first with 85% of the portfolio
invested in equities and 15% in ILGs and the second with 70% of the portfolio
invested in equities and 30% in TLGs. As Model III corresponds to Model IV with a
portfolio of 100% equities, in reality there are three portfolios to compare.

The assumed rates of price inflation, wage inflation and the return on equities are as
before and the return on ILGs is 8.89%. The assumed rate of interest, i, for any
particular portfolio with a proportion x invested in equities is therefore:-

i%=x*10.87%+ (1 -x) * 8.89%

As the assumed rate of interest for the different portfolios is not the same, neither is
the derived contribution and fund. Comparisons of the standard deviations and the
distribution of the fund must therefore be done with care, as the size of the standard
deviation will depend somewhat on the size of the fund. This problem has already
been encountered when Model T and Model II were compared (see section 5).

The expected outcome of introducing ILGs into the portfolio is to reduce the
variability of both the fund and the extra contribution and the results indicate that this
is indeed what has occurred. Table 7.3.1 shows the standard deviation of the extra
contribution and the fund in the final year of the simulation for the different portfolios
and spread periods.



Table 7.3.1 - The Standard Deviations of the Extra Contribution and Fund for
the Final Year of the Simulation for Each Spread Period and Portfolio.

Spread | Standard Deviation of the Extra Standard Deviation of the Fund in
Period | Contribution in the Final Year (%) the Final Year
(vears) | 100% Eqs | 85% Eqs | 70% Eqs 100% Eqs | 85% Eqs | 70% Egs
5 8.94 7.77 6.66 3.03 2.65 2.30
7 7.46 6.54 5.60 3.40 3.01 2.61
10 6.47 5.71 4.84 3.97 3.55 3.05
15 5.97 5.25 4.37 4.99 4.48 3.79
20 6.05 5.26 4.31 6.15 5.47 4.59
25 6.42 5.48 4.45 7.45 6.55 5.46
30 6.96 5.83 4.70 8.90 7.70 6.41
40 8.22 6.68 5.37 11.92 10.08 8.42

It can be seen from Table 7.3.1 that the introduction of ILGs into the portfolio has
reduced the standard deviations of both the fund and the extra contribution for any
given spread period. Also, the greater is the proportion of ILGs, the greater is the
reduction in the standard deviations. As the results above have not been scaled to take
into account the trend in the mean, which increases as the proportion of ILGs in the
model increases, the reduction in standard deviations has been slightly understated.

The results obtained from this model are in direct support of the theoretical results
(section 2) as the critical spread period, M’, has increased as the variance of the model
has decreased. This is shown by the fact that for the 100% equities portfolio there is a
definite increase in the standard deviation of the extra contribution (5.97 to 6.05) as
the spread period changes from 15 years to 20 years. When the portfolio is changed to
85% equities and hence has a lower variance, there is still an increase in the standard
deviation of the extra contribution between the two spread periods but this time it is
only an increase of 0.01 rather than the previous increase of 0.08. Finally, when the
proportion of ILGs is increased again so that the portfolio is 70% equities and 30%
ILGs, the standard deviation of the extra contribution first increases when the spread
period changes from 20 years to 25 years.

In section 6.2, it was observed that the implementation of a new model may change not
only the mean and standard deviation of the fund and extra contribution but also the
shape of the distribution for certain spread periods. Similar analysis is needed this time
but is made more difficult by the fact that the fund and standard contribution are
different for the different portfolios.

To see the effect of the changes underlying Model IV, the results of the final year of
the simulation for the spread periods 5, 20 and 40 years are compared. Firstly, the
differences between the fund distribution percentiles and the median for the three
portfolios and spread periods are compared in tables 7.3.2a to 7.3.4b



5 Year Spread Period

Table 7.3.2a -The Difference Between the Median and the Percentiles
of the Fund in the Final Year of the Simulation.

Difference Between the Median and the
% of Equities in Respective Percentile
Portfolio Median 25% 75% 10% 90%
100 22.68 1.82 2.18 3.40 435
85 2332 1.69 1.86 2.96 3.65
70 24.07 1.47 1.49 2.68 3.17

Table 7.3.2b - The Difference Between the Median and the Percentiles
of the Fund in the Final Year of the Simulation.

Difference Between the Median and the

% of Equities in Respective Percentile
Portfolio Median 5% 95% 1% 99%
100 22.68 432 5.73 5.96 7.90
85 23.32 3.68 4.94 5.26 7.25
70 24.07 3.32 4.10 4.60 6.10

20 Year Spread Period

Table 7.3.3a - The Difference Between the Median and the Percentiles
of the Fund in the Final Year of the Simulation.

Difference Between the Median and the
% of Equities in Respective Percentile
Portfolio Median 25% 75% 10% 90%
100 23.92 343 438 6.03 8.98
85 24.53 3.14 3.90 5.57 7.64
70 25.56 2.74 3.17 494 6.45

Table 7.3.3b - The Difference Between the Median and the Percentiles
of the Fund in the Final Year of the Simulation.
Difference Between the Median and the

% of Equities in Respective Percentile
Portfolio Median 5% 95% 1% 99%
100 23.92 7.52 12.08 10.18 20.14
85 24.53 6.79 10.44 8.70 16.98
70 25.56 6.18 8.59 8.27 13.56




40 Year Spread Period

Table 7.3.4a - The Difference Between the Median and the Percentiles
of the Fund in the Final Year of the Simulation.

Difference Between the Median and the
% of Equities in ' Respective Percentile
Portfolio Median 25% 75% 10% 90%
100 25.37 5.43 7.95 9.20 17.86 .
85 26.55 5.40 7.26 8.81 14.93
70 28.52 4.90 5.37 8.45 11.91

Table 7.3.4b - The Difference Between the Median and the Percentiles
of the Fund in the Final Year of the Simulation.

Difference Between the Median and the
% of Equities in Respective Percentile
Portfolio Median 5% 95% 1% 99%
100 25.37 11.38 24.27 14.17 4471
85 26.55 10.69 20.45 13.03 33.46
70 28.52 10.15 16.44 12.57 27.13

From Tables 7.3.2a through to 7.3.4b, it can be seen that, for each of the three selected
spread periods, increasing the proportion of indexed-linked gilts in the portfolio
increases the value of the long term median, and decreases the difference between the
median and all the selected percentiles. Therefore, if these differences were expressed
as a percentage of the long term median this characteristic of having a less dispersed
distribution of the fund would be even more emphasised. This feature occurs, as one
would expect, because the standard deviation of the fund has been reduced as the
proportion of indexed-linked gilts increases.

It is also worth noting that the reduction in the difference between the median and the
higher percentile of each pair appears greater than that of the lower percentile. For
example, for the 40 year spread period, the difference between the median and the
99% percentile decreases from 44.71 for 100% equities to 27.13 when the portfolio
comprises 70% equities and 30% indexed-linked gilts. In contrast, the difference
between the 1% percentile and the median only changes from 14.17 to 12.57 for the
same two portfolios. These differences in the reduction are mirrored for all pairings
and spread periods, with the higher spread periods having a more obvious difference
between the higher and lower percentile changes. The implication of this is that the
distribution of the fund appears to have changed with the introduction of indexed-
linked gilts, so that it has become much less likely that extreme over-funding occurs
when compared to the 100% equity portfolio.

The differences between the median and the percentiles of the fund suggest that the
distribution of the fund has a log-normal shape (this is examined further in section 13).



The result of switching from a portfolio of 100% equities to one containing 70%
equities and 30% indexed-linked gilts therefore appears to have made the distribution
of the fund less skewed and more symmetric.

In Tables 7.3.5, 7.3.6 and 7.3.7, the changes that have occurred in the frequencies with
which the fund in the final year passing through the set barriers for the spread periods

5 years, 20 years and 40 years are recorded.

Spread Period of Five Years

Table 7.3.5 - Frequency that the Fund in the Final Year Passes Through the
Specified Boundaries.
% of % of Optimum Starting Fund
Eqgs 80% 85% 90% 95% 105% | 110% | 115% | 120%
100% | 4.70% | 11.35% | 21.85% | 36.55% | 33.70% | 22.20% | 13.55% | 8.05%
85% | 2.45% | 6.80% | 18.15% | 35.00% | 31.70% | 18.40% | 9.65% | 5.45%
70% | 0.55% | 3.95% | 13.05% | 29.85% | 28.50% | 15.65% | 7.50% | 3.15%

Spread Period of Twenty Years

Table 7.3.6 - Frequency that the Fund in the Final Year Passes Through the
Specified Boundaries.
% of % of Optimum Starting Fund :
Egs 80% 85% 90% 95% 105% | 110% | 115% | 120%
100% | 12.20% | 19.30% | 25.90% | 34.95% | 49.50% [ 41.30% | 34.05% | 28.50%
85% | 9.50% | 1535% | 22.95% | 31.75% | 49.00% | 40.20% | 33.05% | 26.20%
70% | 4.55% | 9.40% | 16.10% | 25.85% | 52.00% | 42.45% | 32.40% | 23.20%

Spread Period of Forty Years

Table 7.3.7 - Frequency that the Fund in the Final Year Passes Through the
Specified Boundaries.
% of % of Optimum Starting Fund
Eqgs 80% 85% 90% 95% 105% | 110% | 115% | 120%
100% | 17.80% | 22.70% | 27.30% | 35.55% | 56.50% | 50.85% | 46.45% | 41.80%

85% | 13.45% | 19.25% | 24.95% | 30.00% | 58.90% | 53.05% | 48.25% | 43.45%

70% | 7.55% | 11.25% | 16.45% | 21.40% | 65.60% | 59.00% | 53.80% | 47.70%

Table 7.3.5 records the effect of changing the percentage of indexed-linked gilts in the
portfolio when the spread period is 5 years. The table shows that as the percentage of
indexed-linked gilts in the portfolio increases, the frequency that the fund in the final
year passes through each of the specified fund levels falls. It can also be observed that
the relative reduction in the frequencies is greater for the more extreme values. For
example, the frequency of the fund falling below the 80% fund level decreases from




4.70% to 0.55%, a reduction of 88%, whereas the frequency of the fund falling below
the 95% fund level decreases from 36.55% to 29.85% a reduction of only 18%.

It can be seen from the frequencies for the upper fund levels that, like the lower fund levels,
the reduction in frequencies is greater the more extreme is the level of the fund that we are
examining. However, it should be noted that the reduction in frequencies for the upper
fund levels is lower than that for the corresponding lower levels i.e. for the fund being
lower than 80% the reduction in frequency between the portfolio of 100% equities and the
portfolio of 70% equities and 30% ILGs is 88% whereas the reduction for the frequency of
the fund being over 120% (the extreme upper fund level) is only 61%. The introduction of
indexed linked gilts, therefore, appears to have lowered the variance of the distribution of
the fund but the distribution has shifted so that the chances of over-funding have increased
compared to the chances of under-funding.

This shift towards over-funding is clearer when the frequency levels for the 20 year spread
period are examined (Table 7.3.6). Like the 5 year spread period, the 20 year spread
period has seen a reduction in the frequency of the final fund being below all the given
levels of the starting fund with the reductions once again being greater the more extreme
the fund level. However, from the frequencies of the upper levels, we can see that the
frequencies for all the levels are reduced when the portfolio changes from 100% equities to
85% equities but when the portfolio is 70% equities and 30% ILGs the frequencies are
increased for the levels 105% and 110%. :

Finally, Table 7.3.7 considers the case of the forty year spread period and shows that the
frequencies for the lower fund levels once again decrease as the percentage of ILGs
increase but the frequencies for all the upper fund levels increase. For the forty year spread
period, we can see that although the introduction of ILGs decreases the standard deviation
of the fund, it increases the chances of over-funding.

