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A STOCHASTIC ASSET MODEL USING VECTOR
AUTO-REGRESSION

By I.D. WRIGHT B.Sc., PH.D.

ABSTRACT

In this paper, a stochastic asset model is constructed using vector auto-
regression. The model covers the share dividend yield, the force of share dividend
growth and the long-term interest rate. In addition, the force of price inflation is
modelled using the auto-regressive conditional heteroskedastic (or ARCH) model
proposed by Wilkie [1995], and is included as an exogenous variable in the vector
auto-regressive (or VAR) model. The model parameters are estimated using UK
annual data over the period 1946-1994.

The output from this model is then compared with that obtained using the Wilkie
[1995] model, the best-known stochastic investment model in use in the UK at
present.

Finally, using each of the two models in turn, the sensitivity of the results
obtained from a simple stochastic asset-liability modelling exercise for a large final-

salary pension scheme to changing the underlying stochastic investment model used
is examined.

1. INTRODUCTION

Many actuaries remain sceptical as to the use of stochastic asset-liability modelling,
believing that the results obtained owe more to the specific model used than to any
underlying reality. Thus, it is very important to explore the robustness of the results of
such an exercise to a change in the stochastic investment model used (preferably by
means of a fundamental change in the structure of the model used, rather than just a
change in the model parameters).

The principal stochastic investment model in use in the UK at present is the Wilkie
model (originally proposed in 1986, and revised in 1995). This model has attracted a
great deal of criticism (see, for example, Kitts [1990], Clarkson [1991], Geoghegan et
al [1992] and Huber [1995]). However, little of this criticism has been backed up with
the suggestion of a credible alternative model.



As a result, in order to explore the sensitivity of the results of a stochastic asset-
liability modelling exercise to a change in the stochastic investment model used, it
was necessary to develop a new model.

Subsequently, alternative stochastic asset models have been proposed by, amongst
others, Dyson & Exley [1995] and Smith [1996].

2. A STOCHASTIC ASSET MODEL USING VECTOR AUTO-REGRESSION

2.1 Introduction
The original stochastic investment model proposed by Wilkie [1986] covered only the

following four series :
1. the force of price inflation,
2. the share dividend yield,
3. the force of share dividend growth, and
4.

the long-term interest rate.

Similarly, the vector auto-regressive (or VAR) model proposed below covers only the
two main UK asset classes (namely, equities and long-dated fixed-interest gilts).
However, it could be easily extended to include other asset classes (for example,
overseas equities, UK property, UK index-linked gilts, UK cash deposits and short-
dated fixed-interest gilts etc.) and other economic variables (for example, salary
growth, GDP growth etc.), provided that suitable data exists from which to estimate
the required parameters values.

2.2 Model specification

Price inflation is modelled using the auto-regressive conditional heteroskedastic (or
ARCH) model proposed by Wilkie [1995] and is treated as an exogenous variable in
the VAR model.

Thus, we consider :

1. the share dividend yield at time #, denoted by ¥(¢),
2. the force of share dividend growth in year ¢, denoted by K(¢); and
3. the long-term interest rate at time #, denoted by C(f).

as a vector, denoted by X(?).

The current value of X(¢) is dependent on :



1. previous values of X, given by {X(s) : s =1, £-2, ...}; and

2. current and, possibly, previous values of the exogenous variable representing
the force of price inflation, given by {I(s) : s =¢, -1, -2, ...}.

More formally, a VAR(m) model of the proposed form is given by :
X(O)=M+0 [X(t-i)- M|+ Y @ [I(t-i)- OMU]+ &(t)
i=1 i=0

Equation 1- VAR(m) model

where
Y(r)
1. X(#)=| K(¢)| is the (3x1) vector of series values at time ¢;
¢())
M 1
2. M =| M, |isthe (3x1) vector of unconditional series means;
M,
6 6, 6
3. @' =6 &, @,)isthe(3x3)matrix of auto-regression parameters;
% 6 6
‘41'
4. @' =|g |isthe (3x1) vector of price inflation influence parameters;
4

5. I(¥) is the force of price inflation in year z;
6. OMU is the mean force of price inflation (from the Wilkie [1995] ARCH

model);
(1)
7. &t)=|&@)|=L.Z(t) is the (3x1) vector of multi-variate Normal random
&(1)
errors at time ¢, with mean 0 and variance-covariance matrix Z;
Z(1)
8. Z(t)=| Z,(¢)|is an i.i.d. standard multi-variate Normal random variable with
Zy(1),

mean 0 and variance-covariance matrix I, =

(=
o = O



9. L is the Choleski decompositionof T=> L.I" =%.
2.3 A model for the force of price inflation

2.3.1 The Wilkie [1995] AR(1) model

The widely-used AR(1) model proposed by Wilkie [1995] for the force of price
inflation in year ¢, I(¢), is as follows :

1(t) = QMU + QA I(t - 1) - QMU + QE(t)
where

1. I(¢) is the force of price inflation in year
2. QMU is the mean force of price inflation;

3. QA is the parameter controlling the strength of the auto-regression (i.e. a
high value of Q4 implies that the series can be expected to move slowly
back towards the mean value over time, and vice-versa);

4. QE(t)=0SD.QZ(t) is the random component of the force of price
inflation in year ¢, and

5. QZ(¢) is a N(0,1) white noise series.

The parameter values suggested by Wilkie [1995], which are obtained by fitting the
proposed model to UK annual data over the proposed period 1923-1994, are :

OMU = 0047
04 = 058
0SD = 00425

Note that, since the force of price inflation in year ¢, I(¢), can be expressed as a linear
function of the Normal random variables {QF(s)}.., , I() has a Normal distribution.

Also, by expressing I(f) as a linear function, it can be shown that the mean function for
the process I(?) is given by :

E[1()] = OMU + 04" [ 1(0) - OMU |

Hence, letting t—, we have :



E[I(1 - )| = OMU =4.70%

Also, it can be shown that the variance function for the process I(f) is given by :

V[I()]= 0SD*.a(Q4%,1)

Again, letting t—c0, we have :

osp?

= 520%>
1- 047

V[1(t > w)] =

Figure 1 gives an empirical distribution (obtained by means of 5,000 simulations) of
the shape of the probability distribution function of the force of price inflation using
the standard Wilkie [1995] model after the equilibrium position has been reached. The
expected normality is clearly evident.
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Figure 1- Empirical distribution function of long-term force of price inflation under the
standard Wilkie [1995] model



Figure 2 shows 10 independent simulations of the future progress of the force of price
inflation using the standard Wilkie [1995] model. The ‘neutral’ starting conditions
suggested by Wilkie [1995] are used.

force of price inflation, I(t)

time

Figure 2- Ten simulations of the force of price inflation under the standard Wilkie [1995]
model

2.3.2 The Wilkie [1995] ARCH model

Auto-regressive conditional heteroskedastic (or ARCH) models were introduced by
Engle [1982]. The essential feature of such models is that the variance of the error
component at time # is not constant (as for the standard auto-regression model above),
but makes use of the information available on the progress of the series up to time 1.

Thus, the ARCH model for the force of price inflation proposed by Wilkie [1995]
reflects the (arguably sensible) notion that the variance of the innovation in year ¢, Kz),
is directly proportional to the absolute difference between the actual force of price
inflation in the previous year, (#-1), and the mean force of price inflation, QMU.

Thus, the ARCH model proposed by Wilkie [1995] for the force of price inflation in
year ¢, I(f), is as follows :

I(t)= QMU + QA I(t ~1)- QMU | + QE(t)

where

1. QE(t)= OSD(t).QZ(¢) is the random component of the force of price
inflation in year ¢,

2. OSD(r) = 0S4+ QSB[ I(t-1)- OSC]’; and
3. QZ(¢) is a N(0,1) white noise seties.



The parameter values suggested by Wilkie [1995], which are again obtained by fitting
the proposed model to UK annual data over the proposed period 1923-1994, are :

OMU = 004
04 = 062
0SA = 00256
0SB = 055
0SC = 004

Note that use of an ARCH model means that the force of price inflation in year ¢, I(¢),
no longer has a Normal distribution.

