
              

City, University of London Institutional Repository

Citation: Casari, N., Pinelli, M., Suman, A., Kovacevic, A., Rane, S. & Ziviani, D. (2018). 

Full 3D numerical analysis of a twin screw compressor by employing open-source software. 
IOP Conference Series: Materials Science and Engineering, 425(1), 12017. doi: 
10.1088/1757-899X/425/1/012017 

This is the published version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/22436/

Link to published version: https://doi.org/10.1088/1757-899X/425/1/012017

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


IOP Conference Series: Materials Science and Engineering

PAPER • OPEN ACCESS

Full 3D numerical analysis of a twin screw compressor by employing
open-source software
To cite this article: Nicola Casari et al 2018 IOP Conf. Ser.: Mater. Sci. Eng. 425 012017

 

View the article online for updates and enhancements.

This content was downloaded from IP address 138.40.68.78 on 02/07/2019 at 13:47

https://doi.org/10.1088/1757-899X/425/1/012017
https://oasc-eu1.247realmedia.com/5c/iopscience.iop.org/890846983/Middle/IOPP/IOPs-Mid-MSE-pdf/IOPs-Mid-MSE-pdf.jpg/1?


1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890‘’“”

International Conference on Screw Machines 2018 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 425 (2018) 012017 doi:10.1088/1757-899X/425/1/012017

Full 3D numerical analysis of a twin screw

compressor by employing open-source software

Nicola Casari, Michele Pinelli, Alessio Suman

University of Ferrara, via Saragat 1, 44122 Ferrara, ITALY

Ahmed Kovacevic, Sham Rane

City, University of London, Northampton Square, EC1V 0HB, London

Davide Ziviani

Ray W. Herrick Laboratories, Purdue University, 177 S Russell Street, West Lafayette, IN,
47907-2099, USA

E-mail: nicola.casari@unife.it

Abstract. The push for having more reliable and efficient positive displacement machines
(both compressors and expanders) for vapor compression and power generation (e.g., ORCs)
applications has moved researchers to an always more spread employment of computational
fluid dynamics (CFD). In particular, twin screw compressors, because of their high efficiency
compared to other compressor types, have received interest over the last years. The numerical
analysis of such machines is challenging: the deforming working chambers are very difficult
to be correctly replicated. The relative motion of the rotors and the variation of the gaps
during machine operation are few of the major difficulties in implementing reliable CFD models.
A custom mesh generation algorithm is therefore often required for sumulating the machine
operation.

In this work, SCORG-V5.2.2 was used to generate the meshes of the deforming domain
around rotating parts of the machines. The open-source software OpenFOAM-v1606+ is then
employed to compute the flow field associated with the operation of the twin screw. The coupling
of the two tools has been carried out in this work, applying the methodology to a twin screw
machine.

1. Introduction
Positive Displacement (PD) machines have a wide range of applications in modern engineering
practice. Specifically, such machines have been employed as either compressor or expander in
vapor compressor and power generation (e.g. ORCs). Several types of PD machines have been
considered for these purposes, and an example of comparative analysis can be found in [1] for
refrigeration and both [2] and [3] report a brief overview of the most used type of expanders in
ORCs. A wider analysis collecting experimental data published in scientific journals, conference
papers and PhD theses is presented in [4]. In that work, 102 unique ORC prototypes are
analyzed and for each of them the type of expander is reported. A considerable part of these
plants is equipped with a twin-screw machine. Such devices have received a constantly growing
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attention from the researchers, making screw compressors to comprise the majority of all positive
displacement compressors in operation, as reported by [5, 6]. Either in compressor or expander
configuration, the reliability and compactness they ensure are appreciated by designers and
operators. Their cost-effectiveness is definitely the feature that makes this machine so spread,
as suggested by [6] and [7].

The diffusion of such machines has pushed researchers to look into such devices, in order
to improve their efficiency. A useful tool for the prediction of flow behaviour and performance
is the Computational Fluid Dynamics (CFD) analysis, see [8, 9, 10, 11]. The experimental
campaign may be very challenging, due to the geometrical complexity and the compatibility
of the instrumentation. The numerical approach may be the only way to investigate the
potential behaviour of the machine with new fluids without major changes to be carried out.
Nonetheless, the complexity of the simulation has brought about the birth and the application of
several numerical techniques. A brief yet comprehensive review of the possible methods for the
simulation of PD machines that are usually available with common software is reported in [12].
Among the several issues that derives from the numerical approach applied to these machines,
the high mesh deformation asks for extra care during the mesh generation and motion evolution
phases. The deforming working chambers make the fluid domain to span from the volume of
O(mm3) to the O(µm3) in the gap areas. The computational grid must follow this evolution,
bearing such stretch without losing the quality, to correctly replicate the flow field evolution.