There appears to be some contradiction in the results obtained from Tables 7.3.2 - 7.3.4
and those from Tables 7.3.5 - 7.3.7 as the first set of tables state that over-funding is
reduced more than under-funding whereas the second set of tables gives the opposite
result. However, most of these contradictions can be explained by looking at the changes
in the median between the portfolios. The most extreme contradiction occurs for the forty
year spread period where Tables 7.3.4a and b show major reductions in the differences
between the median and the higher percentiles when moving from a 100% equity portfolio
to a 70% equity 30% indexed-linked gilt portfolio while Table 7.3.7 shows that the
frequency of over-funding has increased. The reason for this apparent contradiction lies in
the fact that, for the percentiles which are close to the median, the reduction in the gap
between the percentile and the median is less than the increase in the value of the median.
For example, Table 7.3.4a shows that, for the forty year spread period, the reduction in the
difference between the median and the 75th percentile between the two portfolios is 2.58
while the value of the median has increased by 3.15 and so the value of the 75th percentile
fund is in fact greater for the 70% equity 30% indexed-linked gilt portfolio than for the
100% equity portfolio and so the frequency of over-funding increases.

If the frequency of much higher over-funding were recorded, i.e. levels greater than 120%,
then the frequencies would be less for the 70% equities 30% indexed-linked stock
compared to the 100% equity portfolio, as the reduction in the difference between the



median and the very high percentiles is greater than the increase in the median. This is the
reason why the twenty year spread period has seen an increase in the frequencies for the
105% and 110% boundaries and a decrease in the frequencies for the 115% and 120%
boundaries.

The reason why the fund has become more prone to over-funding stems from the
conclusion that was reached at the end of section 6.3. It was stated there that during times
of high inflation the increase in pension liabilities is capped but that these times of high
inflation are usually accompanied by high equity returns which lead to over-funding. This
over-funding cannot be brought under control as easily for the larger spread periods and so
there is an increased frequency of over-funding in the final years of the simulations: This
problem is made more acute with ILGs as they are designed to give real returns and hence,
during periods of high inflation, the gap between the effective inflation rate (i.e. the rate
used to increase the value of the pensions in payment) and the return on ILGs increases and
so over-funding occurs.
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8 Model V - Inclusion of Conventional Gilts.

8.1 Description of Model V.

In Model IV, the portfolio of the pension scheme was changed to allow investment in
Indexed-Linked Gilts. For Model V, the pensions portfolio is once again split between two
types of assets but this time the two classes are equities and conventional gilts. Apart from
this change in the class of gilt investment, Model V is identical to Model IV.

8.2 Modelling of the Returns of Conventional Gilts.

Again, the returns on conventional gilts are modelled by the Wilkie Model (1995 version)
with the standard deviation parameter halved. However, there is no model for conventional
gilts so the model for Consols was used instead. The model for the yield on consols, C(t),
is as follows:-

C(f) = CW.CM(f) + CMU.exp{CN(1)}

where CM(f) = CD.I()) + (1 - CD).CM(t - 1)
and CN(i)= CALCN( - 1)

and CE(i) = CSD.CZ({)

and CZ(t) ~iid. N(0,1)

The parameter values used are:-

Cw=1

CMU =3.0%%
CA1=0.9234
CD =0.045
CSD =0.096

Total nominal returns at time t, CR(t), are defined as:-

CR($) = CR(t- 1).{1/C() + 1}.C(t - 1)

8.3 Results.

The assumed rate of interest for a portfolio of conventional gilts was obtained by finding
the long term return when there were no random errors present. This gives an annual rate
of return of 7.82%.
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The model was run for 2000 simulations and for the same spread periods as Model IV.
The model tested had a portfolio of 85% equities and 15% conventional gilts. This gives
an assumed rate of return of 10.41%, with a starting fund of 23.8212 and a contribution
rate of 6.61%. It should be noted that, because the assumed rate of return for conventional
gilts is less than that of ILGs, the starting fund and contribution rate for a portfolio
containing 85% equities and 15% conventional gilts are greater than for the portfolio
containing 85% equities and 15% indexed-linked gilts. For the purpose of examining the
differences between the two types of mixed portfolio, the results of the portfolio containing
indexed-linked gilts are the results from Model IV for the portfolio of 85% equities and
15% indexed-linked gilts.

Table 8.3.1 - The Standard Deviations of the Extra Contribution and Fund for
the Final Year of the Simulation for Models I'V and V.

Standard Deviation of | Standard Deviation
the Extra Contribution | of the Fund in the Final
Spread Period | in the Final Year (%) Year
(years) Model V | Model IV | Model V_| Model IV
5 8.00 7.77 2.78 2.65
7 6.75 6.54 3.17 3.01
10 5.86 5.71 3.72 3.55
15 532 5.25 4.63 4.48
20 5.27 5.26 5.61 5.47
25 5.49 5.48 6.71 6.55
30 5.85 5.83 7.91 7.70
40 6.76 6.68 10.45 10.08

Table 8.3.1 shows the standard deviations of both the fund and the extra contribution in the
final year of simulation for all of the tested spread periods. There are two main things to
note from this table. Firstly, it can be seen that the standard deviations for both the fund
and the extra contribution are greater for Model V than for Model IV for all the spread
periods which would indicate that the portfolio containing conventional gilts has a greater
standard deviation than that of the indexed-linked gilt portfolio. However, the second point
to note from the above table is that the critical spread period, M, for Model V is 20 years
whereas it is 15 years for Model IV. According to the theoretical results (see section 2) we
would expect Model V to have the shorter critical spread period, if it has a larger standard
deviation - so there appears to be a contradiction.

There are a number of potential reasons why this unexpected result may have occurred.
Firstly, the last year of the simulation is the one that has been used to record the long-term
standard deviations. For Model IV, if another year had been picked close to the 149th year
then the results would indicate that the critical spread period for Model IV is also 20 years
as for Model V. It must also be considered that equities still represent a far greater
proportion of the portfolio than conventional gilts and so the volatility of the returns of the
equities will also make some difference to the results because of sampling errors.

Tables 8.3.2 a-c show the frequency of over- and under-funding for Models TV and V for
the spread periods 5, 20 and 40 years.
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Spread Period of Five Years

Table 8.3.2a - Frequency that the Fund in the Final Year Passes Through the
Specified Boundaries for Models IV and V.

% of Optimum Starting Fund
Model 80% 85% 90% 95% 105% | 110% | 115% | 120%

v 2.45% | 6.80% | 18.15% | 35.00% | 31.70% | 18.40% | 9.65% | 5.45%

\ 2.65% | 830% | 18.00% | 33.50% | 34.20% | 21.15% | 11.20% | 4.90%

Spread Period of Twenty Years

Table 8.3.2b - Frequency that the Fund in the Final Year Passes Through the
Specified Boundaries for Models IV and V.

% of Optimum Starting Fund
Model 80% 85% 90% 95% 105% 110% | 115% 120%

v 9.50% | 15.35% | 22.95% | 31.75% | 49.00% | 40.20% | 33.05% | 26.20%

\ 9.70% | 15.55% | 21.80% | 30.90% | 51.40% | 43.05% | 34.65% | 27.95%

Spread Period of Forty Years

Table 8.3.2c - Frequency that the Fund in the Final Year Passes Through the
Specified Boundaries for Models IV and V.

% of Optimum Starting Fund
Model | 80% 85% 90% 95% 105% | 110% | 115% | 120%

v 13.45% | 19.25% | 24.95% | 30.00% | 58.90% | 53.05% | 48.25% | 43.45%

v 13.20% | 17.75% | 21.80% | 28.05% | 60.95% | 55.55% | 50.35% | 45.30%

Table 8.3.2¢

The changes in the frequencies with which the fund passes through the designated
boundaries for the five year spread period are recorded in Table 8.3.2a. For the higher
boundaries, there has been a definite increase in the frequencies when the model
changes from Model TV to Model V for all but the 120% barrier where the frequency
decreases by 0.55%. For the lower boundaries, there is a decrease for the 95%
boundary of 1.50%, while there is an increase for the 85% boundary of the same
magnitude. The 90% and 80% boundaries record a negligible fall and rise respectively
in their frequencies. Overall, it therefore appears that the fund for Model V is more
volatile than that of Model IV even when scaling to allow for the size of fund is taken
into account.

From Table 8.3.2b, it can be seen that all of the higher fund boundaries experience an
increase in their frequencies when the model is changed from Model [V to Model V
and there has been slight, statistically negligible increase of 0.2% in the frequencies for
the 80% and 85% boundaries. The 90% and 95% boundaries, however, have seen a
fall in their frequencies of 1.15% and 0.85%. If these decreases in frequencies are




compared with the increases in frequencies for the 105% and 110% boundaries which
are 2.40% and 2.85% respectively, then there is strong evidence that the 20 year
spread period has a more volatile fund for Model V compared to Model IV.

Table 8.3.2¢ shows that, for the forty year spread period, the higher boundaries have
all seen an increase in their frequencies ranging in size from 1.85% for the 120%
boundary to 2.50% for the 110% boundary. The lower boundaries have all seen
decreases in their frequencies ranging from 3.15% for the 90% boundary to 0.25% for
the 80% boundary. Again, the fund using a forty year spread period appears to have
become more volatile although the evidence from examining the frequencies is not
conclusive.

Conventional gilts, therefore, appear to give a more unstable fund than indexed-linked gilts
although the evidence is not totally conclusive. However, because conventional gilts give a
lower return than indexed-linked gilts and there is certainly no evidence that the fund
becomes more stable, it has been decided not to pursue an investigation into a three asset
model containing equities, indexed-linked gilts and conventional gilts as indexed-linked gilts
appear to be a ‘better’ asset (i.e. lead to more efficient portfolios) than conventional gilts
when using the Wilkie Model.

In this regard, we note the conclusions of Smith (1996) and Huber (1997), when reviewing
the properties of the Wilkie Model, that ILGs have a higher expected real return and a
lower standard deviation when compared to the long-term fixed interest asset class (and an
approximately similar covariance structure). “Hence, there appears to be little incentive to
invest in the long-term fixed interest asset” class. Huber (1997) also concludes that this
component of the Wilkie Model suffers from empirical inadequacy.
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9 Model VI - Different Rates of Return Assumptions.

9.1 Description of Model VI.

At the end of section 8.3, it was concluded that, given the opportunity to split funds
between three classes of asset (equities, ILGs, Consols), the most satisfactory portfolio
to use for the model was a mixed portfolio of equities and indexed-linked gilts, where
increasing the proportion of ILGs leads to increased stability but also an increased
standard contribution. However, for the longer spread periods there was still a
significant trend towards over-funding due to the fact that the model uses LPI for
uprating pensions in payment but there had been no re-adjustment in the assumptions
for the rates of return for equities and indexed-linked gilts.

It was decided, therefore, that the current model (reverting back to Model IV) should
be stabilised before it was adapted further especially as the adaptations for Model VII
(see section 10) and Model VIII (see section 11) would create a more volatile model.
As a stable model was desired, the model developed here has a portfolio of 70%
equities and 30% indexed-linked gilts.

In order to make the model as stable as possible, the new assumed rates of return were
selected to give a long-term extra contribution rate that had a slightly negative mean
and a slightly positive median. The extra contribution rate has been targeted instead of
the fund, because the presence of LPI for the pensions in payment tends to lead to the
desired fund (in real terms) in later years being less than the starting fund. This is
because the value of the pensions in payment is dependent on the gap between wage
inflation and the value of the increase in pensions. During years of high inflation, the
real value of the pensions in payment drops (assuming that the difference between
wage and price inflation remains relatively constant) as the indexation is capped at 5%
and so the gap between the annual wage increase and the amount by which the pension
is uprated increases. Therefore, the later years of the simulation tend to show a
smaller desired funding level, because there is a larger probability that a period of high
inflation has occurred.

