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Abstract

This paper presents a stochastic investment model for a defined benefit pension
scheme, in the presence of IID real rates of return. The spread method of adjustment
to the normal cost is used. Two types of risk are identified, the "contribution rate risk"
and the "solvency risk" which are concerned respectively with the stability and the
security of the pension fund. A performance criterion is introduced to deal with the
simultaneous minimisation of these two risks, using the spread period (M) as the
control variable. A full numerical investigation of the optimal values of M is discussed
and the optimal choices are presented with the help of tables and figures. The results
lead to practical conclusions about the optimal funding strategy and, hence, about the
optimal choice of the contribution rate subject to the constraints needed for the
convergence of the performance criterion. A fuller discussion of the results can be
found in Megaloudi (1998).



1. Introduction

1.1 Risk in a Defined Benefit Pension Scheme

As defined by Lee (1986), occupational pension schemes are arrangements by means
of which employers or groups of employers provide pensions and other benefits to
their employees. We are interested in defined benefit pension schemes where the
benefits promised are the defined quantity and the contributions are the dependent
variable. The determination of these contributions takes place through the valuation
process, which is performed by the actuary at regular intervals.

The method by which the scheme is valued and the contribution rate determined is
called the actuarial funding method. In this paper, we shall consider individual funding
methods. In the light of the particular situation revealed by the valuation process,
appropriate action will be taken by way of an adjustment to the contribution rate so as
to remove the shortfall or to use the surplus. For individual funding methods, the most
common ways of dealing with this adjustment are the spread method and the
amortisation of losses method (Haberman (1994)). We will consider the spread method
under which the unfunded liability is spread into the future over a certain period. The
choice of this period, which is called the spread period, depends on the required
balance between the different types of risk facing the pension scheme.

We will investigate two types of risk. The first one is the “contribution rate risk”.
According to Lee (1986), the sponsor of the scheme will look for a contribution plan
which will not be disturbed by significant changes so that the contribution rate will
remain reasonably stable in the future. The second type of risk is the “solvency risk”.
As Lee (1986) explains, the trustees and the employees will be concerned that the
accumulated assets represent reasonable security for the growing pension rights of the
members, independently of the employer, at any time or when the scheme is wound up.
In this paper, we will use a mathematical model to represent the financial structure ofa
defined benefit pension scheme under various investments returns. We will consider
methods for controlling the above types of risk by using the spread period as our
control variable.

1.2 Formulation of the Problem

The approach described is based on Haberman (1997a,1997b). We use control theory
in a stochastic environment to formulate the problem. The optimal contribution rate
will be determined by minimising a quadratic performance criterion, that includes both
the contribution rate risk and the solvency risk. The problem is described as follows
using a discrete time formulation.

We wish to find the contribution rates C(s),C(s+1),...,C(T-1) over the finite time
period (s, T) which minimise the quadratic performance criterion



1,=E(Sv[(C) - CTOY +Q-OFO-FTOF ]} (O

The first term represents the contribution rate risk and the second term the solvency
risk.

The expectation operator is necessary because we are interested in the stochastic case

50 as to recognise the random nature of investment returns. (Ina continuous time

formulation, the mathematical approach would be based on an integral version of (1)).

We use the notation:

C(t)= contribution rate for the time period (t, t+1).

F(t)= fund level at time t, measured in terms of the market value of the assets.

CT(t)= contribution target for the period (t, t+1).

FT(t)= fund target for the period (t, t+1).

v=(1+i)" where i is the valuation rate of interest

0= weighting factor to reflect the relative importance of the solvency risk against the
contribution rate risk.

We argue that the actuarial funding methods would normally specify appropriate
values for CT(t) and FT(t) in order to control the pace of funding . Hence, we choose
CT(t)= EC(t) and FT(t)= EF(t) as appropriate target values.

So, equation (1) becomes
1= V[WarCy+ (- OVarF®)] (@)

According to Owadally and Haberman (1995), in this presentation, the risk of the
pension fund is defined as a “time-weighted” sum of the weighted average of the future
variances of the fund level and contribution rate. @ is determined according to which
of the variability of the fund or the contribution is more important for the employer.
This balance will influence the choice of the funding strategy, since some methods (e.g.
prospective benefit methods) aim more at stabilising the contribution rate, whereas
some others (e.g. accrued benefit methods) have as their main purpose to fund the
actuarial liability. v=(1+i) " is used to discount the variances. A highi indicates that
more emphasis is placed on the shorter-term position of the pension fund rather than
the longer-term. Therefore, this is a mechanism for weighting in time. In this paper, we
will use a discount factor w# v in the definition of Joo to reach more general
conclusions.

1.3 The Mathematical Problem

We consider the behaviour of C(t) by using a stochastic investment model of a defined
benefit pension scheme. Its main features are a stationary population and independent
and identically distributed rates of return. As noted earlier, we shall work in discrete
time (t=0,1,2,...).

When an actuarial valuation takes place, the actuary estimates C(t) and F(t) based only
on the active and retired members of the scheme at time t under these assumptions:



o The population is stationary (constant size and age distribution year after year)-see
assumptions below.
o The valuation interest rate is fixed and is i.
o The contribution income and benefit outgo cash flows occur at the start of each
scheme year.
o Valuations are carried out at annual intervals.
The following recurrence relations for the pension fund’s assets and the actuarial
lability hold:
F(t+1)= (1H(ED))F@O+C(1)-BD) ©)]
AL(t+1)= (1H)(AL(t)+NC(t)-B(1)) @
for t=0,1,2,...
Further notation used is:
i(t+1)= rate of investment return earned during the period (1, t+1), defined in a manner
consistent with the definition of F(t).

AL(t+1)= actuarial liability at the end of the period (t, t+1) in respect of the active and
retired members.

B(t)= overall benefit outgo for the period (t, t+1).

NC(t)= normal cost for the period (t, t+1).

We make the following further simplifying assumptions:

1. The experience is in accordance with all the features of the actuarial basis, except
for investment returns.

2. The population is stationary from the start. We could alternatively assume that the
population is growing at a fixed, deterministic rate.

3. There is no promotional salary scale. Salaries increase at a deterministic rate of
inflation. This inflation component is used to reduce the assumed rate of investment
return to give a real rate of investment return. We also assume that benefits in payment
increase at the same rate as salaries and then consider all variables to be in real terms.
4. Following the previous assumption, i(t+1) is the real rate of investment return
earned during the period (t, t+1) and Ei(t)=i where i is the real valuation rate of
interest. This means that contributions are assumed to be invested in future at the
average rate of interest. We also define o 2=Var(i(t)).

5. The earned rates of return i(t) are independent, identically distributed random
variables with Prob(i(t)>-1)=1.

6. The initial value of the fund at time zero is known i.e. Prob[F(0)=F, ]= 1 for some
F,.

Assumptions 1-3 imply that the following parameters are constant with respect to time
t (after dividing all monetary amounts relating to time t by (1+1(t)) where I(t) is the
rate of salary inflation during the period (t, t+1)):

NC(t)=NC

AL(t)= AL

B(t)=B
Then, combining (4) with these, we obtain:
AL= (1+)(AL+NC-B) Q)



1.4 Individual Funding Methods

According to Haberman (1994), for an individual funding method, the unfunded
liability denotes the difference between the plan’s actuarial liability and its assets.
UL(t)= AL(t)-F() ©)
where UL(t) = unfunded liability at time t and .
AL(t) is the total actuarial lability in respect of all members at time t.

