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Abstract  

It is often unclear which course of action gives the best outcome. We can reduce this 

uncertainty by gathering more information; but gathering information always comes at 

a cost. For example, a sports player waiting too long to judge a ball’s trajectory will 

run out of time to intercept it. Efficient samplers must therefore optimize a trade-off: 

when the costs of collecting further information exceed the expected benefits, they 

should stop sampling and start acting. In visually guided tasks, adults can make these 

trade-offs efficiently, correctly balancing any reductions in visuomotor uncertainty 

against cost factors associated with increased sampling. To investigate how this ability 

develops during childhood, we tested 6-11 year-olds, adolescents, and adults on a 

visual localization task in which the costs and benefits of sampling were formalized in 

a quantitative framework. This allowed us to compare participants to each other, and to 

an ideal observer who maximizes expected reward. Visual sampling became 

substantially more efficient between 6-11 years, converging onto adult performance in 

adolescence. Younger children systematically under-sampled information relative to 

the ideal observer and varied their sampling strategy more. Further analyses suggested 

that young children used a suboptimal decision rule that insufficiently accounted for 

the chance of task failure, in line with a late developing ability to compute with 

probabilities and costs. We therefore propose that late development of efficient 

information sampling, a crucial element of real-world decision-making under risk, may 

form an important component of sub-optimality in child perception, action, and 

decision-making. 

 

Keywords: decision-making, perception, information sampling, visuomotor 

development, ideal observer. 
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Introduction 

Everyday actions can have uncertain outcomes. We may try to catch a ball but have 

only partial information about its trajectory. Accumulating more information before 

acting can help reduce this uncertainty, increasing the chance of success. But because 

information typically comes at a cost, we must often decide whether to gather more 

information or act on what we already have.  

 For example, when crossing a busy road, we may pause to estimate the speeds 

and trajectories of oncoming traffic before deciding when to cross. If we gather too 

little information, we dart into traffic risking an unnecessary disaster. Gathering too 

much information, however, carries its own costs as we find ourselves standing beside 

the road indefinitely, missing gaps in traffic we might have crossed. Changes in the 

costs of waiting or the benefit of information, lead to changes in the behaviour that 

maximise expected utility. Late for a meeting, we are more likely to rush into traffic, 

accepting slightly higher risks in return for a timely arrival. On foggy days we may 

sensibly look more carefully before stepping into traffic.    

 Similarly, a goalkeeper defending a penalty kick may leap too soon and end up 

on the wrong side of the net, or observe the striker for too long and leap in the correct 

direction, but have insufficient time to stop the ball. So, while looking reduces the 

keeper’s visual uncertainty, it comes at a cost of motor precision. Since looking too 

long or too little will result in more failed saves in the long run, a quality keeper 

should maximise save-rate by finding the ideal trade-off that balances sampling costs 

and benefits. 

 Such decisions require an assessment of how well one might do with and 

without additional information, and of whether the cost of gathering more information 

is worth the benefit. This is fundamental to all tasks in which information gathering 

can reduce uncertainty about succeeding, and includes not just perception-guided 

actions such as navigating traffic or playing sports, but also more cognitive tasks such 

as deciding how long to study for a test or look around before purchasing a house. 

Here we investigate how and when this fundamental information gathering skill 

develops between childhood and adulthood.  

Adult information sampling behavior has been investigated extensively in the 

cognitive domain, and human performance is typically less than optimal, often 

markedly so. For example, Tversky & Edwards (1966) asked participants to decide 

whether to sample random binary outcomes (light on/off) to learn the underlying 
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probabilities of each possible event (explore), or bet on which event would occur next 

to win points - but without feedback (exploit). Human performance was markedly sub-

optimal:  participants sampled 8 to 9 times the amount of information needed to 

maximize their expected winnings. Busemeyer & Rapoport (1988), using a similar 

costly sampling task, found that participants considered costs and benefits of sampling 

when deciding when to stop, but in some cases also sampled more than they should 

have to maximize their score.  

Contrasting behavior is found in “secretary problems” (Ferguson, 1989) and 

similar tasks, in which adults see a sequence of items differing in value and can either 

select the current item or go on to the next – they cannot go back to a previously 

rejected item. In these tasks, participants tend to stop too soon, lowering their chance 

to maximize winnings (Bearden, Rapoport, & Murphy, 2006; Kahan, Rapoport, & 

Jones, 1967; Rapoport & Tversky, 1970; Seale & Rapoport, 1997).  

Thus, in cognitive sampling tasks with clearly defined optimal strategies, adults 

often fail to follow this optimal strategy and maximize expected gain. In more recent 

free sampling tasks, adults see two lotteries, (e.g., decks of cards with varying points 

and penalties) from which they can freely sample to identify the more profitable lottery 

(Hertwig, Barron, Weber, & Erev, 2004). Participants typically sample only a few 

times (~15-20) before choosing which lottery to play. This has been characterized as 

under-sampling (Hau, Pleskac, Kiefer, & Hertwig, 2008), but without quantified 

sampling costs, it is unclear what the gain-maximizing stopping rule is  (Juni, 

Gureckis, & Maloney, 2016).  

It has been argued that adults in cognitive sampling tasks may be using a more 

adaptive strategy than first appears. For example, under-sampling may in fact reflect 

optimal stopping giving intrinsic costs such as boredom, fatigue, or different value 

assigned to payoff (Dudey & Todd, 2001; Seale & Rapoport, 1997). Participants might 

also be sampling optimally within the constraints of limited memory or planning 

capacity (Busemeyer & Rapoport, 1988; Hertwig et al., 2004; Rakow, Demes, & 

Newell, 2008; Rakow & Rahim, 2010), or base their stopping rules on heuristics, that 

whilst suboptimal, are reasonably successful at identifying the ideal strategy (Evans 

and Buehner, 2011; Fiedler and Kareev, 2011; Hertwig and Pleskac, 2010).  

More recently, sampling decisions have begun to be studied in the visuomotor 

domain, capturing problems that more closely resemble those faced in our road-

crossing or ball-interception examples (Battaglia & Schrater, 2007; Dean, Wu, & 
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Maloney, 2007; Faisal & Wolpert, 2009; Juni et al., 2016). Typically, these tasks have 

a strong emphasis on ideal observer models that capture the costs and benefits of 

visual information sampling, and that test participants’ abilities to balance these factors 

to maximize expected gain. In Battaglia & Schrater (2007) for example, the observer 

can delay his response in order to acquire more information about the location of a 

visual target but this comes at the cost of movement time - and hence precision - to hit 

the target and earn a reward. The typical finding in these tasks is that without much 

task-specific training, participants are able to trade off the benefit of further sampling 

against its costs to maximize their winnings. This suggests that in visuomotor tasks, 

adults are highly adept at estimating and accounting for their own visual sampling 

skills, and make complex sampling choices with surprising speed and automaticity. 

Like adults, children also face many tasks that rely on the ability to decide 

when to stop looking and start acting. In everyday risky activities such as crossing the 

road or playing outside, inefficient sampling choices could have a major impact on 

childhood safety. However, as yet, little is known about the contributions of this 

crucial decision-making skill to visuomotor development. In one recent developmental 

study, children and teenagers’ decisions from sampling were investigated in the 

cognitive domain, using a classic card-sampling paradigm. The results revealed that 8 

year-olds sampled approximately the same numbers of cards as adults to learn the 

payoffs of two lotteries before selecting one to play for points. In contrast, adolescents 

between the ages of 12-14 years sampled significantly less information than children 

or adults before playing, revealing a U-shaped developmental trajectory. Based on 

correlations with questionnaire data, the authors hypothesized that the age differences 

were linked to reduced motivation in the teenage years (Van den Bos & Hertwig, 

2017). However, to date, it is unclear how sampling decisions develop in a visuomotor 

context when the payoff structure derives from a noisy visual estimate – even though 

this is a type of sampling problem young children face very frequently in everyday 

life, and that has major implications for physical safety.  

We may expect that correctly estimating and accounting for the imprecision of 

visual estimates may be challenging early in life, when we have less world experience 

and our visual abilities are still changing. Some evidence for this possibility comes 

from research on sensory cue integration; when faced with two noisy sensory cues 

(e.g., a visual and tactile cue to object size), adults combine these cues into a single 

estimate in a near-optimal way, by taking an average that weights each cue in 
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proportion to its reliability (Ernst, 2012; Ernst & Banks, 2002). In contrast, across a 

range of tasks and cue combinations children only start weighting cues by their 

precisions after the age of 10-11 years, keeping cues separate before this time (Gori, 

Del Viva, Sandini, & Burr, 2008; Nardini, Bedford, & Mareschal, 2010; Nardini, 

Jones, Bedford, & Braddick, 2008).  

One recent study suggests that the ability to weight the rewards and penalties of 

different visuomotor action outcomes by their likelihoods also poses a challenge for 

children up to the age of 11 years (Dekker & Nardini, 2016). When making rapid 

reaches to a display with reward and penalty regions, adults correctly accounted for the 

imprecision of their reaches, and aimed for locations that would nearly maximize their 

expected score (Trommershäuser, Maloney, & Landy, 2003). Children, in contrast, 

aimed for “risky” regions with a high chance of winning but also a high risk of loss, to 

the detriment of their expected score. Interestingly, a similar preference for “risky” 

lotteries with high outcome variability has often been reported in childhood and 

adolescence for gambles with explicitly stated probabilities and values (Boyer, 2006; 

Defoe, Dubas, Figner, & van Aken, 2015; Levin, Hart, Weller, & Harshman, 2007; 

Steinberg, 2008; Weller, Levin, & Denburg, 2011), although it is unclear whether 

similar factors may underlie both types of decisions.  

