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ABSTRACT

The paper describes mathematical models proposed for investigating the
behaviour of defined benefit pension schemes in the presence of
stochastic investment returns.

The paper describes two general approaches to modelling and controlling
the funding of such pensions schemes: by adjusting contributions in
response to emerging surpluses or deficits, and by using an optimal
control theory approach to optimize particular performance criteria.

Interest here is particularly focused on the efficacy of the various control
variables at the disposal of the actuary, including the choice of
amortization period, the delay in fixing contributions, the frequency of
valuation and the choice of funding method for eliminating the unfunded

liability. The paper closes with suggestions for topics for further
investigation.
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1. INTRODUCTION

Defined benefit pension schemes, which are common in a number of
countries including the UK, USA, Canada and the Netherlands, are
arrangements for a group of members where the benefits promised in the
event of various contingencies are defined by a formula while the
contributions (to be paid by the employer and possibly the member) are
to be determined by the actuary as part of the regular valuation process.
(In recent years, there has been a shift towards defined contribution
schemes: see Turner and Beller (1992) for a discussion and towards the
development of hybrid schemes: see Khorasanee (1995) for an analysis).

The fund associated with such a scheme can be regarded as a reservoir
into which income from -contributions and investment earnings
(including the proceeds of sales and maturities and unrealised capital
growth) flow and out of which benefit payments on the contingencies of
age retirement, disability, death and withdrawal and so on would be
made.

The most financially significant benefit is age retirement. For this
contingency, the benefit would be in the form of a pension, payable while
the member is alive. There may also be a lump sum benefit payable at
retirement and an entitlement to a reversionary pension payable to a
surviving spouse. The defined benefit formula for the basic annual
pension to be member would be normally of the form:

Annual Pension = K x (number of years of membership) x (earnings
averaged over the h years before retirement)

where K (the accrual rate) and h are specified in the scheme rules. In
contrast, the annual contribution formula would be of the form

Annual Contribution = ¢ x (current pensionable earnings)

where c is not specified in the scheme rules but is determined by the
"funding method” used by the actuary at each valuation. The valuations
take place at regular intervals and the actuary values the prospective
liabilities (i.e. benefit promises) allowing for the value of the future
contributions which are expected to be paid at the assumed rate ¢, and
compares this result with the value of the assets currently held in the
fund. These calculations (and more detailed analyses) are used to
determine c, which is held fixed for the period up to the next valuation.

This financing arrangement depends critically on the presence of regular
valuations at which assets, prospective labilities and future
contributions are compared. At each valuation, the actuary is required
to make detailed assumptions about the demographic and economic
future of the pension scheme. These assumptions may constitute "best



estimates” of the various parameters but are not long term predictions as
the actuary will have the opportunity to revise these estimates at the next
and subsequent valuations.

The methods and assumptions available to the actuary in these routine
valuations are not prescribed in UK, US or Canadian practice. In the
event of a surplus or a deficiency being revealed at the next valuation, the
contribution rate would be adjusted for the future. The financial status
of the scheme would then be reviewed at the next valuation. In the UK, it
is common for these valuations to be annual, although legislation
requires a valuation to be performed at least every 3% years.

In recent experience, one of the principal sources of surplus or deficiency
has been the rate of investment return on pension scheme assets. It has
become customary for actuaries to analyse the behaviour of the finances
of pension schemes using simulation. A recent development in the
literature has been the use of simple, analytic models of pension scheme
dynamics. These models can lead to definitive results which, providing
the underlying assumptions and simplifications are reasonable, then can
provide insight and identify avenues worthy of further investigation based
on more complex models, perhaps with the assistance of simulation.
Some of the results obtained have helped to elucidate the effects of
varying investment returns on the moments of the contribution rate and
level of assets and to identify the effects of the various control variables at
the disposal of the actuary e.g. the spread or amortization period (for
dealing with valuation surpluses and deficiencies), delay in fixing
contributions, frequency of valuation and the choice of funding method.
The purpose of the paper is to review the models proposed and the
results obtained, and to offer suggestions for further work in this area.

2. TYPES OF FUNDING METHOD

Pension funding methods are used to determine the pattern over time of
the contributions to be paid. In common practice, there are several
different types of funding method used. These can be categorised in a
number of ways. Thus, in the UK, the split between accrued benefit
methods and projected benefit methods is widely recognised. We shall
use a different categorisation based on the mathematical structure of the
fundamental equations. Therefore, we shall consider individual and
aggregate funding methods.

In pension funding, the normal cost is used to describe the (stable) level
of contribution which would apply if all the valuation assumptions made
were to be borne out in actual experience. The actuarial liability is used
to describe the mathematical reserve held: for some pension funding
methods it can be thought of as the difference between the present value
of benefit promises expected to be paid out of the pension scheme and
the present value of normal costs expected to be paid to the pension
scheme.



With individual funding methods (e.g. Projected Unit Credit and Entry
Age Normal), the normal cost (NC) and the actuarial liability (AL) are
calculated separately for each member and then summed to give the
totals for the population under consideration. With aggregate funding
methods (e.g. Aggregate and Attained Age Normal), there may not be
explicit determination of a normal cost or actuarial liability; instead the
group of members is considered as an entity, ab initio.

Let C(t) and F(t) be the overall contribution and fund level at time t. We
consider the case where F(t) is measured in terms of the market value of
the underlying assets.

For an individual funding method,
C(t) = INC(x,t) + ADJ(t) = NC(t) + ADJ(t)

where the summation is taken over all members and where NC(x,t) is the
normal cost for a member aged x at time t, NC(t) is the total normal cost
at time t and ADJ(t) is an adjustment to the contribution rate at time t
represented by the liquidation of the unfunded liability at time t, UL(t).
UL(t) is defined by

UL(t) = ¥ AL(x,t) - F(t) = AL({t) - F(t)

where the summation is taken over all members and where AL(x,t) is the
actuarial liability for a member aged x at time t and AL(t) is the total
actuarial liability, in respect of all members, at time t.

For an aggregate method, the overall contribution is directly related to
the difference between the present value of future benefits and the fund.

Specifically,
C(t) = (PVB(t) - F(t})) S(t)/PVS(t)

where S(t) is the total salaries of active members at time t, PVB(t) is the
present value of future benefits (of all members including pensioners) at
time t and PVS(t) is the present value of future salaries (of active
members) at time t. Here, the difference, PVB(t) - F(t), is spread over the
remaining period of membership of current members, effectively by an
annuity which allows for expected earnings progression and which has
PVS(t)

expected present value
Xp P nt valu st

(1)



For individual funding methods, there are a number of choices for the
ADJ(t) term. The most commonly used are the spread method (UK} and
the amortization of losses method (Canada and USA).