These methods involve an actuarial liability and a normal cost which is then adjusted to
deal with the unfunded liability. There are a number of choices for the ADI(t) term.
We will consider the spread method, under which:

C(t)= NC(t)+ADI(t) @)

ADIJ(t)= KUL(t) ®)

where ADJ(t)= the adjustment to the contribution rate at time t

NC(t)= the total normal cost at time t

k=1/ &—| calculated at the valuation rate of interest.

M

M= the “spread period”.
So, the unfunded liability is spread over M years and k can be thought of as a penalty
rate of interest that is being charged on it. The choice of M, as we will see later on, is
of great importance and influences the funding strategy.

The above definition of ADJ(t) implies that the spread period is always the same
whether there is a surplus or a deficit. According to Winklevoss(1993), this may not
always be the case in practice with a shorter spread period being used to eliminate
deficiencies than for surpluses (This is investigated by Haberman and Smith (1997)
using simulation).
Finally, from (6), (7), (8) and the previous assumptions:

C(t)= NC+k(AL-F(1)) ©

1.5 Moments of C(t) and F(t)
Dufresne (1988) has shown that, given our mathematical formulation,

EF(t)=q‘F,+AL(l-q")
=q'Fo+r(l-q)(-q) ,t=0  (10)

where g= (1+)(1-k), r=(1+)(k-d)AL.

So from (9)

EC(t)= NC+k(AL-EF(1)) (11)
and ltim EF(t)= AL ltim EC(t)=NC  provided 0<q<l(ie. M>1)
He also proves that

VarF(t)=bzl:a“f EFG)* =1 (12)

j=1



where b=c?v® and a= Q(1+b)=(1-k)*(1-+)’(1+ 0 v )= (1-K)*((1+H)*+07)
VarC(t)= k* VarF(t) (13)

AL o varcyie AL

l-a = 1-

provided a<l = (1-k)X((1+) 6*)<1 which places restrictions either on the choice

of o or on the choice of the spread period.

and lim VarF(t)=
10

1.6 The General Form

If we substitute (2) for T=co, =0 and replace v' by W', then

1.=3 wOVarC@)+(1- O)VarF(t)] (14)
From equation (13!;

Jm=iw’[6k2 +(1-6)| VarF(®) (15)

For the case F, # AL, equations (10), (12) and (15) lead to:

J =

©

o +1-6 297 2
( ) oviw | 24y AL | 2z4Lq
1-wa 1-wg” 1-w 1-wg

] (16)

1
where z=F-AL and WET #V.
+

So, we wish to find the value(s) of k (or equivalently the spread period, as k=1/ a_)
M

which minimises the above equation. Then, we can find the optimal C(t) via equation

).

We note that  q=(1+)(1-k)=>k=1-qv  and a=q’(1+5” V%)

and since q—>k is a 1:1 mapping with domain (0,1) and image set (d,1),

it is convenient to reparametrise J, in terms of q. We write

g@=

[6(1- gv)* +1- O][z°¢*(1— w)(1 - wq) + AL*(1 —wq)(1— wq’) + 2zALq(1 - w)(1 - wq")]
[1-wg* 1+ o™v)I(1-wg* )1 - wq)

We need to solve %=0 or %q)_ =0 (17) in order to find the optimal values of q.
q q



2. Risk as a Time-Weighted Mechanism

2.1 Introduction

We wish to solve equation (17) and find the values of q at which T is minimised. For
all the calculations, we assume for convenience (and without loss of generality) that
AL=1. The requirement that a<1 for the convergence of (12) and hence of (16)
would mean:

a<l = q(I+b)<l = q<(1+b)™* since ¢>0

So the solutions of the above equation should be restricted to values such that:
9<q,.<1 where q,. =(1tb)"?, b=0"V".

We verify that the chosen values of q are the minimum points (not the maximum) by
detailed calculations, as demonstrated by the relevant graphs of J oo plotted against q.
If ¢>Qumax , the solution is chosen to be Gmax.

In any particular case, calculation of the minimising value(s) of q allows us to find the

corresponding value of M from  g=(1+i)(1-k) =>M=-log(1- Td_ ) log(1+). The
—qv

tables in section 2.3 onwards provide the optimal values of M as a function ofi, o, j
and 0 (to the nearest integer) and the values of M which are marked with * correspond
t0 Qmax.

2.2 The Maximum Feasible Values of the Spread Period

As noted earlier, the requirement a<1 (for convergence) places a restriction on the
choice of q. So, the optimal values of ¢ must be restricted to values such that q<Qmax
where guma= (1+b)"?, b=0"v*. Table 2.2.1 provides values of the maximum spread
period Mpay which correspond t0 Quax for different combinations of o andi.

Table 2.2.1
Maximum Spread Period, M,.x , such that a<l
(o]
i 01 | .03 | .05 1 15 2 .25 3 35
.01} 535|318 (223 | 112 | 66 42 30 22 17
03218 | 145 | 111 | 68 46 33 25 19 15
05| 144 | 99 78 51 37 28 21 17 14

Table 2.2.1 indicates the extent to which My, decreases as o and i each increase.



2.3 Initial Funding Level of 0%

Tables 2.3.1-2.3.7 provide the optimal values of the spread period M’ for F¢=0 and

different combinations of o, 1, j and 6.

Table 2.3.1
Values of M’ when Fy=0 (z=-AL)
i=1%
i=1%
(o]
0 01 .03 .05 .1 151 21.25] 3 |.35
0] 535*% | 318* 1 1 1 1 1 1 1
25| 535% | 318* 1 1 1 1 1 1 1
5| 535% | 318* 2 2 2 2 2 2 2
75| 535% | 318* | 223* 2 2 2 2 2 2
.85 [ 535% | 318* | 223* 3 3 3 3 3 3
95| 535% | 318% | 223* 5 5 5 5 5 4
11535+ 318 | 223% | 112* | 58 | 29 | 18 | 13 10
Table 2.3.2
Values of M° when Fy=0 (z=-AL)
i=3%
i=1%
[¢]
0 01 .03 .05 1 As | 21 .25 3 | 35
0 |218* | 145* 1 1 1 1 1 1 1
251 218% | 145* 1 1 1 1 1 1 1
51 218% | 145* 2 2 2 2 2 2 2
751 218% | 145% | 111* 2 2 2 2 2 2
85| 218% | 145% | 111* 3 3 3 3 3 3
95| 218* | 145% [ 111* 5 5 5 4 4 4
1} 218% | 145% | 111* | 68* | 30 | 18 13 10 8