The assumed rates of return that were chosen are 11.22% for equities and 9.15% for
indexed-linked gilts so the assumed rates of return for the portfolio was 10.60%. This
gives a starting fund of 23.4304 and a contribution rate of 6.30%.

The model was run for 2000 simulations with the spread periods being 5, 7, 10, 15, 20,
25, 30 and 40 years. It should be noted that the returns generated by these simulations
will be used by each of the subsequent models in order to facilitate the comparisons of
the results since then some of the sampling errors will be removed. Thus, although we
have a sample of 2000, it is likely that each set of 2000 simulations will produce rates
of return of differing standard deviations. When comparing two models that are using
different sets of generated returns, changes in the standard deviation of the extra
contribution arising in the two models may be attributed to the differences in the
models but may actually be caused by the differences in the standard deviations of the
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two sets of generated returns. Using the same set of generated returns to test both
models should, therefore, remove this type of sampling error.

9.2 Results.

In the following discussion of the effects of the new assumed rates of return, the
results using the new rates of return are presented as Model VI and the Model IV
results are those obtained using the assumed rates of return when the portfolio was
invested as 70% equities and 30% indexed-linked gilts (as discussed in section 7).

Table 9.2.1 shows the standard deviation of the fund and the extra contribution in the
final year of simulation for Models IV and VI. The first thing to note from the table is
that the standard deviation of both the extra contribution and the fund is less for each
spread period when using the new assumed rates of return compared to the results
from the original model. Tt should also be noted that this difference between the
standard deviations increases as the spread period increases.

Table 9.2.1 - The Standard Deviations of the Extra Contribution and Fund for
the Final Year of the Simulation for Models IV and VI.

Standard Deviation of | Standard Deviation
the Extra Contribution of the Fund in the
Spread Period | in the Final Year (%) Final Year
(years) Model VI | Model IV | Model VI | Model IV

5 6.41 6.66 2.17 2.30
7 5.35 5.60 2.45 2.61
10 4.57 4.84 2.82 3.05
15 4.03 437 341 3.79
20 3.85 431 3.99 4.59
25 3.84 4.45 4.56 5.46
30 3.92 4.70 5.15 6.41
40 4.19 5.37 6.28 842

The second point of interest is that the critical spread period, M, has increased from
20 years to 25 years which, according to the theoretical results of section 2, would
appear to indicate that the model is indeed more stable with the newer assumed rates
of return. Of course, the fall in standard deviation from year 20 to year 25 for Model
VI is only 0.01 but this compares to an increase in standard deviation of 0.14 for
Model IV. So it seems reasonable to conclude that the critical spread period has been
reduced, taking into account any errors from not having a larger number of
simulations, since both models are using the same generated annual rates of return.

It was stated in section 9.1 that the motivation for selecting the new assumed rates of

return was to stabilise the long-term mean and median for the fund and extra
contribution.
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Table 9.2.2 - The Mean and Median of the Fund for Models IV and VI in the
Final Year of the Simulation.

Mean of Fund in the | Median of the Fund in
Spread Period Final Year the Final Year
(years) Model VI | Model IV | Model VI | Model IV
5 23.07 24.20 22.96 24.07
20 23.13 26.04 22.73 25.60
40 23.30 29.57 22.27 28.52
Table 9.2.2

Table 9.2.2 shows how the new assumed rates of return have meant that the increase in
the mean of the fund when moving from the 5 year spread period to the 20 and 40 year
spread periods has been drastically reduced and the median now decreases slightly as
the spread period increases.

Tables 9.2.3a to 9.2.5b show the distribution of the fund for three selected spread
periods by showing the difference between the median and the selected percentiles of
the distribution of the fund in the final year of the simulation for both Model IV and
Model VI

S Year Spread Period

Table 9.2.3a -The Difference Between the Median and the
Percentiles of the Fund for Models IV and VI.
Difference Between the Median and the
Respective Percentile
Model Median 25% 75% 10% 90%
VI 22.96 1.47 1.56 2.58 2.95
v 24.07 1.47 1.49 2.68 3.17

Table 9.2.3b -The Difference Between the Median and the
Percentiles of the Fund for Models IV and VL
Difference Between the Median and the
Respective Percentile

Model Median 5% 95% 1% 99%
VI 22.96 3.11 3.80 4.23 5.76
v 24.07 3.32 4.10 4.60 6.10
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20 Year Spread Period

Table 9.2.4a -The Difference Between the Median and the
Percentiles of the Fund for Models IV and VI
Difference Between the Median and the
Respective Percentile

Model Median 25% 75% 10% 90%
Vi 22.73 2.47 2.69 432 5.60
v 25.56 2.74 3.17 4.94 6.45

Table 9.2.4b -The Difference Between the Median and the

Percentiles of the Fund for Models IV and VL.

Difference Between the Median and the
Respective Percentile

Model Median 5% 95% 1% 99%
VI 22.73 5.23 7.64 7.01 11.64
v 25.56 6.18 8.59 8.27 13.56

40 Year Spread Period

Table 9.2.5a -The Difference Between the Median and the

Percentiles of the Fund for Models IV and VI.

Difference Between the Median and the

Respective Percentile

Model Median 25% 75% 10% 90%
VI 22.27 3.42 4.36 5.92 9.21
v 28.52 4.90 5.37 8.45 11.91

Table 9.2.5b -The Difference Between the Median and the

Percentiles of the Fund for Models IV and VL

Difference Between the Median and the

Respective Percentile

Model Median 5% 95% 1% 99%
VI 22.27 7.36 12.51 9.44 20.86
vV 28.52 10.15 16.44 12.57 27.13

It can be observed that the differences between the median and each percentile for a
particular spread period is smaller for Model IV than for Model VI (with the exception
of the 25% and 75% percentiles for the five year spread period which can probably be
accounted for by sampling errors). This result is as expected because Table 9.2.1
shows that the standard deviation for each spread period has been reduced. Also, the
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reduction in the differences of the percentiles has been reduced more for the larger
spread periods, which again corroborates the results obtained from Table 9.2.1.

Table 9.2.6 - Relative Changes Between Model VI and Model IV of the
Difference Between the Median and Each Percentile.

Spread The Difference Between Percentile and Median From Model VI

Period Expressed as a Percentage of the Difference From Model IV

(vears) | 25% | 75% | 10% | 90% | 5% | 95% | 1% | 9%
5 1.000 | 1.047 || 0.962 | 0.931 | 0.937 | 0.927 || 0.920 | 0.944

20 0.901 | 0.849 || 0.874 | 0.868 | 0.846 | 0.889 | 0.847 | 0.858
40 0.698 | 0.812 || 0.701 | 0.773 | 0.725 | 0.761 | 0.751 | 0.769

Table 9.2.6 shows the difference between the median and each percentile for Model VI
expressed as a percentage of the corresponding value of Model IV. This Table clearly
indicates that (as already stated) the reductions in the differences are greater for the
longer spread periods. Because of the effects of sampling errors due to the small
number of simulations, there are no conclusive trends in the reductions of any given
spread period. However, it should be noted that, for the spread period of forty years,
the reduction in each pair of percentiles is less for the higher percentile and that for the
1% and 99% percentiles each spread period has seen a larger reduction for the 1%
percentile.

Finally, Tables 9.2.7, 9.2.8 and 9.2.9 below show the frequencies with which the fund
in the final year passes through the specified boundaries for the spread periods of five,
twenty and forty years.

Spread Period of Five Years

Table 9.2.7 - Frequency that the Fund in the Final Year Passes Through the
Specified Boundaries for Models IV and VL.

% of Optimum Starting Fund
Model 80% 85% 90% 95% 105% 110% 115% 120%

VI 1.05% | 5.80% | 18.75% | 38.30% | 24.05% | 11.00% | 4.10% | 1.45%

v 0.55% | 3.95% | 13.05% | 29.85% | 28.50% | 15.65% | 7.50% | 3.15%

Spread Period of Twenty Years

Table 9.2.8 - Frequency that the Fund in the Final Year Passes Through the
Specified Boundaries for Models IV and V1.

% of Optimum Starting Fund
Model 80% 85% 90% 95% 105% 110% 115% 120%

VI 12.60% | 21.45% | 33.35% | 44.75% | 31.50% | 22.40% | 15.90% | 10.55%

v 455% | 9.40% | 16.10% | 25.85% | 52.00% [ 42.45% | 32.40% | 23.20%

Table 9.2.8
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Spread Period of Forty Years

Table 9.2.9 - Frequency that the Fund in the Final Year Passes Through the
Specified Boundaries for Models IV and VL

% of Optimum Starting Fund
Model 80% 85% 90% 95% 105% 110% 115% 120%

VI 24.25% | 32.65% | 40.65% | 49.95% | 35.60% | 28.90% | 23.55% | 18.90%

IV 7.55% | 11.25% | 16.45% | 21.40% | 65.60% | 59.00% | 53.80% | 47.70%

Table 9.2.9

It appears from the tables that the distribution of the fund in the final year has been
transformed from one of over-funding to one of under-funding with the change of
model from Model IV to Model VI. Indeed, each spread period has seen a rise in the
frequency for all the lower boundaries and a decrease in the frequencies for all of the
upper boundaries to such an extent that the frequency for each lower boundary is now
greater than for the corresponding higher boundary i.e. the frequency for the 95% fund
boundary for the forty year spread period is 49.95% compared to 35.60% for the
105% fund boundary.

However, as was mentioned in section 9.1 in the discussion of the selection of the new
parameters, the desired fund level in real terms is not the same for each year and,
because of LPI, the long term desired fund level in real terms is lower than the starting
fund level. Hence, the frequencies with which the lower boundaries are breached are
smaller and the corresponding frequencies for the higher boundaries are greater than
those stated if true over and under-funding were considered.
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10 Model VII - Triennial Valuations.

10.1 Description of Model VII.

So far, each model which we have tested has included annual valuations to determine
the amount of extra contribution required. In practice, this would not always be the
case because of the expenses involved and the minimum requirements set down in UK
regulations. To reflect this feature, we have changed the frequency of valuations and
Model VII has valuations every three years rather than every year.

Model VII is identical to Model VI in every aspect apart from the valuations occurring
every three years. The extra contribution that is determined at each valuation is now
paid for the next three years until the next valuation. The monetary amount of the
contribution is linked to wage inflation so that the extra contribution expressed as a
percentage of salary is constant for the three years. This can be seen in the detailed
results generated for this model (not shown here), where the extra contribution is the
same for years 0 to 2, 3 to 5 and 6 to 8 for any spread period.

Model VII not only has the same asset allocation as Model VI but was tested using the
same rates of return as Model VI so that comparisons between the two models would
be straightforward (see section 9). For example, as each model has been simulated
2000 times generating its own rates of return for each year, it is possible that the last
ten years of returns would be more varied for one model than the other and so some
conclusions drawn on the differences between the models would be affected by this.
As Model VII has the same variance in the generated returns as Model VI, these
sampling errors have been removed. Model VII has thus been simulated 2000 times
for 149 years and for the spread periods 5, 7, 10, 15, 20, 25, 30 and 40 years.

10.2 Theoretical Results.

The theoretical results for the triennial valuations with the IID investment return model
are derived in Section 3 of the appendix. The two main results are that compared to
annual valuations, triennial valuations lead to a higher standard deviation of both the
fund and the extra contribution when all other parameters, such as the length of spread
period and the standard deviation of the returns, remain unchanged.