To tackle the mesh motion problem, different approaches have been developed over the years.
Particularly, if referring to the review in [12], the Key Frame Remeshing algorithm and the
Mesh Adaption - Dynamic Remeshing, are only some of the techniques that may be employed.
The main idea underlying these two methods is that most of the general-purpose dynamic mesh
solvers smooth the pre-defined boundary displacement inside the domain in such a way that
the internal mesh is the solution of the boundary motion. The mesh is recomputed (globally or
locally, according to the strategy chosen) if the cell quality falls below a certain threshold. A
different approach is considered if one makes use of the overset grids, as reported for example
by [13], or of the Immersed Boundary Method (IBM), see [14]. In the first case, the mesh
deformation is not solved, and the domain motion is accounted for by defining different regions
corresponding to different areas involved in the deformation. Such regions are rigidly displaced,
passing from the actual time step to the next: the relative motion is accounted for by checking
the overlapping cells. Fluxes between the two regions are exchanged only if a certain number
of cells is overlapping. For what concerns the IBM, the motion is considered by modifying
the source term in the flow equations. All the above-mentioned methods suffer from major
drawbacks. Remeshing-based motion solvers are generally time-consuming and can easily lead
to continuity errors, as suggested by [15]. Overset approach suffers from the same problem. IBM
is poor in solving the boundary layer region, due to the non-aligned edges with respect to the
wall.

An alternative approach is represented by the employment of body-fitted structured grids.
Such meshes are easily stretched without losing quality, allowing for simulating the PD machine
operation without need for remeshing, if the motion is properly solved. The mass conservation
is not an issue any longer, since no remapping nor remeshing occurs. The alignment between
wall and edge in the nearby of the wall is always respected and the resolution of the flow close
to the boundary is generally well resolved. Unfortunately, the definition of a structured grid
compatible with the rotors displacement is not straightforward. Besides, the mesh motion should
be somehow pre-defined in order to ensure the overall quality of the grid to be maintained over
the evolution of the motion. Cells can collapse or deform to an invalid shape if the internal-
node displacement is calculated by the dynamic motion solver. A way to solve this is to use
the custom predefined mesh generation: a set of meshes is prepared advanced, representing
the control points through which mesh nodes pass. In such fashion, the mesh deformation is
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controlled. The ”Custom Predefined Mesh Generation Algorithm” is used in this work [16].
SCORG-v5.2.2 was used for generating the set of meshes and OpenFOAM-v1606+ for the flow
field solution. A new motion solver has been developed to force the mesh to pass through the
control points, for modeling the rotor evolution.

2. Methodology
In this section the algorithm developed to make the flow solver to account for the mesh motion
will be presented and applied on a simplified twin screw. The mesh generation will be discussed
as well.

2.1. Geometry
The geometry of the machine has been generated with the SCORG software itself. A machine
with a mild warp angle (i.e. 100◦) has been considered. Also, the rotors are quite short (aspect
ratio, i.e. length-to-diameter ratio, around 0.7) with respect to the more commonly employed
machines (i.e. roughly 1.6). These simplifications have been introduced in order to have higher
cell quality, due to the milder warpage of the thread, and a low number of grid elements due to
the smaller domain. By employing these expedients, a simpler geometry yet representative of
the screw operation has been generated. The so-obtained machine, together with a closer view
of the rotors, is reported in Fig. 1.

The spread of the twin-screw type machine has been achieved thanks to the improvements in
low-cost, high-precision manufacturing techniques. In light of this, a feature that is of paramount
importance when dealing with this type of devices is the gap size. In this work the clearance
between rotor and casing has been chosen to be equal to 60 µm like the interlobe gap. The axial
gap has been chosen equal to 5µm.

2.2. Mesh Generation
In this paper, the deforming grid of the twin screw machine is generated using algebraic
transfinite interpolation treated as an initial mesh upon which Elliptic Partial Differential

(a) Overall view of the machine investigated in this work(b) Particular: upper view of the male and female rotors