Under the spread method, ADJ(t)=k. UL(t)

where k is the reciprocal of a compound interest annuity value calculated

M-1
at the valuation rate of interest, i, i.e. k™ = Z (1+i)7. So the unfunded
j=0

liability is spread over M years, where M would be chosen by the actuary.
It should be noted that this definition of ADJ(t) uses the same fraction of
the unfunded liability regardless of the sign of the latter. So, surpluses
and deficiencies would be treated in a comparable manner - this would
not always be the case in practice (see, for example, Winklevoss (1993)).
Typical values of M would be 20-25 years, corresponding approximately
to the average remaining period of membership of current members. k is
the fraction of UL(t) that makes up ADJ(t) and can be thought of as a
penalty rate of interest that is being charged on the unfunded liability,
UL(t).

For the amortization of losses method, we introduce the actuarial loss
experienced during the intervaluation period (t-1, t), I(t), which is defined
as the difference between UL(t) and the value of the unfunded liability if
all the actuarial assumptions had been realized during the year (t-1,t).
Then ADJ(t) is defined as the total of the intervaluation losses arising
during the last m years {i.e. between t-m and t) divided by the present
value of an annuity for a term of m years calculated at the valuation rate
of interest (i.e. spread over an m year period). Thus,

m-1
> 1t-j)
ADJ(t) = &——
am1

As Dufresne (1989a) has shown, under these conditions, UL(t) satisfies a

recurrence relation UL(t) = (1+i} (UL{t-1) - ADJ{t-1)} + 1(t)
which can be solved to give

m-1 . .
UL(t) = 3 a l(t-j) where 3, = 'ZLJ]‘
j=o m

Then F(t)=AL(t)-UL(t) and C(t)=NC(t}+ADJ(t).

Here, m would be chosen by the actuary and would typically lie in the
range 5-15 years.

(3)

(4)

(5)



3. CONTROL OF FUNDING

We describe two general approaches to the control of pension funding.

We first consider the “classical” approach of adjusting contributions for
the spread method and amortization of losses method, and consider the
existence of optimal choices for the spread period M or the amortization
period m.

We then consider a more holistic approach based on the use of optimal
control methods to choose the contributions in order to optimize a range
of performance objectives.

A third approach exists in the actuarial literature viz control through the
choice of valuation methods and assumptions for the scheme assets and
liabilities. This area is not discussed for reasons of space: interested
readers are referred to Dyson and Exley (1995) for a discussion of
smoothed asset valuation methods, and Wise (1987a, b) and Sherris
(1992) for a discussion of portfolio selection and matching.

4. ADJUSTMENT OF CONTRIBUTIONS

4.1 DISCRETE TIME MODELS

At any discrete time t (for integer values t=0, 1, 2 ...) a valuation is carried
out to estimate C(t) and F(t), based only on the scheme membership at
time t.

In the mathematical discussion, we initially make the following
assumptions. Some are relaxed in the later discussion (see section 4.7).

1. All actuarial assumptions are consistently borne out by
experience, except for investment returns.

2. The population is stationary from the start. (We could alternatively
assume that the population is growing at a fixed, deterministic rate
i.e. that the population is stable in the sense of Keyfitz (1985)).

3. Inflation on salaries at a deterministic rate is incorporated by
considering interest rates that are “real” relative to salaries. In
parallel we assume that benefits in payment increase at the same
rate as salaries. We therefore consider variables to be in real
terms. For simplicity, each active member's annual salary is set at
1 unit at entry. (It is straightforward to incorporate a fixed
promotional salary scale simply through a change of notation).

4, The interest rate assumption for valuation purposes is fixed, i..



5. The "real”interest rate earned on the fund during the period, (t,t+1)
is i(t+1). The corresponding "real” force of interest is assumed here
to be constant over the interval (t,t+1) and is written as §(t+1).
Thus, 1+i(t+1) = exp (8(t+1)). i(t) is defined in a manner consistent
with the definition of F(t).

6. We define E[1+i(t)] = E[exp ()] = 1+i. We assume that i=i, where i,
is the valuation rate of interest. This means that the valuation rate
is correct "on awerage". This assumption is not essential
mathematically but it is in agreement with classical ideas on
pension fund valuation. We note that the implication is that
present value calculations will use an annual discounting factor
v=(1+E i(t))! rather than the theoretically more sound v*=E(1+i(t)):
Buhimann (1992). However, we seek to model the approach
adopted in current actuarial practice. The effect of i#i, has been
explored by Dufresne (1986), Cairns (1994) and Cairns and Parker
(1997).

7. It is assumed that the contribution income and benefit outgo occur
at the start of each period (or scheme year).

8. The initial value of the fund (at time zero) is known, i.e. Prob
[F(0)=Fo]=1 for some Fo.

9. Valuations are carried out at annual intervals.

Assumptions 1, 2, 3 and 4, imply that the following parameters are
constant with respect to time, t (after rescaling to allow for growth in line
with salary inflation):

NC the total normal contribution

AL the total actuarial liability

B the overall benefit outgo (per unit of time)

S the total pensionable payroll

PVB the present value of future benefits (for active members
and pensioners)

PVS the present value of future pensionable earnings.

Further, assumptions 1, 2, 4, 7 and 9 imply that the following equation
of equilibrium holds:

AL = (1+i) (AL + NC - B) or equivalently B = d. AL+NC (6)
where d=i(1+i)!, the compound interest discount rate.

This equation of equilibrium can be found in Trowbridge (1952) and
Bowers et al (1976).



4.2 INDEPENDENT AND IDENTICALLY DISTRIBUTED i(t)
INVESTMENT RETURNS

As a first model, we assume that the earned real rates of investment
return, i(t) for t>1, are independent and identically distributed random
variables, with i(t)>-1 with probability 1, and with Ei(t)=i=i, and Var
i(t)=02<o0.

Dufresne (1988, 1989a) has described in detail the properties of

. individual funding methods: spread method for ADJ(t)

. aggregate funding methods

. individual funding methods: amortization of losses method for
ADJ(t).

For the spread method,
C(t) = NC + k (AL - F(t))
and F(t+1) = (1+i(t+1))(F(t)+C(t)-B)

Equation (7) includes a negative feedback component, whereby the
current status, F(t), is compared with a target (AL) and corrective action
is taken to deal with any discrepancy.

Then, Dufresne (1988) shows that

EF(t) = q' Fo + r(1-q)/(1-q)

where q = (1+i)(1-k) and r = (1+i)(NC+k.AL-B)=(1-g)AL after some algebraic
simplification using (6),

and Var F(t) = b Z a" (EF())

where a = g2 (1+b}) and b = o2(1+i)2.

Then, q=M so if M>1, 0<g<1 and the following limits exist

aml

. r .
1{1_r’g EF(t) = E = AL, using (6)
and

lim EC(t) = NC, using (7)

tow

(7)
(8)

(10)

(11



If a<1, then Dufresne (1988) shows that

2
lim Var F(t) = DAL
t—c0 (] — a)

and

2572
lim VarC(t) = blCAL
B2 (] — a)

If a1, then both of these limiting variances would be infinite. The
restriction that a<1 implicitly places a restriction on the choice of M viz

a<l is equivalent to dy < il_f where f = v L

1+b "~

5 (1+b)%-1
restriction on the feasible values of M for convergence. Analysis shows
that M7 decreases as i and o each increase.