Table 2.3.3
Values of M° when F¢=0 (z=-AL)

i=3%
i=3%
O
0 0 | 0305 1 }.a5].2([.25].3].35
0|218*%[145* | 111*) 1 1 1 1 1 1
25| 218% | 145% [ 111*% | 68* | 1 1 1 1 1
S| 218% | 145* | 111* | 68* | 2 2 2 2 2
J75 [ 218% | 145* | 111* | 68* ] 2 2 2 2 2
85| 218% | 145* | 111* | 68* | 3 3 3 3 3
95| 218% | 145% | 111* | 68* [ 46% | 6 5 5 5
1]218% | 145% | 111* | 68* | 46* | 33* | 23 | 15 | 11
Table 2.3.4
Values of M° when F=0 (z=-AL)
i=3%
i=5%
(&
0 .01 | .03 | .05 1 A5 | 2|1 .25 3| .35
0 |218*%[145*|111* | 68* 1 1 1 1 1
25| 218% | 145% | 111* | 68* | 46* [ 1 1 1 1
5| 218% | 145% | 111* | 68* | 46* | 2 2 2 2
J75 | 218% | 145* | 111* | 68* | 46* | 3 3 2 2
85| 218* | 145% | 111* | 68* | 46* |33* | 3 3 3
95| 218% | 145% | 111* | 68* | 46% |33* | 7 6 5
1| 218* | 145% | 111* | 68* | 46* | 33* | 25* | 19% | 14
Table 2.3.5
Values of M? when Fy=0 (z=-AL)
i=5%
i=3%
[}
0 .01 | .03 | .05 1 A5 .2 | .25 3 (.35
0 | 144* | 99* | 78%* 1 1 1 1 1 1
25| 144% | 99* | 78* | 51* 1 1 1 1 1
5| 144% | 99* | 78* | 51%* 2 2 2 2 2
75| 144% | 99* [ 78* | 51* 2 2 2 2 2
85| 144% | 99* | 78* | 51% 3 3 3 3 3
95| 144* | 99% | 78* | 51*% | 37* | S 5 5 4
1| 144% | 99% | 78* | 51* | 37* | 28%| 19 | 12 9

10




Table 2.3.6
Values of M? when F=0 (z=-AL)

i=5%

i=5%

o)

01

.03

.05

1

A5

[

144*

99%*

78*

51%

1

144*

99*

78*

S51*

37*

144*

99*

78%*

51*

37*

144*

99%*

78%

51*

37*

W N | =t =

144*

99*

78%

51%

37*

28*

WWIN ==

144*

99*

78%*

51*

37*

28*

oW |ob=]—]w

144*

99*

78%*

S1*

37% | 28*

=1

17*

Table 2.3.7
Values of M® when Fy=0 (z=-AL)

i=5%

i=10%

o)

.01

.03

05

1

A5 | .2

25

33

144*

99%*

78%

51*

37*% | 28%*

21*

25

144*

99*

78%

51*

37* | 28%

21*

e [ )

144*

99%*

78*

51*

37* [ 28%

21%

2

J3

144*

99%

78*

51*

37* | 28*

21*

17*

1
1
2
3

.85

144*

99%*

78*

51*

37* | 28%

21*

17*

5

95

144*

99*

78*

51*

37* | 28*

21%

17*

14*

144*

99*

78%*

51*

37* | 28*

21*

17*

14*

Tables 2.3.1-2.3.7 indicate that there is a rapid change in M when we increase G For
example, we note that when i=1%, rl% and 0 =0, the optimal spread period M?=318
when ¢=.03, but M ° =1 when & > .05. As we noted in paragraph 2.2, when o
increases, the correspondmg maximum feasible spread period My.x decreases. There is
a value of o, ™ (with correspondmg maximum feasible spread period M " max ) for which
T, is minimised at both M 1zx and My, which is much shorter than M max

FOr Muin <M< M s, T, is higher than at the end points. So, when the ch01ce ofc
makes My lower than M my (6> 6%), T, is only minimised at Min. When M can be
longer than M'nsx , J, decreases. Hence, when the choice of ¢ makes Mmax higher than

M mix (G< G*), the optimal choice is Miax -

The critical values of ¢~ for different values of j, 6 and i are shown in Table 2.3.8. We

notice the dependence of 6" on these parameters.

11




Table 2.3.8
Critical Values of o * when F¢=0
Fo=
0

i j 0 25 S 5|1 85 | 95 1
01! 01| 04 | .043 | .046 | .051 0551 .064| .14
03| .01].045]| .046| .047| .053 056} .066 13
03] .031.0907|.105] .11 |.125].135 .16 | 245
03| .05| .14 .155] .167| .186 205 .23 33
05| .03]|.098].105] .115 12 135 .16 24
05] .05].147| .157 | 17 .19 1 .205| .24 33
05| .10} 255|273 | .295 33| .345| .38 5

Hence, for low values of o, the optimal choice of M is to make M as large as possible.

Tables 2.3.1-2.3.7 also indicate that for o <o, this optimal choice of M does not
depend on 0 as neither gmas= (1+ o2 v* Y2 nor Mipax = -log(1- !
g,

) Nlog(1-+i)

depends on 6. On the other hand, for >0 * increasing O causes a rapid change in M.
For example, when i=1%, j=1% and ¢ =.05, the optimal spread period M°=1 for 6
=25, but M°=223 for 6 =85.

We next consider equation (16) as a function of 8,0 <6 <1. We recall that © controls
the balance between the solvency risk and the contribution rate risk. The risk (as
represented by J, ) is a decreasing function of © but this decrease in risk is significant
only for large values of q (i.. large values of M). So, when 0 increases, the risk
decreases but this downward shift in risk is not smooth. J, decreases considerably for

large values of M and remains approximately the same for small values of it, making
the optimal spread period longer.

Tables 2.3.1-2.3.7 indicate that for o <o *, when a higher discounting factor is used (a
lower j) the optimal choice M? remains the same (=Mu;). This is easily explained as

neither gma=(1+0"v>)""” nor Mna=-log(1- -

)/log(1+i) depends on j. On the

max

other hand, for c>o * we observe that the optimal choice M becomes shorter when
is decreased. For example, when 6=.15, 6=25 and i=3%, M°=1 when j=3%, but
M®=46 when j=5%. Figure 2.3.1 shows the graph of J, for these two cases.

12
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Figure 2.3.1: Graph of J, when c=.15, 6=.25 and i=3%

We observe that when j rises, the risk as represented by J, decreases. This downward
shift in risk is much more significant for large values of M, making the optimal spread
period longer. Hence, when j=.03 the risk J , is minimised for M=1. When j=.05 (more
emphasis is placed on the shorter-term state of the pension fund), the risk remains
approximately the same for M=1 but decreases considerably for M=46 and the optimal
spread period becomes M’=46.

We will try to explain these results in a different way. We consider equation (16)
as a function of j and substitute z=-AL, i=3%, 6=.15 and 6=.25 for convenience.
Figure 2.3.2 shows the graph of this function for different values of M, chosen
carefully in the light of the earlier results.

00.01 002 0?3 0.04 0.05

Figure 2.3.2: Graph of J _(j) when 6=.15, 6=.25 and i=3%

13



Figure 2.3.2 demonstrates what we have already claimed. The risk as represented by
T, is a decreasing function of j and this decrease in risk becomes more significant as
the values of M become larger.