Figure 1. Overall geometry and detail of the rotors of the twin screw investigated in this work
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Equation (PDE) of the Poissons form is solved [17]. The resulting differential grid has highly
improved cell quality and distribution. The initial algebraic grid obtained via transfinite
interpolation is smoothed out using system of differential equation. The source function for
such equations have been simplified to use only two input parameters based on the test function
given by [18]. Particularly, the Radial Bias Factor and the Radial Bias Intensity have been added,
for the inflation layer control. On the top of that, weighting coefficients have been introduced for
an improvement of the orthogonality of the grid. The grid constraint (orthogonality, warpage,
skewness,...) the generated mesh must satisfy have been defined in compliance with the threshold
employed by the most used CFD tools. This does not automatically entails the compliance with
the new tested CFD software (i.e. OpenFOAM) as described in section 3. In addition, a
special procedure completely smooths the transition of the partitioning rack curve between the
two rotors thus improving grid node movement and robustness of the CFD solver. A sample
analysis of an oil injected twin screw compressor using the new Elliptic PDE grids has been
presented [19] to compare the improvements in grid quality factors in the regions of importance
such as interlobe space, radial tip and core of the rotors. A significant improvement in the grid
quality and robustness of numerical solver with higher order schemes has been obtained with
this differential implementation of the deforming mesh. The conforming of the two grids at the
interface is such that the PDE mesher is used in a selective interlobe area of the mesh to convert
the rack curve into a smooth transitioning curve across the specified number of angular positions
of the rotor. This results into a gradually changing partition between the two O grids of the
male and female rotors.

The rotor mesh must be coupled with the suction and the discharge ports. The mesh of such
ports, has been generated with the OpenSource software cfMesh [20]: a cartesian cut-cell grid
has been generated. The rotating domain is divided from the port static one by means of ACMI
(arbitrary coupling mesh interface). Since the rotor axial patches do not completely overlap
the ports, the interface has to automatically detect whether fluxes must be exchanged (when
fluid-fluid cells are exposed) or not (e.g. when the interface is between fluid and solid cell).

Once the mesh is generated, it must be exported to OpenFOAM readable format. This
feature is not yet available into SCORG. For the current analysis, the mesh translation was
done via ANSYS-CFX and ANSYS-FLUENT. The rotors zone is exported as a whole, being
recognized as a cellZone by OpenFOAM, thanks to the conformal interface. This expedient
avoids conservation issues that may affect AMI interfaces [21]. This problem may be quite
relevant in applications like the one presented in this work, since the velocity vector is highly
tangential with respect to the interface, especially in the interlobe area. The resulting mesh is
composed of roughly 1,700,000 cells. The rotor zone is composed of 200,000 hexaedral cells.

2.3. Numerical Analysis
As above mentioned, the twin-screw operation entails the rotors motion. Such rotation causes
the deformation of the computational domain and thus the mesh should accomodate such
displacement. The strategy adopted in this work is to generate a structured computational
mesh for an initial position, as reported in the section 2.2. At this point a user-defined number
of grids per gate-rotor pitch is generated and written in separate files. Each of the file contains
the control points (coordinates) through which the computational nodes has to pass during the
machine operation. This entire procedure is carried out within the SCORG-v5.2.2 framework.
In the current work, a set of 50 files per groove are generated, meaning there are 50 points
through which a moving mesh node has to pass to cover a pitch.

The dynamic motion solver of the CFD software therefore updates the mesh position for each
of the time step, having the grid files as a reference. To calculate the position of a node for the
i− th time step, equation 1 is solved



5

1234567890‘’“”

International Conference on Screw Machines 2018 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 425 (2018) 012017 doi:10.1088/1757-899X/425/1/012017

xi,final = αxi,AG + (1− α)xi,NG (1)

where the subscript AG represents the actual grid file and NG is for the next grid file. AG and
NG are the files written by SCORG containing the node postion at the two time instant we
are interpolating among. xi represents the position of the node at the corresponding grid file
(when the subscript AG or NG is reported). This algorithm has been added to the mesh motion
libraries available in OpenFOAM-v1606+ and OpenFOAM-v1712.

The case was simulated under the boundary conditions reported in Table 1. The high-Re
k-ε model has been used for the performance evaluation with standard wall functions. It must
be remarked here that the rotational speed of the two rotors is different due to the different
number of threads. The algorithm proposed handles this difference automatically, asking the
user to provide only the revolutions per minute of the male rotor. The rotational frequency of
the female rotor can be easily derived from the number of threads ratio: in this work the female
rotor has 4 threads and the male rotor has 3 threads. The diameter of the male rotor is 127.4
mm and the female one is equal to 120.4 mm.

Besides, the number of grooves has to be provided in order to compute the time it takes to
cover one pitch for the male rotor. This allows the automatic scaling of the time step in order
to satisfy the maximum CFL condition, to have a stable simulation. In this work the maximum
CFL allowed to have stable simulation is bounded to 1. This limit is required to avoid the
spikes of pressure/temperature that are outlined in section 3 . The solver employed in this work
is rhoPimpleDyMFoam, which belongs to the compressible set of solver that comes with the
software OpenFOAM-v1606+. This solver employs PISO algorightm [22] with inner integration
performed with SIMPLE strategy [23]. The implementation in the OpenFOAM framework is
described in [24] or [25]. This solver can automatically take into account any mesh motion input
given by the user. In this work, the developed algorithm is enclosed in a library read by the