As for the standard AR(1) model, by expressing I(¢) as a linear function, it can be
shown that the mean function for the process I(f) is given by :

E[1(1)] = OMU + 04" [ 1(0) - OMU]

Hence, letting t—0, we have :

E[I(t » ©)| = QMU = 4.00%

Also, as OSC = QMU , it can be shown that the variance function for the process I(f)
is given by :

V[I(1)] = 0SD*.a(QSB + Q4%,1)

Again, letting +—o0, we have :

V[I(t > )] = 95D )=1o.00%2

1-(0SB + 04

Hence, the variance of the long-term (and, indeed, the short-term) force of price
inflation is significantly increased using the ARCH model.



Figure 3 gives an empirical distribution of the shape of the probability distribution
function of the force of price inflation using the ARCH model after the equilibrium
position has been reached. This empirical distribution is obtained using 5,000
simulations of the future progress of the force of price inflation. In comparison with
the observed normality for the AR(1) model above, the probability distribution
function for the ARCH model can be seen to have :

1. fatter tails; and

2. a greater concentration around the mean.
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Figure 3- Empirical distribution function of long-term force of price inflation under the
Wilkie [1995] ARCH model

This is a consequence of the non-stationary variance of the error term, so that the
process can be expected to contain long periods when values are close to the long-
term (and, consequently, the variance of the error term is low), but also occasional
bursts of very high positive or negative inflation.

Figure 4 shows 10 independent simulations of the future progress of the force of price
inflation using the ARCH model. As above, the ‘neutral’ starting conditions proposed
by Wilkie [1995] are used, so that 7(0) = QMU = 4.00% . Comparing with Figure 2,
the concentration around the long-term mean and the existence of occasional very
large jumps (both upwards and downwards) can be seen.
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Figure 4- Ten simulations of the force of price inflation under the Wilkie ARCH model

2.4 Parameter estimation

Choosing the base period over which to fit any stochastic model is a far from trivial
exercise. The resulting parameters may well be highly dependent on the period
chosen. The base period should be long enough to give credible parameter estimates
but not too long (since the further back we go, the less relevant the data is likely to
be).

Generally, Wilkie [1995] uses a base period of 1923-1994 for estimating the required
parameters. However, there is some evidence that the annual return achieved on
equities and, to a lesser extent, the yield on long-dated fixed-interest gilts have not
been stationary over this period.

Equity returns have, historically, been one of the most volatile investment variables.
However, there is a strong suggestion that the annual return on equities in the last 30
years or so have been significantly higher and more volatile than previously. Whether
this is a short-term phenomenon (and equity returns in future can be expected to return
to past levels) or an indication that the underlying mean and variance of equity returns
have changed fundamentally is still unclear.

However, as a result of this observed (potential) non-stationarity, it was decided to
ignore the pre-1946 data in the parameter estimation for the VAR model, and use a
base period of 1946-1994. The use of a shorter base period effectively means that
greater weight is being placed on the data gathered in recent years.

A model of the form proposed in Equation 1 was fitted to UK annual data over the
period 1946-1994 using least squares regression.

The model obtained is a first-order, or VAR(1) model given by :



0.0450

X(@®) = {0079
0.0800
032 000 011 0.0450
+| 000 035 000].| X(z-1)-| 00790
—063 000 105 0.0800
0.06
+] 030 [.[1() - 0.040] + &(1)
007

Equation 2- Proposed VAR(1) model

Appendix A shows the process by which the above VAR(1) model was arrived at.

It is worth reiterating at this stage that the force of price inflation in year ¢, I(¥), is
based on the ARCH model proposed by Wilkie [1995], which was fitted to UK annual
data over the period 1923-94 (rather than 1946-94 which was used to estimate the
parameters of the VAR(1) model). It may be more appropriate to re-fit the ARCH

model to 1946-94 data only for use with the above model, however this has not been
done at this stage.

An earlier version of this model (with the external price inflation modelled using the

standard Wilkie AR(1) model) was used by the Joint Actuarial Working Party in the
stochastic modelling of a life office (see JAWP [1995]).

2.5 Analysis of residuals

Figure 5, Figure 6 and Figure 7 show the three sets of residuals obtained by fitting the
VAR(1) model shown in Equation 2 to UK annual data over the period 1946-1994.
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share dividend yield residual

Figure 5- Residuals for the share dividend yield model
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Figure 6- Residuals for the force of share dividend growth model
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Figure 7- Residuals for the long-term interest rate model

Examination of the each of the three sets of standardised residuals reveals no
significant serial correlations. None of the auto-correlation coefficients differ

significantly from zero, given a standard error of -j—; = ﬁ =(0.143 under the null

hypothesis of independence over time. Also, there is no significant cross-correlation
with the previous years’ residuals of any of the other series.

However, as would be expected, the contemporaneous cross-correlation between the
series of residuals is significant (particularly between the share dividend yield

residuals and the long-term interest rate residuals, with a correlation coefficient of
0.5).

With only 49 observations in each series, it is difficult to test satisfactorily for non-
normality. One possible method is to use the Jacques-Bera test statistic (see, for
example, Kendall & Stuart [1977]).

Under the null hypothesis of normality, the skewness, denoted by b5;, has the
following distribution :

b ~ N(0,%)
and the kurtosis (or fat-tailedness), denoted by b,, has the following distribution :

b, ~ N(3,%)

Then, the Jacques-Bera test statistic, J, is given by :

b: (b, -3)°
Jen| 22 1 2
"[6 2w |Th

From tables, the 95% point of the y. distribution is 5.992.
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Considering each of the three sets of residuals in turn, we have :

share dividend yield

skewness, b, = 0.54
kurtosis, b, = 427
test statistic, J = 5.67
force of share dividend growth
skewness, b; = 0.31
kurtosis, b, = 3.10
test statistic,J = 0.78
long-term interest rate
skewness, b, = 1.80
kurtosis, b, = 9.96
test statistic,J = 122.73

Thus, the residuals for both the share dividend yield and the force of share dividend
growth show no significant evidence of non-normality.

However, on first inspection, the residuals for the long-term interest rate appear to be
significantly positively skewed and leptokurtic (i.e. fat-tailed) in comparison with a
standard Normal distribution.

But, from Figure 7, it can be seen that there is one very significant outlier. This outlier
is for the year 1974 when, fuelled by very high price inflation (of well over 20%), the
long-term interest rate rose sharply (from 10.4% in 1973 to 15.6% in 1974).

Removing this outlier from the data gives a test statistic of 0.92, and so we can
conclude that the residuals for the long-term interest rate show little significant
evidence of non-normality.

The variance-covariance matrix X is constructed as follows :

2
o €3.0,.0, €5.0,.0,
_ 2
2 =|¢y.0,.0 o, €)3.0,.0,
2
€31.035.0, €3,.0,.0, o,

where

1. o; is the standard deviation of residual series #; and

2. ¢y s the correlation coefficient between residual series i and residual series j.

Clearly, ¢; =c,.

The observed parameter values are as follows :

13



o, = 0007

o, = 0055
o, = 0009
¢, = 00
¢, = 05
¢y = 00

Hence, the variance-covariance matrix of the model residuals, %, is given by :

0.000049 0.000000 0.000032
Z =} 0.000000 0.003025 0.000000
0.000032 0.000000 0.000081

Then, the model residuals at time ¢, £(¢), are given by :
&)= L.Z(1)

where

1. L is the Choleski decomposition of = = L.I' =X

0.007000 0.000000 0.000000
= L =|0.000000 0.055000 0.000000
0.004500 0.000000 0.000061

2. Z(t) is an iid. standard multi-variate Normal random variable with mean Q
and variance-covariance matrix I3.

3. COMPARING THE MODEL OUTPUT FROM THE PROPOSED MODEL WITH
THAT FROM THE WILKIE [1995] MODEL

In this section, we consider, in isolation, the series generated by the VAR(1) model
and the Wilkie [1995] model for :

the share dividend yield,
the nominal annual return on equities,

the long-term interest rate, and

Lo

the nominal annual return on long-dated fixed-interest gilts.