In any case, adults typically perform close to ideal on sensorimotor decision-

tasks. In contrast, in children younger than ~10 years old, the available sensorimotor 

information is not combined and weighted correctly, leading to substantially poorer 

perceptual performance than that of an ideal observer (Gori, Del Viva, Sandini, & 

Burr, 2008; Nardini, Bedford, & Mareschal, 2010; Nardini, Jones, Bedford, & 

Braddick, 2008). Similarly, in a rewarded setting, this phenomenon with children led 

to substantially lower winnings compared to a gain-maximizing observer under the 

same conditions (Dekker & Nardini, 2016). Therefore, we hypothesized that younger 

children will also make inefficient sampling choices when the costs and benefits of 

sampling are determined by their own visual abilities, and that this ability will improve 

with age. 

To quantify age-related changes in visual information sampling and the 

processes supporting this development, we used in the present study a child-friendly 

adaptation of the visual target localization task described by Juni et al., (2016). We 

chose this task because it captures the complexity of realistic everyday visual sampling 

problems in a formal decision-making framework, with child-friendly task-demands. 
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During the experiment, we asked 6 to 12-year-olds, 13 to 15-year-olds, and adults, to 

locate a hidden target (a cartoon fish) by pressing on a touchscreen. To locate the fish, 

participant could ‘buy’ cues to the target location, but in doing so the potential reward 

was reduced. Each cue was a bubble (marked as a green dot) that appeared on the 

screen (Figure 1). Each dot was drawn from an isotropic bivariate Gaussian (Normal) 

distribution centred on the target. The more dots observed (i.e., sampled), the more 

likely it became that the centroid of the observed dots lay within the target containing 

the fish. The probability of catching the fish thus increases with each additional dot 

observed. However, each additional dot reduced the potential reward (green curve and 

blue line, Figure 2). The expected reward for any number of dots is the product of the 

reward for the fish and the probability of catching it (red curve, Figure 2). The ideal 

observer would sample the number of dots with the highest expected reward (dashed 

line, Figure 2).  

Thus, as in everyday sampling problems (e.g., deciding when to cross a road), 

minimising risk involves estimating the benefits of additional information gathering as 

defined implicitly by noise in the visual estimate, and then trading this information off 

against the sampling cost. As in naturalistic sampling, observers must select the best 

trade-off from a range of potential sampling strategies with different expected payoffs.  

Juni et al (2016) found that adult participants performed this task in qualitative 

agreement with the optimal strategy, buying fewer location cues when the cost of each 

cue increased. In one of their experimental conditions (low stakes), there was no 

patterned deviation in sampling from the ideal; though in a second condition (high 

stakes), participants sampled more information than they should have to maximize 

expected gain (about 1.5 additional cues per trial). 

To investigate how and when these optimal visual sampling skills are acquired, 

we first characterized the efficiency of sampling across childhood, adolescence and 

adulthood. To understand what drives developmental changes, we can then formulate 

hypotheses about candidate processes consistent with the specific deviations from 

optimality observed, and test these within the quantitative framework of the ideal 

observer model.  

Notably, in order to obtain a pure measure of decision making, it is crucial to 

remove any confounds due to immature sensorimotor ability. For example, it is 

possible that some children may actually need to sample more information than adults 

because they are poorer at utilizing the available information (see Jones & Dekker, 
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2017). We accounted for this potential confound by also measuring empirically, in a 

separate control task, how well the ability to hit the target improved as the number of 

cues increased. We then incorporated this measure into the hit probability component 

of the ideal observer model (green curve, Figure 2), against which empirical choices 

were compared. In this way, we were able to make individualized predictions for each 

participant regarding their optimal decision strategy, against which we compared their 

observed performance. 
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Methods  

Participants 

Participants of the main experiment consisted of twenty-nine adults (M=23.89, 

SD=0.79, 20 female), and 129 children and adolescents aged 6-15 years, all with 

normal or corrected-to-normal vision and no known neurological disorders. The 

children were divided into three equal age groups: 30 6-7 year-olds (M=7.12, 

SD=0.11; 17 female); 30 8-9 year-olds (M=8.76, SD=0.10; 13 female); 30 10-12 year-

olds (M=10.93, SD=0.12; 11 female. To test for a possible non-linear (‘U Shaped’) 

trend in development during adolescence, we tested 29 13-15 year-olds (M=14.7, 

SD=0.88, 22 female). In each age group, half of the participants were randomly 

assigned to the high cue reliability condition, and the other half to the low cue 

reliability condition. Six participants whose sampling strategies deviated by more than 

2.5 Median Absolute Deviations from others --- likely reflecting non-compliance with 

task-instructions --- were excluded (5.0%; see Table 1). When these data are included, 

the overall pattern of results remains qualitatively unchanged.  

 Finally, control data was collected from 11 children aged 6-7 years (M=6.95, 

SD=0.13; 5 female). Participants whose sampling strategies deviated by more then 2 

mean absolute deviations from the mean groups strategy, were exclude. Remaining 

numbers after exclusion are reported in Table 1. The research was carried out in 

accordance with the Declaration of Helsinki and the UCL Research Ethics Committee 

approved the experimental procedures (#2280/001). 
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Stimuli and Task 

Stimuli were presented on an Iiyama ProLite LCD touch-screen display (521.3 x 

293.2mm; Iiyama Co Ltd, Tokyo, Japan) connected to a MacBook Pro (Apple Inc., 

Cupertino, CA) running MATLAB Psychtoolbox v3 (Kleiner et al., 2007). Participants 

played a fishing game in which they “bought” probabilistic cues (‘bubbles’) indicating 

the location of an invisible target circle containing a fish (target radius 12.8mm). Each 

cue increased the chance of a correct response (green lines, Figure 2). However, it also 

incurred a 1-point deduction of the reward for a hit, initially set to 20 (blue lines Figure 

2). Current target value was displayed on both sides of the screen (see Figure 1). The 

Figure 1: Participants sampled location cues (dots) drawn from an isotropic bivariate Gaussian 

distribution. There were two conditions differing in standard deviation: high (12.4 mm) or low 

(27.5mm). Stimuli from the high condition are shown. The target is initially worth 20 points. 

Each additional dot increased the chance of locating the target, but reduced the target value by 1 

point. Participants decided when to stop sampling, and then attempted to locate the fish by 

placing a hook on the estimated center of the dot cloud. If the hook fell within the target area, the 

response was scored a hit and all remaining points were awarded. Otherwise, a miss yielded no 

points.    
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participant only paid the cost of the information sampled if they succeeded in catching 

the fish. No cost was imposed when they did not. 

The probabilistic location-cues were green dots (radius: 1.1mm), drawn from a 

zero-mean bivariate Gaussian distribution with covariance matrix: [
𝜎𝑑𝑜𝑡𝑠

2 0

0 𝜎𝑑𝑜𝑡𝑠
2 ]. The 

value of σdots (i.e., the magnitude of external noise) was fixed within subjects at either 

12.4mm (high reliability) or 27.5mm (low reliability). Since the Gaussian distribution 

was centred on the target location and the sample mean is the unbiased minimum 

variance estimator of the population mean of the Gaussian distribution, the target 

location estimate minimizing variance and maximizing probability of hitting the target 

was the centroid (bivariate mean) of the observed cues (i.e., Mood, Graybill, & Boes, 

1974).  As the number of samples, Ndots, increased from 1 to 20, the variance of the 

centroid estimate decreased and the probability of hitting the target increased. If 

participants averaged the dot-cues perfectly, then following the Weak Law of Large 

Numbers (Feller, 1968), the expected standard deviation in the aiming point (centroid) 

around the target decreases at a rate of √𝑁𝑑𝑜𝑡𝑠: 

 

The corresponding probability of hitting the target can then be computed by 

integrating this ideal aiming point distribution (Gaussian with σideal) across the target 

circle (see Supplementary Figure S1  

for details). 
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However, as highlighted in the Introduction, there is no reason to suppose that 

children or adults are ideal in how they average sensory information (Jones, 2018; 

Jones & Dekker, 2017). Participant-specific imprecisions in locating the middle of the 

dot-cloud will introduce additional random-variability in aiming points around the 

target and will concomitantly reduce the hit probability. 

 To account for individual differences in integration ability, we measured hit 

probabilities empirically for different values of Ndots. We did so by asking each 

participant to perform a “fixed Ndots task” after the main task. This was identical to the 

main task, except that the experimenter controlled the number of cues shown on each 

trial. These data allowed us to estimate directly, and for each subject, the probability of 

hitting the target as a function of Ndots (green curves Figure 2). We could then correct 

our analysis of the subject’s decision-making performance for any sub-optimality in 

estimating the centroid of the dots. See the Supplementary Figure S1 for details on 

how this adjustment was performed. 

In the main task, participants were instructed to score as many points as 

possible. This required them to trade off the benefit of a higher hit probability with 

additional dot-cues, against the cost of a 1-point decrease in target-worth per dot. An 

ideal observer would compute the expected score for each Ndots by multiplying the 

target’s current worth with the probability of hitting the target (resulting in the red 

‘expected gain’ curves in Figure 2), and then identifying the Ndots with the highest 

score prediction (ideal Ndots, red peak).  