Figure 2. Computational mesh realized on the rotors
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Table 1. Boundary conditions for the computation of the flow field

Quantity Value
p0 101,000 Pa
T0 300 K
Turbulence intensity 1 %

Inlet

Turbulence mixing length 0.0021 m
Fixed Walls T adiabatic

ωmale 8000 rpm
Rotating Walls

T adiabatic
Outlet p 131,000 Pa

Figure 3. Evolution of the mesh during the CFD analysis, particular of one pitch.

dynamicMeshDict, that is the dictionary that asks for any mesh motion input. The library is
dynamically linked during the compilation is such a way that is location insensitive and can be
stored anywhere in the hard drive (i.e. it is not necessary to keep the files in the same directory
of the case). The simulation run fully parallel thanks to the open MPI library. Extra-care
should be taken when decomposing the domain, due to the presence of non-conformal interfaces
at the inlet and outlet ports. To enforce mass conservation, both the sides of the ACMI interface
are forced to stay on the same processor. This feature comes with the standard installation of
OpenFOAM.

3. Results
The evolution of the grid position as provided by the motion solver algorithm is reported in Fig.
3. The high deformation of the conformal interface can be noticed.

The Rotor-To-Casing non-conformal approach cannot be used in this case. If the mesh was
generated with this approach, the Rotor-Casing ACMI interface should communicate with two
different neighbours: the discharge port and the interface among the two rotors. This is not
supported by the ACMI implementation in OpenFOAM.

During the testing of the solver, higher Courant number was used, with respect to the value
described in section 2.3. The simulations run with a CFL up to 50 (corresponding to a physical
time step of roughly 10−6) are stable, but the results where non-physical: the coupled PISO
and SIMPLE loop makes the solver implicit, allowing for CFL higher than one. Pressure and
temperature peaks in the gaps were found, especially in the suction area of the female rotor, as
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Figure 4. Faces having a wrong oriented normal

reported in Fig. 5. These spikes have occurred for all the tested numerical schemes both first
and second order accurate. Limiting the gradients was not effective in this case, and the only
solution was to lower the maximum time step of the simulation. This is probably related to the
fact that few wrong oriented faces arise as a consequence of the rotation, as reported in Fig.
4. This seems not to be an issue when dealing with Courant number lower than one, but give
problems when the time step exceeds such threshold. Further investigations are required to fix
this problem.

The implementation presented in this work handles automatically this variable time step, as
described in section 2.3. Future work is required to improve the robustness of the solver for
higher time step. Spikes in temperature may be avoided by bounding the temperature in the
rotor zone. This ”clipping” is of help in stabilizing the simulation, but should be avoided since
it acts as a source or sink of energy, causing a mismatch in the energy imbalance. Furthermore,
it has been found that the artificial bounding is not effective if the time step is not reduced
accordingly (as suggested above).

An example of the results that can be obtained if the CFL<1 condition holds is reported in
Fig. 6, where the pressure fields on the male rotor is reported. The simulation has been carried
out with the boundary conditions reported in Tab. 1. The pattern is in agreement with the
expectations: the chamber in communication with the discharge port shows the highest pressure
values. Immediately downstream the thread head, a slightly low pressure area can be detected
as a result of the gap presence. The fluid expands through the gap, passing frome the high
pressure groove to the lower one. Such pressure difference is then recovered inside the chamber.

With the mesh used in this work, the y+ value required wall functions to be used. Particularly,
a minimum y+ of 50 has been found, whereas the average is around 120. The minimum value
of the y+ happens in the interlobe gap.

4. Conclusion
In this work, the simulation of a simplified twin screw compressor has been carried out. The
simplified geometry was chosen in order to prove the capability of the algorithm developed in
simulating the operation of a positive displacement machine. The simplifications reside in the
low warp angle and the short axial dimension, whereas the gap size is very close to an actual
machine.

The mesh motion routine responsible for the coupling of a pre-defined set of files that contains
the control points for the mesh motion and the flow solver has been implemented. The set of
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Figure 5. Temperature spike originated in the gap between thread head and casing on the
female rotor

Figure 6. Pressure pattern on the male rotor: high pressure chamber and expansion
downstream the gap
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files has been generated by SCORG, a propretary software, and OpenFOAM, an open-source
toolkit, was employed for solving the flow field. The coupling was carried out successfully in the
case of single rotor domain, having a conformal interface in the interlobe area.

The dynamic mesh library here developed is able to make the mesh into OpenFOAM to
move according to the output files generated by SCORG. The technique proposed is suitable for
the simulation of positive displacement machines, not demanding for remeshing and thus not
violating the space conservation law (entailing the non-conservativeness of the mass).

The application of this algorithm to a real twin-screw compressor, the comparison of the
results with other CFD software and the validation is to be considered as a next step in this
work.
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