14



However, for asset-liability modelling purposes (see Section 4), it is important to
appreciate that both models are multi-variate, and so the interaction between each of
the various series (in particular, the contemporaneous cross-correlations) will affect
the results obtained as well as the absolute values of the series themselves.

The latter effect can be referred to as ‘model parameter sensitivity’, and the former
effect as ‘model structure sensitivity’.

3.1 Share dividend yield

3.1.1 Wilkie [1995] model

The model proposed by Wilkie [1995] for the share dividend yield at time ¢, ¥(¥), is as
follows :

InY(t)=YW.I(t) + YN(¢)
where

1. Y(¥)is the share dividend yield at time ;

2. I(¥) is the force of price inflation in year #, according the standard Wilkie
[1995] model;

3. YN(t)=InYMU + YA[YN(t -1)~InYMU|+ YE(f) is an AR(l) process
independent of the price inflation process;

4. YMU is the mean share dividend yield;

YE(¢) = YSD.YZ(¢t) is the random component of the share dividend yield at
time ¢; and

6. YZ(?) is a N(0,1) noise series.

The parameter values suggested by Wilkie [1995] are :

Yw = 18
YMU = 00375
Y4 = 055
YSO = 0155

Note that, since In Y(#) can be expressed as a linear function of the Normal random

variables {QE(s)}., and {YE(s)}.,, InY(#) has a Normal distribution. Thus, the
share dividend yield at time ¢, Y(7), has a log-Normal distribution.

15



By expressing In Y(#) as a linear function, it can be shown that the mean function for
the process In Y(¢) is given by :

E[ln ¥(1)] = YW.{QMU +04" [ 10) - QMU]} +In YMU + Y4'.[YN(0) - ln YMU]

Hence, letting ~—>o0, we have :

E[ln Y(t — )| = YW.QMU +In YMU = -31988

Also, it can be shown that the variance function for the process In Y(¢) is given by :

V[In ¥(1)] = YW?.0SD*.a(Q4 1) + YSD*.a(Y4? 1)

Again, letting #—>c0, we have :

YW*.QSD*  YSD?

_ 2
i tioyr = 02080

V[n¥(z - w)]=

Now, if a random variable X is such that :

In X ~ NI ( M, 0'2)
then, X has a log-Normal distribution with :
E[X] = exp(,u+%o-2)
v[x] = {E[X]}Z.[exp(az) - 1]
Hence, we have :
1 (YW?.QSD*  YSD? J
E| Y = . -.
[¥(t > )] eprZYWQMU+lnYMU+2( o i_ts
= 417%
YW?.QSD*  YSD? )
- 2 -
V[¥(t > o) = 00417 .{exp[ o tiors 1

= 088%’
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Figure 8 shows the 1%, Sth, 10th, 25“1, 50“’, 75"‘, 90“‘, 95" and 99® percentiles of the
distribution of the share dividend yield using the standard Wilkie [1995] model at
annual intervals.
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Figure 8- Percentiles of the share dividend yield distribution for the standard Wilkie [1995]
model

Figure 9 gives an empirical distribution of the shape of the probability distribution
function of the share dividend yield using the standard Wilkie [1995] model after the
equilibrium position has been reached. The distribution is positively skewed, as would
be expected for a log-Normal random variable.
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Figure 9- Empirical equilibrium distribution of the share dividend yield for the standard
Wilkie [1995] model
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Figure 10 shows 10 independent simulations of the future progress of the share
dividend yield using the standard Wilkie [1995] model. The ‘neutral’ starting
conditions are used.

0.04

share dividend yield, Y(t)

0.03
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Figure 10- Ten simulations of the share dividend yield using the standard Wilkie [1995]
model

3.1.2 VAR(1) model

Because of the ARCH nature of the price inflation influence, the distribution of the
share dividend yield at time ¢, ¥(#), is not Normal (or log-Normal, as for the Wilkie
[1995] model above) but has a non-standard distribution.

By expressing the vector X() as a linear function (of previous values of X, and current
and previous values of the force of price inflation), it can be shown that the mean
Sunction for the process X(?) is given by :

Bx(0)] = M+ [X(0)-M]
+04.0[1- (QA.@*‘)]".[[ - (QA.@")’].@.[I(O) - oMU]

where ® =@ and ® = @°.

Hence, letting f—co, we have :

E[X(t > )| = M = exp[Y(t - )] = M, =450%

18



The variance function for the process X(f) can be obtained similarly, and letting o,
it can be shown that :

V[¥(t - )] = 104%?

Thus, the difference in the mean of the equilibrium distribution of the share dividend
yield for the two models is not very significant, and can be largely attributed to the
different length of the base period used for parameter estimation in each case.

The increase in the variance can be attributed to :

1. the use of a shorter base period, during which the share dividend yield has
been more volatile than previously; and

2. the higher variance in the ARCH model for the force of price inflation, which

has filtered through (as a result of the ¢ term) to give a corresponding

increase (albeit, small) in the variance of the equilibrium distribution of the
share dividend yield.

Figure 11 shows the 1%, 5™, 10", 25™, 50", 75™, 90™, 95™ and 99™ percentiles of the
distribution of the share dividend yield using the proposed VAR(1) model at annual

intervals. These percentiles are obtained using 5,000 simulations of the future
progress of the share dividend yield.
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Figure 11- Percentiles of the share dividend yield distribution for the proposed VAR(1)
model
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Figure 12 gives an empirical distribution of the shape of the probability distribution
function of the share dividend yield using the proposed VAR(1) model after the
equilibrium position has been reached.
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Figure 12- Empirical equilibrium distribution of the share dividend yield for the proposed
VAR(1) model

From Figure 12, the distribution of the share dividend yield using the VAR(1) model
appears to be approximately Normal in shape (so that the distribution is symmetrical,
rather than positively skewed as was the case for the standard Wilkie [1995] model
above). The reason for this is that the strength of the exogenous price inflation

influence on the share dividend yield is low (4 = 0.06), and so the standard first-
order vector auto-regression effect dominates.

Figure 13 shows 10 independent simulations of the future progress of the share
dividend yield using the proposed VAR(1) model. The ‘neutral’ starting conditions
are used, so that :

4.50%

1(0) = OMU = 4.00% and X(0)= M =| 7.90%
8.00%
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Figure 13- Ten simulations of the share dividend yield using the proposed VAR(1) model

Comparing Figure 11, Figure 12 and Figure 13 with the corresponding Figure 8,
Figure 9 and Figure 10 respectively for the standard Wilkie [1995] model, it can be
seen that, although the two share dividend yield models are very different in structure
(in particular, the share dividend yield has a standard log-Normal distribution under
the Wilkie [1995] model and an non-standard heteroskedastic - although approximate
Normal - distribution under the VAR(1) model) and the parameters are estimated
using different length base periods, the processes generated in each case have similar
moments (both in the short-term and in the long-term).

Share dividend yields in the UK are not particularly volatile from year to year and
have remained relatively stable for many years. Thus, it is not surprising that, despite
the differences both in the structure of the two models and in the length of the base

period used for parameter estimation, the share dividend yield series generated in each
case is similar.

3.2 Annual share index return

The annual return on equities is likely to be one the most influential variables in any
stochastic asset-liability modelling exercise for a large on-going final-salary pension
scheme. This is because a substantial proportion of the assets of the scheme (possibly

more than 80%) are likely to be invested in UK equities or other similar assets (e.g.
overseas equities).

Furthermore, equity returns have, historically, been highly volatile in comparison with
the other random variables underlying the future progress of a pension fund (for
example, price inflation, earnings inflation and gilt yields - which are likely to be used
in the basis for valuing discontinuance liabilities and calculating transfer values).

