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A methodology for the development of design tools for direct estimation of peak inelastic response in reduced-degree-

of-freedom (RDOF) isolation and energy dissipation systems is presented. The suggested procedure is an extension 

of an earlier method addressing purely hysteretic isolation systems. Herein, the dynamic equation of motion is first 

normalised to reduce the number of design parameters that significantly affect the response. The sensitivity of 

normalised response quantities to the amplitude of the ground motion is then investigated through extensive parametric 

nonlinear dynamic analyses of isolated single-degree-of-freedom (SDOF) systems with linear viscous damping using 

code-based target spectra. Regression analysis is subsequently employed to develop generalised design equations 

(GDEs) suitable for design. Further investigations are made to address nonlinear viscous damping and the effect of 

the transverse component of seismic action in two-degree-of freedom (2DOF) systems under bidirectional excitation, 

making the procedure applicable to common bridge isolation schemes. GDEs constitute an alternative to equivalent 

linearisation approaches commonly adopted by codes, informing the selection among alternative isolation and energy 

dissipations schemes without requiring iterative analysis. The approach is incorporated in the Deformation-Based 

Design methodology for seismically isolated bridges in a forthcoming paper.  

 

KEYWORDS 

 

Seismic isolation, bridges, nonlinear dynamic analysis, viscous dampers, unidirectional/bidirectional excitation, 

Eurocode 8 

 

1. INTRODUCTION 

 

Implementation of structural control principles to mitigate undesirable vibrations of dynamically excited civil 

engineering structures in seismically-prone areas has attracted the attention of the research community in the last four 

decades resulting in diverse types of control devices.1 Passive base isolation (elastomer-based, sliding-based), 

supplementary energy dissipation (hysteretic, viscoelastic) devices, and typically combinations thereof, represent 

currently the norm in seismic structural control applications to bridges. The diversity of the available hardware, in 

terms of mechanical properties and induced modification of structural response, introduces additional challenges in 

the formulation of performance-based methodologies. Challenges refer to (i) accommodating the use of a broad class 

of devices, and (ii) providing design guidelines to inform the initial selection and comparative evaluation of alternative 

isolation and energy dissipation schemes under different performance levels, considering various design constraints 

and the associated cost. 

 

Practice-oriented bridge design methods adopting standard equivalent linearisation approaches (i.e. based2 on the 

effective period and equivalent damping ratio at peak response) provide some partial guidance in this respect by setting 

a target inelastic displacement and/or equivalent damping ratio at the start of the procedure. Yet, criteria for selecting 

these values cannot be easily identified and, in any case, the effective period and equivalent damping ratio are not 

proper indicators for damage in the substructure of seismically isolated bridges. In fact, the design of the isolated 

structure under the base shear associated with the target displacement and equivalent viscous damping ratio (i.e. the 

definition of strength) constitutes the last step of the so-called ‘direct displacement-based design’ approach.2 Ideally, 

preliminary selection criteria should address the displacement and energy dissipation capacity of the isolation system 

as a function of the shear transmitted through the isolation interface, thus indicating the cost of the substructure design. 

Some useful, albeit crude, guidance in this direction (along with some criteria for selecting the type of devices) is 

occasionally provided,3 using high-damping elastic spectra in the pseudo-acceleration vs. displacement response 

spectra format, disregarding the contribution of viscous dampers to peak inertia forces transmitted to the substructure. 

More refined direct approaches, based on nonlinear static4 and response history analysis5–7 (NLRHA), may be capable 

of facilitating preliminary selection of the hardware considering design requirements from different performance 



levels. However, these approaches are currently restricted to specific types of devices/structures (e.g. structures 

isolated through bilinear hysteretic isolators,5,6 non-isolated yielding frames with dampers4,7), hence they do not 

readily meet the needs of design of isolated bridges. On the other hand, codes8–10 do not provide specific 

recommendations regarding the above issues. Quite the contrary, the integration of equivalent linearisation approaches 

is typically employed in a format that introduces iterations as a means to evaluate the response of a preselected passive 

system (e.g. based on engineering judgement). This ‘indirect’ format along with the consideration of the variability of 

design properties of devices, leave the designer with the heavy task of conducting numerous analyses when the 

performance of different isolation schemes and/or multiple design constraints and performance levels are investigated. 