The second result is that the optimal spread period for triennial valuations is slightly
larger than for annual valuations. Table 10.2.1 shows the theoretical optimal spread
period for different values of the mean and variance of the investment returns, based
on the IID mode! for investment returns (Haberman (1993)).
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Comparison of Optimal Values of the Spread Period M When Valuations
are Annual (M") and Triennial (M',).

1
1% 3% 5%
o M M, M M, M M,
0.05 60 61 23 24 14 15
0.1 42 43 20 21 13 14
0.15 28 29 16 17 11 13
0.2 19 20 13 14 10 11
0.25 14 15 10 11 8 9
Table 10.2.1

Table 10.2.1 clear shows that, although the spread period is increased when the
valuations are changed from annual to triennial, the difference is very small being
approximately one year only in most cases.

10.3 Results.
Table 10.3.1 shows the standard deviation of the extra contribution and fund in the
final year of simulation for Model VII (triennial valuations) and Model VI (annual

valuations).

Table 10.3.1 - The Standard Deviations of the Extra Contribution and Fund for
the Final Year of Simulation for Models VI and VIL

Standard Deviation of the Standard Deviation
Extra Contribution of the Fund in the Final
Spread Period in the Final Year (%) Year
(years) Model VII | Model VI | Model VII | Model VI
5 7.70 6.41 2.44 2.17
7 6.01 5.35 2.68 2.45
10 4.90 4.57 3.02 2.82
15 4.23 4.03 3.58 341
20 4.03 3.85 4.15 3.99
25 4.01 3.84 473 4,56
30 4.10 3.92 5.32 5.15
40 439 4.19 6.47 6.28

Table 10.3.1 shows that the standard deviation of both the fund and the extra
contribution for any spread period is greater for Model VII than for Model V1, which
is in agreement with the first theoretical result. This result is reasonable and can be
explained as follows. The contribution paid in the last two years of every three year
period is not based on the current funding level but on the funding level that occurred
one or two years ago. Hence, extra contributions may be being paid when there is
already over-funding or there may be a negative extra contribution at a time of under-
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funding. Naturally, this could lead to a larger positive or negative extra contribution at
the next valuation compared to the case of annual valuations.

It should also be noted that the relative increase in the standard deviations is greater
for the smaller spread periods. For example, the standard deviation of the fund for the
five year spread period has increased by 12% between the two models whereas the
increase for the forty year spread period is only 3%. Again, this result is as expected
since paying three years of a contribution based on a five year spread period will have a
greater effect than paying three years of a contribution based on a forty year spread
period.

Finally, although Model VII has a greater variance than Model VI the critical spread
period, M’, has remained at 25 years which agrees to some extent with the second
theoretical result as Table 10.2.1 showed that the spread period only increases by one
year. As the simulation has been performed using only the spread periods 20, 25 and
30 years rather than every integral spread period length between 20 and 30 years, a
small change in the length of the optimal spread period would not have been detected.

Table 10.3.2 shows the mean and median values of the fund in the final year of the

simulation for the spread periods 5, 20 and 40 years for Model VII and Mode! V1.

Table 10.3.2 - The Mean and Median of the Fund for Models VI and VII
in the Final Year of the Simulation.

Mean of Fund in the Final | Median of the Fund in
Spread Period Year the Final Year
(years) Model VII | Model VI | Model VII | Model VI
5 23.07 23.07 22.89 22.96
20 23.08 23.13 22.61 22.73
40 23.21 23.30 22.12 22.27

It can be seen that both the mean and the median values of the fund are less for Model
VII than Model VI (except for the mean of the 5 year spread period which remains
unchanged), with the difference becoming greater as the length of the spread period
increases. Also, the size of the median falls to a greater extent than that of the mean
for each spread period.

Tables 10.3.3a - 10.3.5b show the differences between the median and the values of
the selected percentiles for Models VI and VII with the spread periods 5, 20 and 40
years.



5 Year Spread Period

Table 10.3.3a -The Difference Between the Median and the
Percentiles of the Fund for Models VI and VII.

Difference Between the Median and the
Respective Percentile

Model Median 25% 75% 10% 90%
VII 22.89 1.57 1.80 2.87 3.43
VI 22.96 147 1.56 2.58 2.95

Table 10.3.3b -The Difference Between the Median and the

Percentiles of the Fund for Models VI and VII.

Difference Between the Median and the
Respective Percentile

Model Median 5% 95% 1st 99%
VII 22.89 3.52 436 4.63 6.63
VI 22.96 3.11 3.80 423 5.76

20 Year Spread Period

Table 10.3.4a -The Difference Between the Median and the

Percentiles of the Fund for Models VI and VII.

Difference Between the Median and the
Respective Percentile

Model Median 25% 75% 10% 90%
VII 22.60 2.55 2.86 4.46 5.92
VI 22.73 2.47 2.69 432 5.60

Table 10.3.4b -The Difference Between the Median and the

Percentiles of the Fund for Models VI and VII.

Difference Between the Median and the
Respective Percentile

Model Median 5% 95% 1st 99%
VII 22.60 5.37 7.86 7.03 12.19
VI 22.73 5.23 7.64 7.01 11.64




40 Year Spread Period

Table 10.3.5a -The Difference Between the Median and the
Percentiles of the Fund for Models VI and VII.
Difference Between the Median and the
Respective Percentile
Model Median 25% 75% 10% 90%
VII 22.12 3.55 4.37 5.94 9.65
VI 22.27 3.42 4.36 5.92 9.21

Table 10.3.5b -The Difference Between the Median and the
Percentiles of the Fund for Models VI and VIL.
Difference Between the Median and the
Respective Percentile

Model Median 5% 95% Ist 99%
VII 22.12 7.45 12.94 9.53 21.67
VI 22.27 7.36 12.51 9.44 20.86

Table 10.3.5b

Tables 10.3.3a to 10.3.5b show that the difference between the median and each of the
selected percentiles is greater for Model VII than Model VI for all the spread periods.
This result is as expected, because Table 10.3.1 had shown that the standard deviation
of the fund has increased for all spread periods when triennial valuations are
introduced.

Tables 10.3.3a to 10.3.5b also show that the relative increases in the differences
between the median and the selected percentiles are noticeably greater for the five year
spread period than for the twenty and forty year spread periods. This trend once again
supports the results obtained in Table 10.3.1, as the increase in the standard deviation
of the fund for the five year spread period was 12% compared to 4% for the twenty
year spread period and 3% for the forty year spread period

From a comparison of pairs of the percentiles e.g. the 25% and 75% percentiles, it can
be seen that the relative increase in the difference between the median and the
percentiles is always greater for the higher percentile of each pair (with the exception
of the 25% and 75% percentiles for the forty year spread period).

Tables 10.3.6, 10.3.7 and 10.3.8 show the frequencies with which that the extra
contribution passes through the defined boundaries in the final year of the simulation
for the spread periods 5, 20 and 40 years respectively for both Model VI and Model
VII. An examination of the frequencies for the extra contribution is of greater benefit
than looking at the fund frequencies as the value of the extra contribution is
determined by the desired funding level in the year of the valuation. Therefore, a
negative extra contribution means that the fund is greater than the actuarial liability
although the size of fund itself may be smaller than the initial actuarial liability, and so
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over and under-funding are more accurately recorded. Unlike comparisons between
previous models where the frequencies of the fund size have been investigated, both
Models VI and VII have the same standard contribution rate and so comparisons are
not distorted by the size of the standard contribution rate. However, it must be
remembered that the contribution for the final year of the simulation, year 149, for
Model VII was calculated in year 147 so the rates of return for the years 148 and 149
are not taken into account when determining extra contribution rates for Model VIL

Spread Period of Five Years

Table 10.3.6 - Frequency that the Extra Contribution of the Final Year Passes
Through the Specified Boundaries For Models VI and VII.

Extra Contribution as % of Standard Contribution
Model | -150% | -100% | -50% -25% 25% 50% 100% | 150%

VII 10.60% | 20.75% | 34.75% | 42.75% | 41.40% | 34.65% | 20.55% | 8.45%

V1 8.55% | 17.15% | 32.30% | 40.35% | 41.60% | 32.20% | 16.25% | 4.65%

Spread Period of Twenty Years

Table 10.3.7 - Frequency that the Extra Contribution of the Final Year Passes
Through the Specified Boundaries For Models VI and VII.

Extra Contribution as % of Standard Contribution
Model | -150% | -100% -50% -25% 25% 50% 100% 150% -

VII 225% | 6.95% | 19.95% | 31.55% [ 36.50% | 21.20% | 2.70% | 0.00%

VI 230% | 6.70% | 20.00% | 31.45% | 36.15% | 19.80% | 2.10% | 0.05%

Spredd Period of Forty Years

Table 10.3.8 - Frequency that the Extra Contribution of the Final Year Passes
Through the Specified Boundaries For Models VI and VII.

Extra Contribution as % of Standard Contribution
Model | -150% | -100% -50% -25% 25% 50% 100% |. 150%

VII 4.05% | 8.65% | 21.10% | 30.55% [ 39.45% | 22.20% | 2.00% | 0.00%

V1 3.25% | 8.55% |20.40% | 31.85% | 37.80% | 20.65% | 1.95% | 0.00%

Table 10.3.8

From Table 10.3.6, it can be seen that the effect of introducing triennial valuations
whilst using a five year spread period is to increase the frequency for all the boundaries
with the exception of the 25% of the standard contribution boundary where the
frequency has decreased slightly from 41.60% to 41.20% - this may be of no real
statistical significance. Tt should also be noted that the larger increases in the
frequencies occur for the more extreme boundaries with the positive boundaries having
a larger increase in frequencies than the negative boundaries. For the 25% and -25%
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boundaries, the changes in frequencies between Model VI and Model VII have meant
that the frequency for the -25% barrier is now greater than for the 25% barrier.

The effect of introducing triennial valuations for the twenty year spread period is
different to that for the five year spread period because, although the frequencies for
all the positive boundaries increase (except for the 150% barrier which falls from
0.05% to 0%), the frequencies for the lower boundaries appear to be more or less
unchanged with the two boundaries showing a slight increase in their frequencies and
the other two showing a slight decrease. The reason for this may be the fact that the
fund for Model VII has a smaller median than that for Model VI but a slightly larger
variance; hence, the changes in the median and the variance together increase the
chance of under-funding which leads to an increase in the frequencies of positive extra
contributions. For over-funding, the changes in the median and the variance cancel
each other out and hence the frequency of the negative contribution barriers remains
similar. :

Table 10.3.8 shows that the effect of switching from annual to triennial valuations for
the forty year spread period is once again different from the preceding two spread
periods. For the positive boundaries, there has been a much greater increase in the
frequency for the 25% boundary than was the case for the twenty year spread period, a
similar increase for the 50% barrier compared to the twenty year spread period and a
smaller increase for the 100% barrier. For the negative barriers, the frequencies for the
boundaries of -150%, -100% and -50% all have increased for Model VII compared to
Model VI but there has been a definite fail in frequency for the -25% barrier which
neither of the other two spread periods have shown.

In conclusion, the general effect of switching from annual valuations to triennial
valuations is to increase the standard deviation of both the fund and extra contribution
for all spread periods. However, the magnitude and character of the changes to the
distributions of the fund and extra contribution depend on the size of the spread
period.
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11 Model VIII - Different Initial Funding Levels.

11.1 Description of Model VIII.

The models that have been investigated so far have started from a position where the
initial fund has been assumed to be equal to the actuarial liability. This, of course, will
not always be the case in practice and so Model VIII is designed to test how different
starting fund levels affect the variance of the fund and extra contribution both in the
short and long term.

Apart from the initial funding level, Model VIII is identical to Model VI with the
investment portfolio being made up of 70% equities and 30 % indexed-linked gilts. As
for Model VII, the returns used for Model VIII are those that were generated for
Model VI and so comparisons are easier to make regarding the effects caused by the
different initial funding levels.