The nominal annual return on equities in year ¢, denoted by LPR(?), is given by :
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where

PR
LPR(t)zWI‘(?I-)_l

PR(t):PR(t—l).%% is the value of the index representing the

nominal return achieved on a portfolio of equities up to time f;
D¢t
P(t)= % is the value of the share price index at time #;
D(t)= D(t - 1).exp[K(t)] is the value of the share dividend index at time #;
and

K(?) is the force of share dividend growth in year ¢.

3.2.1 Wilkie [1995] model

The distribution of the nominal annual return on equities using the Wilkie [1995]
model is non-standard, and so it is much easier to estimate the parameters defining the
distribution using a simulation approach.

Figure 14 shows the 1%, 5%, 10%, 25®, 50", 75®, 90", 95" and 99" percentiles of the
distribution of the nominal annual return on equities using the Wilkie [1995] model at
annual intervals. These percentiles are obtained using 5,000 simulations of the future
progress of the nominal annual return on equities.

nominal annuat equity return, LPR(t)

time

Figure 14- Percentiles of the nominal annual equity return distribution for the standard
Wilkie [1995] model
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From Figure 14, it can be seen that the equilibrium position is reached almost
immediately. The reason for this is that, according to the Wilkie [1995] model, annual
equity returns in consecutive years are largely independent (and so the equity market
is considered to be highly efficient with the effect of the, essentially arbitrary, starting
conditions quickly eliminated).

Figure 15 gives an empirical distribution of the shape of the probability distribution
function of the nominal annual return on equities using the Wilkie [1995] model after
the equilibrium position has been reached.
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Figure 15- Empirical equilibrium distribution of the nominal annual equity return for the
standard Wilkie [1995] model

The distribution is positively skewed, and it appears that the nominal annual return on
equities using the Wilkie [1995] model has an approximate log-Normal distribution.

Figure 16 shows a quantile-quantile plot for the empirical equilibrium distribution of
ln[l + LPR(t)] against a standard Normal distribution. Figure 16 is approximately

linear, which implies that the distribution of ln[l + LPR(t)] is similar in shape to that

of a Normal distribution. Thus, the (unknown and non-standard) distribution of the
nominal annual return on equities, LPR(f), is similar in shape to a log-Normal
distribution.
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Figure 16- Quantile-quantile plot of the logarithm of the empirical equilibrium distribution of
the nominal annual equity return for the standard Wilkie [1995] model

The empirical equilibrium distribution function obtained for the nominal annual return
on equities using the Wilkie [1995] model is summarised in Table 1.

mean 13.1%
standard deviation 22.8%
skewness 0.60
kurtosis 3.60
1 percentile -29.0%
5t d;‘)ercentile -20.0%
10" percentile -14.0%
25" percentile -3.0%
50™ percentile 11.0%
75" percentile 27.0%
9™ percentile 43.0%
95t percentile 53.0%
99 percentile 75.0%

Table 1- Empirical equilibrium distribution of the nominal annual equity return for the
standard Wilkie [1995] model

Figure 17 shows 10 independent simulations of the future progress of the nominal
annual return on equities using the Wilkie [1995] model. The ‘neutral’ starting
conditions are used.
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Figure 17- Ten simulations of the nominal annual equity return using the standard Wilkie
[1995] model

3.2.2 VAR(1) model

The distribution of the nominal annual return on equities using the VAR(1) model is
also non-standard, and so it is much easier to estimate the parameters defining the
distribution using a simulation approach.

Figure 18 shows the 1%, 5%, 107, 25®, 50", 75, 90", 95" and 99" percentiles of the
distribution of the nominal annual return on equities using the VAR(1) model at

annual intervals. These percentiles are obtained using 5,000 simulations of the future
progress of the nominal annual return on equities.
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Figure 18- Percentiles of the nominal annual equity return distribution for the proposed
VAR(1) model

From Figure 18, it can be seen that, as for the Wilkie [1995] model, the equilibrium
position is reached almost immediately, implying that, according to the VAR(1)
model, annual equity returns in consecutive years are largely independent.

Figure 19 gives an empirical distribution of the shape of the probability distribution
function of the nominal annual return on equities using the VAR(1) model after the
equilibrium position has been reached. As for the Wilkie [1995] model, the
distribution is positively skewed.
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Figure 19- Empirical equilibrium distribution of the nominal annual equity return for the
proposed VAR(1) model

Unlike the Wilkie [1995] model, however, it can be shown that the nominal annual
return on equities using the VAR(1) model does not have an approximate log-Normal
distribution. As a result of the ARCH nature of the price inflation influence on the
annual equity return, the distribution is fat-tailed in comparison to a standard log-
Normal distribution.

Figure 20 shows a quantile-quantile plot for the empirical equilibrium distribution of
ln[l + LPR(t)] against a standard Normal distribution. Figure 20 is has an slight ‘S’

shape, which implies that the distribution of ln[l + LPR(t)] is fat-tailed in comparison
to that of a Normal distribution.
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Figure 20~ Quantile-quantile plot of the logarithm of the empirical equilibrium distribution of
the nominal annual equity return for the proposed VAR(1) model

The empirical equilibrium distribution function obtained for the nominal annual return
on equities using the VAR(1) model is summarised in Table 2. The corresponding
values obtained using the Wilkie [1995] model are shown for comparison.

VAR(1) model Wilkie [1995] model

mean 16.1% 13.1%
standard deviation 27.4% 22.8%
skewness 2.40 0.60
kurtosis 33.00 3.60
1% percentile -35.0% -29.0%
st ﬂ?ercentile -20.0% -20.0%
10™ percentile -13.0% -14.0%
25" percentile -1.0% -3.0%
50™ percentile 13.0% 11.0%
75" percentile 30.0% 27.0%
90™ percentile 48.0% 43.0%
95™ percentile 61.0% 53.0%
99 percentile 91.0% 75.0%

Table 2- Empirical equilibrium distribution of the nominal annual equity return for the
proposed VAR(1) model

From Table 2, it can be seen that both the mean and the variance of nominal annual
return on equities are significantly higher using the VAR(1) model rather than the
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Wilkie [1995] model (although the mean-variance ratio is reasonably robust). The
main reason for this difference is the shorter base period used for parameter estimation
in the VAR(1) model which, as mentioned previously, gives more weight to recent
experience (when annual rates of equity return have been higher and more volatile,
principally as a result of higher and more volatile annual rates of dividend growth).

A difference of 3% in the expected annual return on equities means that, all other
things being equal, for a pension fund investing predominantly in equities, the size of
the fund expected to have been built up at any future date will be (significantly)
higher if investment experience is assumed to follow the series generated using the
VAR(1) model (rather than the Wilkie [1995] model).

Whether this difference will have a material impact on the results of an asset-liability
modelling exercise will depend both on the purpose of the exercise and on the
interaction of the annual equity return with the other investment variables modelled.

Figure 21 shows 10 independent simulations of the future progress of the nominal
annual return on equities using the VAR(1) model. The ‘neutral’ starting conditions
are used.
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Figure 21- Ten simulations of the nominal annual equity return using the proposed VAR(1)
model

3.3 Long-term interest rate

The expressions ‘long-term interest rate’ and ‘yield on long-dated fixed-interest gilts’
are used interchangeably.
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3.3.1 Wilkie [1995] model
The model proposed by Wilkie [1995] for the long-term interest rate at time ¢, C(¢), is
as follows :
C(t) = CW.CM(t) + CMU.exp[CN(¢)]
where

1. C(?) is the long-term interest rate at time #;

2. CM(t)=CD.I(t)+(1- CD).CM(t-1);
CN(t)=CA.CN(t-1)+ CY.YE(t)+ CE(t) is a process independent of the
price inflation process;

4. CMU is the mean real long-term interest rate;

CE(t) = CSD.CZ(t) is the random component of the long-term interest rate at
time ¢; and
6. CZ(f)is a N(0,1) noise series.