. + u
This is equivalent to M<M? = 1 ln{w] and provides a

Dufresne (1988) also considers expressions for the covariances of F and
C in the limit and deals separately with the special case M=1.

For the aggregate funding methods, equation (8) holds with
C(t) = (PVB - F(t)) S/PVS

so that E F(t) = q'Fo + ' (1-q"9/(1-q))

where q' = (1+i)(1-S/PVS), r'=(1+i) (S.PVB/PVS -B).

Then 0<g’<I and we note the similarity between equations (9) and (13)
and the definitions of q and q. Indeed, by defining N such that

in] = ?, we can regard q and q' as being of the same form. Hence

similar results to (11) and (12) apply in this case.
For the amortization of losses method, Dufresne (1989a) shows that

1(t) = (i(t)-i) (UL{t-1) - ADJ(t-1) - (1+i]"AL)

and, using (5) and (6), we obtain a difference equation for 1(t) viz

10 = G- i)(glﬁj I-5)-(1+iy AL

10

(12)

(7a)
(13)

(14)



where the coefficients b; are defined by B, = a—"'ﬂ .

am]

Then E(I(t)) = O for all t=1 (15)
and Cov (I(s), 1{t+1))=0 for 1<s<t

so that the C(t) form an uncorrelated sequence.

m-1
If 6> 3 B; <1, then Dufresne (1989a) shows that

=1

o?(l+i)%AL?
m-1

1-6" X
j=1

mx

lim Varl(t) =

t—w

= X, say

Lim VarC(t) =

tsw

(16)

o]
ZN

Ay P
S

bl

Lim VarF(t) =

t—cw

™
2N

j=

Further analysis shows that this inequality is equivalent to requiring M
to be less than some upper limit, M?, say: see section 4.6 for further
discussion.

4.3 AUTOREGRESSIVE RATES OF INVESTMENT RETURN

In order to investigate the effects of autoregressive models for the earned
real rate of return, we follow the suggestion of Panjer and Belthouse
(1980) and consider the corresponding force of interest and assume that
it is constant over the interval of time (t,t+1).

4.3.1 First Order Autoregressive Models

Now it is assumed that the (earned real) force of interest is given by the

following stationary (unconditional) autoregressive process in discrete
time of order 1 (AR(1)):

8(t) =0 + ¢ [8(t-1) - 0] + e(t) (17)

where e(t) for t=1, 2, ... are independent and identically distributed
normal random variables each with mean 0 and variance 2.

This model suggests that interest rates earned in any year depend upon
interest rates earned in the previous year and some constant level. Box
and Jenkins (1976) have shown that, under the model represented by
equation (17},

11



E[5(t)] =6

var s (t] = T =V, say

2

Cov [3(t), 8(s}] =T-Y¢7 9" = y(t,s), say.

The condition for this process to be stationary is that ||<1.
It then follows that E(exp 8(t)) = exp (6+% v2) = 1+i and
Var (exp &(t)) = exp (26+v2).(exp (v3}-1).

We first consider individual funding methods and the spread method for
choosing ADJ(t). It is convenient to re-parametrise equation (8) as

F(t+1) = (1+i(t+1)) (QF()+R)
where Q=1-k and R=NC-B+k.AL=AL(k-d).

Haberman (1994) then shows that

i ¢ R -1 s 4 20\F
EF(t) = FoQ'c'e®e” + Q > Qe e (18)
s=0

where z = v2¢ (1-¢)2 and c = exp[e + 4v? (lliﬁ)j )
-0

If Qc<1 then L‘,im E F(t) exists and the following approximation to the
limit is derived by Haberman (1994):

Lim EF() ~ ¢

5 19
Lim Qe © (19)

Upper and lower bounds for the limit have been derived by Cairns and
Parker (1997).

For convergence of (18), we require that Qc<1l. This is equivalent to
requiring that

M<M: = % ln(\fc-]])



For given ¢, v and i, there is thus a maximum value of M for which
convergence holds. This provides an important restriction on the feasible
values of the spread period, M. Analysis shows that M; decreases with
increasing i, @ and v.

Similarly, we can obtain expressions for EC(t) for finite t and in the limit
as t—oo.

It is possible also to consider second moments. Thus, Haberman (1994)
shows that

E(F(t)) = Q—Qli— ZZ Q™ Q" exp((t-s)p +(t-1)0+ Vv’ H(t,r,s))
Rz t-1 s )
+ 7 > Q™Y exp(2(t - ) + v? Hit,s,s))
where H(t,r,s) = (1“9] e -Qq,:s ro ),
l-¢ 2 (1-¢)

Then,It,im E(F(tf)exists if Qc<1 and Q2cw<1, and we can show that:

Lim EFQY) ~ —S 2RQEW - . Riow
e T (1-Qe)(1-Q'ew) (1-Q’cw)

where w = exp (9+% 1+oe) vzj.
(I-9)

Cairns and Parker (1997) have also obtained upper and lower bounds for
this limit,

The requirement that Q2cw<1 is more stringent than Qc<1 since w>c.
This requirement is equivalent to

1 VJew -1
M<M, = = In | —F——+—]|.
Me 5 n [v\/cw-lj

Then M2 < M; and, as before, further analysis shows that M, decreases
with increasing i, ¢ and v.

For aggregate funding methods similar results can be obtained.

13

(20)

(21)

(22)



For individual funding methods with the amortization of losses method
for choosing ADJ(t), the discussion is complicated because of the
presence of non-linear effects in the resulting equations. It is convenient
here to model i(t), rather than §(t), as a stationary AR(1) process:

i(t) = i+o (i(t-1)-1) + e(t)

where we repeat that E(i(t) = i, |¢|<1 and {e(t)} is a sequence of
independent and identically distributed normal random variables with
mean O and variance o2.

Gerrard and Haberman (1996) demonstrate how equations (14) and (23)
can be combined through the use of generating functions to discuss the
behaviour of E(l(t)} for finite t and, in the limit, as t—w. Some progress is
also made with E(I(t)?), and hence with Var (I{t)).

4.3.2 Second Order Autoregressive Models

Haberman (1994) discusses briefly the more complicated case of
stationary second order autoregressive models for individual funding

methods with the spread method. In this case, equation (17) is replaced
by

3(t) = B+91(3(t-1)-6) + 02(5(t-2)-6) + e(t)
where e(t) for t=1,2, ... are independent, identically distributed normal
random variables, each with mean 0 and 2. In parallel to the results of

section 4.3.1, we quote Box and Jenkins (1976) who have shown that, for
the above model,

E (5(t) =0

Var (6(®) = [1]+ij [(1-¢Y;-<pz) = Visay

Cov(3(t), 8(s)) = v2 (Ayi1tst + {1-A) yoltsi)

where & = — Vi(-v5) and (1- A N AU
(W= o)+ vy, ) (- w1+ vy, vy)

and yi! and 2! are the solutions of the characteristic equation: 1-@qr-
(sz'Q = 0.