Figure 2. A formalized model of the sampling 

decision problem: target value (blue line) and 

probability of hitting (green curve; measured for 

each participant in a separate condition) are 

plotted as a function of sample size (x-axis), and 

separately for low (top) and high reliability cues 

(bottom). The expected gain for each Ndots (red 

curve) is the target worth multiplied by 

probability of hitting the target. The ideal 

observer samples the number of dots for which 

the expected gain is highest (circle at intersection 

of the red curve and the dotted line that indicates 

its maximum). A hypothetical  inefficient sampler 

would score less than the predicted maximum, 

either sampling to few dots (squares) or too many 

dots (diamonds) or  mixing  over- and under 

sampling trial by trial (triangle with error bar). 



 13 

We varied spatial cue reliability by changing the standard deviation of the 

sampling distributions, σdots. Cues with low reliability (σdots = 27.5mm) yielded a 

flatter, wider expected gain curve, and cues with high reliability (σdots = 12.4 mm) 

yielded a narrower, more peaked expected gain curve (see Fig 2). Half of the subjects 

were presented with low reliability cues and the other half with high reliability cues. In 

the implausible case of perfect use of the visual cues, the optimal strategy was to 

sample 8 dots in the low reliability condition and 4 dots in the high reliability 

condition. In practice, there was some imprecision in use of the dot-cues - see Table 1 

for ideal numbers of Ndots for the different age groups after adjusting for participant-

specific hit probability functions.  

Because visual cue reliability was fixed within each condition, the sampling 

strategy that maximizes expected gain given a particular hit probability function was 

fixed too, so the ideal observer would sample the same number of dots on every trial 

(circles, Figure 2). In contrast, an inefficient visual sampler might sample a lower or 

higher number of dots than required to maximize expected score (i.e., select a biased 

sampling strategy; squares or diamonds Figure 2), and any trial-by-trial variability in 

sampling behavior will also reduce the expected reward relative to the ideal (triangles 

Figure 2). 

 

Procedure 

Dot-sampling task: Participants were positioned within comfortable reaching distance 

of the touchscreen. First, they were familiarized with the location cues by placing a 

cursor on a saturated dot-cloud (Ndots = 20), and pressing enter to see the location of 

the target (a fish inside a circle) (20 trials). At the start of this training, they were 

instructed that the fish were most likely to hide exactly in the middle of the dot-cloud 

and that they should always aim for this location to get the best possible score. This 

was done to encourage participants to use the ideal response strategy of locating the 

arithmetic mean. However, since we measured hit probabilities empirically in a 

separate “fixed dot task”, our modeling and analyses account for use of different 

strategies, or any age differences in the ability to locate the mean location of the dot-

cloud.   

 Participants then practiced the main task (20 trials) in which they could 

purchase up to 20 dots by pressing space bar at a cost of 1 point per cue, deducted 

from the initial 20-point target reward. If the cursor fell within the target circle when 
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the participant entered their guess, they won the current reward (20-Ndots), at which 

point the circle around the fish turned green and a voice announced the number of 

points won (auditory feedback). If the cursor fell outside the circle, the circle around 

the fish turned red, and a score of “zero points” was announced. To ensure that 

participants understood the instruction to “find the middle of the dots”, they received 

feedback about the arithmetic mean of the dots (indicated by a crosshair) after making 

their response on the first 15 of these 20 trials. The main task consisted of 100 test 

trials. Points won during the test trials were converted into tokens that could be 

exchanged for toys (children) or money (adults) at the end of the experiment. To match 

motivation across ages, participants were only informed of how many toys/how much 

money the tokens were worth at the end of the task. 

 

Fixed dot task: After the main experiment, participants performed a second, similar 

task in which they were presented with fixed Ndots rather than being allowed to choose 

Ndots themselves (25 trials per value of Ndots). The purpose of this task was to identify, 

for each individual, the probability of hitting the target as a function of Ndots, in order 

to account in the main task for any individual differences in visual integration ability. 

Nineteen adults were presented with all Ndots conditions (1 to 20 dots). Since these data 

revealed that hit-probability increased approximately quadratically, we only presented 

the 2, 3, 7 and 15 dots conditions to the remaining participants to minimize test-load, 

and fitted curves (constrained splines) to interpolate measures (see Supplementary 

Figure S1 for details). 

 

Measures 

In the fixed-dot task, a predetermined number of dots was presented on each trial. The 

key outcome measures were the interpolated hit probability as a function of Ndots for 

each participant (Supplementary Figure S1). This allowed us to identify, for each 

individual, which Ndots yielded the highest expected reward, by computing the 

expected gain curve (Target Value x Target Hit Probability) and calculating the 

number of dots that maximized expected reward; group averages in Table 1). In the 

main task, we measured how subjects’ sampling choices deviated from this ideal 

sampling strategy, and how their scores deviated from their best possible scores.  

 

Results 
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In the following sections, we first quantify how much the different age groups deviated 

from the ideal sampling strategy, and how this affected their performance. We then 

investigate the nature of these deviations (i.e., how they compare to the optimal and 

suboptimal sampling strategies depicted in Figure 2). Finally, we hypothesize which 

neurocognitive processes could give rise to these specific age-related changes and 

present further analyses and data testing these hypotheses.  

 

Age Differences in Sampling Efficiency   

To test for age-related improvements in visual information sampling, we first 

tested for age differences in how closely the sampled Ndots approximated the ideal Ndots 

(Fig. 3). For each subject, we determined the Mean Absolute Deviation between the 

Ndots bought on each trial and the individual ideal Ndots (peak expected gain curves Figs 

2 & 4): 

 

 

 

Figure 3A plots group means and 95% CIs for this measure. The ANOVA’s we 

performed revealed that the deviation from the ideal sampling strategy decreased 

significantly with age in both cue reliability conditions (high reliability cues: 

F(4,69)=4.77, p=0.002; low reliability cues: F(4,71)=5.2, p=0.001). Information sampling 

efficiency thus improved with age. However, individual sampling decisions were often 

suboptimal at all ages: analyses of individual participants using Bonferroni-corrected 

one-sample t-tests (113 tests, p < 0.00044) revealed significant differences between 

Ndots sampled and Nideal in 25 out of 27 6-7 year-olds (93%), 22 out of 30 8-9 year-olds 

(73%), 23 out of 27 10-11-year-olds (85%), 21 out of 29 teenagers (72%), and 23 out 

of 29 adults (79%). Thus, although adults were more efficient and closer to their ideal 

sampling strategy than children, many individuals still exhibited suboptimal sampling 

strategies.  

To test how these age-differences in visual information sampling affected task-

performance, we predicted what participants’ score could have been if they had used 

their own ideal strategy on every trial. The “score percentage” is the percentage of this 

ideal score that was actually obtained (Figure 3B). Score percentage increased 

significantly with age for high reliability cues (F(4,69)=5.4, p<0.001) but while a similar 
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pattern was observed in the low cue reliability condition, this effect was not 

statistically significant (F(4,71)=0.8, p=0.53). This might be because deviating from the 

ideal strategy in the low cue reliability condition resulted in smaller reductions in hit 

probability, and hence a lower cost to performance (less steep expected gain curves 

(red) in bottom vs. top panel of Figs 2 and 4).  

  

Figure 3. A. Mean absolute 

deviation from the gain-

maximizing strategy (mean 

± 95%CI). B.  score 

percentage, the percentage 

of the best score prediction  

(set to 100%, red dotted 

line) actually obtained. Stars 

indicate significant 

differences across 

consecutive age groups 

(p<0.05 see Supplementary 

Table1) 
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Younger children’s sampling strategies deviated more from ideal sampling than 

those of adults and this reduced their score. Sampling strategies became increasingly 

more efficient with age and started to resemble those of adults from approximately age 

10 years onwards (see Figure 3., and Supplementary Table S1). Adolescence --- the 

period between age 11 years and adulthood --- is often linked to more risky behavior in 

real life, and it was recently suggested that this may in part be due to a reduced 

tendency to seek out information about probabilities (Van den Bos & Hertwig, 2017). 

In the current experiment deviations between the ideal and sampled Ndots were closest 

to those of adults in adolescents. This outcome suggests that the ability to balance 

costs and benefits to optimize visual information sampling, develops around age 10 

years or soon thereafter, and follows an incremental rather than a U-shaped trajectory.  

 

Age differences in Sampling Bias and Variability 

To understand why younger children’s sampling choices were inefficient, we 

investigated in which specific ways (outlined in Fig 2) they deviated from the ideal 

observer. In Figure 4 we have plotted the individual sampling strategies (mean Ndots) 

against the scores obtained for each age group, as well as the age-specific expected 

gain across Ndots (red “expected gain” curves; thick lines are group averages, thin lines 

are individuals) and the ideal strategy (dotted line). Positive values indicate over-

sampling and negative values under-sampling. The average ideal Ndots and observed 

Ndots are displayed for each age group in Table 1. Notably, the data points in all age 

groups follow the red curves, indicating a reasonable model fit, especially for subjects 

who showed consistent sampling (see Supplementary Figure S2). In the following 

sections we test for suboptimal sampling strategies, as reflected in systematic bias 

towards under- or over-sampling, and variability in sampling (Figure 2). 
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Figure 4: Red data points show the numbers of dots sampled per trial plotted against trial scores (means 

and 95%CI). Scores are shown as proportion of the maximum trial score (20). Red curves indicate the 

expected gain for each Ndots (thick curves show group averages; thin curves show individuals). Note that 

these curves indicate the expected score for the scenario in which the corresponding Ndots is sampled on 

every single trial. The ideal Ndots was computed separately for each individual based on their observed hit 

rates in the fixed-dot condition; see Methods. Therefore, the gain-maximizing strategy/peak of the gain 

curves is centered on zero so that deviations from the ideal strategy are comparable across participants. 