The parameter values suggested by Wilkie [1995] are :

cw = 10
CD = 0.045
CMU = 0.0305
C4 = 09

cY = 034
CSD = 0185

Wilkie [1995] shows that the process C(f) can be expressed as the sum of two
independent processes, CM(¢) and CS(¢), where :

CM(1)
In CS(¢)

CD.I(t)+(1-CD).CM(t -1)
In CMU + CN(t)

Note that :

1. since CM(f) can be expressed as a linear function of the Normal random
variables {QE(s)}._, , CM(?) has a Normal distribution; and

2. since InCS(#) can be expressed as a linear function of the Normal random
variables {CE(s)}!_, and {YE(s)}".,, CS(¢) has a log-Normal distribution.

s=1
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Now, according to Wilkie [1995], “... the of sum of a Normal and a log-Normal
(random variable) is distributed neither normally or log-normally, but presumably
somewhere in between ...”, so that the distribution of the long-term interest rate is
non-standard.

By expressing CM(¥) and In CS(#) as linear functions, it can be shown that the mean
Sfunction for each process is given by :

E[CM(1)] CD.a(CDC,t).QMU + CDC'.CM(0)
+CD.CDC". 04.a(QC, t).[ 1(0) - QMU
E[InCS(r)] = C4'.CN(0)+InCMU

04

here CDC=1-CD and QC=——.
where and Q CDC

Also, it can be shown that the variance function for each process is given by :

vieme) = %.[&(CD@J}—2.QC.&(CDC.QA,t)+QCz.é(QAz,t)]

V[lnCs(t)]

(CY*.¥SD* + CSD?).a(C4%,1)

Then, as In CS(¢) has a Normal distribution, we have :

E[CS(n)] exp{E[]n CS(t)]+%.V[ln CS(t)]}

vicso)] = {Hesol (ee{vimcso]}-1)

As CM(t) and In CS(¢) are independent, we have :

E[C(1)] = E[CM(1)] + E[CS(1)] and V[C(n)]= V[CM(1)]+ V[CS(1))]

Hence, letting r—o, it can be easily shown that :

V[C(t > )] = 8.06% and V[C(t - )] =215%>

31



Figure 22 shows the 1%, 5™, 10™, 25, 50%, 75®, 90™ 95™ and 99™ percentiles of the
distribution of the long-term interest rate using the standard Wilkie [1995] model at
annual intervals.
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Figure 22- Percentiles of the long-term interest rate distribution for the standard Wilkie
[1995] model

Figure 23 gives an empirical distribution of the shape of the probability distribution
function of the long-term interest rate using the standard Wilkie [1995] model after
the equilibrium position has been reached.
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Figure 23- Empirical equilibrium distribution of the long-term interest rate for the standard
Wilkie [1995] model
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From Figure 23, it can be seen that the distribution of the long-term interest rate for
the Wilkie [1995] model is positively skewed. However, the distribution can be
shown to be less fat-tailed than a standard log-Normal distribution. This suggests that
Wilkie’s assumption as to the shape of a distribution made up from the sum of a
Normal and a log-Normal random variable is reasonable.

Figure 24 shows 10 independent simulations of the future progress of the long-term
interest rate using the standard Wilkie [1995] model. The ‘neutral’ starting conditions
are used.
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Figure 24- Ten simulations of the long-term interest rate using the standard Wilkie [1995]
model

3.3.2 VAR(1) model

Because of the ARCH nature of the price inflation influence, the distribution of the
long-term interest rate at time ¢, C(¢), has a non-standard distribution.

From Section 3.1.2, the mean function for the process X(¢) is given by :
Hxm] = M+0'[X(0)-M]
+04.0"[1- (QA.@“‘)]_I.[I— (QA.@“)'].(I).[I(O) —~oMU]

where ® =®' and ® = @°.

Hence, letting t—>o0, we have :
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E[X(t - w)] = M = E[C(t > )] = M, =800%

Also, from Section 3.1.2, the variance function for the process X(#) can be obtained
similarly, and letting t—<o, it can be shown that :

v[C(t > )] =120%"

Thus, as for the share dividend yield series, the difference in the mean of the
equilibrium distribution of the long-term interest rate for the two models is not very
significant, and can be largely attributed to the different length of the base period used
for parameter estimation in each case.

However, in this case, the variance of the equilibrium distribution of the long-term
interest rate is significantly lower using the VAR(1) model.

The main reason for this is the shorter base period used for parameter estimation. Up
until the mid-1950s, government intervention ensured that the long-term interest rate
in the UK was constrained largely between 3% and 4.5% (i.e. well below the observed
long-term mean level). Thus, all other things being equal, using this data in the
parameter estimation process (as Wilkie has done) would be expected to lead to a
higher estimate of variance of the long-term interest rate.

Figure 25 shows the 1%, 5™, 10™, 25™, 50, 75™, 90™ 95™ and 99™ percentiles of the
distribution of the long-term interest rate using the proposed VAR(1) model at annual
intervals. These percentiles are obtained using 5,000 simulations of the future
progress of the long-term interest rate.
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Figure 25- Percentiles of the long-term interest rate distribution for the proposed VAR(1)
model

34



Figure 26 gives an empirical distribution of the shape of the probability distribution
function of the long-term interest rate using the proposed VAR(1) model after the
equilibrium position has been reached.
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Figure 26- Empirical equilibrium distribution of the long-term interest rate for the proposed
VAR(1) model

As for the share dividend yield in Section 3.1.2, the distribution of the long-term
interest rate using the VAR(1) model appears to be approximately Normal in shape
(so that, again, the distribution is symmetrical, rather than positively skewed as was
the case for the standard Wilkie [1995] model above). The reason for this is that the
strength of the exogenous price inflation influence on the long-term interest rate is
low (¢’ =007), and so the standard first-order vector auto-regression effect
dominates.

Figure 27 shows 10 independent simulations of the future progress of the long-term

interest rate using the proposed VAR(1) model. The ‘neutral’ starting conditions are
used.
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Figure 27- Ten simulations of the long-term interest rate using the proposed VAR(1) model

Although not immediately apparent from Figure 27, because of the ARCH nature of
the price inflation influence on the long-term interest rate using the VAR(1) model,
the resulting series will contain occasional large jumps (both up and down) in the
long-term interest rate series (as a result of corresponding large jumps in the force of

price inflation). This effect is damped somewhat due to the size of the ¢ parameter,
but will still be significant.

As a result, although the long-term variance of the long-term interest rate is lower
using the VAR(1) model than the Wilkie [1995] model, the one-step ahead variance of

the long-term interest rate (i.e. V[C(t +1)/ C(t)]) is significantly higher. The effect of

this on the variance of the annual return on long-dated fixed-interest gilts is
considered below.

3.4 Annual long-dated fixed-interest gilt index return
The nominal annual return on long-dated fixed-interest gilts in year ¢, denoted by
LCR(?), is given by :
CR(¢)
LCR(t)=—"—
@ CR(t-1)

1
where CR(t)= CR(t - 1).[% + 1]. C(t -1) is the value of the index representing the

nominal return achieved on a portfolio of long-dated fixed-interest gilts up to time ¢.
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3.4.1 Wilkie [1995] model

The distribution of the nominal annual return on long-dated fixed-interest gilts using
the Wilkie [1995] model is non-standard, and so it is much easier to estimate the
parameters defining the distribution using a simulation approach.

Figure 28 shows the 1%, 5%, 10, 25™ 50™, 75™, 90™, 95™ and 99™ percentiles of the
distribution of the nominal annual return on long-dated fixed-interest gilts using the
Wilkie [1995] model at annual intervals. These percentiles are obtained using 5,000
simulations of the future progress of the nominal annual return on long-dated fixed-
interest gilts.

nominal annual return on long-dated
fixed-Interest giits, LCR(t)

Figure 28- Percentiles of the nominal annual long-dated fixed-interest gilt return distribution
for the standard Wilkie [1995] model

From Figure 28, it can be seen that, as in Section 3.2.1 for the nominal annual return
on equities, the equilibrium position is reached almost immediately. The reason for
this is that, according to the Wilkie [1995] model, annual long-dated fixed-interest gilt
returns in consecutive years are largely independent (and so the gilt market is also
considered to be highly efficient with the effect of the, essentially arbitrary, starting
conditions quickly eliminated).