From Tables 2.3.1-2.3.7, it can also be seen that an increase in the assumed rate of
return i causes a significant decrease in M when 6<c" and a slight decrease in m°
when o>6". We recall that when o<, the optimal choice is Mymax Which depends on 1
( Mpax =-log(1- I d Ylog(1+) ) and which changes in the way that the Table 2.2.1
—q

max

shows. When 6>”, the optimal choice is shorter and remains the same or decreases
slightly when i increases. For example, when j=5%, 6=1 and 6=.35, M"=14 for i=3%
but M°=12 for i=5%. Figure 2.3.3 demonstrates these two cases.

i

4 6 8 10 12 14

Figure 2.3.3: Graph of J, when 0=.35, 6=1 and j=5%

Tt is demonstrated in Figure 2.3.3 that, in response to an increase ini, J, remains

approximately the same for low values of M and slightly increases for high values of
M.

We consider equation (16) as a function of i and substitute z=-AL, 6=.35, 0=1
and j=5% for convenience. Figure 2.3.4 shows this function for different values of M.

14
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Figure 2.3.4: Graph of J (i) when 6=.35, 0=1 and j=5%

Figure 2.3.4 demonstrates the sensitivity of J , to changes in i. Therefore, it explains
the fact that the optimal choice is influenced only slightly when the .assumed rate of
return changes. It also indicates that for the case when the rate of interest used in the
discounting term j is equal to the valuation rate of interest i (see Tables
2.3.1,2.3.3,2.3.6), the changes in J , are due to changes in the discounting rate of
interest.

2.4 Initial Funding Level of 25%

Tables 2.4.1-2.4.7 provide the optimal values of the spread period M for F0=%AL

and different combinations of ¢, 0, j and 1.

Table 2.4.1
Values of M when F.,=% AL (z= % AL)
i=1%
1%
[¢]
] .01 .03 .05 1 A5 2|1 .25 3| .35
0 1 1 1 1 1 1 1 1 1
25 1 1 1 1 1 1 1 1 1
5 2 2 2 2 2 2 2 2 2
75 2 2 2 2 2 2 2 2 2
.85 3 3 3 3 3 3 3 3 3
.95 5 5 5 5 5 5 4 4 4
1| 535%|318* | 223* | 112*| 52 | 28 18 13 9

15



Table 2.4.2
Values of M® when Fn=%AL (z=-%AL)

i=3%
1%
[¢]
0 .01 .03 .05 1 A5 | 2 | 2510 3 | .35
0 1 1 1 1 1 1 1 1 1
25 1 1 1 1 1 1 1 1 1
5 2 2 2 2 2 2 2 2 2
.75 2 2 2 2 2 2 2 2 2
.85 3 3 3 3 3 3 3 3 3
95 5 5 5 5 5 4 4 4 4
1]218% | 145% | 111*| 68* | 26 | 17 13 10 3
Table 2.4.3
Values of M when Fy=" AL (z=3 AL)
i=3%
i=3%
[¢]
0 01 .03 .05 1115 2|25 .31].35
0 1 1 1 1 1 1 1 1 1
25 1 1 1 1 1 1 1 1 1
.5 2 2 2 2 2 2 2 2 2
75| 218* 2 2 2 2 2 2 2 2
851 218% | 145% | 111*| 3 3 3 3 3 3
95} 218* | 145* | 111*| 6 6 5 5 5 4
1] 218* | 145*% | 111* | 68* | 46* | 33* | 21 14 | 10
Table 2.4.4
Values of M° when Fy= % AL (z= % AL)
i=3%
i=5%
[¢]
0 01 .03 .05 17115 2 |.25] .3 |.35
0 1 1 1 1 1 1 1 1 1
25 1 1 1 1 1 1 1 1 1
51 218% ) 145% [ 111*% | 2 2 2 2 2 2
751 218% | 145*% | 111* | 3 3 3 2 2 2
.851218% | 145% | 111* [ 68* | 3 3 3 3 3
95| 218* | 145% | 111* | 68* | 46* | 7 6 5 5
1] 218*% | 145* [ 111* | 68% | 46* | 33* | 25* 19% | 13
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Table 2.4.5
Values of M° when F0=%AL (z=-%AL)

i=5%
i=3%
o)
0 o1 | 03[.05]a]as|.2({25].3]|.35
0| 1 1 1 1 1 1 1 1 1
25) 1 1 1 1 1 1 1 1 1
S| 2 2 2 2 2 2 2 2 2
J51144% ) 2 2 2 2 2 2 2 2
85| 144% | 99* | 78* | 3 3 3 3 3 3
95| 144% | 99* | 78* | 6 5 5 5 4 4
1[144% | 9o* | 78* {51*[37* | 27 | 16 | 11 | 9
Table 2.4.6
Values of M when Fi=7 AL (=3 AL)
i=5%
i=5%
(o]
0 o1l.03]w0s5]| .1 ]|.a5| 225|335
0| 1 1 1 1 1 1 1 1 1
25 1 1 1 1 1 1 1 1 1
S| 144% [ 99* | 78% | 2 2 2 2 2 2
5| 144% | 99* [ 78* | 3 3 2 2 2 2
.85( 144* | 99* | 78* [ 51*| 3 3 3 3 3
95 144% | 99* | 78% | 51* | 37* | 6 6 5 S
1| 144% | oo* | 78* | 51* | 37* | 28* | 21* | 16 | 11
Table 2.4.7
Values of M when Fy=" AL (z=3 AL)
=%
i=10%
[¢)
0 o1 .03].05|.a.15] 2125|335
0| 144% | 99% | 78* |51*%] 1 1 1 1 1
25| 144% | 99* | 78*% [51* | 37* | 1 1 1 1
5| 144% | 99* | 78* | 51* | 37* | 2 2 2 2
751 144% | 99 | 78* | 51*| 37* [28*| 3 3 3
85 144*| 9o | 78* | 51*|37* |28* [ 21* | 4 4
05| 144* | 99* | 78* [51* | 37* | 28* | 21* | 17*| 7
1| 144* | 99% | 78* [51* | 37* | 28* | 21* | 17* | 14*
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Tf we compare Tables 2.3.1-2.3.7 with Tables 2.4.1-2.4.7, we observe that for a higher
initial funding level, the optimal spread period presents an abrupt decrease for many
combinations of o, 1,jand @. For example, when i=1%, j=1% o=.01 and §=0 the

optimal spread period is M"=535 when F¢=0, and M°=1 when F0=21‘—AL. The initial
funding level of 25% leads to a shorter optimal choice of spread period when the other
parameters are such that we do not have the case of Mpax. For example, for the
combination of =10%, i=5%, 6=.01, the higher initial funding level of 25% is not
sufficient to change the optimal choice which remains M°=144. Hence, for this case,
the effect of the high value of j is more significant than the one of the initial funding

level.

T M°=Mux (6<6"), we observe that the optimal choice does not change either for a
higher or for a lower value of j as Muax does not depend on j. On the other hand, Mmax
depends on i. So, for the 6<G" cases, the changes in the optimal spread period

correspond exactly to Table 2.2.1.