See Table 1 for average group values.  

Figure 5. A: Group-mean 

sampling bias as indexed by the 

signed deviation from the ideal 

sampling strategy (mean ± 

95%CI). Negative values indicate 

a tendency to under-sample. 

Positive values indicate a 

tendency to over-sample. B: 

Group-mean sampling 

consistency as indexed by the 

Standard Deviation of sampled 

Ndots. Stars indicate significant 

differences or trends across 

consecutive age groups (black: 

p<0.05, red: p<0.1 see 

Supplementary Table1) 
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Age Differences in Sampling Bias? 

First we tested if reductions in performance efficiency in childhood were due to a 

systematic tendency to under- or over-sample (sampling bias). Either bias would result 

in a reduction in expected gain - in the case of under-sampling because observers 

played for higher points at an overly great chance of missing the target, and in the case 

of under-sampling because observers improved their hit-rate at an overly great loss of 

target value  (Figure 2, squares and diamonds). To test for age differences in sampling 

bias, we computed the mean signed deviation from the optimal sampling strategy 

(sampled Ndots – ideal Ndots; Figure 5A). Within the low reliability condition, there was 

a significant shift from under-sampling at the youngest ages to slight over-sampling in 

adults (F(4,71)=4.55, p=0.003). In the high reliability condition, children of all ages 

significantly under-sampled while adults did not show any sampling bias, but the age 

difference in bias was not significant (F(4,69)=1.11, p=0.36). Together these findings 

reveal a developmental shift from under-sampling in the youngest children, towards 

more extensive and closer-to-ideal sampling in older children and adults.  

 

Age Differences in Trial-to-Trial Sampling Variability? 

Next, we tested whether variability in sampling strategy could also have contributed to 

reductions in performance efficiency in childhood. The ideal observer in this 

experiment should never deviate from the optimal sampling strategy, as any variation 

comes at some cost to expected gain (Juni et al., 2016). To test for age-differences in 

sampling consistency, we compared the standard deviation of the Ndots sampled. For 

Table 1. For each age group and condition, the number of subjects after outlier removal (columns 2-3), 

σinternal: mean standard deviation of aiming variance around the middle of the dot-cloud (see 

Supplementary Materials S1, from the fixed Ndots condition (columns 4-5), sampled Ndots (columns 6-7), 

and Ideal Ndots (columns 8-9). 

N after outlier 

removal	

σinternal(mm)	 Observed Ndots	 Ideal Ndots	

cue reliability 

condition (σdots)	

high 	

(12mm)	

low	

(28mm)	

high	

(12mm)	

low	

(28mm)	

high	

(12mm)	

low	

(28mm)	

high	

(12mm)	

low	

(28mm)	

6-7 yrs:	 13	 14	 3.4 (0.7)	 6.5 (0.9)	 3.7 (1.6)	 4.6 (2.0)	 4.7 (0.23)	 7.1 (1.5)	

8-9 yrs:	 15	 15	 3.5 (1.0)	 6.1 (1.2)	 3.6 (1.3)	 6.8 (2.7)	 4.8 (0.33)	 6.9 (1.3)	

10-11 yrs:	 13	 14	 2.7 (0.8)	 5.9 (1.5)	 3.3 (0.9)	 6.5 (1.8)	 4.6 (0.03)	 7.1 (0.9)	

13-15 years:	 15	 14	 3.0 (0.7)	 5.3 (0.8)	 4.2 (0.8)	 7.9 (1.5)	 4.8 (0.25)	 7.1 (1.0)	

adults:	 14	 15	 3.0 (0.5)	 5.1 (0.8)	 4.7 (1.1)	 8.4 (1.7)	 5.1 (0.35)	 7.5 (1.0)	

6-7 yrs: 	

no cost control	

n/a	 11	 n/a	 n/a	 n/a	 18.5 (2.6)	

	

n/a	 20	
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cues with high reliability, sampling was significantly more variable at younger ages 

(F(4,69)=2.81, p=0.03; Figure 5B. But the age-related decrease in sampling variability 

was not significant for cues with low reliability (F(4,71)=0.57, p=0.69). Thus, at least for 

high reliability cues, greater variability in sampling over the course of the study likely 

contributed to children’s poorer performance. 

  

Which processes underlie these age-differences in sampling? 

The foregoing analyses show that information sampling develops across childhood, 

with closer-to-ideal sampling strategies resulting in higher target localization scores. 

This development was paired with a shift from systematic under-sampling of visual 

information towards sampling the amount that offers a perfect trade-off between 

information costs and benefits, as well as with less variation in the sampling strategies 

selected. What processes could give rise to this developmental shift in sampling 

choices?  In the following section we present additional analyses, data, and simulation 

to test 4 potential explanations: 

Do children’s sampling strategies deviate more from the ideal because: 

1. It takes the developing system longer to learn the optimal sampling strategy 

over the course of the task (Age differences in learning)? 

2. Younger children assign additional intrinsic cost to sampling, for example due 

to fatigue or boredom (Age differences in sampling costs)? 

3. Children’s stopping rule is more heavily influenced by information that appears 

to provide information about hit probability but is in fact misleading, such as 

dot-spread or trial-to-trial fluctuations in performance (Age differences in 

sensitivity to probability information)? 

4. Children are in fact making a correct trade-off between hit probability and 

target value, but their probability representation is noisy or biased (Age 

differences in the visual uncertainty estimate)? 

 

1) Age Differences in Learning? 

The ideal observer would choose the sampling strategy that maximises gain on each 

trial. However, in practice participants of all ages used variable sampling strategies 

with the greatest variability observed at younger ages. Our ideal observer model infers 

the gain-maximising strategy based on the (implicit) estimate of the uncertainty in the 

visual cue and on sampling costs, but in reality, participants may in part rely on 
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reinforcement learning to identify the ideal strategy. To investigate contributions of 

such learning, we tested whether participants’ sampling decisions improved over the 

course of the task and how this differed across age groups (Figure 6).  

We fitted linear trends to individual deviations from the ideal Ndots across the 

100 experimental trials to quantify shifts towards or away from the ideal sampling 

strategy. We then compared the slopes across age. For cues with high reliability, there 

was a significant overall shift towards more under-sampling over the course of the task 

(slope < 0; t(54)= -3.0687, p=0.0034). This main effect was driven primarily by 

children; Adults did not change their sampling strategy significantly (t(13)=-0.82, 

p=0.43) while children’s sample sizes decreased over time, although this pattern did 

not reach statistical significance in the youngest age group (10-11 t(12)= -2.49, p = 

0.03; 8-9: t(14) = -2.95, p = 0.01; 6-7 t(12) = -1.53, p = 0.15). There was a marginal 

age difference in slope (F(3,51)=2.75, p=0.05). In the low cue reliability condition, 

sampling strategies did not change substantially with age; slopes did not deviate 

significantly from zero t(57)= -1.3408, p= 0.19, and did not differ significantly with age 

(F(3,54)=1,70, p=0.17). In short, adults immediately chose their sampling strategy from 

the start of the task, suggesting they rapidly inferred a close to - though not perfectly - 

ideal strategy and/or were very fast learners. In contrast, younger participants 

consistently under sampled, and if anything, moved further away from the ideal 

strategy over the course of the task, despite receiving constant feedback about their 

score.  Given that there was little evidence for reinforcement learning at any age, a 

slower learning rate is unlikely to fully explain the age differences in sampling. 

Figure 6. Mean Ndots 

sampled across trials 

are displayed per 

age group (columns) 

and conditions 

(rows). Shaded error 

bars indicate 

bootstrapped 95% 

CIs. Stars indicate 

that the slope 

parameter of the 

linear trend fitted 

through individual 

data deviated 

significantly from 

zero (p<0.05)  
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2) Age Differences in Sampling Costs? 

A tendency to gather too little information in younger children could be explained by 

fatigue or boredom, as such factors may impose additional (implicit) costs on dot-

sampling that were not accounted for in the explicit cost function of the ideal observer 

model. To test this, we performed a control experiment with a new cohort of children 

from the youngest age group (the age group that most exhibited under-sampling in the 

first experiment). Eleven 6 to 7-year-olds performed the same low cue-reliability 

condition from the main experiment (see Methods), the only difference was that the 

cost of sampling more dots was reduced from 1 to 0 (i.e., target-worth remained at 20 

points throughout, irrespective of the number of dots Ndots sampled). Clearly, the gain-

maximizing strategy in this case is to sample all 20 dots on every trial. This requires 

frequent button pressing and long test durations, which should amplify any effects of 

fatigue or boredom. Nevertheless, 6 to 7-year-olds sampled substantially more dots 

than before, and did not deviate from the gain-maximizing strategy by any greater 

extent than in the main task (18.5 vs. 20 as compared with 4.6 vs 7.2). Moreover, they 

did not reduce their sampling over the course of the experiment (sampled Ndots start(1-

15)= 17.9 (SD=3.5), sampled Ndots end(85-100)= 18.2; (SD=2.9); see Supplementary Figure 

S3). Thus, it is unlikely that young children’s tendency to under-sample information in 

the main experiment was due to fatigue, boredom, lack of motivation, or failure to 

comprehend the task. These results also confirm that even the youngest children had at 

least some understanding of the ‘probability x value’ structure of the task, since they 

sensibly sampled more information when there were no explicit sampling costs. 