Figure 29 gives an empirical distribution of the shape of the probability distribution
function of the nominal annual return on long-dated fixed-interest gilts using the

Wilkie [1995] model after the equilibrium position has been reached. As for equities,
the distribution is positively skewed.
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Figure 29- Empirical equilibrium distribution of the nominal annual long-dated fixed-interest
gilt return for the standard Wilkie [1995] model

Figure 30 shows a quantile-quantile plot for the empirical equilibrium distribution of
1n[1+ LCR(t)] against a standard Normal distribution. Figure 30 has an ‘S’ shape
(particularly in the upper tail), which implies that the distribution of ln[l + LCR(t)] is
slightly fat-tailed (particularly in the upper tail) in comparison to that of a Normal
distribution. Thus, the distribution of the nominal annual return on long-dated fixed-

interest gilts, LCR(¥), is slightly fat-tailed in comparison that of a log-Normal
distribution.
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Figure 30- Quantile-quantile plot of the logarithm of the empirical equilibrium distribution of
the nominal annual long-dated fixed-interest gilt return for the standard Wilkie [1995] model
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The empirical equilibrium distribution function obtained for the nominal annual return
on long-dated fixed-interest gilts using the Wilkie [1995] model is summarised in
Table 3.

mean 8.4%
standard deviation 9.4%
skewness 0.40
kurtosis 4.20
1st percentile -12.0%
5th percentile -6.0%
10th percentile -3.0%
25th percentile 2.0%
50th percentile 8.0%
75th percentile 14.0%
90th percentile 20.0%
95th percentile 24.0%
99th percentile 34.0%

Table 3- Empirical equilibrium distribution of the nominal annual long-dated fixed-interest
gilt return for the standard Wilkie [1995] model

Comparing Table 3 with the corresponding Table 1 obtained for the nominal annual
return on equities, it can be seen that, according to the Wilkie [1995] model :

1. equities can be expected to give significantly higher annual returns than long-
dated fixed-interest gilts (13.1% p.a. compared with 8.4% p.a.); and

2. the annual return on equities is significantly more volatile than the annual
return on long-dated fixed-interest gilts (standard deviation of 22.8% p.a.
compared with 9.4% p.a.).

These results are intuitive (i.e. more volatile, high-risk asset classes would be
expected to give a higher return) and are supported by past experience.

Figure 31 shows 10 independent simulations of the future progress of the nominal
annual return on long-dated fixed-interest gilts using the Wilkie [1995] model. The
‘neutral’ starting conditions are used.
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Figure 31- Ten simulations of the nominal annual long-dated fixed-interest gilt return using
the standard Wilkie [1995] model

3.4.2 VAR(1) model

The distribution of the nominal annual return on long-dated fixed-interest gilts using
the VAR(1) model is also non-standard, and so it is much easier to estimate the
parameters defining the distribution using a simulation approach.

Figure 32 shows the 1%, 5", 10", 25", 50™, 75™, 90™, 95™ and 99™ percentiles of the
distribution of the nominal annual return on long-dated fixed-interest gilts using the
VAR(1) model at annual intervals. These percentiles are obtained using 5,000

simulations of the future progress of the nominal annual return on long-dated fixed-
interest gilts.
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Figure 32- Percentiles of the nominal annual long-dated fixed-interest gilt return distribution
for the proposed VAR(1) model

From Figure 32, it can be seen that the equilibrium position is reached fairly quickly
(although not as quickly as was the case for equity return according to the VAR(1)
model), implying that, annual long-term fixed-interest gilt returns in consecutive years
are largely independent.

Figure 33 gives an empirical distribution of the shape of the probability distribution
function of the nominal annual return on long-dated fixed-interest gilts using the
VAR(1) model after the equilibrium position has been reached. As for the Wilkie
[1995] model, the distribution is positively skewed.
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Figure 33- Empirical equilibrium distribution of the nominal annual long-dated fixed-interest
gilt return for the proposed VAR(1) model

Figure 34 shows a quantile-quantile plot for the empirical equilibrium distribution of
ln[l + LCR(t)] against a standard Normal distribution. Figure 34 has a very obvious
‘S’ shape, which implies that the distribution of In[1+ LCR(?)] is substantially fat-
tailed in comparison to that of a Normal distribution. Thus, the distribution of the

nominal annual return on long-dated fixed-interest gilts, LCR(?), is fat-tailed in
comparison to that of a log-Normal distribution.
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Figure 34- Quantile-quantile plot of the logarithm of the empirical equilibrium distribution of
the nominal annual long-dated fixed-interest gilt return for the proposed VAR(1) model
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As a result of the ARCH nature of the price inflation influence on the annual long-
dated fixed-interest gilt return and the increased year-on year volatility of the long-
term interest rate, the distribution is particularly fat-tailed.

The empirical equilibrium distribution function obtained for the nominal annual return
on long-dated fixed-interest gilts using the VAR(1) model is summarised in Table 4.
The corresponding values obtained using the Wilkie [1995] model are shown for
comparison.

VAR(1) model Wilkie [1995] model

mean 8.7% 8.4%
standard deviation 12.6% 9.4%
skewness 10.0 0.40
kurtosis 345.0 4.20
1* percentile -14.0% -12.0%
5™ percentile -7.0% -6.0%
10™ percentile -3.0% -3.0%
25" percentile 2.0% 2.0%
50" percentile 8.0% 8.0%
75" percentile 15.0% 14.0%
9™ percentile 21.0% 20.0%
95® percentile 25.0% 24.0%
99 percentile 35.0% 34.0%

Table 4- Empirical equilibrium distribution of the nominal annual long-dated fixed-interest
gilt return for the proposed VAR(1) model

From Table 4, it can be seen that both the mean and the variance of nominal annual
return on long-dated fixed-interest gilts are higher using the VAR(1) model rather
than the Wilkie [1995] model.

As for equities, the main reason for the difference in the means is the shorter base
period used for parameter estimation in the VAR(1) model which, as mentioned
previously, gives more weight to recent experience (when annual rates of gilt return
have been slightly higher than previously).

However, the higher variance in the nominal annual return on long-dated fixed-
interest gilts using the VAR(1) model is largely due to the higher one-step variance in
the long-term interest rate (as noted above). From the equation for LCR(Y), it can be
seen that the nominal annual return on long-dated fixed-interest gilts in any given year
will depend only on the change in the long-term interest rate over that year.
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Also, comparing Table 4 with the cotresponding Table 2 obtained for the nominal
annual return on equities, it can be seen that, as for the Wilkie [1995] model,
according to the proposed VAR(1) model :

1. equities can be expected to give significantly higher annual returns than long-
dated fixed-interest gilts (16.1% p.a. compared with 8.7% p.a.); and

2. the annual return on equities is significantly more volatile than the annual
return on long-dated fixed-interest gilts (standard deviation of 27.4% p.a.
compared with 12.6% p.a.).

The fact that the relative difference between the two asset classes is maintained in the
VAR(1) model is likely to be crucial when examining the robustness of a stochastic
asset-liability modelling exercise to a change in the stochastic asset model used.

Indeed, Wilkie [1995] states that the purpose of his stochastic asset model is “to
provide a realistic variance and covariance structure for many years ahead, to quantify
the expanding funnel of doubt”.

Figure 35 shows 10 independent simulations of the future progress of the nominal
annual return on long-dated fixed-interest gilts using the VAR(1) model. The ‘neutral’
starting conditions are used.
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Figure 35- Ten simulations of the nominal annual long-dated fixed-interest gilt return using
the proposed VAR(1) model
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4. A SIMPLE EXAMPLE OF STOCHASTIC ASSET-LIABILITY MODELLING

Any stochastic asset-liability modelling exercise involves projecting the actual
cashflows to and from the fund during each future time period. These cashflows will
depend, amongst other things, on the actual investment experience (as generated by
the underlying stochastic asset model).