(23)

(24)



For stationarity, we now require

¢, +@, <+l

¢, -, <+l
-l<o@, <+1

It is then possible to construct equations for the moments of F(t) and C{t)
in finite time and in the limit, as t—w, which correspond in format to
those for the AR(1) case. The details are not pursued here.

4.3.3 Conditional Autoregressive Models

A disadvantage of the models used in sections 4.3.1 and 4.3.2 is that the
uncertainty about §(t) is independent of t i.e. Var[8(t)]=v2, a constant. In
reality, we would expect this level of uncertainty to depend on t. A model
which allows for this feature would be the conditional AR(1) or AR(2)
model considered by Bellhouse and Panjer (1981). In this case, it is
assumed that the returns of the past years (and the corresponding forces
of interest) are known, as initial conditions. We would then expect that
the asymptotic results derived in sections 4.3.1 and 4.3.2 would hold
also for the conditional processes since, as t—w, the initial values 8, and
8.1 would become increasingly insignificant.

4.4 MOVING AVERAGE RATES OF INVESTMENT RETURN

Dufresne (1990) has introduced the use of the moving average process to
represent the rate of investment return in pension funding models. This
has been explored further by Haberman and Wong (1997).

4.3.1 First Order Moving Average Models

We assume that the (earned real) force of interest is given by the following

stationary (unconditional) moving average process in discrete time of
order 1

85(t)=6 + e(t) - ge(t-1) (25)

where e(t) for t = 1, 2 ... are independent and identically distributed
normal random variables each with mean 0 and variance y2. ¢ is the
moving average parameter.

From the model, we can see that the interest rates earned in each year
depend upon interest rates earned both in same year and previous year.
Under the above model (Box and Jenkins 1976), we can show that:



E[5(t)] =6
Varf3(t) = (1+¢?y? = v?, say

Covl[d(t), 8(s)] = - 972, lt-s|=1
=0 t-s I >1.

A moving average process is second-order stationary, regardless of the
value of ¢. The invertibility condition for this model is -1<g<1.

It then follows from the properties of the lognormal distribution that:

E [exp3(t)] = exp(o + Y2v?)
Var [exp 8(t)] = exp(26 + v?) (exp(v?)-1).

Haberman and Wong (1997) then obtain explicit expressions for E F (t),

Var F(t), E C (t) and Var C(t) for finite t and in the limit as t—o. For
example, it is shown that if Qx<1, Irxm E F(t) exists

where x = exp (0+Y202-¢y?)

ALk — d)xe™’

and I:imE F(t) = 1-Ox (26)

4.4.2 Second Order Moving Average Models.

Now, it is assumed that the (earned real) force of interest is given by the

following stationary (unconditional) moving average process in discrete
time of order 2:

3(t) = 6 + e(t) - pie(t-1) - poeft-2) (27)

where e(t) for t=1, 2, ... are independent, identically distributed normal
random variables, with mean 0 and variance y2.

We obtain the following results (similar to the MA(1) case) from Box and
Jenkins (1976).
E@(t))=0
Var(3(t)=(1+ 97 +93)y*= v’
Cov(3(t), 8(s))=(0,0, = 0,)y* [t—5 =1
=-0,y’ lt—s|=2
=0 lt-s|>2.

16



It is invertible only if the roots of the characteristic equation
1-p:B - ¢2B2=0
lies outside the unit circle, that is

(p1+(p2<+1
(p2-(p1<+1
—1<(p2<+1_

Haberman and Wong (1997) then construct equations for the moments of
F(t) and C{t) in finite time and in the limit, as t—wo, which correspond to
those for the MA(1) case. The details are not pursued here.

In the case of moving average models, explicit closed form results are
obtained for the limiting values whereas for the corresponding
autoregressive models the results are approximate. This arises because
the covariance function for the §(t) process has a simpler form in the
moving average case.

4.5. OPTIMAL SPREAD PERIOD

In this section we focus on individual funding methods with the spread
method, and we shall consider the existence of an "optimal” range of
spread periods, M.

In this section, we shall consider the relationship between Var F(t) and
Var C(t) as M (or k) varies, with t fixed. Rather than take a particular
finite t, we shall consider the limiting variances at t—w and indeed we
shall consider these variances relative to the corresponding expectations
(i.e. the coefficient of variation). Further, as recognised by Cairns
(1994}, both Var F(t) and Var C(t} are proportional to AL? so that a more
secure funding method, with higher AL, would led to greater variability.
The converse suggest that variances could be reduced by choosing a
funding method with a lower value of AL. This problem is by-passed by
considering the coefficients of variation. Our consideration of the case
where t—w is justified on the grounds that the results are mathematically
tractable. We shall now introduce some new notation.

With a<1 and 2<M<w (so d<k<1}, we define

VarF(w)

VarC(w)
(EF(0))*

K) =
" (BC())’

and (k) =

(28)



and we regard o and B as functions of k. We could equivalently regard
them as functions of M, given the 1-1 correspondence between k and M.
However, it is more convenient to consider a(k) and B(k).

4.5.1 Independent and Identically Distributed i(t)

For the case of IID i(t), Dufresne (1988) has considered in detail the trade
off between Var F(t) and Var C{t) in the limit as t—w, as represented by

ofk) and B(k), and for finite t under certain conditions. Thus, from (11)
and (12), we have that

b
k = —_—

ofk) 1-y(1-ky
AL? bk?

and Bk = NC? * 1-y(1-k)

where y=(1+i)2 (1+b) = E (1+i(t))2. Assuming that y>1, Dufresne shows
that

d
— o(k) < 0
dl<0t()

o =0 where k™ = 1—1.

y

d
and = Bl

At k=k’, B(k) takes a minimum value. The value of the spread period
corresponding to k" will be denoted by M*.

Formally, if y>1, then both Var F(«) and Var C{w) become infinite for
some finite M = M7 (when a becomes equal to 1) and there exists a value
M* such that

. for M<M", Var F(w) increases and Var C{wo) decreases with M
increasing
. for M>M" both Var F(w») and Var C(w) increase with M increasing.

Ify=1, Var C(w)—0 and Var F(w)}—»w as M—w, although Var F(«) does stay
finite for all M.

If y<1, Var C(0)—»0 as M—w and Var F(wo) has a finite limit as M—w.

The particular value of M" is determined by

. 1 1
k = - = _
y aml



. e .1 vy-1)
e ifirM =-=1
l1.e.1 M 5 n[y-l

and if i=0 M'=l+l2.
[e]

There is thus a trade off between variability in the fund, represented by a,
and variability in the contribution rate, represented by p. This trade-off
takes place but only up to M=M*. Beyond this point, augmenting M
causes both Var F and Var C to increase, With the objective of
minimizing variances, any choice of M>M* should be rejected, for clearly
some M<M" would reduce both Var F and Var C. If we regard M as being
a parameter open to the choice of the actuary, then the optimal choices
for M would lie in the region 1<M<M". Thus, we can describe this region
as an "optimal’ region.