 

3. Age differences in Sensitivity to Probabilistic Information? 

Juni et al. (2016) showed that one reason why adults in their experiment varied their 

sample sizes from trial to trial was that they adjusted their sampling strategy to the 

spread of the sampled dots, sampling more when dot positions were far apart. This 

strategy is suboptimal: when underlying sampling distributions have a fixed standard 

deviation, hit probability is independent of sample spread, which is something 

participants could experienced first-hand in the training trials, and throughout the task. 

However the false intuition that more closely spaced samples are somehow more 

reliable seems deeply ingrained.  
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To test whether this false intuition might explain the more variable and less efficient 

sampling observed in childhood, we extracted the observed dot configurations for 

every trial in which participants viewed 3-14 Ndots (data for other conditions were too 

sparse). For each dot configuration, sample spread was computed as the Root Mean 

Square (RMS) distance of the points from the arithmetic mean. The set of RMS values 

was then divided into two types (RMSstop vs. RMScont.), depending on whether the 

observer stopped sampling at this point or continued to sample more dots on that trial. 

Finally, we computed the mean Sample Spread Difference (SSD) between the two trial 

types,  

          SSD = RMScont – RMSstop, 

and used bootstrapping to compute 95% confidence intervals. If observers were more 

likely to keep sampling when dot-cue spread was high, then SSD would be positive. In 

contrast, if --- as per the ideal observer --- sampling decisions were made 

independently of dot-cue spread, then SSD would be ~0. The results of this analysis 

are shown in Figure 7. First, let us consider the High Reliability (σdots = 12 mm) 

condition. Up to the ages of 8 to 9 years sampling choices were independent of dot-cue 

spread. A tendency to sample more dots when sample variance was greater, especially 

as Ndots increased present in adults (p<0.01), emerged around age 10-11 yrs. (p<0.05), 

although this pattern did not reach statistical significance in adolescents. In the Low 

Reliability (σdots = 28 mm) condition, there was no effect of sample variance for any 

age groups. 

Figure 7. The Sample Spread Difference (SSD) is the difference in root mean squared error 

between trials on which participants continued sampling (RMScont) vs. trials on which they 

stopped (RMSstop). The SSD is plotted across different Ndots for each age group and cue 

reliability. The mean SSD collapsed across Ndots is presented in the right panels. 
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 Thus, in keeping with previous findings (Juni et al. 2016) adults and 

older children’s stopping rules were (incorrectly) affected by dot sample variance in 

the high reliability condition, while younger children were affected less or 

inconsistently by dot-cue spread. There was no significant effect of dot cue spread on 

sampling strategy at any age for Low Reliability cues.  Developmental changes in 

visual sampling such as reduced variance in the Ndots sampled with age - are therefore 

unlikely to be driven by greater sensitivity to dot-spread in younger participants.  

We also tested if greater susceptibility to hits and misses on previous trials 

could explain greater variance in sampling behaviour in the younger age groups, and 

found this not to be the case (see Supplementary Figure S4). This analysis showed that 

participants aged 8-9 years and older, all sampled more Ndots following series of misses 

than after series of hits, but that the youngest children did not adjust their sampling 

significantly depending on previous trial success. This suggests that adults and older 

children may use feedback in similar ways to fine-tune their sampling strategy, but that 

younger children appeared to ignore feedback altogether. 

 

4) Age Differences in the Visual Uncertainty Estimate? 

We next explored whether the tendency to under-sample in younger children may in 

fact be adaptive if you have an imperfect estimate of visual uncertainty. The ideal 

observer model we used to analyse the data (e.g., Figures 2 and 3), assumes that 

participants are perfectly aware of how their chances of hitting the target increases 

with Ndots (i.e., σobs; see Supplementary Figure S1). However, participants may have 

had some error or bias in their estimate of response precision, and this may be more 

extreme in childhood. Could children’s sampling choices in fact be maximising score 

considering such plausible limitations?  

To test this, we first computed the ideal sampling strategy for an observer with 

a noisy but unbiased estimate of how hit probability changes with dot sample size. 

Details on how this model was computed are provided in Supplementary Figures S5 

and S6. With increasing amounts of error in the hit probability estimate, this noisy 

ideal observer sampled fewer dots than the ideal observer with a perfect hit probability 

estimate (see Supplementary Figure S5). Importantly, however, even for large error in 

the visual uncertainty estimate, the reduction in the ideal Ndots to sample was only 

small, and did not approach sampling choices in the youngest age group.  
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 It is also possible that the sampling choices in young children might be 

explained by a systematic bias in the estimated chance to hit the target. Since we had 

no a-priori reason to assume that children systematically under- or overestimate the 

precision of their location estimate, we considered how processing limitations known 

to characterise development (i.e., limited memory), might give rise to such a bias; one 

way in which participants might estimate visual uncertainty for a given sample size, is 

by directly tracking the deviations between each location guess and the target location. 

An observer considering only a limited number of previous trials to compute the 

deviation between location guesses and target due to limited memory for a given Ndots, 

will overestimate the true chance of hitting the target (see Supplementary Figure S6 for 

simulations). However, when we simulated an observer with the maximal bias that this 

strategy could result in, combined with the highest possible amount of uncertainty 

around this biased estimate of hit probability that we could model, the ideal sampling 

strategy was still slightly higher than the Ndots observed in young children (Ndots at age 

6-7 = 4.6, ideal Ndots for the most noisy and biased ideal observer = 5.6 dots), although 

it started approaching child behaviour. So, a similar process could contribute to the 

tendency to under-sample in childhood, but is unlikely to fully explain it. 

 

Discussion  

We used a rewarded target-localization task to measure visual information-sampling 

decisions in 6- to 15-year-olds, and adults. To perform well in the task, participants 

had to weigh the benefit of sampling additional dot-cues against the cost of sampling, 

and identify the sample size that maximized their expected score. This captures the 

problems faced in real world situations in which more sampling reduces uncertainty 

but comes at a cost (see Introduction). Visual cue reliability could either be high or 

low. For each of these conditions, we computed the optimal number of samples 

(maximal expected winnings), and compared human performance to the ideal. We 

measured the efficiency of performance, defined as the ratio of observers’ winnings to 

the maximum possible winnings in that condition. Participants could fail to maximize 

their winnings by consistently sampling too little information (under-sampling) or 

consistently sampling too much (over-sampling). They could also fail by sampling too 

much or too little on some of the trials, even if on average, they sampled the correct 

amount. 
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  The youngest children markedly deviated from the gain-maximizing strategy 

(Figure 3A), and scored less well on the task (Figure 3B). With age, sampling choices 

gradually shifted towards the ideal strategy so that by 10-11 years, children’s sampling 

resembled the near optimal performance of adults. Younger children’s sampling 

choices were less efficient in that they (a) showed a systematic bias towards under-

sampling, and (b) showed more variation in the numbers of dots sampled (Figure 4 and 

5). While this pattern was observed for both cue reliabilities, not all age differences 

reached statistical significance in both cue conditions. This is likely because the 

conditions differed in their sensitivity to these different aspects of sampling efficiency. 

For example, given the strongly peaked gain-landscape for high reliability cues, a 

suboptimal strategy was penalized more heavily and caused greater loss of points. 

Instead, for low reliability cues, there was more room for under-sampling because the 

ideal strategy was not compressed towards the lower end of the scale.  

 Taken together, the data suggested a gradual age-related improvement in visual 

sampling, with adult-like performance reached around age 10-11 years or soon 

thereafter. Below we discuss the processes that might give rise to this development, 

based on our further analyses and control experiments.  

 

More variable sampling in childhood 

For each experimental condition there was only one optimal strategy and the 

participant should choose the same (optimal) number of samples on every trial. The 

ideal observer would always take the same number of samples in each trial of an 

experimental condition (Juni et al., 2016). In contrast, our human observers were prone 

to vary the number of cues sampled across trials, and this tendency was particularly 

pronounced in younger children. 

One possible explanation for this developmental difference is that younger 

children are slower to learn the statistics of the task, and so spent more time exploring 

ineffective sampling strategies. Evidently, when the gain-landscape of a task (i.e., the 

mapping of responses to outcomes) is not exactly known, exploring different response 

strategies can be helpful for learning which is best (Gureckis & Love, 2009). In 

contrast, when, like our adults, an observer is able to resolve the gain landscape 

quickly, we would expect them to adopt the ideal strategy early in the task and stick 

with it. Indeed, they may use previous experience to quickly learn the task by 

generalization (Zhang, Kulsa, & Maloney, 2015).  
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Interestingly, however, even though children in the current study were more 

variable in their sampling strategies, we found no evidence of learning across trials. If 

anything, younger participants moved away from the ideal strategy over the course of 

the session (Figure 6). We therefore considered another factor that might contribute to 

children’s more variable sampling; an over-sensitivity to task-irrelevant information, 

such as trial-by-trial variations in the spread of the dot cues, and/or the outcomes of 

previous trials.  Whilst an ideal observer with perfect understanding of the hit 

probabilities in the current task should ignore these cues, a more realistic observer with 

imperfect knowledge about dot cue reliability and their own averaging skills might use 

these cues, to inform their sampling decisions.  