Also, at any future date, by discounting the expected future cashflows in and out of
the fund, a value can be placed on both the assets and the liabilities. This enables the
current levels of funding and the required future contribution rate to be determined.

For a final-salary pension scheme, appropriate measures of the level of solvency
would be :

1. the discontinuance funding level; or

2. the statutory Minimum Funding Requirement (or MFR) funding level.

The discontinuance funding level is explored below as this gives an explicit measure
of the actual solvency (or otherwise) of the scheme in the event of immediate wind-
up.

The discontinuance funding level is given by :

market value of the scheme assets at the valuation date
value of accrued benefits on immediate discontinuance

For the model pension scheme used, it is assumed that, on discontinuance, each active
member is granted a transfer value (calculated in accordance with Guidance Note 11)
in lieu of a deferred pension.

In line with the requirements of GN11, the rate of interest used to value the accrued
benefits is market-related and is based on the current yield available on long-dated
fixed-interest gilts, given by C(f). Allowance must also be made for statutory
revaluation in the period up to retirement and Limited Price Indexation (or LPI)
increases in payment.

Thus, the size of the discontinuance funding level at each future date is a random
variable. Other factors which will have a significant effect on the size of this random
variable are :

1. The growth in retail prices prior to the valuation date.

Because of the cascade structure of the two models, this series filters
through to affect all the other series generated,

The growth in retail prices up to time #is given by :
o0 _
0(0)
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where Q(¢) = Q(t - 1).exp[1(t)] and [(¢) is the force of price inflation in
year t.
2. The return achieved on investments prior to the valuation date.

In particular, the return achieved on equities as the bulk of the assets of
the fund are likely to invested in equities;

The return achieved on equities up to time # is given by :

PR(¢ !
W((O))—lz{H[I+LPR(s)]}—1;

s=1

Similarly, the return achieved on long-dated fixed-interest gilts up to time
tis given by :

CR(¥) !
o " {];[[1 + LCR(s)]} -1;
Of particular importance is the real return on investments (i.e. the
investment return in excess of salary growth).
3. The growth in average earnings prior to the valuation date.
This will affect the level of the accrued benefits at the valuation date;
The growth in average earnings up to time ¢ is given by :

v
w(0)
where W(t)=W(t~ 1).exp[J (t)] and J(f) is the force of average earnings

growth in year ¢;

Appendix B outlines the model for average earnings growth proposed by
Wilkie [1995] and also suggests a very simple alternative model for use
with the VAR(1) model.

The structure of the model pension scheme used is assumed to remain stable in future
with respect to age, pensionable salary (in real terms) and past pensionable service.

The fund is assumed to be invested 80% in equities and 20% in long-dated fixed-
interest gilts. These proportions are fixed during the projection period and the
portfolio is re-balanced annually.

Annual valuations of the scheme are conducted using the Projected Unit Method and a
typical ‘prudent’ on-going valuation basis for the purpose of recommending a future
contribution rate to be paid. The contribution rate is calculated in accordance with
both the Inland Revenue surplus regulations introduced in the Finance Act 1986 and
the Minimum Funding Requirement regulations introduced in the Pensions Act 1995.

The initial discontinuance funding level is set equal to 150%.
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By carrying out a large number of such simulations of the future progress of the
model scheme, each of which is considered equally likely, an empirical distribution
function for the discontinuance funding level at each future date can be obtained.

This empirical distribution function can then be used, amongst other things, to
estimate the probability of insolvency on wind-up at the particular future date.

This probability of insolvency can then be used as an objective measure to compare
the level of security provided by different investment or funding strategies.

It is important to explore the sensitivity of the results obtained to the underlying
stochastic asset model. As mentioned previously, many actuaries remain sceptical as
to the power of stochastic asset-liability modelling and believe that the results
obtained are highly dependent on the particular asset model used.

Figure 36 and Figure 37 show the 1%, 5™, 10™ 25% 50, 75" 90™ 95% and 99™
percentiles of the distribution of the discontinuance funding level at annual intervals
using the Wilkie [1995] model and the VAR(1) model respectively. These percentiles

are obtained using 1,000 simulations of the future progress of the model pension
scheme.

As both the Wilkie [1995] model and the VAR(1) model are stationary time series
models, the process defining the discontinuance funding level is also stationary (i.e.
the process tends towards a stable equilibrium distribution).

discontinuance funding level, %

Figure 36- Percentiles of the discontinuance funding level distribution using the standard
Wilkie [1995] model
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Figure 37- Percentiles of the discontinuance funding level distribution using the proposed
VAR(1) model

Figure 38 and Figure 39 give an empirical distribution of the shape of the probability
distribution function of the discontinuance funding level after the equilibrium position
has been reached using the Wilkie [1995] and the VAR(1) model respectively.
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Figure 38- Empirical equilibrium distribution of the discontinuance funding level using the
standard Wilkie [1995] model
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Figure 39- Empirical equilibrium distribution of the discontinuance funding level using the
proposed VAR(1) model

For both models, the distribution of the discontinuance funding level is positively
skewed (not unsurprising given that the discontinuance funding level is the ratio of
two non-negative random variables). Further, though, it can be shown that, for both
models, the distribution of the discontinuance funding level can be shown to strongly
resemble a log-Normal distribution.

Figure 40 and Figure 41 show a quantile-quantile plot for the empirical equilibrium
distribution of the logarithm of the discontinuance funding level against a standard
Normal distribution for the Wilkie [1995] model and the VAR(1) model respectively.
Both Figure 40 and Figure 41 are approximately linear, so that the (unknown and non-
standard) distribution of the discontinuance funding level in each case is similar in
shape to a log-Normal distribution.
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Figure 40- Quantile-quantile plot of the logarithm of the empirical equilibrium distribution of
the discontinuance funding level using the standard Wilkie [1995] model
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Figure 41- Quantile-quantile plot of the logarithm of the empirical equilibrium distribution of
the discontinuance funding level using the proposed VAR(1) model

Thus, the ARCH influence on the price inflation used in the VAR(1) model (which
filtered through to give an ARCH effect in the key variables affecting the
discontinuance funding level, namely the annual return on equities and the long-term
interest rate) does not appear to have a significant effect on the shape of the
discontinuance funding level.

The empirical equilibrium distribution functions obtained for the discontinuance
funding level using the Wilkie [1995] model and the VAR(1) model are summarised
in Table 5.
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Wilkie [1995] model VAR(1) model

mean 193.0% 203.0%
standard deviation 59.0% 71.0%
1% percentile 93.0% 89.0%
5t t&)ercentile 111.0% 113.0%
10™ percentile 123.0% 125.0%
25" percentile 149.0% 154.0%
50 percentile 186.0% 192.0%
750 percentile 227.0% 240.0%
90™ percentile 270.0% 295.0%
95" percentile 297.0% 330.0%
99 percentile 360.0% 405.0%

Table 5- Mean, standard deviation and percentiles of equilibrium distribution of
discontinuance funding level

From Table 5, it can be seen that the mean and variance of the discontinuance funding
level is slightly higher using the VAR(1) model. The main reason for this is the higher
mean and variance of the annual return on equities under the VAR(1) model (as a
result of the use of a shorter base period for parameter estimation).

However, from Table 5, it is also apparent that the lower tail of the distribution
(which, for the discontinuance funding level, is of most interest) is very robust to the
change in the stochastic asset model.

The long-term probability of insolvency on wind-up can be estimated as the
proportion of the total number of simulations which gives a discontinuance funding
level of below 100%.

Then, for the Wilkie [1995] model, the long-term probability of insolvency is
estimated as 2.6% whereas, for the VAR(1) model, the long-term probability of
insolvency is estimated as 2.9%. Such a small difference is likely to be insignificant in
practice.