 

Despite the aforementioned high computational effort, the accuracy of results may not be ensured. Research studies 

explicitly addressing isolated bridges (or systems that may approximate the response of bridges) led in the past to 

contradictory findings11,12 regarding the appropriateness of the equivalent linearisation. A more recent work13 

questioned the rationality of using the ‘non-physical’ effective period to describe the period of vibration, proposing 

instead the isolation period that corresponds to the post-yield stiffness of the isolation system as a more efficient 

indicator of maximum response. Various studies (e.g. 2,14–16) proposed different definitions of the equivalent damping 

ratio to improve accuracy, while other researchers17,18 concluded that standard definitions based on geometric 

considerations result in reasonable estimates of peak inelastic response. Conflicting results regarding the ability of 

equivalent linearisation to predict the inelastic response under bidirectional excitation (e.g. adoption of the common 

‘100%+30%’ combination rule8) were also reported.5,19,20 Relevant deviations resulting from the implementation19,20 

of the equivalent linearisation as prescribed by US codes were recently attributed21 to the selection–scaling of records, 

the definition of the target spectrum under bidirectional excitation and the adopted measure of central tendency. An 

additional inherent limitation of linearisation procedures lies in their inability to capture the peak total inertia forces 

at the critical state of peak total acceleration (i.e. forces transferred to the substructure), and the peak damping forces 

at the state of peak relative velocity (i.e. viscous damper forces), unless the main dissipative source of the isolation 

system has a purely hysteretic behaviour. The issue emerges from the deviation of peak total acceleration and relative 

velocity from their respective pseudo-counterparts22 and it has been addressed by various research groups (e.g. 17,23). 

Although research focused on the efficiency of equivalent linearisation approaches in isolated bridges with viscous 

dampers is relatively scarce, several studies addressed this with reference to yielding building structures, and to a 

certain degree, conclusions regarding SDOF systems (e.g. 17) were found to be applicable to isolated bridges.24 

Irrespective of the accuracy/inaccuracy of equivalent linearisation approaches, the evaluation of which is beyond the 

scope of this study, the above issues shed a certain scepticism on the efficiency of equivalent linearisation or at least 

on the proper format to be adopted. 

 

In view of the previous considerations, a methodology for the direct estimation of peak inelastic response in RDOF 

isolation and energy dissipation systems is put forward here. An accurate, yet practical and transparent, design route 

is sought. The starting point is a procedure previously developed by Ryan and Chopra5,6 for bilinear hysteretic isolation 

systems, disregarding viscous damping. The method involved (i) normalisation of the dynamic equation of motion 

with a view to uncoupling the response from the amplitude of ground motion and minimising the dispersion in peak 

normalised relative displacements, and (ii) development of design equations by statistically processing NLRHA results 

derived from the previous step. The proposed methodology extends the normalisation to address a broader range of 

seismic isolation systems that may consist of linear and bilinear isolators (e.g. low or high-damping elastomeric 

bearings (LDRB/HDRBs), lead-rubber bearings (LRBs), supplementary energy dissipation devices (i.e. linear (LVDs) 

and nonlinear viscous dampers (NLVDs)), as well as combinations thereof, hence encompassing most isolation 

schemes commonly used in modern bridges. GDEs are developed for the direct estimation of both peak relative 

displacements and total accelerations, addressing only parameters of ‘engineering significance’, representative of 

seismic isolators and dampers (i.e. instead of ‘effective’ properties). Derived equations further aim at the identification 

of ‘near-optimal’ characteristics of the isolation and energy dissipation system in terms of performance and cost under 

both unidirectional and bidirectional excitation. In this context, the term ‘direct’ is used herein to emphasise 

practicality. Specifically, GDEs may be used to predict the response of a system with given properties or plot response 

curves for various system properties. Relevant charts facilitate the selection of the basic characteristics of the isolation 

system and the substructure (unknown at the start of the design process) and the comparative evaluation of alternative 

isolation and energy dissipation schemes. Different performance levels, variable design properties of devices, and/or 

other design constraints, may be considered with no need to perform iterative analysis. ‘Design principles’ involving 

use of design (target) spectra and code-compatible scaling procedures are also introduced, allowing the interpretation 

of results derived from different types of analysis implemented according to Eurocode 8 (EC8).8,25  