When the optimal spread period is shorter than Mmax (0>6"), an increase in j leads to a
higher optimal choice. For example, when i=5%, 6=.25 and 6=.01, M"=1 for j=5% but
M°=144 for j=10%. Figure 2.4.1 demonstrates J, plotted against M.

I RNE AN Pommmmo
0.004 b j=1 M=144

!
]
i
]
0.003 ,i N\
!
]
i
0.0027

0.001—/\

20 40 60 M 80 100 120 140

Figure 2.4.1: Graph of J, when 6=.01, 6=.25 and i=5%

Figure 2.4.1 demonstrates what we have already claimed. The risk as represented by
J_ is a decreasing function of j and is more sensitive in changes in j for the higher
values of M (see also Figure 2.3.2). Therefore, when we are more interested in the
shorter-term position of the pension fund (j=10%), the risk decreases to a greater
extent for M=144 than for M=1 and the optimal spread period becomes M’=144.

For an initial funding level of 25% and for the G>G cases, an increase in the assumed
rate of return causes the same results as for an initial funding level of 0%. The optimal
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choice does not change at all or decreases slightly. Therefore, when the valuation rate
of interest i is equal to the rate of interest used in the discounting term j (see Tables
2.4.1,2.4.3,2.4.6), changes in M° are in response to changes in j.

Tables 2.4.1-2.4.7 also illustrate that the increase in © causes an abrupt change in the
optimal spread period. The reason for this change has already been discussed. The risk
as represented by J, is a decreasing function of © and the level of this decrease is
considerable only for the case of high M. Therefore, when 0 increases, the risk
decreases for high values of M and the optimal choice becomes longer. For example,
when i=1% and o =01, M°=1 for 6 =0, but M"=535 for 6 =1.

Table 2.4.8 presents the critical values of o for these combinations of parameters
where they exist. The dependence of o on these parameters is clear.

Table 2.4.8
Critical Values of o * when FF%AL
Fo=lAL

4

0
i i 0 25 5 JS | .85 | 95 1
01| .01 - - - - - 125
03] .01 - - - - - - A1
03] .03 - - - .02 |.055].095| 215
037 .05 - -1.0551.0905| .12 .17 32
051 .03 - - -1.025| .06} .096| .195
05| .05 - - 06| 99 |.125 ] .175 | .29
05| .10 .12 .155].185 23 26| .305 45

2.5 Initial funding level of 50%

Tables 2.5.1-2.5.7 indicate the optimal spread period M’ for F0=-;- AL and different

combinations of 6,0, j and i.
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Table 2.5.1
Values of M° when Fo=_1 AL (z=-1 AL)

.35

12

2

25

17

26

2

15

47

1%
1%

i
i

112*

.05

.03

318* | 223*

01

25

15
.85
95

1] 535%

Table 2.5.2

L AL

2

LTAL

2

)

(==

Values of M® when Fy

.35

10

.25

12

2

17

15

23

i=3%
1%

i

36

.05

111*

.03

145%

.01

25

J5
.85
95

1}218*

Table 2.5.3
Values of M’ when Fy=L AL (z=-1 AL)

2

2

3%

i=3%

i

ﬁ — 234m
] — Qfen||8
& — Qen|n|X
e
«a =AWy
%) *
— AN|en|n O
- <
*
] — ANfen|wnioo
©
*
% — afen|vo| D
M —
*
Bl ~[~[a|]|en| 0}
M —
- *
=) — 236w
° N
I d A AN dial

<) | Y e~fee| e

. R

20



LAL =1AL)

i

Table 2.5.4

Values of M’ when Fy

35

12

17

2

25

25%

33*

.15

46*

5%

i=3%

i

Table 2.5.5

.05

111* | 68*

.03

145%

.01

25

75
.83
95

1]218*

AL)

1
2

Values of M° when Fi=_ AL (z=

10

14

2

20

35

3%

i=5%

i

51%*

Table 2.5.6

.05

78%

.03

99*

.01

25

75
.85
95

1| 144*

)

LAL

LAL =
2 2

Values of M° when F,

35

10

14

25

20

28*

.15

37*

5%
5%

i
i

51%

.05

78*

.03

99%*

.01

.25

75
.85

95

1] 144*
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Table 2.5.7
Values of M° when F0=% AL (z= % AL)

i=5%

i=10%

(¢}
g o1 [.03[]0s]afas[2]2s].3].35
o] 1 1 1 (1 [ 111 1]
25] 1 1 1 |11 1] 111
5 2 22222121272
75 3 [ 3 [ 3 333333
85| 4 | 4 | 4 4] a]al4a]3]3
95 144* | 0o* [ 78* [s1*[ 10| 8 | 7 | 6 | 6
1] 144% | 99* | 78* | 51* [ 37* [ 28* | 21* [ 17* | 14*

The results presented by Tables 2.5.1-2.5.7 show less dramatic variation than would be
expected (from the results in sections 2.3 and 2.4) because of the higher initial funding
level. For low values of 0, we observe that the optimal choice is not affected by

changes in o, i or j. For example, when 6 =.5, M°=2 for each value of i, j and &
investigated.

When 6 increases (except for the cases of 0=.95 and 6=1), the optimal choice increases
slightly. Given the initial funding level of 50%, changes in j and/or © do not cause any
rapid increase in M®. The range of the optimal values is low.

For higher values of 8 (8=.95 or 6=1) and when 6>6", an increase in j leads to a longer
optimal choice. For example, when i=5%, 8=.95 and 6=.1, M"=5 for j=3%, M"=6 for
j=5% but M’=51 for j=10%. When 6<c", a change in value of j does not cause any
changes in M (=M for these cases) contrary to the assumed rate of return which
affects the optimal choice (Mp.x depends on i). So, when i increases, the maximum
feasible spread period decreases, as can be seen from Table 2.2.1. For 6>6", M does
not change markedly in response to changes in i. Hence, in the case of i=j (see Tables
2.5.1, 2.5.3, 2.5.6), the optimal choice is affected considerably only by j.

Table 2.5.8 shows the values of 6" (where they exist) for combinations of i, j and 6.

Table 2.5.8
Critical Values of ¢ * when Fy %AL

Fo= 1 AL
2
i 01 | .03 [ 03 | .03 [ .05 | .05 | .05
i 01 | .01 [ 03 1.05([.03|.05] .1
0 95 - - - - - - | .105

1 A2 [ .07 | 17 | 25 1.145] 24 | 43
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2.6 Initial Funding Level of 75%

Tables 2.6.1-2.6.7 show the optimal spread period M for Fo=%AL and different

combinations of 6, o, j and i.