Figure 42 and Figure 43 show 10 independent simulations of the future progress of
the discontinuance funding level using the Wilkie [1995] model and the VAR(1)
model respectively.
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Figure 42- Ten simulations of the discontinuance funding level using the standard Wilkie
[1995] model
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Figure 43- Ten simulations of the discontinuance funding level using the proposed VAR(1)
model

It is possibly to largely eliminate model parameter sensitivity by (approximate)
standardisation of the first and second moments of the key investment variables (e.g.
force of price inflation, annual return on equities, long-term interest rate etc.). This
can be done very simply by changing the appropriate parameters in the Wilkie [1995]
model so as to more accurately reflect the experience of recent years (e.g. higher and
more volatile equity returns than previously etc.).

However, given the robustness of the distribution of the discontinuance funding level
(particularly in the vital lower tail) when the two original models are used, no attempt

at standardisation to eliminate model parameter sensitivity has been carried out at this
stage.
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5. CONCLUSIONS

The series generated by the two stochastic asset models considered differ
significantly, in particular :

(i) force of price inflation

under the Wilkie [1995] model, the force of price inflation has a Normal
distribution with a long-term mean of 4.7% p.a. and a long-term standard
deviation of 5.2% p.a.;

whereas, under the proposed VAR(1) model, the force of price inflation
has an unknown heteroskedastic distribution with a lower long-term
mean of 4.0% p.a. and a significantly higher long-term standard
deviation of 10.0% p.a.;

(ii) nominal annual return on equities

under the Wilkie [1995] model, the nominal annual return on equities
was shown to be largely independent in successive years with an
unknown (but approximately log-Normal) distribution with a mean of
13.1% p.a. and a standard deviation of 22.8% p.a.;

whereas, under the proposed VAR(1) model, the nominal annual return
on equities was again shown to be largely independent in successive
years but with an unknown distribution with a significantly higher mean
of 16.1% p.a. and a significantly higher standard deviation of 27.4% p.a.
which was shown to be fat-tailed in comparison with a log-Normal
distribution;

(iii) long-term interest rate

under the Wilkie [1995] model, the long-term interest rate has an
unknown distribution (somewhere between a Normal and a log-Normal
distribution) with a long-term mean of 8.1% p.a. and a long-term
standard deviation of 2.2% p.a.;

whereas, under the proposed VAR(1) model, the long-term interest rate
has an unknown heteroskedastic distribution with with a significantly
higher short-term variance, but a lower long-term mean of 8.0% p.a. and
a significantly lower long-term standard deviation of 1.2% p.a.;

(iv) nominal annual return on long-dated fixed-interest gilts

under the Wilkie [1995] model, the nominal annual return on long-dated
fixed-interest gilts was shown to be largely independent in successive
years with an unknown distribution with a mean of 8.4% p.a. and a
standard deviation of 9.4% p.a. which was shown to be slightly fat-tailed
(particularly in the upper tail) in comparison with a log-Normal
distribution;

whereas, under the proposed VAR(1) model, the nominal annual return
on equities was again shown to be largely independent in successive
years but with an unknown distribution with a slightly higher mean of
8.7% p.a. and a significantly higher standard deviation of 12.4% p.a.
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which was shown to be substantially fat-tailed in comparison with a log-
Normal distribution;

However, from Section 4, the distribution of the discontinuance funding level, both in
the short term and in the long term, appears to be highly robust, with regard to both
the location and, in particular, the shape, to the change in the underlying stochastic
asset model.

This suggests that the results obtained for more sophisticated stochastic asset-liability
modelling exercises (e.g. to determine an optimal asset allocation) would be similarly
robust.

It should be pointed out at this stage that, because both models are constructed from
past experience (albeit, using different base periods), the variance and covariance
structures underlying the two models will depend on past experience and so would not
be expected to be fundamentally different.

The models proposed by Dyson & Exley [1995] and Smith [1996] are based on the
theoretical construction of a hypothetical environment. Also, these two models are
non-stationary (i.e. there is no mean-reversion element within the series generated),
which can lead to implausible long-term results. Thus, the variance and covariance
structures underlying these models differ significantly from historical reality, and the
robustness of a stochastic asset-liability modelling exercise to a change in the
underlying stochastic asset model is reduced somewhat..

However, it is the view of this author that, rather than try to construct a model based
on how it is felt that the market ‘should’ behave, it is better to make use of the past
investment experience available (which can easily be adjusted to reflect any changes

expected in future), in conjunction, of course, with accepted basic investment theory
and principles.
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A. FITTING A VECTOR AUTO-REGRESSION MODEL

A.1 VAR(2) model

Fitting the VAR model shown in Equation 1 with m=2 to UK annual data over the
period 1946-1994 using least-squares regression, it can be shown that none of the
second-order parameters estimates is significantly different from zero (even at the
10% level), which suggests that a first-order model should be fitted.

A.2 VAR(1) model

Re-fitting a first-order model to UK annual data over the period 1946-94 using least-
squares regression gives the parameter estimates shown in Table 6.

)
g
1
b
91
13
1
021

SESS S S

0.3205
0.0180
0.1018
-1.8650
03113
0.6497
-0.6335
0.0078
1.0467

0.0566
0.5133
0.0848
-0.0006
-0.3534
-0.0290

standard error

0.1518
0.0180
0.0447
1.1635
0.1381
0.3426
0.2032
0.0241
0.0598

0.0246
0.1956
0.0328
0.0243
0.1931
0.0323

t-statistic

2.11
1.00
2.28
-1.60
2.25
1.90
-3.12
0.32
17.50

2.30
2.62
2.59
-0.02
-1.83
-0.90

p-value

0.04
0.32
0.03
0.12
0.03
0.06
0.00
0.75
0.00

0.03
0.01
0.01
0.98
0.07
0.37

Table 6- Parameter estimates for first-order vector auto-regression model

A.3 Reduced VAR(1) model

Re-fitting the VAR(1) model above, but setting equal to zero all of the parameters in
Table 6 which do not differ significantly from zero (at the 5% level) gives the

parameter estimates shown in Table 7.
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standard error  f-statistic  p-value

g 03203 0.1518 2.11 0.04
g 00000
g, 01095 0.0440 2.49 0.02
g 0.0000
g 03476 0.1366 2.54 0.01
g, 00000
g~ -0.6336 0.2012 3.15 0.00
g 0.0000
g~ 10501 0.0583 18.00 0.00
g 00562 0.0197 2.85 0.01
& 03039 0.1626 1.87 0.07
g 00848 0.0328 2.59 0.01
4 0.0000
4 0.0000
4 0.0000

Table 7- Parameter estimates for reduced first-order vector auto-regression model
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B. A STOCHASTIC MODEL FOR EARNINGS INFLATION

B.1 Wilkie [1995] model

The model proposed by Wilkie [1995] for the force of earnings inflation in year z, J(z),
is as follows :

J@O)=WWLIt)+(Q1-WW1).I(t-1)+ WN(t)
where

1. J(¥) is the force of earnings inflation in year £;

2. I is the force of price inflation in year f, according the standard Wilkie
[1995] model;

3. WN(t)=WMU +WA[WN(t-1)-WMU]|+WE(t) is an AR(l) process
independent of the price inflation process;

4. WMU is the mean share dividend yield;

5. WE(t)=WSD.WZ(t) is the random component of the share dividend yield at
time ¢, and

6. WZ(¢) is a N(0,1) noise series.

The parameter values suggested by Wilkie [1995] are :

wwl = 069
wWMU = 0016
wA = 00
WSD = 00244

Then, the index of earnings inflation at time ¢, denoted by W(¥), is given by :

w(t)=Ww(t-1).exp[J(1)]

B.2 Alternative model for use with VAR(1) model

Historical evidence suggests that earnings inflation can be expected to exceed price
inflation by about 1.0% to 2.5% p.a. in the long term (see Thornton & Wilson [1992]).

Hence, the (very simple) model proposed for the force of earnings inflation in year ¢,
J(¥), is given by :

J(t) = I(t) + WE(t)

where
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1. I( is the force of price inflation in year f, according to the Wilkie [1995]
ARCH model; and

2. WE()is a U(0.01,0.025) noise series.
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