The procedure consists of the steps summarised in Figure 1 and explained in detail in Sections 2 to 5 for alternative 

RDOF systems. The analysis framework is first presented in Section 2 including the definition of target spectra 

associated with different PLs, alternative representation of seismic actions, and modelling issues. Following the 

suggested normalisation procedure, the dynamic equation of motion is parametrically solved. Regression analysis is 

finally employed to develop GDEs. SDOF systems with linear damping are first considered in Section 3. The 

procedure is subsequently extended to address nonlinear viscous damping (Section 4), as well as the effect of the 

transverse component of seismic action (Section 5). The methodology can be used to extract GDEs for code-prescribed 

target spectra which in turn can be provided as ready-to-use tools for the direct estimation of inelastic response. 

Alternatively, the procedure may be easily automated with a view to developing regression models when spectra of 

‘user-defined’ frequency content are adopted. 

 

 
 

Figure 1  Development of GDEs for the direct estimation of peak response 

 

2. ANALYSIS FRAMEWORK 

 

2.1. Target Spectra and Representation of Seismic Action 

 

Any type of design spectrum (code-type or resulting from site-specific hazard analysis or zonation study) can be used 

as the target spectrum. Herein, the EN1998–125 ‘Type 1’ 5%-damped elastic spectrum for site conditions ‘C’ is 

selected to demonstrate the suggested approach, as shown in Figure 2A for unidirectional excitation (denoted as 1D). 

However, a significant modification compared to the Eurocode elastic response spectrum was made. In line with recent 

research findings,26 the corner period defining the beginning of the constant displacement response range of the 

spectrum was set equal to TD = 4.0 s as a more representative value of high seismicity regions compared to the 

recommended25 TD = 2.0 s. The adopted period is also in line with the minimum value in ASCE/SEI 7–16 standard10 

that specifies values up to 16 s. Identifying the importance of displacements in the design of isolated bridges, EN1998–

28 allows similarly the specification of a TD value that is longer than the value prescribed in the National Annex to 

EN1998–1.25 

 

Assuming that the level of seismic action (EQ) is defined in terms of the reference peak ground acceleration 

(PGA)25 üg,max,ref, the modification factor γEQ (the importance factor according to EC8 terminology) required to scale 

the reference seismic action with a return period TR,ref to a different period TR was approximated as (TR,ref / TR)-1/k. The 

value of the k exponent expresses the slope of a linear (in logarithmic space) approximation of the hazard curve at the 

site ranging between 1.5 and 4.5. Its exact value depends on both the seismicity of the region and the spectral ordinate 

considered.26 Herein a constant value of 2.4 was adopted while the corresponding γEQ was uniformly applied to the 

reference target spectrum whenever a seismic action of different probability level was sought, assuming a constant 

shape of the target spectrum regardless of the intensity of the earthquake. The ‘constant shape’ assumption, although 

strictly not valid, enables the use of the same design equations irrespective of the performance level under 

consideration, since, as it will be shown in Sections 3–5, the formulation of GDEs depends on the frequency content 

rather than the amplitude of the ground motion. The target spectrum under bidirectional excitation (denoted as 2D) 

was represented by the square root of the sum of squares (SRSS) of the target spectra per horizontal direction assuming 

unidirectional excitation, resulting in √2EQref for the reference seismic action in line with EN1998–28 (‘Target’ in 

Figure 2C). Although this may be considered a rather conservative approach, it was selected herein with a view to 

assessing the expected increase in peak inelastic response when records are scaled according to the code (Section 5). 

 

NLRHAs presented in the following sections were performed under different ensembles of artificial and natural 

records. The primary objective in both cases of records was the reliable estimation of the mean response under a 

seismic excitation that matches as closely as feasible the ‘design excitation’ (i.e. the target spectrum) rather than the 

accurate estimation of the variability in seismic response around this mean. Artificial accelerogram generation was 

based on the well-established Gasparini and Vanmarcke27 approach using the Saragoni and Hart28 envelope function 

with a total duration of 25 s and time step of 0.01 s. The approach for artificial motion generation was selected due to 

its simplicity and widespread adoption in practice, and is consistent with the provisions of modern codes like Eurocode 
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8 (CEN 2004) 25 for artificial records; nevertheless, different procedures may be employed. Three alternative suites 

were generated29 to fit the reference target spectrum, namely, Art A30, B (Figure 2A), and C30, consisting of 5, 10, and 