Model VIII was simulated 2000 times for 149 years, with the spread periods 5, 7, 10,

15, 20, 25, 30 and 40 years and from four different funding levels:- 80%, 90%, 110%
and 120% of the actuarial liability.

11.2 Theoretical Results.

Returning to the IID mode! described in the Appendix, it is possible to investigate how
the standard deviation of the extra contribution would be affected by different levels of
initial funding. The two main points of interest are how the standard deviation is
affected in the short-run and the differences, if any, when the model is run for a
number of years that tends to infinity. Below are the theoretical results.

Then, using the notation of the Appendix,
! 2
Var C(1) = bk*a' Y a™ [qu(‘) + AL{1- qf)]‘
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This can be re-written as:-

! 2
Var C(t) = bk*a" Yy a”'[AL+(F, - AL)¢’|
j=1
Let F,—-AL=w, representing the level of initial funding. Then,
! e
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So %Var(:(t) >0 if AL+wq >0 (which it is for most values of w).

Therefore, the first conclusion is that Var C(t) increases as w increases. In comparison
with the fund starting at a value equal to the actuarial liability, the theoretical
conclusion is that in the short-term the standard deviation of the contribution should be
greater if there is an initial funding surplus and the difference should increase as the
surplus increases. For a funding deficit, the standard deviation is lower and continues

to decrease as the initial funding deficit is increased, so long as the condition AL+wq >
0 holds.

The second theoretical result that needs to be derived concerns the form of
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So, Var C(t) = as t = oo independently of w, assuming that a<1and q <1.

Thus, the variance of the contribution for a given spread period should tend to the
same limit independently of w, i.e. regardless of the value of the initial funding level.

11.3 Simulated Results.

Our main objective in analysing the simulated results is to compare these with the
results obtained from the theoretical model described in the previous section. As we
are using the same attained annual rates of return from the investment model for each
of the initial funding levels including the 100% initial funding level (Model VI), the
differences in the results for each year should be the result of the initial funding level
only rather than attributable to sampling errors.

We consider the first theoretical result, that the standard deviation of the extra
contribution in the short-term increases as the funding surplus increases. Table 11.3.1
shows the standard deviation of the extra contribution in year 9 of the simulation for
each of the initial funding levels (the resuits for the 100% funding level corresponding
to those obtained for Model VI in section 9) and spread periods. Year 9 has been
chosen simply as a typical year from early on in the simulations.

Table 11.3.1 - The Standard Deviation of the Extra Contribution in
Year 9 of the Simulation for all Initial Funding Levels.

Spread Period Initial Funding Level
(years) 80% 90% 100% 110% 120%
5 5.80% 5.91% 6.03% 6.16% 6.28%
7 453% | 471% | 4.89% | 5.07% | 5.25%
10 3.51% 3.72% 3.94% 4.16% 4.37%
15 2.67% 2.89% 3.12% 3.34% 3.57%
20 2.24% 2.45% 2.67% 2.89% 3.10%
25 1.98% 2.18% 2.39% 2.60% 2.81%
30 1.81% 2.00% 2.20% 2.40% 2.60%
40 1.60% | 1.79% 1.97% | 2.16% | 2.35%

From the results in Table 11.3.1, it is clear that the theoretical results have been
demonstrated as, for each spread period, the standard deviation of the extra
contribution for year 9 is greater the higher is the initial funding level. Similar
conclusions follow when other choices of year are made.

We next investigate the second theoretical result, that the standard deviation of the
extra contribution tends to a value which is independent of the size of the initial fund.
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Table 11.3.2 shows the standard deviation of the extra contribution in year 149 of the
simulation.

Table 11.3.2 - The Standard Deviation of the Extra Contribution in
Year 149 of the Simulation for all Initial Funding Levels.

Spread Period Initial Funding Level
(years) 80% 90% 100% 110% 120%
5 641% | 641% | 6.41% | 641% | 6.41%
7 5.35% 5.35% 5.35% 5.35% 5.35%
10 4.57% 4.57% 4.57% 4.57% 4.57%
15 4.03% | 4.03% | 4.03% | 4.03% | 4.03%
20 3.85% 3.85% 3.85% 3.86% 3.86%
25 3.82% 3.83% 3.84% 3.85% 3.87%
30 3.85% 3.88% 3.92% 3.95% 3.98%
40 3.99% 4.09% 4.19% 4.28% 4.38%

The results in Table 11.3.2 appear to validate the second theoretical result as it can be
seen that for the smaller spread periods the standard deviation of the extra contribution
is the same in year 149 for each of the initial funding levels. For the larger spread
periods, none of the other funding levels has the same standard deviation value as the
100% funding level.

Even for the spread periods and funding levels that have standard deviations different
from the 100% initial funding level, it can be seen that the difference between the
standard deviations is less than the difference between the respective standard
deviations for year 9. This implies that the standard deviations are converging and if
there were more years of the simulation the standard deviations would become equal.

The conclusion that the speed of convergence is determined by both the length of the
spread period and the initial funding level is an expected result, as the larger is the
departure from a 100% initial funding level so the time taken for the surplus/deficit to
be removed will increase. Similarly, we have seen that the smaller is the spread period
the more quickly the funding surpluses and deficits are removed. We would, therefore,
expect that the smaller is the spread period, the larger will be the extra contributions
and the more quickly the initial funding surplus or deficit will be removed and come
into line with the value of the actuarial liability.

The effect that the initial funding level and spread period have on the length of time
taken for the standard deviation of the extra contribution to attain the same value as
for the 100% initial funding level is examined in Table 11.3.3. Table 11.3.2 leads to
the conclusion that for the twenty year spread period, full convergence of the standard
deviation of the extra contribution has occurred for the cases of the 110% and 120%
funds but not yet for the cases of the 80% and 90% funds. However, this result is not
exactly true because it is affected by rounding errors. In fact the standard deviations
for the 100% and 90% initial funding cases differ by approximately 0.003% whereas
the difference between the standard deviations for the 120% and 100% initial funding
cases differ by approximately 0.006%. In Table 11.3.3, the definition of the year when
the standard deviations fully converge is when the difference between the two standard
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deviations is less than 0.005% and so for the 20 year spread period there is
convergence for the 90% and 110% initial fund cases but not the 80% and 120% fund
cases.

Table 11.3.3 - The Year of the Simulation Where the Standard Deviation
of the Extra Contribution Fully Converges.

Spread Period Initial Funding Level
(years) 80% 90% 110% 120%
S 29 25 25 29
7 42 38 38 42
10 64 56 56 64
15 106 92 92 106
20 - 135 135 -
25 - - - -
30 - - - -
40 - - - -

Table 11.3.3 shows the year in which the standard deviation in respect of each initial
funding level equals that of the 100% funding level for the different spread periods. It
is possible to ascertain how great the effect of both the spread period and the initial
funding level have on the time taken for convergence by examining the rows of the
Table. Similarly, examining each column shows the effect of the different spread
periods for a given initial funding level. ’

It is apparent from Table 11.3.3 that the time taken to convergence is symmetric in
relation to the initial funding levels with both the 90% and 110% initial funds taking
the same time to converge and similarly for the 80% and 120% initial funds. It is also
clear that the difference in the years required for convergence between the 80% and
90% funds increases as the spread period increases.

Figures 11.1 - 11.3 show the difference between the standard deviations of the extra
contribution for the cases of the four different initial funding levels compared to that of
the 100% initial fund for the spread periods 5, 20 and 40 years. These once again
highlight the symmetry of the time to convergence and the differences in speed of
convergence as the spread period is increased.
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Difference in the Standard Deviations of the Extra Contribution for the 5 Year Spread Period.
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12 Model IX - Different Spread Periods for Funding Surpluses
and Deficits.

12.1 Description of Model IX.

For Model IX, the starting position of the model has been returned to the situation
where the initial fund equals the initial actuarial liability. However, unlike the previous
models so far tested Model IX uses two different spread periods. This is because, in
practice, a funding deficit is likely to be perceived as being more adverse than a
funding surplus and so Model IX uses a smaller spread period for amortizing deficits
than the spread period used for amortizing surpluses (Winklevoss, 1993).

Model IX was simulated 2000 times for 149 years and with the pairs of spread periods
of 5 and 10 years, 7 and 15 years, 10 and 20 years, 15 and 25 years, 20 and 30 years
(the first spread period in each pair being the spread period used for amortizing deficits
and the second in each pair being that used for amortizing surpluses).

12.2 Results.

The main aim in the analysis of the results from this model is to make a comparison
with the results obtained from the single spread period model (Model VI). As the
same attained annual rates of return from the investment model are being used for both
Mode! VI and Model IX, the differences in the results for each year should be caused
by the implementation of two spread periods rather than sampling errors.

To compare the effects of using two spreads on the standard deviation of the extra
contribution, Table 12.2.1 shows the values for both Models VI and IX.

Table 12.2.1 - The Standard Deviations of the Extra Contribution and Fund for
the Final Year of Simulation for Models VI and IX.

Standard Deviation of the
Spread Period Extra Contribution in the
(years) Final Year (%)

Model IX | Model VI Model IX Model VI
5 5/10 5.34 6.41
7 7/15 4.59 5.35
10 10/20 4.21 4.57
15 15/25 4.02 4.03
20 20/30 4.00 3.85

The results in Table 12.2.1 show that for the first four spread periods Model IX has a
smaller standard deviation than Model VL. This is to be expected as the standard
deviation of the extra contribution becomes smaller as the spread period is increased
for the range of spread periods being considered. Therefore, for the 5/10 year



combination spread period, it is reasonable to expect that the standard deviation of the
extra contribution would lie between the standard deviation for the 5 year spread
period and the standard deviation for the 10 year spread period and this is indeed the
case. However, for the 20/30 year combination spread period, the standard deviation
of the extra contribution is greater than for both the 20 year spread period and the 30
year spread period (3.92% from Table 9.2.1). In order to investigate why this has
occurred, Tables 12.2.2 -12.2.4 show the distribution of the funds for the combinations
of 5/10, 10/20 and 20/30 year spread periods and the corresponding single spread
period fund distributions.

For each combination of spread period, the lower percentiles of the fund are compared
to the lower percentiles of the single spread period whose length is the same as that
used for funding a deficit in the combined spread period model. The reason for this is
that the lower percentiles of the fund are where funding deficits occur so the combined
spread period model (Model IX) would be using the shorter spread period. Similarly,
the upper percentile of the fund is where over-funding is occurring and so the longer
length of spread period would be used by the combined model. Therefore, the upper
percentiles of the fund are compared to those of the single spread period model whose
length corresponds to that used for funding surpluses in Model IX.

5/10 Year Spread Period Combination.

Table 12.2.2a - Fund Percentiles of the Final Year of the Simulation for Both
Single and Combined Spread Period Models.

Spread Fund Percentile
Period | Mean Sdv 1% 5% 10% 25% 50% IQR
5 23.07 | 217 | 1873 | 19.84 | 2037 | 2148 | 2296 | 3.04
5/10 2385 | 2.63 | 19.10 | 20.13 | 20.70 | 21.95 | 23.59 | 3.56

Table 12.2.2b - Fund Percentiles of the Final Year of the Simulation for Both
Single and Combined Spread Period Models.

Spread Fund Percentile
Period | Mean | Sdv 50% 75% 90% 95% 99% IQR
10 2308 | 282 | 22.89 | 24.87 | 26.82 | 28.04 | 30.59 | 3.83
5/10 2385 | 2.63 | 23.59 | 25.50 | 27.33 | 28.53 | 30.92 | 3.56
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10/20 Year Spread Period Combination.