Table 1 provides values of M as a function of i and o (to the nearest
integer). In the UK, it is common to choose M to correspond to the
average remaining working lifetime of the current membership - with an
average age of membership of 40-45 and a normal retirement age of 65
this would correspond to a choice of M in the range 20-25. We see from
Table 1, that under particular combinations of i and ¢ our model
indicates that this choice is not optimal. If i=.03 and ¢=.20 then, for
example, smaller values, namely those in the region 1<M<13, would be
more satisfactory.

4.5.2 Autoregressive Rates of Return

We shall consider here only the case of stationary AR(1) processes as a
description for §(t). Haberman (1994) has explored the behaviour of the
relative limiting values (as t—w) of Var F(t) and Var C(t) as functions of M
(or equivalently as functions of k), by analysing the properties of the
results represented by equations (18) and (20) and the corresponding
results for C(t). The results are reported here, subject to the constraints
that Qc<1 and Q2cw<1 for convergence, and with Fo=0.

The numerical investigation uses a simple benefit structure and a range
of values for i, v, and M.

The detailed calculations indicate the following general features viz
(i) afe,M) increases with M (for fixed ¢) and with ¢ (for fixed M)
(ii) Ble,M) increases with ¢ (for fixed M) and decreases with increasing

M (for fixed ¢) except that for some values of ¢ (e.g. ¢=0.1) there is
a minimum at some M".
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When values of o and B are plotted for combinations of i, v and ¢, we find
that three distinct patterns emerge, unlike the situation when rates of
return are independent, identically distributed random variables (as in
section 4.5.1 which corresponds approximately to the case ¢=0).

The three patterns in terms of profiles of B(M) v a(M) are:
TYPE A: the profile has a minimum at M* so 1<M<M" is "optimal".

TYPE B: the profile is monotonically decreasing so there is no
"optimal" region. The choice of M will depend on the
characteristics of the scheme sponsor and their particular
attitude to the trade-off between variability in F and in C.

TYPE C: the profile is monotonically increasing so M=1 is "optimal",

Mustrative of the results in Table 2 which corresponds to ¢=-0.3, and
shows the classification of a-p profiles and, where appropriate, the
optimal regions for M. Tables 3-5 similarly refer to ¢=-0.1, 0.1, and 0.3
Because we are interested only in general features, no attempts have
been made at this stage to estimate more precisely the turning points in
the a-p graphs (using, for example, numerical interpolation methods).

From Tables 3 and 4, corresponding to ¢=+0.1, we note that the implied
optimal values of M are consistent with those shown in Table 1 (from
Dufresne (1988)) which would correspond approximately to the case ¢=0.

The pattern of optimal M values across Tables 2-5 mirrors that for the IID
case. In general, the optimal region decreases as i increases (for fixed v
and ¢) and as v increases (for fixed i and ¢). Also, the optimal region
decreases as ¢ increases from -1 to +1 (for fixed i and ¢); thus, an
increase in the autoregressive parameter ¢ appears to have a similar
effect on the optimal region as an increase in the variance parameter v.

4.5.3 Moving Average Rates of Return

In a similar vein, Haberman and Wong (1997) have investigated
numerically the behaviour of a(k) and B(k) when the earned real rate of
investment return has followed a first order moving average process.

A selection of the results are presented in Tables 6 - 8.

The pattern of optimal M values mirrors the patterns for both the IID and
AR(1) cases. The optimal spread period decreases with an increase in the
“real” rate of interest (fixed v and ¢) and an increase in v (fixed i and ¢).
These trends are the same in all three models. For the MA(1) case, the
optimal spread period decreases as ¢ becomes more negative, which is in
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contrast to the AR(1) case where the spread period increases as ¢
becomes more negative: we should note that the parameter ¢ plays a
different role in these two types of model (Box and Jenkins 1976).

The invertibility property of MA processes means that the MA(1) process
can be represented by an infinite series of AR processes (and vice versa
for the AR(1) process). Hence, it is reasonable that similar results should
have been obtained in these two cases and that the relationship of the
optimal spread period to ¢ should be different in the manner described
above.

4.5.4 Optimal Spread Periods and Finite Time

A related question would be to investigate whether an optimal spread
period range exists at finite values of t, rather than only in the limit, for
the IID model. For the set of k values in the range [k*1] to be truly
“optimal”, it would be necessary to show that the trade-off is maintained
over this range of k for all t>0. Let k*(t) be the value of k at which the
trade off is discontinued at time t. Then, Owadally and Haberman {1995)
prove that, for the case Fo = AL, the trade-off is maintained in finite time
between Var C(t) and Var F(t) in the range described as optimal by
Duifresne (1988) and provide the conditions for the existence of k*(t). It is
then straightforward to transform these values of k into corresponding
values of M.

4.6 COMPARISON OF SPREAD AND AMORTIZATION OF LOSSES
METHODS

In section 2, we described the two commonly used methods for
eliminating unfunded liabilities: the spread method (see equation (3)) and
the amortization of losses method (see equations (4) and (5)}.

In the case of IID investment returns, it is possible to compare the
properties of these two methods and obtain definitive results: for fuller
details see Haberman and Owadally (1997). For example, it can be
shown that:

a) For equal amortization and spread periods

Var F{w)a < Var F(ew)s M>1
Var F(ew)a = Var F(ew)s M=1

The Var F(w)s v. M curve lies under the corresponding curve for the
spread method, except that they coincide at M=1.

b) There is no turning point in the Var F(«)a v M curve. It increases
monotonically.
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) For the same i and o, the maximum spread period allowable for
stability (i.e finite variances) is less than the maximum allowable
amortization period:

M7 < M7, say.

d) The Var C(w)a v.M curve has only one turning point, which is a
minimum point, at which the Var C(wo)s v M curve intersects it.

¢) The Var C(w)a v Var F(w)a curve has a minimum point. There exists
a non-optimal or inadmissible range of amortization periods

(M;,oo]. The existence of an optimal range was not uncovered by
the numerical tests of Dufresne (1989a).

1) The amortization of losses method curve Var C{eo)a v Var F(oo)a
curve lies above the Spread method curve Var C(wo)s v Var F(w)s
except at M=1 where they coincide.

These results are summarized in Figures 1 and 2. The implications are
that, for equal spread and amortization periods, the Amortization of
Losses method achieves greater fund security than the Spread Method.
However, according to the objective of minimizing both the ultimate
variances of fund and contribution rate levels, the above results indicate
that the Spread method is “more optimal” than the Amortization of
Losses method.

This is not a surprising result, since the latter uses information delayed
by up to M years.