20 artificial records, respectively; the records were properly scaled using γEQ to represent seismic actions associated 

with different return periods. To investigate the effect of the transverse component of seismic action in bidirectional 

excitation using artificial records, an additional suite (Art D)30 was formed by arranging the previously generated 

acceleration histories in 10 pairs of horizontal components (H1, H2). In line with the concept of principal axes,31 each 

pair was characterised by a near-zero correlation coefficient30 and an intensity ratio of the horizontal component 

spectra equal to 0.75 for far-field ground motions and long vibration periods (i.e. > 1.5 s)32. Consistency to the 2D 

target spectrum was established by scaling H1 and H2 with the scaling factors γH1=1.13γEQ and γH2 = 085γEQ that 

maintain the adopted intensity ratio. Geometric means (GMs) of ground motion intensity parameters, i.e. PGA, peak 

ground velocity (PGV), displacement (PGD), and Arias intensity (IA) for suites of records are also presented in Figure 

2A for Art B. 

 

 
 

Figure 2  Spectral matching of response acceleration Sa and displacement Sd geometric mean (GM) and EN1998–2-

scaled8 geometric mean (GM+EC) spectra to the: (A) 1D target spectrum (site ‘C’, TR,ref = 475 yrs) for Art B artificial 

records (γEQ = 1.0), (B) 1D target spectrum for γMSE-scaled natural (Nat) records considering H1 components 

(γEC8=1.05), and (C) 2D target spectrum for rotated and γMSE-scaled Nat records (γEC8=1.05) 

 

Selection and scaling of natural records aimed at forming a suite for assessment purposes with a mean spectrum 

that closely matches the target spectrum while suppressing the variability in structural response (hence increasing 

reliability), since the uncertainty of the input motion is already incorporated in the definition of the target spectrum.33 

Eligible pairs of seismic events were initially selected from the PEER NGA–West 2 (http://ngawest2.berkeley.edu/) 

database.34 Adopted preliminary search criteria were moment magnitude Mw = 6.5~7.0, closest distance from the 

record site to the ruptured area Rrup = 20~40km, average shear wave velocity to a depth of 30 m Vs,30 = 180~360 m/s 

(corresponding to site conditions ‘C’25), and lowest usable frequency 0.2 Hz. The sample of eligible events was further 

constrained by assessing the similarity of spectra of the selected records to the target spectrum over the entire period 

range. The overall fit was quantified by the mean-square-error (MSE) of the differences between the spectral 

accelerations of the record (or the SRSS spectrum of the pair of records) and the 1D (or 2D) target spectrum. A local 

(i.e. per record or pair of records) scaling factor γMSE was calculated so that MSE was minimised over the considered 

period range.35 Adopting an allowable γMSE of 0.7~2.5 and employing the above procedure initially for the H1 

components34 and subsequently for the pairs of horizontal components of the NGA preliminarily selected pairs, 

resulted in the suite of 16 eligible records30 presented in Figure 2B, C for analysis under uni/bidirectional excitation. 

In the case of bidirectional excitation, the horizontal components of selected events were rotated into their principal 

axes defined as the axes along which the two horizontal components are uncorrelated and assumed statistically 

independent.31 The major principal axis (I) is defined as the one parallel to the major principal component (HI), i.e. 
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the component with the larger IA, as opposed to the minor principal axis (II) and component (HII) (smaller IA). The 

counter-clockwise rotation angle (for which the correlation coefficient between two unrotated acceleration histories is 

zero) and the rotated acceleration histories, were calculated according to Rezaeian and Der Kiureghian.36 

 

Ground motion intensity and energy characteristics of the γMSE-scaled records presented in Figure 2B, C incorporate 

(similarly to Figure 2A) the site (‘C’) amplification factor SC, i.e. intensity parameters are comparable to SC = 1.15 

times the peak ground characteristics of the target spectra. Overall, they present a good match to the relevant values 

derived in the case of artificial records, noting however, their superiority in terms of both intensity and energy (PGV, 

IA). Finally, according to the EC8 requirement, the ensemble spectra depicted in Figure 2 were scaled by a global (i.e. 