Adults and older children did sample more information when the spread of the 

existing dot-cues on the screen was high (in line with findings by Juni et al), and when 

they experienced a run of misses in the immediately preceding trials. However, there 

was no evidence for sensitivity to these cues in the youngest children. While children 

varied the number of samples taken from trial to trial, in line with a preference for 

novelty and exploration we could not identify factors indicative of learning that lead 

them to sample more or less. Moreover, children appeared to be relatively insensitive 

to information about success probability and visual uncertainty. Instead, as discussed 

below, more variable sampling in childhood in part reflected a gradual shift towards a 

strategy with greater potential rewards but lower expected gain in the long run. 

 

 

Under-sampling 

On average, adults sampled the gain-maximising number of dots in both cue-reliability 

conditions (although a substantial number of individual adults deviated slightly from 

the ideal strategy). Instead, younger children systematically under-sampled and failed 

to maximize their expected winnings as a result. An age-related shift from under-

sampling towards more efficient sampling was particularly noticeable in the low cue-

reliability condition (Figure 5 top-right panel). However, a similar age-difference 

towards under-sampling emerged over the course of the high cue-reliability condition 

(Figure 6). Thus, children persisted in choosing a sampling strategy with reduced 

expected gain, despite continuous feedback about the deviations between location 

estimates and target locations, hit-rates, and scores.  
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Under-sampling on this task can be described as risk-seeking because it 

involves playing for higher stakes at a greater chance of losing, thus favouring a 

greater range of possible outcomes (e.g., 16 or 0 points) over sampling strategies with 

a smaller outcome range (e.g., 12 or 0 points) but a higher expected score. This is a 

standard definition of risky choice behaviour (Defoe et al., 2015).  

We considered several factors that could potentially account for children’s 

tendency to under-sample.  Firstly, we explored whether children’s sampling decisions 

might be explained by intrinsic cost factors not captured in the ideal observer model in 

Figure 2, such as fatigue or boredom. We did this by running a control experiment in 

which sampling more dots incurred no point-loss. 6- to 7-year-olds in this situation, 

sampled substantially more than the children in the main experiment. Crucially, 

despite making more button-presses and enduring longer trials, these children did not 

reduce their sampling over the course of the control task. This outcome implies that 

children’s substantial under-sampling in the main experiment is unlikely to be due to 

fatigue, lack of motivation, or some other implicit sampling cost. Interestingly, this 

comparison of main and control tasks revealed a sensitivity to both value and 

probability information even at the youngest ages of 6-7 years: children sampled much 

less when sampling incurred a point loss (~4.6 dots, main task), than when sampling 

improved the probability of success without any loss (~18.5 dots, control task). Still, 

while 6 to 7-year-old children were sensitive to both value and probability, their 

sampling decisions were less efficient than those of older children and adults. 

 We next tested whether the trade-off children made in the main task might in 

fact be considered optimal if we assumed noise and/or bias in the estimate of visual 

uncertainty and target hit probabilities. To explore this possibility, we first simulated 

the effects of adding Gaussian noise to an observer’s internal estimate of their own 

visual uncertainty. The largest amount of error that we were able to model (assuming 

equal likelihood of under- or over-estimation) only predicted a small reduction in 

sampling, suggesting that this factor alone is unlikely to explain child performance.  

We also investigated how a biased estimate of hit probability would affect the 

ideal sampling strategy. Because we had no a-priori reason to assume that children 

would systematically under- or overestimate their chances of hitting the target, we 

considered a bias that might plausibly arise from keeping track of the deviations 

between location estimate and the target. Over a large number of trials, the variance 

estimated using this strategy will converge on true visuomotor variance, but across a 



 29 

small number of trials (i.e., given limited memory) total variance will be 

underestimated. We showed that the most extreme underestimation of visual 

uncertainty from this process, combined with the largest error that we could model 

around this biased estimate, came closer to but still did not fully capture the extent of 

under-sampling in the youngest age group (Ndots = 5.6 in simulation, while the 

youngest children sampled Ndots = 4.6 on average).  

Of course, any data can be fitted given sufficient assumptions about underlying 

parameters. However, the fact that these relatively parsimonious changes to our ideal 

observer model unable to explain the level of under-sampling exhibited by young 

children suggests that their inefficiency is unlikely only due to poor insight in their 

own visuomotor abilities, although it is possible that such limitations play some role 

(see below). 

 

Developmental mechanisms of decision-making during sampling  

Adults and older children select the gain-maximizing strategy from the start of 

the visual sampling task, suggesting that they can rapidly learn to estimate and 

compute with probabilistic visuomotor information. Here we show that this ability 

takes until ~age 10-11 years to develop. While more research is needed to understand 

the mechanisms that drive this developmental shift towards increasingly optimal visual 

sampling choices, we can formulate some tentative hypotheses based on current data. 

Our analyses indicate that younger children were less sensitive to misleading 

information that adults and older children. They did not take more samples after a 

series of trials ending in failure or when the cues in a sample were more spread out. In 

addition, children’s performance did not move toward the ideal strategy even after 

extensive experience - the trend was in the opposite direction. In additions, simulations 

revealed that under-sampling at younger ages is not well-captured by a decision-

process that optimally compensates for a poor representation of visual uncertainty due 

to limitations of memory, or to understanding of how this cue affects hit probability.  

Together, these results suggest that younger children may be underweighting or 

“ignoring” - and hence not learning from - probability information, and that their 

choices consequentially are driven too much by potential gains. This could be because 

young children are still developing accurate estimates of how noisy visual information 

affects performance (i.e., the rapid resolution of the gain-landscape) and are therefore 
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putting less weight on this factor, or because the mechanisms needed to scale cost by 

probability are themselves still developing. 

This interpretation is in line with at least two developmental theories of 

decision-making. The first stems from the perceptual decision-making literature and 

posits that children have difficulty accounting for the precision of perceptual estimates 

when combining different types of information, because senses are still calibrating. If 

it is unclear how a sensory estimate maps onto world, it is best ignored (Gori et al., 

2008). It is possible that similar process might constrain younger children’s ability to 

scale the potential value of the target correctly by their estimate of uncertainty about 

the targets position.  

The result is also in line with a second, conceptually related set of theories in 

cognitive decision-making: dual systems or “cognitive imbalance” theories. These 

theories posit that reduced risk-taking in childhood and adolescence reflects high 

sensitivity to reward, combined with a reduced control mechanism that suppresses 

potentially hazardous responses – i.e., responses where the likelihood of failure is high 

(Boyer, 2006; Shulman et al., 2016; Steinberg, 2008). While these dual system models 

typically presume that risk-taking actually increases in adolescence because hormonal 

fluctuations increase imbalance between neural motivation and control processes, in 

the present study the performance improved monotonically throughout childhood.  

This result is in line with a recent meta-analysis of decision-making across 

childhood and adolescence, concluding that most evidence suggests that playing for 

higher-but-riskier stakes decreases linearly (Defoe, Dubas, Figner, & van Aken, 2015). 

However, the results reported here contrast with a recent empirical study by Van den 

Bos & Hertwig (2017), who reported a U-shaped developmental change in 

performance on a cognitive sampling task, across childhood, adolescence, and 

adulthood. Specifically, 8 year-olds and adults collected similar numbers of samples to 

learn the payoff structure of two lotteries before making a final choice for points, 

whilst teenagers sampled significantly less (Van den Bos & Hertwig, 2017).  

 These discrepant results likely reflect differences between the two tasks 

and the tested age range. In the current study, inefficient sampling was most 

pronounced around the ages of 6-7 years, an age range not tested in the previous study. 

Additionally, participants in the decision-from-sampling paradigm of Van den Bos & 

Hertwig (2017) must infer the cost/benefit structure of the gamble by trying sufficient 

lotteries at no sampling cost. In the present task in contrast, the sampling costs and 
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benefits are experimentally defined, and can be inferred directly from the dot-

distribution and point system. Consequently, the types of sampling trade-offs in the 

current task likely rely less on intrinsic cost factors that may distinguish teenage 

sampling preferences, such as motivation to seek information when the benefit is 

unclear (i.e., when rare events have unknown likelihoods and consequences; Van den 

Bos & Hertwig, 2017). The discrepancy across these two studies indicates that the 

development of sampling behavior in childhood and adolescence might be driven by 

different factors, highlighting the importance of understanding which component-

processes drive suboptimal behavior across different stages of development and 

different task-domains (Nardini & Dekker, 2018).  

What factors may explain difference in performance across visuomotor 

sampling and cognitive sampling tasks more broadly? Researchers have investigated 

many different sampling tasks (see Introduction) that potentially differ in the 

"cognitive operations" needed to carry them out. For example, one key step in our task 

is computation of the centroid of a display of points, a "visual routine" in Ullman's 

terms (Ullman, 1984), and an example of a cognitive operation that is a component of 

visual cognition. Is the efficient performance we observe in older children, 

adolescents, and adults, due to the fact that they can tap into powerful visual routines? 

Indeed we found that younger children (who have difficulty with centroid 

computation; Jones & Dekker, 2017) also did less well.  

Could the efficient performance observed be due to some other aspect of our 

task not shared with other sampling tasks where human performance is less efficient? 