Cairns (1994) has provided numerical illustrations of e} and f).

4.7 MODEL ENHANCEMENTS
4.7.1 Other Investment Return Models

More sophisticated investment return models could be introduced, along
the lines of the autoregressive integrated moving average (ARIMA) process
family of Box and Jenkins. These ideas have not been pursued
analytically in the pension funding case but have been explored in the
field of life insurance mathematics by Giaccotto (1986) and Dhaene
(1989, 1992) who have devised recursive methods for the computation of
the movements of §(t) and applied them to the calculation of the

moments of present values of life insurance annuity and insurance
contracts.

Simulation based studies do exist in the pension fund literature. Much

attention has focused on the stochastic investment model devised by
Wilkie for representing different financial time series. This uses ARIMA
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methodologies and is of a cascade type: see Wilkie (1995) for the latest
version. For example, Loades (1988) and Wright (1997) have investigated
assessing the security level of a pension scheme, Bilodeau (1995) has
investigated in some detail the variability of assets and contributions
albeit in a Canadian context and, in a parallel piece of research,
Haberman and Smith (1997) have used the Wilkie investment model to
explore the existence of optimal ranges for the spread period (and
conclude that the features discussed in section 4.5 persist when these
more complex models are introduced for representing the underlying
investment returns). Haberman and Smith also explore the suggestion of
Winklevoss (1993) and investigate the effect of a shorter spread period for
deficiencies than for surpluses.

4.7.2 Random New Entrants

One way of relaxing the assumptions of section 4.1 would be to replace
the stationary population assumption by the more realistic one that the
number of new entrants into the scheme is subjected to random
fluctuations. Mandl and Mazurova (1996) model the number of entrants
and the rate of investment return by independent random sequences
which are stationary (in a wide sense). They then use harmonic analysis
of the random sequences and the introduction of frequency transfer
functions to derive formulae for the variances of the fund levels,
contributions and discounted cash flows. Numerical illustrations are
provided which confirm the results of Haberman (1994).

4.7.3. Frequency of Valuations

A further control variable available to the actuary is the frequency with
which valuations are performed. In earlier sections, we have assumed
that valuations are annual. Here, we shall briefly consider the case of
valuations every 3 years: as noted in section 1, triennial valuations are
common in the UK because of legislative and cost considerations. If we
consider the case of individual funding methods with the spread method
choice for ADJ(t) and independent, identically distributed i(t), it is then
straightforward to modify equations (3) and (7) to fit in with this new
environment. Equivalent results to (11) and (12) can be obtained and the
existence of an optimal range of spread periods can be demonstrated,
subject to M=3 and y® = ((1+i)2 + 62)3>1. The results are easily generalised
to valuations every n years. For further details readers are referred to
Haberman (1993a).
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4.7.4 Delay in Fixing Contributions

We now introduce a new parameter into the formula for fixing the
contribution rate, C(t}. We consider only individual funding methods,
with the spread method choice for ADJ(t), and aggregate funding
methods. We allow for a time delay in the pension scheme's funding
process and use the fund level at time t-p in order to calculate C(t). So
we would use

C(t) = NC + k(AL - F(t-p) (30)
C(t) = (PVB - F(t-p)).S/PVS (31)

to replace equations (7) and (7a) respectively where p is a non negative
integer. The delay p may arise because of the time taken to prepare the
financial accounts or to assemble the valuation data and to complete the
actuarial valuation exercise. Alternatively, we can think of the parameter
p (like the spread period M) as being a control variable at the disposal of
the actuary and which can be used to control the behaviour over time of
C(t) or F(t).

In the case of independent and identically distributed i(t), the recurrence
relation for E F(t) then becomes

E F(t+1) = (1+i) (E F(t) - (1+ i) k EF (t-p) +r. (32)

The solutions for EF(t), EC (t}, Var F(t) and Var C(t) and their limiting
values are derived by Haberman (1992) for the case p=1 and Zimbidis
and Haberman (1993) for the case p>2. They demonstrate that, if M>1,
the limiting variance of F(t) increases as p increases. These results are
intuitively reasonable, given our understanding of the entropy of systems.
When we introduce a time delay, which means that we have lost (or do
not have available) some information for the fund between times t-p and
t, we should expect the variance (or, in other words, the entropy) of the
fund level and contributions to be greater. These results confirm the
findings of Balzer and Benjamin (1980} who report that the longer are the
delays in information in a system, the more persistent are the resulting
oscillations in that system. Zimbidis and Haberman (1993) also report
on the conditions for oscillations to exist in the first two moments of F(t)
and C(t) as p varies.

In the case of Ar(1} i(t), Haberman (1993b) investigates the effect of a one
year time delay, p=1.
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4.7.5 Distribution of Fund Levels

Dufresne (1990) considers the general problem of determining the
distributions of discounted values and specifically applies this to pension
funding. He considers the distribution of

z= i[ﬁ VJ c, 33)

where the sequences {Ci} represents cash flows, the sequence {Vi
represents 1 year discount factors, the distributions of the sequences we
known with each being IID and the C« and Vi being mutually
independent. Z then represents the present value of a perpetuity
comprising the cash flows, Cx. Dufresne (1990) proves that if E log V<0
and E log |Ci|<w, then Z converges absolutely with probability 1, using a
result of Vervaat (1979). Following Brandt (1986}, Dufresne also shows
that the same result holds when the independence assumptions are
replaced with ergodicity (so that the law of large numbers applies to each
of the sequences {Vi} and {Cy}).

Expressing Z in continuous time with Ci,=1 and the log Vi forming a
Brownian motion process, Dufresne (1990) proves that Z! is distributed
as an inverse gamma random variable.

Cairns and Parker (1997) use a different approach. They follow the
approach of Parker (1994) and obtain a recursive method for obtaining

the joint density of F(t) and §(t} in the IID and AR(1) cases. The approach
is based on the equations:

fP(t)(X) = _[fp(t),a(t)(X:Y) dy (34)

K xe”v -0
fF(t),S(t)(X>Y) = I fa(t)(yﬁ(t -1)= Z]-fF(H),sufl) _ ,z|dz (35)
e 1-k

where 6 = (k-d)AL =r (1+i)!
me,s(l)(X:Y) = fa(l) (YIS(O)] ifx = e’[(1-k)F, +6]
= 0 otherwise

is used for the iteration. This approach can be used for processes for
which fyy (y|d(t-1)=2) is known e.g. Gaussian processes.

and the starting value
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4.7.6 Continuous Time Models

The model can also be expressed in continuous time terms. Thus,
Dufresne (1986, 1989b) considers the situation where contributions and
benefits are paid N times per year and considers the limit as N—w under
certain conditions. Dufresne (1986, 1989b)} proves that the fund level
then converges in the weak sense so that equation (8)

F(t+1) = (1+i(t+1)) (F(t) + C(t) - B) (8)
becomes d F(t) = (y F(t) + C(t) - B) dt + o F(t) d W(t) (36}
where C(t) = NC + k (AL - F(t)) (37)

and k depends on a continuous time annuity value: k™ = | e™dt,

Oty

y = log[1+ Ei(t)], 6* = log [E(1 +i(t)}? / (EQ + i(t}))"’] , and W(t) is a standard
Wiener process.