per suite) scaling factor γEC8 (equal to unity in the case of artificial records) to ensure that their spectral values are not 

lower than 0.9 times the target spectra8 over the entire period range (i.e. 0 ≤ Ti ≤ 5 s). In view of the previous 

considerations, the scaling factor γ per record and per probability of exceedance is determined as γEQγMSEγEC8. The 

design (or target) value of PGV u̇g,max, required during the development of GDEs, was selected herein equal to the 

geometric mean of PGVs of the records included in Art B suite (i.e. 0.302 m/s for TR = 475 yrs). The above decision 

was driven first from the fact that the selected value was close to the mean PGV derived from relationships proposed 

in recent research studies (varying from 0.244 to 0.345 with a mean of 0.301 m/s)30 compared to the rather 

unconservative estimate provided by EN1998–28 (i.e. 0.225 m/s). Second, it was driven from a prerequisite of the 

methodology presented in Sections 3–5, to use records with an ensemble spectrum that closely matches the target 

spectrum in terms of shape and PGV; the issue is further discussed in Section 3.2. 

 

2.2. Numerical Evaluation and Statistical Processing of Key Response Quantities 

 

Response history analyses (RHAs) in Sections 3–5 were performed using the unconditionally stable implicit Newmark 

constant average acceleration method.37 The procedure was fully automated with the developed MATLAB38 code IDEC 

(Isolation Design Equations Code) that enables parametric nonlinear dynamic analysis of RDOFs using RUAUMOKO 

3D37 and DYNAPLOT39 in batch mode. IDEC further performs post-processing of results involving data collection, 

statistical processing, regression analysis, development of GDEs, and diagram plotting, with average time of less than 

5 s per analysis and post-processing of a single case, using an 8 GB RAM 2.20 GHz quad core processor. 

 

A bilinear hysteretic element and a dashpot element were used to model the inelastic force–displacement response 

of isolators and viscous dampers according to Figure 3. The considered SDOF system idealises an isolated straight 

bridge with a rigid deck of total mass m under unidirectional excitation. The deck is mounted on a single isolator of 

hysteretic force–displacement response and a single viscous damper, representing the combined response of bridge 

isolators and dampers, respectively, while the effects of the substructure’s stiffness, inertial, and damping 

characteristics, are disregarded. The restoring shear force (V) of the bilinear isolator can be described40,41 by Equation 

1, where u(t) represents the displacement history, kp the post-elastic stiffness (associated with the isolation period Tp), 

and V0 the shear resistance of the isolator at zero displacement (hereafter termed ‘isolation system strength’ for 

brevity). z(t) is a hysteretic dimensionless parameter40,41 governed by the evolution Equation 2 (i.e. a function of u, 

relative velocity u̇, and the initial stiffness ke). Defining the fraction of the applied V0 (maxima of ±1) or else the 

‘yielding history’,5 |z(t)| = 1 when the system enters the inelastic range and < 1 otherwise (i.e. elastic response). In 

Equation 2 uy represents the yield displacement and s controls the smoothness of the transition from the elastic to the 

inelastic range in the V–u relationship; for s = 8 a sharp transition is obtained. For V0 equal to zero the hysteretic 

response collapses to linear behaviour with stiffness equal to kp; 
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The behaviour of the bilinear isolator is intrinsically determined by three parameters, which can be selected as V0, 

uy, and kp. uy was reported in earlier studies (e.g. 42,43) to have a minor impact on the maximum inelastic response; 

herein a constant value associated with different groups of yielding isolators was introduced5,6 in order to capture more 

accurately the peak response, and at the same time limit the complexity of the proposed GDEs. In addition, uy was 

considered constant5 for different values of the post-yield stiffness kp (i.e. instead of assuming a constant ratio of ke / 

kp) resulting to an initial stiffness (ke = V0 / uy + kp) that is directly proportional to the yield strength (Vy = ke uy) (i.e. ke 

and Vy expressed as functions of V0, uy, kp to define the bilinear hysteresis for modelling purposes).  