Table 2.6.1
Values of M when Fo=> AL (z= % AL)
i=1%
1%
[¢]
0 .01 .03 .05 a5 2251 .3 (.35
0 1 1 1 1 1 1 1 1 1
25 1 1 1 1 1 1 1 1 1
.5 2 2 2 2 2 2 2 2 2
75 2 2 2 2 2 2 2 2 2
.85 3 3 3 3 3 3 3 3 3
95 5 5 5 5 5 5 4 4 4
11{535%|318*%|223*| 89 | 42 | 25 17 | 12 9
Table 2.6.2
Values of M® when Fy= % AL (z=- % AL)
i=3%
1%
o
0 .01 .03 .05 dl.a5] 2125 .3 |.35

0 1 1 1 1 1 1 1 1 1
25 1 1 1 1 1 1 1 1 1
5 2 2 2 2 2 2 2 2 2
.75 2 2 2 2 2 2 2 2 2
.85 3 3 3 3 3 3 3 3 3
95 5 5 5 5 5 4 4 4 4
1] 44 41 38 28 | 21 16 | 12 9 8

Table 2.6.3
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35
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15
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33*

.15

46*

Table 2.6.5

.05

111* | 68*

.03

145%

.01

25

a3
.85
93

1]218*

AL)

1
4

AL (z=

3
4

Values of M° when Fo=

i=5%
3%

i

33

10

25

12

16

15

22

32

.05

49

03

58

.01

64

25

5
.85

95
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Table 2.6.6
Values of M° when Fy=> AL (F-%AL)

i=5%

i=5%

[¢]
o |o1].03]05].0]a5].2].25].3].35
ol 1 | 1|t 111111
25| 1 | 1|1 |11 1]
50 2 |2 212]2]2[2]2]2
sl 2 221221221212
8| 3 | 3 |1 333133 [3]3
95| 5 | 5| 5|5 5|5 544
1] 144* | 99% | 78* [51*[37* [ 24 [ 16 [ 12 ] 9

Table 2.6.7
Values of M° when F0=%AL (F-%AL)
=5%
=10%
(o]
0 01 .03 05 d1.A5 2125 3 1}.35
0 1 1 1 1 1 1 1 1 1
25 1 1 1 1 1 1 1 1 1
) 2 2 2 2 2 2 2 2 2
5 2 2 2 2 2 2 2 2 2
.85 3 3 3 3 3 3 3 3 3
95 7 7 7 7 6 6 6 5 5
1] 144% ] 99* | 78* | 51% | 37* [ 28* | 21* | 17* | 14*

With an initial funding level of 75%, the results are similar to these of section 2.5 (50%
funding). For low values of M, an increase in j and/or in 8 is not sufficient to cause any
dramatic change in M° for all values of 6. The effect of the valuation rate of interest i is
also minor (except for the case of 6=1).

When 8=1, Tables 2.6.1-2.6.7 indicate some rapid changes in M°. For example, when
6 =.01, M®=44 for i=3% and j=1% and M’=535 for i=1% and j=1% . Given the high
initial funding level, it is observed that the effect of the valuation rate of interest is
more significant than it was for lower initial funding levels. This is also illustrated in
Figure 2.6.1 which presents the graph of J, as a function of i.
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Figure 2.6.1: Graph of J_ (i) when 6=.01, 6=1 and j=1%

Figure 2.6.1 demonstrates that the risk as represented by J , is an increasing function

of i for high values of M. Therefore, an increase in i leads to an upwards shift in the
risk for the long spread periods, making the optimal choice shorter.

When 0 increases, the optimal choice increases. When 9 =1, for low values of o, the
risk is minimised when M*=M,..,.. For higher values of o, the optimal choice
decreases. Table 2.6.8 indicates the critical values of & when 6=1.

Table 2.6.8
Critical Values of o * when Fo %AL

F[|= —3— AL
4

i 01 (.03 (.03 .05 .05
.01 | .03 [ .05 | .05 .1
6 1 |.095} .13 | 24 | .17 | .37

ot o

It is clear that the influence of the high initial funding level is more significant than any
of the other parameters, making the optimal choice shorter for most cases, when

compared with the Fo=0 and Fo=%AL cases discussed earlier. We also observe that

the higher is the initial funding level, the lower is the value of & .

2.7 Initial Funding Level of 100%

Tables 2.7.1-2.7.7 present the values of M ® when Fo=AL and for different
combinations of 6, ¢, j and i.
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Table 2.7.1
Values of M® when Fy=AL (z=0)

35

12

25

16

24

15

38

1%
1%

i_
j...

71

Table 2.7.2

.05

163

.03

252

01

466

.25

15

.85
95

1

Values of M’ when Fi=AL (z=0)

.35

25

12

15

15

19

i=3%
1%

24

Table 2.7.3

.05

30

.03

31

01

32

25

.75

.85
95

=0)

=AL (z

Values of M® when Fy

.35

11

25

15

2

20

15

30

3%
3%

i
i

49

.05

89

.03

122

.01
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25

75

.85
95
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Table 2.7.4
Values of M° when Fi=AL (z=0)

35

10

14

25

20

33*

.15

46*

3%
5%

i
i

68*

Table 2.7.5

.05

111%*

.03

145*

.01

25

75
.85
95

1(218*

Values of M’ when F=AL (z=0)

35

25

11

14

.15

17

5%
3%

i
i

21

Table 2.7.6

.05

25

.03

26

01

26

25

7S5

.85
95

Values of M’ when F=AL (z=0)

.35

10

25

13

18

A5

26

5%
5%

i
i

39

.05

64

.03

85

.01
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25
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Table 2.7.7
Values of M’ when F¢=AL (z=0)

i=5%
=10%
c
0 01| .03].05|.1].15].2).25]| .3 }.35
0f 1 i 1 1 1 1 1 1 1
251 1 1 1 1 1 1 1 1 1
S| 2 2 2 2 2 2 2 2 2
J5) 2 2 2 2 2 2 2 2 2
85| 3 3 3 3 3 3 3 3 3
95| 5 5 5 5 5 5 5 4 4
1| 144% | 99* | 78% | 51* [ 37* | 28* [ 21* | 17* | 13

‘When the initial unfunded liability is zero, a different value of the interest rate used in
the discounting process is not sufficient to alter the optimal choice-except for the case
of 6=1. From Tables 4.6.1-4.6.4, it can be seen that for low values of 0, the results do
not depend on o, i or j. For example, when 6=.5, M=2 for each value of 5, i and j.

When 0 increases, there is a slight increase in the optimal choice, as for the other cases

1 . . o
of - 3 AL <z<0. When we are only concerned with stabilising the contribution rate

(6=1), the optimal choice, as previously, is as long as possible. Therefore, for 6<G’,
M’=M_., decreases when i rises but remains the same when j changes. For oo, M'is
shorter. Given the initial funding level of 100%, the optimal spread period is more
sensitive to changes in the valuation rate of interest. For example, when 6=.01, =3%
and 8=1, M"=26 for i=5%, but M°=195 for i=3%. Therefore, when the valuation rate
of interest i is equal to the rate of interest used in the discounting term j (see Tables
2.7.1,2.7.3, 2.7.6), changes in the optimal choice are due to i.

For the specific cases tabulated, when 6=1, i=3% and j=5%, =21 and when 6=1,
i=5% and j=10%, 6" =.33.
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3. Interpretation of the Results

3.1 Minimising the Solvency Risk

If 6 =0, we are minimising the solvency risk. The degree of security will depend on the
speed with which the shortfall is removed by means of special contributions. In this
case, the best course of action would be to pay the full amount of the shortfall as it
arises without spreading any payments into the future (i.e. M’=1). But this may not
always be attractive, or even possible, from the employer’s point of view.