Table 12.2.3a - Fund Percentiles of the Final Year of the Simulation for Both
Single and Combined Spread Period Models.

Spread Fund Percentile
Period | Mean Sdv 1% 5% 10% 25% 50% IQR
10 23.08 | 282 17.79 | 1891 | 19.63 | 21.03 | 22.89 | 3.83
10/20 2428 | 3.68 17.89 | 19.24 | 20.07 | 21.63 | 23.79 4.74

Table 12.2.3b - Fund Percentiles of the Final Year of the Simulation for Both
Single and Combined Spread Period Models.

Spread Fund Percentile
Period | Mean Sdv 50% 75% 90% 95% 99% IQR
20 23.13 399 | 22.73 | 25.42 | 28.32 | 3037 | 3437 5.16
10/20 2428 | 3.68 23.79 | 2637 | 29.17 | 30.98 | 34.93 4.74

20/30 Year Spread Period Combination.

Table 12.2.4a - Fund Percentiles of the Final Year of the Simulation for Both
Single and Combined Spread Period Models.

Spread Fund Percentile
Period | Mean Sdv 1% 5% 10% 25% 50% IQR
20 23.13 3.99 1572 | 17.49 | 1840 | 20.26 | 22.73 5.16
20/30 2418 | 488 | 1583 | 17.79 | 18.69 | 20.70 | 23.49 6.02

Table 12.2.4b - Fund Percentiles of the Final Year of the Simulation for Both
Single and Combined Spread Period Models.

Spread Fund Percentile
Period | Mean Sdv 50% 75% 90% 95% 99% IQR
30 2322 | 5.15 2247 | 26.03 | 29.82 | 32.72 | 39.00 | 6.41
-20/30 2418 | 488 | 23.49 | 26.73 | 30.54 | 33.25 | 39.36 6.02

From Tables 12.2.2 - 12.2.4, it is clear that the combination spread period fund
distributions have higher values for all their percentiles than the equivalent single
spread period funds. This is an expected result when comparing the single spread
period model (Model 1V) that corresponds to the length of spread period used by the
combined model for funding deficits: then, for funds that fall below the actuarial
liability, the lengths of spread period used for both the single and the combined spread
period model are identical and so both models are equally effective at returning the
fund to the value of the actuarial liability. However, when the fund is greater than the
value of the actuarial liability, the combined spread period model is less effective than
the single spread period model at eliminating this over-funding. As the simulation



progresses, the combined spread period model will, therefore, have more funds that are
greater than the actuarial liability compared to the single spread period model and
hence the value of the lower percentiles of the fund (i.e. those below 50%) will be
greater than those for the single spread period model.

Similarly, when comparing the combined spread period model with the single spread
period model corresponding to funding surpluses, it is expected that the combined
spread period model will have more funds that are greater than the actuarial liability as
it will be more effective at removing funding deficits than the single spread period
model. Therefore, the value of the higher percentiles of the fund for the combined
model will be greater than those for the single spread period model.

It can also be noted from Tables 12.2.2 - 12.2.4 that both the standard deviation and
the inter-quartile range of the fund for the combined spread periods lie between the
values for the two relevant single spread periods and also that the mean for the
combined spread period case is greater than the mean for both the single spread period
cases.

When we compare the differences between the percentiles of the fund for the single
and combined spread periods that occur in Tables 12.2.4a and b to the differences that
are recorded in Tables 12.2.2a and b and Tables 12.2.3a and b, there does not seem to
be any clear reason why the standard deviation of the extra contribution for the 20/30
year spread period should behave differently to the standard deviations of the other
combined spread periods. However, before investigating the actual distribution of the
extra contribution, we consider two possible reasons for this behaviour.

Firstly, we consider the distribution of the funds for the combined spread periods.
There does not appear to be the usual patterns for the mean and median i.e. the mean
for the 10/20 year spread period is greater than that of the 5/10 year spread period
which follows the pattern of Model VI (the mean value of the fund increases as the
spread period increases), but the mean of the 20/30 year spread period lies between
that of the 10/20 and 5/10 year spread periods. Similarly, instead of the median falling
as the spread periods increase as was the case for Model VI, the median for the 10/20
year spread period is greater than that for the 5/10 year spread period whilst the
median for the 20/30 year spread period is the smallest of the three. It would appear,
therefore, that the introduction of two spread periods has affected the changes in the
distributions of the fund as the spread periods are increased to an unexpected degree.

Secondly, we recall that when the model used the lower assumed rates of return
(Model TV) and there was over-funding, the standard deviation of the extra
contribution saw a rapid increase in its value when the spread period increased beyond
20 years (see Table 7.3.1). As the introduction of two spread periods has increased
the amount of over-funding, this may be a possible explanation of why the standard
deviation for the 20/30 year spread period is greater than the standard deviation of the
20 year spread period.

We next investigate why the combined spread period model for the 20/30 year spread

periods has a larger standard deviation for the extra contribution than either of the
corresponding single spread period models. Tables 12.2.5 and 12.2.6 show the
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distributions of the extra contribution for both the combined and single spread periods
in terms of the percentiles for the combinations of 5/10 years and 20/30 years.

5/10 Year Spread Period Combination.

Table 12.2.5a - Extra Contribution Percentiles of the Final Year of the
Simulation for Both Single and Combined Spread Period Models.

Spread Extra Contribution Percentile
Period Mean Sdv 1% 5% 10% 25% 50% IQR
5 -0.24 6.41 -16.47 | -11.13 | -8.72 -4.49 0.22 8.90
5/10 -0.54 534 | -13.03 | -8.85 -6.94 -3.98 -0.95 7.11
10 -0.14 457 | -1250| -8.13 -6.23 -3.04 0.23 6.18

Table 12.2.5b - Extra Contribution Percentiles of the Final Year of the
Simulation for Both Single and Combined Spread Period Models.

Spread Extra Contribution Percentile
Period | Mean Sdv 50% 75% 90% 95% 99% IQR
5 -0.24 6.41 0.22 4.41 7.80 9.26 12.10 8.90
5/10 -0.95 5.34 -0.95 3.13 6.87 8.50 11.61 7.11
10 -0.14 4.57 0.23 3.14 5.44 6.61 8.21 6.18

, 20/30 Year Spread Period Combination.

Table 12.2.6a - Extra Contribution Percentiles of the Final Year of the
Simulation for Both Single and Combined Spread Period Models.

Spread Extra Contribution Percentile

Period | Mean Sdv 1% 5% 10% 25% 50% IQR
20 -0.13 385 | -1093 | -7.11 | -5.19 | -2.34 | 0.24 4.97

20/30 -0.64 | 400 |-1247| -784 | -5.64 | -2.86 | -0.37 5.06
30 -0.17 | 392 |-1209 -736 | -5.18 | -2.32 | 0.36 4.93

Table 12.2.6b - Extra Contribution Percentiles of the Final Year of the
Simulation for Both Single and Combined Spread Period Models.

Spread Extra Contribution Percentile

Period Mean Sdv 50% 75% 90% 95% 99% IQR
20 -0.13 3.85 0.24 2.63 4.48 5.42 6.90 497

20/30 -0.64 4.00 -0.37 2.20 4.10 5.15 6.79 5.06
30 -0.17 3.92 0.36 2.61 4.31 5.23 6.66 4.93

The relationship between the distribution of the extra contribution for the combined
spread period and the distribution of the two relevant single spread periods is markedly
different for the two combinations above. For the 5/10 year spread period (Tables
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12.2.5a and b), all the percentiles of the combined spread period, with the exception of
the 50% and 75%, lie between the percentiles of the two single spread periods while
the 75% percentile lies only just outside (3.13% for the combined spread period
compared to 3.14% for the 10 year single spread period). It is, therefore,
straightforward to see why the value of the standard deviation for the combined spread
period lies between the values for the two corresponding single spread periods.

In contrast, for the 20/30 year spread period, all the percentiles of the combined spread
period are less than both the single spread period percentiles with the exception of the
99th percentile. From the distribution of the extra contribution for the combined
spread period, it can be seen that the spread of the percentiles is greater than for both
single spread periods. The reason for this is that the increase in over-funding caused
by implementing the combined spread periods has decreased the value of the lower
percentiles of the distribution of the extra contribution to a greater extent than the
decrease in the higher percentiles. Therefore, the standard deviation of the extra
contribution has increased when compared to both single spread periods.

The manner in which the shape of the distribution of the extra contribution changes
when the combined spread period model is used appears to depend on the length of the
different spread periods involved. This appears to be the reason why the changes in
the distribution of both the fund and the extra contribution, as the spread periods are
increased, do not correspond to the changes witnessed earlier when the spread period
was increased in the case of Model V1.
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13 Testing For Log-Normality in the Distribution
of the Fund.

When describing the distribution of the fund for the different models in earlier sections,
it has been mentioned that the distribution has approximately a log-normal shape. In
this section, three of the models will be tested for log-normality - Model III, Model IV
with 70% equities and Model VI with 70% equities - with the spread periods of 5, 20
and 40 years being considered.

The statistical data that were recorded for the funds were the mean, standard deviation
and the percentiles of the fund. Using the mean and standard deviation, it is possible to
calculate the percentiles of the fund if the fund were indeed log-normally distributed
and in Tables 13.1 - 13.3 these theoretical values are compared to the values of the
percentiles of the model.

Model IIT (LLPI Pension Increases. 100% Equities)

5 Year Spread Period.

Table 13.1.a - Percentiles of the Theoretical and Simulated Final
Year Fund Distributions. '
Percentile
1% 5% | 10% | 25% | 50% | 75% | 90% | 95% | 99%
Theoretical | 16.76 | 18.33 | 19.23 | 20.82 | 22.75 | 24.86 | 26.92 | 28.24 | 30.89
Model 16.72 | 18.36 | 19.28 | 20.86 | 22.68 | 24.86 | 27.03 | 28.41 | 30.58
Difference | 0.04 | -0.03 | -0.05 | -0.04 | 0.07 | 0.00 | -0.11 | -0.17 | 0.31

20 Year Spread Period.

Table 13.1.b - Percentiles of the Theoretical and Simulated Final
Year Fund Distributions.
Percentile
1% 5% 10% | 25% | 50% | 75% | 90% | 95% | 99%
Theoretical | 13.60 | 16.07 | 17.56 | 20.37 | 24.02 | 28.33 | 32.87 | 35.92 | 42.44
Model 13.74 ] 16.40 | 17.89 | 20.49 | 23.92 { 28.30 | 32.90 { 35.99 | 44.06
Difference | -0.14 | -0.33 | -0.33 | -0.12 | 0.10 | 0.03 | -0.03 | -0.07 | -1.62
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40 Year Spread Period.

Table 13.1.c - Percentiles of the Theoretical and Simulated Final
Year Fund Distributions.
Percentile
1% 5% | 10% | 25% | 50% | 75% | 90% | 95% | 99%
Theoretical | 10.03 | 13.23 | 15.34 | 19.64 | 25.85 { 34.01 | 43.55 | 50.49 | 66.62
Model 11.20113.99 | 16.17 | 19.94 | 25.37 | 33.32 | 43.23 | 49.64 | 70.08
Difference | -1.17 | -0.76 | -0.83 | -0.30 | 0.48 | 0.69 | 0.32 | 0.85 | -3.45

From the differences between the actual values of the fund percentiles and the
theoretical values presented in Table 13.1a, it can be seen that the log-normal
distribution could be used to approximate the fund distribution for Model III when the
spread period is 5 years, as none of the differences is particularly large and their signs
are neither consistently positive or negative.

The use of a log-normal distribution to approximate Model III when the spread period
is increased to 20 years becomes more tenuous as Table 13.1b shows that the
differences between the actual percentiles and the theoretical percentiles have generally
increased.  Also, there are systematic departures and only the 50% and 75%
percentiles now have a positive difference with all the other percentiles having negative
differences.