Dufresene (1986) is then able to demonstrate that many of the earlier
results carry forward into this new framework, including the existence of
an optimal range of values for the spread period, M. Dufresne (1990) and
Cairns (1996) extends this approach by replacing the geometric
Brownian motion component

ds(t) =y dt + o d W(Y)

by models that allow for non static investment strategies through the
consideration of d(t, F(t)): for example simple rebalancing strategies and
the “continuous proportion portfolio insurance strategies” of Black and
Jones (1988) and Black and Perold (1992).

5. OPTIMAL CONTROL APPROACH TO PENSION FUNDING
5.1 INTRODUCTION

In this section, we consider a different approach proposed for managing
the funding of a pension scheme, which involves the application of
control theory. Initially we consider the different risks which confront a
defined benefit pension scheme.

Firstly, there is the "contribution rate risk". Here the sponsor of the
scheme, the employer, will be concerned that future investment
performance is not such as to expose the pension fund to the risk of
significant, unanticipated rises in contribution rate. Traditionally, this
risk has been controlled by concentrating on real assets (e.g equities,
property, indeed linked bonds). However, the concern remains about the
variability of the levels of the contribution rate. Stability will also be a
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feature attractive to the finance manager and the shareholders of the
employing/sponsoring company.

Secondly, the trustees, sponsor, members and advising actuary will be
concerned that the pension fund can meet its liabilities. This is the
"solvency risk".

The choice of future contribution rates can then be considered as a
problem involving the minimization simultaneously of these two types of
risk: we take a quadratic performance criterion over the chosen time
period for optimization. The problem then becomes:

Find the contribution rates Cs, Ce:i... Cra for a finite time span, which
minimize the quadratic performance criterion

Jp = E{ Z v [ec)-cr. o+ (1—9](F(t)-FTt)2]} (38)
in discrete time.

Alternatively, with an abuse of notation,

T
Jr=E [e* [o(C(t) -CT.P+(1-0)F(t) - FT.]|dt in continuous time. (50)

s

(For the deterministic case, we would delete the expectation operator).
Here, :

cit)y = contribution rate for period (t,t+1) in discrete case or at time
t in the continuous case

Ft)y = fund level at time t, measured in terms of the market value
of the underlying assets

Ch: = contribution target for period at (t, t+1) in the discrete case
or at time t in the continuous case

FT. = Fund (Fy) target for period (t, t+1) in the discrete case or at
time t in the continuous case

v = (1+i)1, i is the valuation real rate of interest during the
period, and 3 is the corresponding force of interest

0 = a weighting factor to reflect the relative importance of the

contribution rate risk against the solvency risk, 0<6<1.
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In this presentation, the first term represents the contribution rate risk
and the second term the solvency risk. We next consider the choice of
the target values.

One choice appropriate for certain funding methods, would be CT=NC(t)
and FT=AL(t) the normal cost and actuarial liability at time t, which
would be appropriate if all actuarial assumptions were realized exactly
during the control period.

A second choice would be CT=E(C(t)) and FT=E(F(t)), so that the
stochastic performance criterion would become, in discrete time,

Min > v' {8Var(C(t) + (1-6) Var(F(t))}

c(t)

A third choice, adopted by O'Brien (1987), would be to use FTe=nA(t)
where 7 is the funding level (or ratio) and A(t)is the present value of the
future benefits of the active members of the pension scheme at time t.

A number of recent papers have applied the ideas of control theory to
pension funding.

Benjamin (1984, 1989} considers the deterministic optimal control of
pension funds in discrete time, Benjamin (1984) uses the control
approach to analyse the effect of changes in the earned real rate of
investment return (the input signal) on the recommended contribution
rate (the output signal). Benjamin (1989) defines the optimal set of
future contribution rates as being the set which minimizes Z{AC(t))2 so
that CT: is effectively C(t+1)and 6=1, and investigates the effects of a time-
varying valuation rate of interest (specified as the arithmetic mean of real
investment rates of return earned in a recent period).

O'Brien (1987) considers the stochastic optimal control problem in
continuous time, deriving the optimal pension funding controllers in
feedback form for active plan members, which are defined as the
contribution rates which minimize both the deviations from a target fund
(using (A(t) and the fluctuations of contribution rates using Bellman's
optimality principle. This model does not include a target contribution
rate. The benefit outgo is assumed to follow a linear growth function of
time. Further, the growth rate in population and salary, and the fund
earning rate are considered as stochastic variables which are assumed to
be mutually independent.

Vanderbroek (1990} introduces both types of target: the contribution rate
target (using a fixed but unknown proportion of the total payroll, aS(t)
and the fund target (using nA(t) as for O'Brien (1987)). The model deals
with the deterministic optimal control of pension funds in continuous
time, assuming that the payroll, benefit outgo and the present value of
future benefits are each exponential functions of time. The author is
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particularly concerned with the application to the case of national social
security plans.

Loades (1992) uses a discrete-time deterministic approach, in which he
investigates how the contribution rate responds to a periodic oscillation
in i(t), subject to a separate (but not concurrent) change in the valuation
methods and a time-varying valuation rate specified by an exponential
smoothing mechanism:

i(t) = SF. iy (t-1) + (1 -SF) i(t-1) for O < SF < 1.

Fujiki (1994) similarly investigates how to modify effectively the actuarial
valuation assumptions to improve the long term stability of contributions
under separate (but not concurrent) changes in real investment rates of
return, equity dividend growth rates and withdrawal rates in the pension
scheme population.

Haberman and Sung (1994) and Sung (1997) draw on and extend this
earlier work, using both a deterministic and a stochastic model in
discrete time and thus obtain the mathematical form of the optimal
contribution rates.

In a related piece of work, Haberman (1997) has investigated the issue of
contribution rate risk from the viewpoint of minimizing, as performance
criterion,

G(t)= Var[i C(s)]

and considered the existence of optimal choices for the spread period, M,
for different initial values of F..

A recent area of research has been the application of stochastic control
methods to obtain an optimal asset allocation between a risky asset and
a non-risky asset and an optimal contribution policy. A higher
proportion of equities in the asset portfolio has the benefit of a lower
expected contribution rate but at the price of a higher variability of
contribution flows over time. Thus, Boulier et al (1995), 1996) consider
as performance criterion

w

J = [eu(C(s))ds (40)

where u(C(s}) =6 C(s)?

or R(Cs)) = C(s) + 6 C(s)?
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respectively while Cairns (1997) follows Haberman and Sung (1994} and
uses

K(C(s)) = 6 (C(s) - CTy)> + (1-6) (F(s) - FTy)? (41)

The results so far produced from this line of research unexpectedly show
that as the level of surplus in the pension fund increases, the proportion
of the fund invested in high-return, high-risk assets (i.e. equities)
decreases. It is possible that this unexpected result comes from the
formulation of the problem: asset allocation being made to depend on
surplus rather than to depend directly on the underlying liabilities and
the trade-off between risk and return. Clearly this is an area for future
research.