We simply do not know what these key different processes are. Understanding how 

different cognitive operations support efficient and less efficient aspects of human 

performance is an important goal of research (Trabasso et al., 1978) but much remains 

to be done (Nardini & Dekker, 2018; Rahnev & Denison, 2018). Some task differences 

may be inconsequential while others may be of great importance. The evident way to 

work out which processes explain performance across different sampling tasks is to 

design tasks that are identical except in one respect. Wu, Delgado, & Maloney (2009), 

for example, compared human performance in decision under risk and in a 

mathematically equivalent visuo-motor task. Only the source of uncertainty differed in 

the two tasks. At first glance, the planning of movements would seems to have little in 

common with decision under risk but the two proved to be remarkably similar 

(Trommershäuser, Maloney, & Landy, 2008). 
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Implications for perceptual development and decisions in the real world 

The ability to trade-off the benefits and costs of gathering new data captured by our 

visual sampling task is central to success in a wide range of tasks in real life. Whether 

navigating traffic, playing sports, or deciding how long to study for an exam, both 

looking too little will reduce expected utility – and hence overall success – of our 

actions in the long run. Even the youngest children tested displayed a basic 

understanding this nuance, since they did not simply maximise hit-rate or potential 

score. However, they failed to find the optimal trade-off between the costs and benefits 

of sampling that secures the best performance, sampling substantially less information 

than they should have to maximise performance. This suggests that previously 

observed delays in development of efficient decision-making in childhood also extend 

to elementary information-gathering decisions during visuomotor tasks. A tendency to 

sample too little information to maximise performance in real-life tasks such as 

crossing a busy road, could have serious consequences for child safety. Therefore, 

having established that children make inefficient visual sampling choices in our well-

controlled reaching task, future studies should investigate how this extends to real-life 

decision-making, using tasks in which sampling costs are defined implicitly and that 

involve more complex body movements and visual scenes.   

The sampling inefficiencies documented here, in particular the under-sampling 

and increased variability observed in younger children, introduce novel factors that 

may contribute to apparent immaturities in perceptual and motor function in 

childhood. This has important implications for interpretation of future developmental 

findings. Consider, for example, developmental studies on coherent form or motion 

perception in noise. In a typical task (e.g. (Hadad, Maurer, & Lewis, 2011), 

participants need to report the average direction of moving dots (e.g. up vs. down), a 

process that requires averaging many samples across space and time. When stimuli are 

not limited in duration (e.g. in Gunn et al., 2002; Hadad et al., 2011), participants 

decide how long to spend collecting information (e.g. averaging motion directions) 

before responding. Our results suggest that the late development of perceptual abilities 

on such tasks – as well as other perceptual tasks in which viewing time may be 

controlled by participants - may be due in part to inefficient sampling strategies, rather 

than – as is more commonly supposed – some inherent inability to extract the 

necessary perceptual information.  
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More broadly, we propose that insufficient information sampling is an 

important component of sub-optimality in childhood perception, action and decision-

making, with implications for real-world decision-making under risk and uncertainty. 

Understanding these implications, and their underlying causes is important because 

this may generate helpful tools for increasing child safety and wellbeing during tasks 

that require children to stop looking and start acting in everyday tasks in traffic or 

sports. 
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Context of the research 

We present the novel finding that fundamental visual sampling skills show a prolonged 

developmental trajectory during childhood, with adult-like proficiency reached only in 

adolescence. This suggests that age-related improvements on tasks in which viewing 

time is controlled by the observer, may in part be due to inefficient sampling 

strategies, rather than – as more commonly supposed – some inherent inability to 

extract the necessary perceptual information. This work should therefore inspire future 

research to test how inefficient trade-offs to ‘look versus respond’ contribute to child 

performance in in everyday tasks such as road crossing or ball interception, or self-

paced visual discrimination.   

By testing data-driven hypotheses within the model-based framework of our 

task, we show that poor performance in early childhood may be due to a suboptimal 

decision-rule, in which the benefits of information gathering are underweighted or 

ignored. This fits in with suboptimal cue integration and “reward/inhibition” 

imbalance models of development, and might be because young children are still 

forming estimates of how their skills affect performance in new task contexts (i.e., the 

ability to quickly resolve a new gain-landscape), or because the mechanisms that scale 

task outcome by probability are still developing. Next studies will be directed at 

disentangling the contributions of these potential mechanisms.  

Our findings also speak to the debate around child versus adolescent decision-

making, because unlike in ‘free sampling’ (Van den Bos & Hertwig, 2017), adolescent 

performance was adult-like on our task, highlighting that different factors may shape 

poor sampling choices at different ages and in different tasks. 
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Supplementary Figure S1 

 

 

 

In a “fixed dot” task after the main experiment, we presented participants with dot-

clouds of a fixed sample size (Ndots) and asked them to aim for the middle of the dot-

clouds (as in the main experiment). The aim was to measure, on an individual basis, 

how the probability of hitting the target increased with Ndots. For Blue bars in 

Supplementary Figure 1a show mean hit rates for each group/condition. Adults were 

presented with all possible Ndots in the main task (1 to 20, 25 trials per Ndots condition). 

However, to keep the task child-friendly (i.e., to limit test duration), children were 

only presented with the Ndots = 2,3,7 and 15 conditions. To interpolate smoothly across 

remaining Ndots conditions we fitted spline-functions to the data, constrained to 3 

knots, concave and increasing in shape, with a minimum of 0 and maximum of 1. The 

resulting black dotted curves indicate the interpolated hit-probabilities. These curves 

were used in main analysis as direct measure of hit probability (Fig 2, Main text).  
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Theoretical background and rationale: 

The red dashed curves in Figure S1 show predicted hit probabilities for an ideal 

observer who estimates the mean of the dot-cloud perfectly. The ideal observer’s 

estimate is an unbiased estimate of the location of the center of the target, whose 

variance decreases linearly as a function of Ndots: 

. 
( Eq S1 ) 

As detailed previously by Juni, Gureckis & Maloney (2016), the predicted probability 

that the aiming point will land within the target circle T can then be computed by 

integrating a bivariate Gaussian, centered on the target and with variance σ𝑖𝑑𝑒𝑎𝑙
2 , across 

the target circle T: 

. 
( Eq S2 ) 

In reality, however, any sensory, cognitive or motor error in the participant’s estimate 

of the mean of the dot-cloud will increase response error: Eq S2 would then 

overestimate the participant’s true hit rates. This can be accounted for in the model by 

adding an additional zero-mean error term, σ𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙
2 , which represents the additive 

sum of all possible sources of internal noise, thus: 

, 
( Eq S3A ) 

where:  

. 

( Eq S3B ) 

In principle, one could attempt to measure σ𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙
2  explicitly (e.g., see Jones et al, 

JASA, 2013). In practice, however, such measurements are non-trivial, and often 

require the experimenter to make a number of questionable assumptions (e.g., 

independence between Ndots and σ𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙
2 ). It was also unnecessary for the present 

study, as we were only interested in the final, overall amount of error, irrespective of 

its source. We therefore quantified total response error empirically, by presenting 

participants with fixed numbers of dot-cues, and computing the variance in observed 

response error, thus: 
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, 

( Eq S4 ) 

where x and y are response errors in the horizontal and vertical directions, 

respectively. Values of σobs were estimated independently for different values of Ndots 

(i.e., as some sources of internal noise may vary with Ndots), and were estimated 

independently for each participant (i.e., as the magnitude of internal noise may differ 

between observers). 

Note that σobs incorporates all possible sources of response error, including both 

internal noise (e.g., motor error, suboptimal integration, etc.), and external noise: 

, 

( Eq S4 ) 

 

and by combining this total standard covariance matrix with Eq 3A yields a predicted 

hit function of: 

. 

( Eq S5 ) 

In this way, expected hit rates, p[hit|Ndots], were adjusted to reflect the 

performance/abilities of each individual observer. This resulted in more realistic 

predictions (black dashed line), versus if participants were assumed to be ideal 

observers (red dashed line). 

 

This analyses allowed us to estimate sampling choices independent of any age 

differences in σinternal – whilst there were substantial individual differences (see 

Supplementary Figure 2), age differences were small, as (see Table 1, and the 

comparable heights of the blue bars plotting hit probability in Supplementary Figure 1) 

though (marginally) significant (σinternal, high reliability x Age: F4,69=2.17, p= 0.08, σinternal, 

low reliability x Age: F4,71=3.97, p= 0.006.), demonstrating the importance of measuring 

and correcting for this factor. 
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Supplementary Figure S2 

 
 

 

The ideal observer model predicts the expected score for each sampling strategy 

based on measures obtained in the fixed dot condition (see Supplementary 

Materials 1). To assess how well this model captures participant’s actual task 

performance we have plotted in the top graph, the predicted average score per 

trial (x-axis) against the scores actually obtained (y-axis) on the task. The 

expected value EV of the participants choice of Ndots is the probability of hitting 

the target after sampling Ndots times the value remaining: 

 

𝐸𝑉(𝑁𝑑𝑜𝑡𝑠)  =  𝑝[hit|Ndots] 
𝑀(20 − 𝑁𝑑𝑜𝑡𝑠)

20
 

where M is the initial value of the target.  

 Data points are color-coded according to variability in the sampling strategy 

(by the standard deviation of error around the mean Ndots sampled), across all 100 

trials, with warmer colors corresponding to more variable sampling / higher standard 

error. The data points clearly follow the identity line, suggesting that the ideal observer 
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prediction captures task performance well. Scores were slightly lower than predicted 

(data points fall below the identify line) for individuals who sampled more variably 

across the experiment (depicted in warmer colors), in line with the prediction for a 

suboptimal sampler indicated by a triangle with error-bar in Figure 2 of the main text. 