When the spread period for Model 11T is increased to 40 years, the differences between
the theoretical and actual percentile values increase again although there are now four
positive differences and five negative differences. However, as all the positive
differences are in a cluster rather than spread throughout the percentiles, it would
certainly appear that a better approximation to the fund distribution than the log-
normal distribution would be needed for practical applications.

Model IV (70% Equities, 30% ILGs - Original Parameters)

5 Year Spread Period.

Table 13.2.a - Percentiles of the Theoretical and Simulated Final
Year Fund Distributions.
Percentile
1% 5% 10% | 25% | 50% | 75% | 90% | 95% | 99%
Theoretical | 19.33 | 20.62 | 21.34 | 22.60 | 24.09 | 25.68 | 27.20 | 28.15 | 30.03
Model 19.47 1 20.75 1 21.39 | 22.60 | 24.07 | 25.56 | 27.24 | 28.17 | 30.17
Difference | -0.14 | -0.13 | -0.05 ] 0.00 | 0.02 | 0.12 | -0.04 | -0.02 | -0.14
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20 Year Spread Period.

Table 13.2.b - Percentiles of the Theoretical and Simulated Final
Year Fund Distributions.
Percentile
1% 5% 10% | 25% | 50% | 75% | 90% [ 95% | 99%
Theoretical | 17.08 | 19.24 | 20.50 | 22.79 | 25.64 | 28.85 | 32.08 | 34.19 | 38.51
Model 17.29 1 19.38 | 20.62 | 22.82 | 25.56 | 28.73 | 32.01 | 34.15 | 39.12
Difference | -0.21 | -0.14 | -0.12 | -0.03 | 0.08 | 0.12 | 0.07 | 0.04 [ -0.61

40 Year Spread Period.

Table 13.2.c - Percentiles of the Theoretical and Simulated Final
Year Fund Distributions.
Percentile
1% 5% | 10% | 25% | 50% | 75% | 90% | 95% | 99%
Theoretical | 14.85 | 17.97 | 19.89 | 23.56 | 28.44 | 34.34 | 40.68 | 45.03 | 54.46
Model 15.95 | 18.37 | 20.06 | 23.62 | 28.52 | 33.88 | 40.43 | 44.95 | 55.65
Difference | -1.10 | -0.40 | -0.17 | -0.06 | -0.08 | 0.46 | 0.25 | 0.08 | -1.19

From Table 13.2a, it can be seen that using a log-normal approximation could be
justified for modelling the fund distribution for Model IV when the spread period is 5
years, as the difference between the theoretical and observed percentile values are
relatively small. However, the fact that the differences are only positive for the 25%,
50% and 75% percentile and that the negative differences are greatest for the out-lying
percentiles would indicate that the fund distribution is not exactly log-normal.

The pattern of differences in Table 13.2b is very similar to that of Table 13.1¢c with the
50%, 75%, 90% and 95% percentiles being positive and the others being negative.
This would indicate that the distribution of the fund is not log-normal for the 20 year
spread period.

Increasing the spread period to forty years for Model IV makes the distribution of the
fund appear to be even less log-normally distributed than for the twenty year spread
period, as the differences between the theoretical values and the observed values have
increased and also the difference for the median has become negative.
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Model VI (70% Equities, 30% ILGs - Altered Parameters)

5 Year Spread Period.

Table 13.3.a - Percentiles of the Theoretical and Simulated Final
Year Fund Distributions.
Percentile .
1% 5% 10% | 25% | 50% | 75% | 90% | 95% | 99%
Theoretical | 18.46 | 19.68 | 20.36 | 21.56 | 22.97 | 24.48 | 25.91 | 26.81 | 28.59
Model 18.73 | 19.84 | 20.37 | 21.48 | 22.96 { 24.52 [ 25.91 | 26.75 | 28.72
Difference | -0.27 | -0.16 | -0.01 | 0.08' ] 0.01 | -0.04 | 0.00 | 0.06 | -0.13

20 Year Spread Period.

Table 13.3.b - Percentiles of the Theoretical and Simulated Final
Year Fund Distributions.
Percentile
1% 5% | 10% | 25% | 50% | 75% | 90% | 95% | 99%
Theoretical | 15.31 | 17.20 | 18.30 | 20.31 | 22.80 | 25.59 | 28.39 [ 30.21 | 33.95
Model 15.72 | 17.49 | 18.40 | 20.26 | 22.73 | 25.42 | 28.32 { 30.37 | 34.37
Difference | -0.41 { -0.29 | -0.10 | 0.05 | 0.07 | 0.17 | 0.07 | -0.16 | -0.42

40 Year Spread Period.

Table 13.3.c - Percentiles of the Theoretical and Simulated Final
Year Fund Distributions.
Percentile
1% 5% | 10% | 25% | 50% | 75% | 90% | 95% | 99%
Theoretical | 12.14 | 14.55 | 16.02 | 18.81 | 22.50 | 26.90 | 31.59 | 34.79 | 41.67
Model 12.83 | 1491 | 1636 | 18.85 | 22.27 | 26.63 | 31.49 | 34.79 | 43.14
Difference | -0.69 | -0.36 | -0.34 | -0.04 | 0.23 | 0.27 | 0.10 | 0.00 | -1.47

From Table 13.3a, it appears that the fund for the five year spread period for Model VI
could be approximated by the log-normal distribution as all the recorded percentiles
between the 10th and 95th are similar to the calculated percentiles. However, the
differences between the observed and calculated values for the 1%, 5% and 99%
percentiles would indicate that the log-normal distribution would need to be improved
for particular practical applications.

Similarly, as the spread period is increased to twenty years (Table 13.3b) and forty

years (Table 13.3c), the pattern of the log-normal approximation becoming less
appropriate is repeated as the differences between the observed percentiles and the
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calculated percentiles increase.

In conclusion, it appears that the distribution of the fund is not actually log-normally
distributed but this approximation could be used for the smaller spread periods.
Because the data for each simulation were not recorded, it is not possible to test the
distribution of the fund against other skewed distributions such as the inverse gamma
distribution: there are theoretical reasons for suggesting this distribution - Dufresne
(1990) shows that the present value of a perpetuity, when the force of interest follows
a Brownian motion process (the continuous time analogue of the 1ID assumption), has,
in the limit, an inverse gamma distribution."

1If X has an Inverse Gamma distribution with parameters o and A, then X' is distributed as Gamma

2

A
(o.,1) and hence it can be shown that E(x) = 1 Var(x) =
o —

—————— and the
(a-1)*(a-2)
o 4a-2)”
skewness coefficient is ————— for a>3.
[0 Riagit }



14 Conclusions.

The aim of this project was to test if the theoretical results obtained from the 1D, AR(1) and
MA(1) models about the behaviour of the optimal spread period would be supported by the results
obtained from a more realistic model of investment returns. In particular, we wanted to see if the
results held as the model was developed, becoming more realistic and inevitably gaining in
complexity. The model used has included the Wilkie model of stochastic investment returns, the
selection of assets from three categories (equities, ILGs, Consols), and benefits uprated in line with
inflation (salary inflation, then price inflation and then LPI). We have seen that each model has
given the expected result on the change in the length of the optimal spread period (when compared
to the previous model) as the mean and standard deviation of the pension scheme’s investment
portfolio has changed.

The results obtained from Model VII (section 10) have also supported the theoretical conclusion
(Haberman 1993) that moving from annual to triennial valuations would increase the standard
deviation of both the fund and the extra contribution and have a minor effect on the range of the
optimal spread periods.

The results from Model VIII (section 11) have supported the theoretical conclusions about how the
standard deviation of the extra contribution would be affected in both the long and the short term
by different initial funding levels.

As well as supporting the theoretical results this project has also identified other areas of
investigation. Firstly, the change in the length of the optimal spread period when the model was
changed from Model IV to Model VI (where the assumed rates of return were altered) would
appear to indicate that the length of the optimal spread period is determined by the assumed rates of
return used to calculate the contribution rate and the liabilities as well as the actual underlying rates
of return. There would therefore appear to be an improvement in the model if the rates of return
used to calculate the contributions and liabilities were altered during the simulation to take into
account past experience.

Secondly, the introduction of a second spread period into the model (Model IX - section 12) so
that a different spread period is used for amortizing surpluses and deficits appears to alter the
distributions of both the fund and the extra contribution and also appears to change the range of the
optimal spread periods.

Finally, when the selected models were tested to see if the fund was log-normally distributed
(section 13), the hypothesis of log-normality was rejected. But this leaves the possibility that the
fund distribution could be approximated by another skewed distribution and the theoretical
suggestion of an inverse gamma distribution will be left to future research.
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Appendix.

The following appendix is a description of the background theoretical results and is based on
sections of Haberman (1994b). It relates to individual funding methods and the spread method for
adjusting contributions.

C(t) = Contribution Rate in year t.

F(t) =Fund at time t.

NC(t) = Normal Cost in year t.

AL(t) = Actuarial Liability at time t.

ADJ(t) = Adjustment to the Contribution Rate at time t.

UL(t) = Unfunded Liability at time t.

Al  THE MATHEMATICAL MODEL

At any discrete time t (for integer values t =0, 1, 2 ...), a valuation is carried out to estimate C)
and F(t), based only on the scheme membership at time t. However, as t changes, we allow for new

entrants to the membership so that the population remains stationary - see assumptions below.

In the mathematical discussion, we make the following assumptions.

1. All actuarial assumptions are consistently borne out by experience, except for investment

returns.
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The population is stationary from the start. (We could alternatively assume that the

population is growing at a fixed, deterministic rate i.e. that the population is stable in the

sense of Keyfitz (1985)).

Inﬂatipn on salaries at a deterministic rate is incorporated by considering interest rates that
are "real” relative to salaries. In parallel we assume that benefits in payment increase at the
same rate as salaries. We therefore consider variables to be in real terms. For simplicity,
each active member's annual salary is set at 1 unit at entry. (It would be possible to
incorporate a fixed promotional salary scale simply through a change of notation).

The interest rate assumption for valuation purposes is fixed, iv.

The "real” interest rate earned on the fund during the period, (t, t + 1) is i(t + 1). The
corresponding “real” force of interest is assumed here to be constant over the interval
(t,t+1) and is written as 8(t + 1). Thus, 1 +i(t + 1) = exp (8(t + 1)). i(t) is defined in a
manner consistent with the definition of F(t).

We define E[1+i(t)] = E[exp 8(t)] = 1. We assume that i=}, where i, is the valuation rate
of interest. This means that the valuation rate is correct "on average". This assumption is
not essential mathematically but it is in agreement with classical ideas on pension fund
valuation.

It is assumed that the contribution income and benefit outgo occur at the start of each
period (or scheme year).

The initial value of the fund (at time zero) is known, i.e. Prob [F(0)=Fo]=1 for some Fo.
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9. Valuations are carried out at annual intervals (this is relaxed in section A4).
Assumptions 1, 2, 3 and 4, imply that the following parameters are constant with respect to time, t
(after rescaling to allow for growth in line with salary inflation):
NC the total normal contribution
AL the total actuarial liability
B the overall benefit outgo (per unit of time)
S the total pensionable payroll
PVB the present Qa]ue of future benefits (for active members and pensioners)
PVS the present value of future pensionable earnings.
Further, assumptions 1,2, 4, 7 and 9 imply that the following equation of equilibrium holds:
AL = (1+i) (AL + NC - B) or equivalently B = d AL + NC (AD

where d =i(1 +1i)", the compound interest discount rate.

This equation of equilibrium can also be found in the earlier papers of Trowbridge (1952) and

Bowers et al (1976).