However, Tables 2.3.1-2.3.7 show that when the assets in hand are much less than the
initial liability (Fo=0), the optimal spread period is much longer, especially, for low
values of o . In particular, for 6<c’, the optimal choice is the maximum feasible
spread period Mp,: which decreases as the mean return i increases. When 6>6', the
optimal spread period is equal to 1, independently of the set of parameters i, j and z.

3.2 Minimising the Contribution Rate Risk

If § =1, we are minimising the contribution rate risk. We are concerned with stabilising
the contribution rate by spreading the unfunded liability for as long as possible. As
Owadally and Haberman (1995) argue, stable contributions enable the employer to
plan cash flows and to predict tax relief in respect of the contributions, and lead to
stable pension costs. Therefore, in order to make the call on the employer’s resources
stable, the actuary should choose the period for the extinguishing of the unfunded
liability to be as long as possible, otherwise the range of variation of the contribution
rates is increased.

The length of the spread period decreases as ¢ increases. For <o *, the optimal
choice is Muax. For o>0 ", M® becomes shorter according to the particular
combinations of i, j and z. When the initial funding level (represented by z) decreases,
the contribution rate required rises. If our objective is one of minimising the
contribution rate risk, then the optimal spread period increases.

Forthe o <o~ cases, the optimal choice MM, does not change whatever the
value of the interest rate used in the discounting process (Mmax does not depend on j).
For o >0, ahigher value of j leads to a longer optimal choice. An increase in j
means that greater emphasis is being placed on the shorter-term state of the pension
fund. For a funding deficit ( low value of F; ), this means that a higher adjustment to
the contribution rate is required. If we are concerned with minimising the contribution
rate risk, a higher value of M° should be chosen so as to reduce the variation in the
contribution rate. The higher is the initial funding deficit, the greater is the impact of j
on the optimal choice.
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The results are also sensitive to changes in the interest rate (i). The optimal choice M’
decreases when i increases for each value of o . For o <o, the changes in M° arising
from changes in i correspond to Table 2.2.1. For the o> " cases, the extent to which
the results are affected by changes in the investment assumption depends on the initial
level of assets. If the pension fund had no assets (Fo=0), the impact on M’ would be
less. If the initial funding level were high, an increase in i would lead to a greater
interest obtained on the assets and, consequently to a lower contribution and a smaller
optimal choice. Hence, increasing i has a larger impact on the optimal choice when the
initial funding level as represented by z is high.

Dufresne (1988) considers the trade-off between the limiting variances of the
contribution rate risk and of the fund level, recognising that improved security may
imply regularly adjusted contribution rates and, conversely, stable contribution rates
may be achieved by a greater variation in the fund level. He minimises the ultimate
level of these variances and finds a region for M, (1,M*)

where M = {—log(l—d [k*) Iog(1+1), i#0, ’ ,:{ 0 y<L
1+1/07%, i=0. 1-1/y if y>1

and y=(1+)+c>.

He calls this region an optimal one, in the sense that for M>M", both limiting

variances are increased and for M<M" , the limiting variance of the contribution rate

risk increases and the limiting variance of the fund level decreases.

Therefore, we may consider as a measure of the contribution rate risk the variance of
C(t) in the limit, i.e. VarC( ). We recall from (1.5) that VarC(c0)= kz%
where a=q*(1+b)=(1-k)’[(1+i)*+ 0 ]=(1-k)’y, y=(1+)**+c*, b=c>V~.
Dufresne(1988) shows that k” is the value for which VarC(e0) or ai(k)= T—IZ%L—I:)@
is minimised.

According to our formulation, for 6 =1, the contribution rate risk is defined as

J w=z w'VarC(f) where w is the discounting factor and VarC(t)=k*VarF(t).
t=0
So:
_kbv, ¢ N AL | 274Lq
l-wa'l-wg® 1-w 1-wgq

©

Hence, we must find the values of k for which Joo or

Bk) = B2’ A -w)1-wq) + AL’ 1 - w?)(1 ~wq) +224Lq(1 — wq” )(1 —w)]
[1-w(- k) YI(1-wg* )1 -wq)

is minimised.

We consider the case of z=-AL , for convenience. Figure 3.2.1 illustrates that the

spread period M° which minimises J oo is longer than the spread period M which
Dufresne defines as the optimal choice for minimising VarC( o).
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Figure 3.2.1: Graph of VarC(«) and J, when i=1% and o=.01

In our formulation of the problem, the criterion of minimising the contribution rate risk
is defined as a time-weighted sum of the VarC(t). Hence, the discounting factor is the
weight applied to the variance which means that for i>0 (w<1), more emphasis is
placed on the shorter term variances. On the other hand, minimising VarC(cc) means
that we consider only the ultimate situation (t— ). If we want to approach
Dufresne’s case, we should put more weight on the future by choosing a discounting
factor w, such that

AL
1-(1-k)y
Therefore, 1‘:11’)11 k°=k" = lwlir} M°=M".

w—>1 (i—0). Then (k) > =ok) when w— 1.

3.3 Minimising the Risk: the General Case (0<6 <1)

Complete security or complete stability is not always an overriding principle (0< 6 <1).
In this case, it is necessary to consider how quickly a particular contribution
arrangement relating to the pension scheme liability would meet this liability, in order
to build up security of the benefits.

When o " exists, we observe that, for <o ", the optimal choice is Min.x because we
want to spread the unfunded liability for as long as possible. For o>¢ ", M is much
shorter and depends on the particular combinations of'i, j, z and ©.

From the Tables in Section 2 it can be seen that, when 0 increases, the optimal spread
period increases because we are more concerned with the criterion of stability. The
sensitivity of the risk to 6 depends on the particular values of the other parameters.
Tables 2.3.1-2.3.7 indicate that, for low values of ¢, the optimal choice (=Mpmax) is
independent of 6 (Fo=0). Table 2.4.3 shows that, for o<, M? is very sensitive to
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changes in 6 (F0=%AL) and Table 2.5.3 shows that M? increases slightly when 0

increases for each value of 6 (Fo=%AL)‘

When the initial funding level (Fo) rises, the risk as represented by J, is minimised for
shorter spread periods. We consider equation (16) as a function of z, -AL<z<0.J, is
an increasing function of z and is more sensitive to changes in z for high values of q
(i.e. high values of M). For low values of q, the risk is approximately constant. So,
when the initial funding level rises, the risk J, remains approximately constant for low
values of M, but it increases to a substantial extent for high values of M. With the
objective of minimising the risk J, , the optimal spread period becomes shorter. The
extent to which the optimal choice is decreased, when the initial funding level rises,
depends on the particular combination of the other parameters. From the comparison
of Tables 2.3.4 and 2.4 4, it can be observed that, for low values of , a lower initial
funding level makes the optimal spread period jump from a low value to become equal

to the maximum feasible spread period M. For higher values of o, the effect of the
initial funding level is minor.