 
 

Figure 3  (A) Idealised SDOF system; force–displacement response of (B) bilinear hysteretic isolator, and (C) linear 

(a=1) and nonlinear (a<1) viscous dampers of equal dissipated energy under a cycle of harmonic motion 

 

The axial force (F) in the general case of NLVDs can be expressed44 as a fractional velocity power law as per 

Equation 3, where cd,NL is the damping coefficient, a is a real positive velocity coefficient with typical values for 

seismic applications in the range of 0.1~1, and sgn(·) is the sign function. 

 

 ,( ) sgn ( ) ( )
a

NL d NLF t c u t u t  (3) 

 

The energy dissipated by the nonlinear damper during a cycle of harmonic motion u = umaxsinωt of exciting frequency 

ω and peak relative displacement umax, is calculated44 as ED,v,NL = πcd,NLumax
a+1ωaf (Γ, a) where f (Γ, a) represents a 

function of the velocity exponent a and the gamma function Γ(∙). Introducing a = 0 and a = 1, Equations 3 and ED,v,NL 

collapse to the limit cases of pure friction (FNL(t) = cd,NLsgnu̇(t), ED,v,NL = 4cd,NLumax) and linear viscous dampers (FL(t) 

= cd,Lu̇(t), ED,v,L = πcd,Lumax
2ω). The effect of the nonlinear parameter a on the response envelope is illustrated in Figure 

3C where F / cdu̇max (i.e. F normalised to the peak damper force) is plotted against u = umaxsinωt.  

 

The response of NLVDs was investigated in this study following the ‘energy-equivalence’ approach44,45 according 

to which energy-equivalent dampers are characterised by two dimensionless and independent parameters. These are 

the parameter a and the equivalent damping ratio ξd,NL, associated with the degree of nonlinearity and the energy 

dissipation capacity, respectively. Equating ED,v,NL to ED,v,L yields cd,NL for an energy-equivalent nonlinear damper45 

(i.e. dissipating energy equal to the energy of the linear damper); 
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Substituting cd,NL in Equation 3 yields F0,NL for the energy-equivalent nonlinear damper and the associated ratio of 

peak damper forces45 F0,NL / F0,L = (umaxω / u̇max)1-a / f (Γ, a). For energy-equivalent dampers of a = 0, 0.2, 0.5, 1, under 

harmonic motion (u̇max = ωumax), F0,NL / F0,L results in the peak force reductions depicted in Figure 3C. In the case of 

an SDOF system under non-harmonic excitation, the response should be assessed22 at ω = ωp (i.e. the system’s isolated 

frequency associated with kp), and the ratio of forces depends additionally on the ratio of the pseudo-velocity umaxωp 

to the peak relative velocity u̇max. 

 

Considering again the SDOF system of mass m, isolation frequency ωp, and a nonlinear viscous damper of cd,NL, 

the equivalent damping ratio ξd,NL can be expressed44,45 by Equation 5 using the definition of ED,v,NL and ω = ωp. For a 

= 0 and a = 1 the equivalent damping ratio reduces to ξd,NL = 2cd,NL / πkpumax and ξd,L = cd,L / 2mωp, respectively. 

 

 
, , ,

, 2 1

max
max

( , )

22

D v NL d NL

d NL a

pp
p

E c f

mk u u




 



   (5) 

 

In summary, different isolation schemes can be realised by properly combining the modelling parameters 

describing the force–displacement response of the bilinear hysteretic and dashpot element, i.e. V0, kp, uy, ξ, and a. In 

the following sections, the dynamic response retrieved from analysis of isolation and energy dissipation systems under 

a suite of records is characterised by the geometric mean (GM) of responses under individual records (or pairs of 

records in bidirectional analysis), and the standard error of the geometric mean (SEGM) estimate.30 GM is preferred 



over the more common arithmetic mean mainly due to its consistency with lognormally distributed data, i.e. an 

assumption which was found to be realistic for earthquake response quantities. Nevertheless, the above decision has 

a minor effect on results so long as a consistent definition of the central tendency is adopted both on scaling of 

accelerograms and analysis results processing.46 The standard error of the sample geometric mean estimate is the 

standard deviation of the sampling distribution of the geometric mean and represents the dispersion of sample-means 

around the true (i.e. the population) geometric mean. SEGM is used here to assess the reliability of the GM prediction. 