The model adopts a discrete time (rather than continuous time) approach.

Under the spread method, ADJ(t) =k. UL(t) (A2)

where k=(¢i,n)" calculated at the valuation rate of interest. So the unfunded liability is spread

over M years, where M would be chosen by the actuary. It should be noted that this definition of

ADI(t) uses the same fraction of the unfunded liability regardless of the sign of the latter. So,
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surpluses and deficiencies would be treated in a comparable manner - this would not always be the
case in practice: different choices of M depending on whether there is a surplus or deficit have been
considered in section 12. k is the fraction of UL(t) that makes up ADJ(t) and can be thought of as a

penalty rate of interest that is being charged on the unfunded liability, UL(t).

Then F(t) = AL(t) - UL(t) and C(t) = NC(t) + ADJ(1).

A2 STOCHASTIC INVESTMENT RETURNS

Independent and Identically Distributed i(t)

We assume that the earned real rates of investment return, i(f) for t>1, are independent and
identically distributed random variables, with i(t) > -1 with probability 1, and with Ei(t) =i = i, and
Vari(t)= o® <.

Dufresne (1988) has described in detail the properties of individual funding methods.

As we are using the spread method,

C() = NC + k (AL - F(t) (A3)
and F(r+1) = (1+it+1)(FY+C()-B) (A%
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Equation (3) includes a negative feedback component, whereby the current status, F(t), is compared
with a target (AL) and corrective action is taken to deal with any discrepancy.
Then, Dufresne (1988) shows that

EF@) =4 Fo+r(1-g)/(1-q) (A5)

where g = (1+ i)(I - k) and r = (1 + )(NC + k.AL-B),

and VarF(t)= b Z a”’ (EFG)) (A6)

j=l

wherea=¢* (I + b)and b = (1 + ).

Then, q= £ 11 50if M >1, 0 < q < 1 and the following limits exist

anl
and .
lim E F({)= ——= AL, using (3)
t— o I- q
and (AT
lim E C(f) = NC, using (7)
t >

Ifa < 1, then Dufresne (1988) shows that

AL’
!il_’()] Var F(t) = {;——a)
and 2512 (A8)
X L
lim Var C(t) = bCAL
[ ) (1 - a)

If 2> 1, then both of these limiting variances would be infinite. The restriction that a < 1 implicitly

places a restriction on the choice of M viz

1
a < lisequivalent to ¢, < —— where f = v .
q awn -7 J -5
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. v
This is equivalent to M <M, = -l—ln w‘"—l
(1+6)" -1

5 } and provides a restriction on the feasible

values of M for convergence. Numerical values of M, have been given in Table 2.4 (see section 2).

Dufresne (1988) also considers expressions for the covariances of F and C in the limit and deals

separately with the special case M = 1.

A3 OPTIMAL SPREAD PERIODS.

In this section we focus on individual funding methods with the spread method, and we shall

consider the existence of an "optimal” region for the spread period.

In this section, we shall consider the relationship between Var F(t) and Var C(t) as M (or k) varies,
with t fixed. Rather than take a particular finite t, we shall consider the limiting variances at t —> o
and indeed we shall consider these variances relative to the corresponding expectations (i.e. the
coefficient of variation). Our consideration of the case where t — o is justified on the grounds that
the results are mathematically tractable. The earlier discussion, leading to equation (A8), shows
that the limiting variances are both proportional to AL? so that a more secure funding method, with
higher AL, would lead to greater variability. The converse would suggest that the limiting
variances could be reduced, in absolute terms, by choosing a funding method with a lower value of
AL. This difficulty is by-passed by our focusing on the coefficients of variation. To facilitate the

discussion, we now introduce some new notation.
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Witha<1and2 <M<oo (so d <k <l), we define

VarF(w)
(EF())’

VarC(x)

o) = EC(w))

and Bk) = (A9)

and we regard o and B as functions of k. We could equivalently regard them as functions of M,
given the 1-1 correspondence between k and M. However, it is more convenient to consider a(k)

and B(K).

For the case of IID i(t), Dufresne (1988) has considered in detail the trade off between Var F(t) and
Var C(t) in the limit as t —> oo, as represented by a(k) and B(k), and for finite t under certain
conditions. Thus, from (A7) and (A8), we have that

b

O =y

2

AL bk’

and B = NC 1-y(1-k )

where y=(1 +1i)* (1 +b) =E (1 +i(t))". Assuming thaty > 1, Dufresne shows that

d
~— afk) <0
dka()

d . 1
andzi; Bk) -=0 where kK’ = 1-;.

Atk =K, B(k) takes a minimum value. The value of the spread period corresponding to k" will be

denoted by M.
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Formally, if y > 1, then both Var F(e0) and Var C(e0) become infinite for some finite M = Mo (when

a becomes equal to 1) and there exists a value M’ such that

. for M <M, Var F(e) increases and Var C(e) decreases with M increasing

. for M >M" both Var F(e0) and Var C(c0) increase with M increasing.

Ify =1, Var C(c0) — 0 and Var F(e0) — o as M — oo, although Var F(c0) does stay finite for all

M.

Ify <1, Var C(e0) — 0 as M — oo and Var F(c0) has a finite limit as M —> oo

The particular value of M is determined by

k=1l-— = —
y i
L s . 1 vy-1
ie. ifizOM =-—= In| — (A10)
) y-1

and ifi=0 A" = 1+ .
e}

There is thus a trade off between variability in the fund, represented by o, and variability in the
contribution rate, represented by B. This trade-off takes place only up to M = M". Beyond this
point, augmenting M causes both Var F and Var C to increase, With the objective of minimising
variances, any choice of M > M’ should be rejected, for clearly some M < M’ would reduce both

Var F and Var C. If we regard M as being a parameter open to the choice of the actuary, then the
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optimal choices for M would lie in the region 1 < M <M. Thus, we can describe this region as an

"optimal" region and M* as the ‘critical’ spread period.

Table 2.1 in section 2 provides values of M" as a function of i and o (to the nearest integer). In the
UK, it is common to choose M to correspond to the average remaining working lifetime of the
current membership - with an average age of membership of 40-45 and a normal retirement age of
65 this would correspond to a choice of M in the range 20-25. We see from Table 2.1, that under
particular combinations of i and 6 our model indicates that this choice would not be optimal. If i=
.03 and & = .20 then, for example, smaller values, namely those in the region 1 <M < 13, would be
more satisfactory.

The optimal range of spread periods has also been demonstrated to exist in the case of finite t, for t

‘large enough’: further details are given in Owadally and Haberman (1995).

A4  FREQUENCY OF VALUATIONS

A second contro! variable available to the actuary is the frequency with which valuations are
performed. In the model in sections 1 - 3, we have assumed that valuations are annual. Here, we
shall consider the case of valuations every 3 years (and then more generally every n years where n is
an integer). Triennial valuations are common in the UK because of legislative and cost
considerations. We here introduce j(t) to be the real rate of investment return earned during the t'th

(three year) period.
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In the triennial case, the equation of equilibrium would become
AL =(1 + j)(AL + NC - B) (A1)

where NC’ and B’ now refer to 3 year rather than 1 year time periods and (1 +j) = (1 + iy’

The link between the pairs NC and NC’, B and B’ comes from the following straightforward
compound interest relationships:
NC’= NC ¢i5) and B’= B ds1. (Al12)
Now equation (A3) would become
C(t) = NC™k, (AL-F(r)), for t=0,1,2, ... (A13)
where ky = 1/41,,,, calculated at the real rate of interest j effective over a triennium and

corresponding to i effective per year. We note that in equation (13), t is measured in 3 year time

units (rather than annual units as in equation (3)).

As noted earlier, 1 +j=(1 +i)’

1-1;3

M
-y

and so k= where v=(1+iy".

We assume here that the contributions are paid at the start of each triennium. In reality, they would
be paid annually; however, this feature introduces complexity into the mathematical formulation.

By effectively working in 3 year time units, we avoid such complications.

Haberman (1993) derives equations that correspond directly with (A7) and (A8). Thus, if M>3,
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Lim EF(t)=AL  and Lim E C(f)= NC' :
t— [ (A14)

And, providing that y,(1 - ki)*< 1 where y; = E (14j(t))’=(1 +2i +i*+ &%)’ = y’,

im Var F(t) = (V("'j(’))AL2

b Vo )=

Lim VL’H‘C(t): (Villj(t))kaLZ ’ (A15)
o= 1+ [1-00-5))

/

We now extend the definitions of o and B in equations (9) so that o(k) and By(k) refer to the
annual case and o, (k) and B,(k,) refer to the triennial case. Then, Haberman (1993) demonstrates
thatk an optimal spread period, M;’, exists for the triennial case providing that y;>1. The
corresponding value of k; is

ko= 1oL = 1L (oriz0).
Y y

Comparison of the resulting values of M’ (annual case) and M (triennial case) indicates that

M, =M™+l

Haberman (1993) also compares the limiting variances in the annual and triennial cases (equations
(8) and (15)) and obtains ranges for the spread period for which the variances are increased in the
triennial case relative to the annual case. The existence of a spread period M; is demonstrated for
which, in the triennial case, the relative limiting variances of both F(t) and C(t) are increased for

values of M in the range (I, Mz). M; and M;" are found to be approximately equal, i.e. M; =
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M, = M’ + 1. This leads to the intuitively reasonable result that, with triennial valuations and a
sensible choice of the spread period (i.e. within the optimal range), the limiting variances of both

F(t) and C(t) are increased relative to the case where valuations are annual.

Haberman (1993) also demonstrates how these results may be generalized to apply to valuations
avery n years, where n is an integer. Similar results to (14) and (15) can be derived, for example,

. 1-y" 5 . .
but expressed in terms of k, = 1—‘—,” , say, (1+i)* and y". Again, the existence of a range of
-y

spread periods is considered for which, relative to the annual case, the relative limiting variances

of both F(t) and C(t) are increased.

AS.  INTRODUCTION TO AR(1) AND MA(1) INVESTMENT RETURN MODELS.

AS.1  First Order Autoregressive Model.

Haberman (1994a) has extended the investment return model to a first order auto-regressive
model. Under this model the (earned real) force of interest is given by the following stationary

(unconditional) autoregressive process in discrete time:

8(t)=0+¢[8(1~1)- 6] +e(r)

where e(t) for t = 1, 2, ... are independent and identically distributed normal random

variables each with mean 0 and variance Y.
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The model suggests that interest rates earned in any year depend upon interest rates earned in

the previous year and some constant level.

The condition for this process to be stationary is that |¢| < 1.

The relative standard deviations for the fund and contribution rate for certain parameter values

and for different lengths of spread periods is given in Table 2.2 (section 2).

A5.2 First Order Moving Average Model.

Haberman and Wong (1997) have suggested the following first order stationary

(unconditional) moving average process in discrete time for the (earned real) force of interest:

5(1) = 0 +e(t) - ge(1 - 1)

where e(t) for t = 1, 2, ... are independent and identically distributed normal random variables

each with mean 0 and variance y°. @ is the moving average parameter.

A moving average process is second-order stationary regardless of the value of ¢. The

invertability condition for this model is -1 <@ < 1.

The relative standard deviations for the fund and contribution rate for certain parameter values

and for different lengths of spread periods is given in Table 2.3 (section 2).
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AS5.2 Range of Optimal Spread Periods.

As noted in section 2, there is evidence reported in Haberman (1994a) and Haberman and
Wong (1997) that a range of optimal spread periods exists in the presence respectively of
AR(1) and MA(1) investment returns, providing certain constraints on the investment return
parameters are satisfied. For more details, interested readers are referred to the original
papers. Also, as in the IID case, the range of optimal spread periods decreases as the standard

deviation of the underlying investment return process increases.
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