6. COMMENTS AND FURTHER DEVELOPMENTS

Varying levels of inflation and fluctuations in investment returns are
problems with which the actuary must contend on an almost daily basis.
Unlike mortality and other decrements or movements, for which
deterministic and stochastic models are readily available, the movements
of these economic factors are more difficult to model. Representation by
identically distributed random variables or by simple stationary
autoregressive models appear to be very appropriate for this purpose. An
objective of this paper has been to show that explicit formulae are
available for studying mathematically the variability of contributions and
fund levels for a pension scheme. Practical implications for the choice of
funding method are then considered as a consequence, and the effect of
the choice of control parameter including spread period, valuation
frequency and delay in fixing the contribution rate are discussed, as well
as a comparison of the two main methods for adjusting contribution
rates to eliminate unfunded liabilities.

A number of interesting and potentially useful directions for future
research that come from the foregoing review are the following:

. consideration of more realistic rate of investment return processes
and models of demographic change, in relation to new entrants or
rate of growth.

. consideration of other choices for ADJ(t)

. consideration of the viewpoint of the scheme's sponsoring
employer and their aversion to risk

. analysing further the effect of varying the control variables
identified and the interactions between them

. further consideration of the introduction of dynamic valuation

assumptions using the optimal control approach of section 5.
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TABLE 1
M’ as a Function of i and ¢ (IID case)

i]|-.01 0 .01 | .03 | .05

.05 - 401 | 60 23 | 14
.10 - 101 | 42 20| 13
.15 158 | 45 28 16 | 11
.20 41 26 19 13 | 10
.25 22 17 14 10| 8

TABLE 2
CATEGORY OF o-f PROFILE AND WHERE APPROPRIATE OPTIMAL
REGION FOR M, SPREAD PERIOD, ¢=-0.3 (AR(1) case)

i|-01{ .005 01 .03 .05
A%
05 | B B B A(1,30) | A(1,20)
.10 | B |A(1,400) |A(1,250) | B B
15 | B |A(1,250) |A(1,200) | B B
20 | B |A(1,200) |A(1,140) | B B
25 | B |A(1,150) |A(1,120) | B B
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TABLE 3
CATEGORY OF o- PROFILE AND WHERE APPROPRIATE OPTIMAL
REGION FOR M, SPREAD PERIOD, ¢=-0.1 (AR(1) case)

i -01 .005 01 .03 .05
v

05 | B A(1,130) | A(1,70) | A(1,25) | A(1,20)
10 | B A(1,90) | A(1,60) | A(1,25) | A(1,20)
15 | B

20 |A(1,110) |A(1,35) | A(1,30) | A(1,20) | A(1,15)
25 | A(1,45) | A(1,25) | A(1,20) | A(1,15) | A(L,15)

(
(
A(1,55) | A(1,40) | A(1,25) | A(1,20)
{
(

TABLE 4 ,
CATEGORY OF o-f PROFILE AND WHERE APPROPRIATE OPTIMAL
REGION FOR M, SPREAD PERIOD, ¢=0.1 (AR (1) case)

i| -.01 .005 01 .03 .05
A"

05 | B A(1,90) | A(1,50) | A(1,20) | A(1,15)

.10 | B A(1,40) | A(1,30) | A(1,15) | A(1,10)

.15 | A(1,55) | A(1,25) | A(1,20) | A(1,10) | A(1,8)

20 | A(1,20) | A(1,15) | A(1,10) | A(1,8) |A(1,5)

25 | A(1,15) | A(1,9) |A(L,8) |A(1,6) |A(1,3
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TABLE §
CATEGORY OF o~ PROFILE AND WHERE APPROPRIATE OPTIMAL
REGION FOR M, SPREAD PERIOD, ¢=0.3 (AR(1) Case)

i -01 .005 .01 .03 .05
v
.05 B A(1,60) A(1,40) A(1,15) A(L,10)
.10 A(1,80) A(1,20) A(1,20) A(L9) A(1,6)
15 A(1,20) A(1,9) A(1,9) A(1,5) C
20 AL, A(l,4) A(L3) C C
25 C C C C C
Table 6: Category of a-p profile and where appropriate optimal
region for M*, spread period, @= 0.1 in MA(1) process.
interest rate(i) 0.01 0.005 0.01 0.03 0.05
v=0.05 B A(1,130) A(1,70) A(1,25) A(1,15)
0.10 B A(1,90) A(L,60) A(1,25) _A(1,15)
0.15 B A(1,55) A(1,45) A(1,25) A(1,20)
0.20 A(1,130) A(1,35) A(1,30) A(1,20) A(1,15)
0.25 A(1,50) A(1,25) A(1,20) A(1,15) A(1,15)
0.30 A(1,30) A(1,20) A(1,15) A(1,15) A(1,10)
0.35 A(1,20) A(1,15) A(1,15) A(LIO) | A(L,10)
Table 7: Category of o-B profile and where appropriate optimal
region for M*, spread period, o= -0.1 in MA(1) process.
Interest rate(i) -0.01 0.005 0.01 0.03 0.05
v=0.05 B A(1,85) A(1,55) A(1,20) A(1,15)
0.10 B A(1,45) A(1,30) A(1,15) A(1,10)
0.15 A(1,60) A(1,25) A(1,20) A(1,10) A(1,8)
0.20 A(1,25) A(1,15) A(1,15) A(L,8) A(1,7)
0.25 A(L,15) A(1,10) A(L,9) A(L6) A(L4)
0.30 A(1,9) A(1,7) A(1,6) A(1,4) A(1,2)
0.35 A(1,6) A(1,5) A(1,4) A(1,3) C
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Table 8:

Category of a-B_profile and where appropriate optimal

region for M*, spread period, 0=-0.3 in MA(1) process.

Interest rate(i) -0.01 0.005 0.01 0.03 0.05

v=0.05 B A(1,70) A(1,45) A(1,20) A(1,10)
0.10 A(1,250) A(1,30) A(1,25) A(1,10) A(18)
0.15 A(1.35) A(L,15) A(1,15) A(LT) A(L,4)
0.20 A(1,10) A(1,8) A(LT) A(13) C
0.25 A(LS) A(L4) A(12) C C
0.30 A(12) [ C C C
035 C C [ C C
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Figure 1:

‘Sketches’ of the ultimate variances plotted against m. ‘s’ denotes the
Spread Method, whereas ‘a’ denotes the Amortization of Losses
Method.
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Figure 2:

A ‘Sketch’ of the ultimate variances. ‘s’ denotes the Spread method,
whereas ‘a’ denotes the Amortization of Losses Method.
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