The higher is the initial level of assets , the greater is the impact of the assumed rate of
return (i) on the optimal choice. Because of the interest earned on the plan’s high initial
funding level, the criterion of security is satisfied when a small spread period is chosen,
without leading to variations in contribution rate. Hence, the values of the optimal
period range from 1 to 6 when z=0, as Tables 2.7.1-2.7.7 indicate.

With the objective of placing more emphasis on the shorter-term state of the pension
fund (a higher value of j), the results become more dependent on j, the lower is the
initial funding level and for o>¢ " (for 0<o * M"=M_. is independent of j).

When the short-term state of the pension fund is to be emphasised and a large initial
unfunded liability exists, minimisation of the risk J, can be achieved by small changes
to the contribution rate. This means that longer spread periods should be chosen, as
illustrated by Tables 2.3.5 and 2.3.7.

We consider the case where we wish to place more emphasis on the longer-term in
more detail. According to our formulation

Jw=iw’[0VaIC(t)+ (1-G)VarF ()]

where w is the discounting factor.
So:

o +1-6 2,2 2
I = ——( )ozvzw z4 +AL +22ALq
1-wa 1-wg® 1-w 1l-wgq

Hence, we must find the values of k for which Joo or
2 po—
ok =@‘—;’}ﬁ B(K) is minimised.
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If we are interested in the long-term position of the pension fund, we could remove the
time weighting factor completely and choose a discounting factor w, such that w—> 1.

&> +1-6
1-(1-k)*y
In order to find the optimal values of k, k°, we should solve the equation:
%%yk%[y(l -26)+ 6k -y(1-6) =0 @18)

Then ¢(k)= (as previously we assume for convenience that AL=1).

where k should be restricted (for convergence) to values such that:

Kmin<k<l where km,-n=1-L.

Ny

Case I If 6=0, k"=1 = M’=1.
Case II: If6=1,

k°=1-l =k" and the optimal spread period is the corresponding M as derived by
y

Dufresne (1988).
This case has been discussed in detail in paragraph 3.2.
Case I1I: If0<6<l1,

k" is the conventional positive root of equation (18) with 1-% <k’<1.

In any particular case, calculation of the values of k° allows us to find the
corresponding values of M from k= 1/ &_‘ = M=-log(1-% Ylog(1+i).
M

Tables 3.3.1-3.3.3 present the values of M° for combinations of i, G and 8. It is worth
noting that the results are independent of the initial funding level as represented by z
(because they are determined by the limiting values, as t — o).

Table 3.3.1
Values of M’ when j—0
i=1%
o

0 01 | .03 | .05} .1 [. 15| .2 [.25| .3 |.35
0 1 1 1 1 1 1 1 1 1
.25 1 1 1 1 1 1 1 1 1
S| 2 2 2 2 2 2 2 2 2
g5 2 2 2 2 2 2 2 2 2
85| 3 3 3 3 3 3 3 3 3
951 S 5 5 5 5 4 4 4 4
1| 70 66 60 | 42 [ 28 | 19| 14 | 11 8
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Table 3.3.2
Values of M® when j—0

=3%
(o]
0 01 .03 05 | 1|15 2125 .3 35
0 1 1 1 1 1 1 1 1 1
25 1 1 1 1 1 1 1 1 1
S| 2 2 2 2 2 2 2 2 2
JSE 2 2 2 2 2 2 2 2 2
85| 3 3 3 3 3 3 3 3 3
951 S 5 5 5 5 4 4 4 4
1| 24 23 23 20 16 | 13 | 10 8 7
Table 3.3.3
Values of M° when j—0
i=5%
(¢}
0 01|03 | 05| .1 |5 .21.25| .3 (.35
0 1 1 1 1 1 1 1 1 1
25 1 1 1 1 1 1 1 1 1
Si 2 2 2 2 2 2 2 2 2
JS| 2 2 2 2 2 2 2 2 2
85 3 3 3 3 3 3 3 3 3
95| 5 5 5 5 5 4 4 4 4
1] 16 15 14 | 13 | 11 | 10 8 7 6

Tables 3.3.1-3.3.3 indicate that, for 0<6<1, the values of the optimal spread period are
low and do not depend on i or . Therefore, with equal time-weighting so that j— 0
and w—> 1, minimisation of the risk J  is achieved by a low value of the spread period,
irrespective of the initial funding level.
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4. Conclusions

From the results in Section 2 , it is clearly seen that, the lower is the initial funding
level (Fo), the greater is the range of the optimal choices. Hence, when the funding
strategy involves a low initial funding level, a high choice of M is necessary (under
particular choices of the other parameters) in order to remove the initial funding deficit
without great variation in the contribution rate.

The choice of the parameter 0 is of great importance as it reflects which of the
variability of the fund or of the contribution is required to be more stable from the
employer’s point of view. The results are presented for different values of 6 and allow
a comparison of the optimal choices for valuation methods with different principal
objectives (e.g. more emphasis on stable contribution rates or on funding of the
actuarial liability).

The use of a discounting factor w = v clarifies the effect of the assumed rate of return
(i) and of the rate of interest for discounting variances (j) on the range of the optimal
spread periods. The results support the conclusion that, the greater is the departure
from a 100% initial funding level, the less is the effect of the assumed rate of return.
Given a high initial funding level, an alteration of the assumed rate of return does have
an important effect on the range of the optimal spread periods. In particular, the effect
of the interest earned on the pension plan’s assets leads to a small range of optimal
choices.

The rate of return used in the discounting process (j) indicates which of the short-term
or the long-term state of the pension fund is to be more emphasised. The conclusion is
that, the lower is the initial funding level, the greater is the impact of j on the range of
the optimal choices. We also demonstrate that, in the long term, the risk as represented
by J, is independent of the initial funding level and the range of the optimal spread
periods is much diminished.

Finally, it is seen that, the range of the optimal spread periods is large for particular
combinations of the parameters. For these cases and for low values of &, the optimal
choice is to make M as large as possible. The critical values of ¢, which make the
optimal spread period jump from a low value to the maximum feasible spread period
Miuax, are shown in Section 2.

It is worth noting that, in the UK, the values of the spread period used from most
pension schemes in practice may be different from what the tables in Section 2 indicate.
As far as the solvency risk is concerned, the Minimum Funding Requirement (MFR)
rules, as given in GN27, place a restriction on the choice of M. In particular, if the
funding level (which is defined as the ratio of assets to liabilities) is less than 90%, the
deficit has to be eliminated within 1 year. If the funding level is more than 90%, the
unfunded liability has to be removed within 5 years. When F4=0 and 6<c", Tables
2.3.1-2.3.7 show that the spread period which minimises the risk J, is longer than is
allowed by the MFR rules. For all the other cases tabulated, the results presented
inSection 2 are consistent with MFR rules.
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Haberman (1994) explains that the values of M chosen in practice are unlikely to be
greater than the average remaining membership period-with an average age of
membership of 40-45 and a normal retirement age of 65 the choice of M would be in
the range of 20-25. Therefore, the optimal spread periods presented in Section 2, for
0<c", are too long to be used in practice. For 6>c" , if we are interested in minimising
the risk J , values of M which are much smaller than this indicative range 20-25

traditionally chosen by practitioners are optimal, as the results of this paper indicate.
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