 The bottom two plots show σinternal, the mean standard deviation of aiming 

locations from the center of the dot cloud measured in the fixed Ndots condition (x-axis) 

against the same measure obtained in the free Ndots condition (y-axis), averaging the 

measures across Ndots sample sizes between 2 and 15. The data closely follow the 

identity line. This suggests that participants were using consistent sampling strategies 

across the condition on which we based the ideal observer model, and the main 

sampling task in which we then used this model to predict performance. 



 46 

  

 

Supplementary Figure S3 

 

 

 

Figure S3. Number of dots sampled during the first (time1) and last (time2) 15 trials of 

the low reliability cue condition. Solid lines are from the main experiment where dot-

cues cost 1 point each (for gain-maximizing number of dots for each age group, see 

Table 1 of Main Manuscript). The dotted line reflects the numbers of dots 6 to 7-year-

olds sampled when additional cues came at zero cost. In the zero cost condition, 6 to 7-

year-olds sampled significantly more information, made many button presses, endured 

longer trials, and did not exhibit signs of fatigue over the course of the experiment. It 

follows, therefore, that the sampling choices of young children in the main-experiment 

cannot be explained simply by (i) implicit sampling costs, such as fatigue or boredom, 

(ii) an unwillingness to sample more than 4 or 5 dots, or (iii) misunderstanding that 

sampling more dots increases the probability of successfully touching the hidden 

target. 
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Supplementary Figure S4 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S4 shows the mean number of dots sampled following a string of 

correct/incorrect responses on the last N trials (1-3 respectively), compared to the 

mean Ndots sampled in the K trials preceding these N trials (we plot K=5, but other 

values give similar results). The top panel shows data for High Reliability Cues, the 

lower panel shows data for Low Reliability Cues. The change in the number of dots 

sampled after N (1-3) consecutive hits (green) or misses (red), relative to the mean 

Ndots in the preceding 5 trials, is plotted per age group. Error bars indicate 

bootstrapped 95%CIs. Delta Ndots=1 means that on average 1 more dot was sampled on 

a trial following N correct/incorrect responses As can be seen in the Figure, adults and 

older children tended to increase their sampling after a series of misses (>1) and 

decrease their sampling after a series of hits, showing that even though their sampling 

strategies were closer to the ideal location than in childhood from early on in the task, 

trial-to-trial feedback did inform their sampling choices. The youngest children, in 

contrast, did not adjust their sampling significantly based on previous hits and misses.  
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Supplementary Materials S5 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Through simulations, we tested if participants’ sampling decisions at any age would 

yield the maximum expected score given a noisy estimate of the spread of aiming 

points around the target (σobs, SD > 0). To model the ideal sampling strategy under this 

scenario, we assumed that the observer’s estimate of σobs took the form of a 

distribution with an unbiased mean σobs, mu and normally distributed error σobs, SD 

(range: 0, 2, 4, or 6 for reliable cues, 0, 4, 8, or 12 for unreliable cues). To constrain 

σobs, SD to be positive and symmetrical, we truncated the distribution at 2 x σobs, SD. As 

in the main task, σdots was set to 12.5mm or 27.5mm for reliable vs. unreliable cue 

conditions respectively, and σobs was set to 4mm, approximating empirical values 

measured in the fixed dot condition (Table 1 of Main Manuscript). We then computed 

the average ideal strategy, by identifying the Ndots with the highest expected gain on 

average across 10000 trials, with σobs drawn randomly from its truncated normal 

distribution (mu=σobs, mu, sigma=σobs, SD) on each trial. Results of this analysis are 

shown in the figure below. The dotted line indicates the sampling strategy that would 
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maximizes score across a large number of trials, given error in the estimate of σobs. 

Green and red curves indicate the distribution of probability curves and expected gain-

landscapes across trials given a σobs with 13.1 (left) and 27.7 (right) drawn from a 

truncated normal distribution with SD = 0, 4, 8, 12, (left) and SD = 0, 2, 4, 6 (right). 

Thick black dotted lines indicate the average gain-landscape and its peak.   The graphs 

show that an observer who optimally accounts for error around the estimate of σobs 

(graphs in bottom three rows) should sample fewer dots than an ideal observer with a 

perfect estimate of σobs to maximise score (shown in top row). Importantly, however, 

the reduction is only small and does not approach childhood sampling behaviour of 

sampling (indicated by the pink dotted lines), even given a very large amount of noise 

in the estimate of σobs (up to 0.5 x σdots).  
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Supplementary Materials S6 

 

 

Observers taking part in the fish-catching task may estimate their overall response 

uncertainty (σobs) in a straightforward manner, by keeping track of deviations between 

their location estimates and the target (feedback about both are provided 

simultaneously), and computing their standard deviation across a number of trials 

σ̂𝑜𝑏𝑠 | 𝑁𝑡𝑟𝑖𝑎𝑙𝑠. When computing SD across a sufficiently large number of trials, the 

estimated value of σ̂𝑜𝑏𝑠will approach the true underlying value, σobs. However, if only 

a few previous trials are considered (i.e., due to limited memory capacity), σobs will 

tend to be systematically underestimated. 

In a next set of simulations, we therefore tested if child sampling behaviour could be 

described as optimal, assuming that the estimate contained a bias that could arise from 

forming an estimate of σobs based on a small numbers of previous trials.  

For these simulations, we set σdots to 27.5mm (focussing on the unreliable cue 

condition), and σinternal to 4mm. For each Ndots, we then simulated the distribution of 
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distances between the aiming point and target, given an unbiased pointer (mean = 0) 

with SD = σobs. We then randomly sampled Ntrials (range 2-40) from this distribution 

and computed the standard deviation. To obtain the expected σ̂𝑜𝑏𝑠 | 𝑁𝑡𝑟𝑖𝑎𝑙𝑠 we took the 

average SD across 10.000 of these samples. We then computed the corresponding hit 

probability and expected score for each Ndots to identify the gain-maximising Ndots.  

Figure S5 shows the result of simulations in which σobs was estimated based on 

2, 3, 5 or 40 of the previously observed trials. As is clear from the figure, considering 

only a few trials (2, 3, or 5) to compute σobs leads to a systematic underestimation of 

uncertainty in the location estimate. An observer who computes the ideal strategy 

based on this underestimated σobs would sample less than they truly should to 

maximise their score (namely 7.5 Ndots). However, even for the most extreme case in 

which σobs is computed across a very small number of trials, the deviation from the 

ideal observer model with an accurate estimate of σobs is small (for σ̂𝑜𝑏𝑠 | 2𝑡𝑟𝑖𝑎𝑙𝑠, Ndots, 

ideal=6.9). In other words, whilst a strategy of tracking spread of aiming points around 

the target with a limited memory would lead to under-sampling, this factor alone 

cannot fully explain the observed age differences in sampling.  

When estimating error between target and aiming points based on only a small 

subset of trials (say, the last two observed) the resulting variance estimate may 

fluctuate extensively from trial to trial due to variability in the sample mean location 

around the true mean location (the target). Can a combination of bias in the estimate of 

visual uncertainty and error around this estimate explain child performance? When 

estimating error around the target based on only two trials on average (top panel of 

figure), this is equivalent to a scenario in which σdots would be ~21mm (note the true 

SD was ~27.5 mm).  When this “plausible” bias is added to the simulation of error 

around the hit probability estimate in supplementary Figure 4, the maximum 

symmetrical error on σobs that we can simulate is SD=10mm. In this most extreme 

plausible case (σobs=√σdots
2  +  σinternal

2   = √212 + 42 = 21.4), the ideal dot sample 

size is significantly lower than for an ideal observer with perfect knowledge of visual 

uncertainty (σobs= 27.8, SD=0). However, whilst the ideal observer prediction 

accounting for extreme bias and error around the estimate of hit probability comes 

close to the Ndots sampled by the youngest age group, it is still higher (optimal dots to 

sample is ~5.6 dots, while the youngest children sample 4.6 dots on average).  
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Supplementary Table S1.  
 

 6-7 vs 8-9 8-9 vs 10-11 10-11 vs 13-15 13-15 vs 

adult 

Absolute Deviation from Ndotsideal - Fig 3a 

High cue 

Reliability 

0.56 0.027* 0.45 0.79 

Low cue 

Reliability 

0.43   0.037 *   0.99   0.54 

Score efficiency - Fig 3b 

High cue 

Reliability 

0.53 0.67 0.02 0.81 

Signed Deviation from Ndotsideal - Fig 5a 

Low cue 

Reliability 

0.044*  0.69    0.082*    0.95 

Stand Dev around Ndotsideal - Fig 5b 

High cue 

Reliability 

0.39    0.023* 0.18    0.26 

 

Table S1 reports p-values resulting from post-hoc independent-sample t-tests that 

compare age differences between consecutive age groups. Black stars indicate p<0.05, 

red star indicates a non-significant trend of p<0.1. In Figures 3 and 5 in the main 

manuscript, significant group differences are indicated, and can also be derived from 

overlap in confidence intervals. Specifically, a CI overlap of less than ~25% indicates 

a significant difference at p<0.05 (Cumming & Finch, 2005). These post-hoc tests 

reveal that the efficiency of visual sampling on the current task as quantified by these 4 

measures, is adult-like from roughly age 10-11 years onwards. 

 

 

Cumming, G., & Finch, S. (2005). Inference by eye: confidence intervals and how to 

read pictures of data. American Psychologist, 60(2), 170. 

 

 