 

In the case that the sample size is small (i.e. number of records n < 30), exact confidence intervals of the geometric 

mean estimate are first calculated.30 Considering an (1 – as)% confidence level (CL) and n – 1 degrees of freedom df 

for the two-sided Student-t probability density function, the lower (L) and upper (U) geometric mean intervals are 

given as GMU/L = exp[lnGM ± δ ∙ t(as/2, df) / (n – 1 )0.5]. δ is the sample standard deviation of the natural logarithms 

of response quantities, the t-factor depends on the CL assigned to predict the response estimate, and as represents the 

significance level. Associated SEGM limits defined as percentages of the estimated GM can be subsequently retrieved 

as SEGMU/L (%) = ± |GMU/L – GM| ∙ 100 / GM. In the analyses presented in Sections 3–5, peak absolute seismic 

response quantities (i.e. peak relative displacement and total acceleration) are of interest, hence, reported SEGM (%) 

values correspond to the upper (and more conservative) confidence interval. As an example of interpretation of the 

provided SEGM values, a sample of n peak relative displacements resulted from dynamic analysis of an isolated 

system under a suite of n records (df = n – 1), a confidence level of 90%, a sample geometric mean GM, and SEGMU/L 

limits, are assumed. If one were to construct many response samples of n displacements drawn from the same 

population, and the standard deviation of the samples remained constant, approximately 90% of the ±SEGMU/L 

confidence intervals (which would differ for each sample) would encompass the true mean. Alternatively expressed,33 

the sample-mean peak relative displacement is estimated with a confidence band of approximately ±SEGMU/L. A limit 

value of SEGM = 15% of GM with a 90% confidence level33 was adopted herein to assess the accuracy of the mean 

estimates rather than introduce an increase in values derived from analysis. 

 

3. ISOLATED SDOF WITH LINEAR VISCOUS DAMPING 

 

3.1. Dynamic Equation of Motion 

 

The dynamic equation of motion of the SDOF system is recast here to a form that permits uncoupling the response 

from the amplitude of the ground motion and thus linearising the problem. The key advancement in this procedure is 

the explicit consideration of linear viscous damping, while in earlier studies5,6 viscous damping was ignored. Applying 

D ’Alembert’s principle using the shear force of the bilinear isolator V0(t) and the axial force of the LVD FL(t) (Section 

2.2), the differential equation governing the response of the idealised SDOF is written as: 
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In Equation 6, ü(t) is the relative acceleration of m. ce,L, cd,L that are associated with viscous damping originating 

from the rubber of elastomer-based isolators (i.e. linear) and LVDs, respectively, represent ‘quantifiable’ sources of 

damping, hence, they are kept constant47 during NLRHA as opposed to the ‘unquantifiable’ inherent structural 

damping of the deck and substructure. Inherent damping is deliberately disregarded on the basis that neither the deck 

nor the pier deformations are associated with the u dynamic degree of freedom (Figure 3A). u represents the horizontal 

relative displacement of the rigid (i.e. undeformed) deck or else the deformation of the isolation system, excluding the 

effect (i.e. deformations) of the substructure. v̅0 represents the strength (at zero displacement) of the hysteretic part of 

the isolator normalised to the weight of the superstructure V0 / (mg), i.e. the seismic coefficient (where g is the 

acceleration of gravity); it can be also seen5 as the acceleration at yield of a rigid-plastic system with strength V0. The 

maximum residual displacement ur under which the system can be in static equilibrium (Figure 3B), corresponding to 

a shear force of ±2V0 and representing a system property (i.e. independent of the excitation), is equal to V0 / kp. Dividing 

Equation 6 by ur and substituting ce,L, cd,L (= 2mωpξL) and v̅0, reduce the equation of motion to the normalised form of 

Equations 7, 8 (symbols with bars represent normalised quantities); 
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The normalised strength η, which describes the isolation system strength relative to the PGV, is defined5 according 

to Equation 9, where the frequency ωD included to render η a dimensionless quantity corresponds to TD; 
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The characterisation of the isolation system strength by η along with the consideration of a constant uy, reduce the 

governing parameters that influence the response to Tp, η, and ξL (= ξe,L + ξd,L), as opposed to the parameters Tp, V0, cL 

(= ce,L + cd,L), uy, u̇g,max in the non-normalised case. Specifically, Equation 7 indicates that the normalised response is 

independent of the ground motion amplitude, rendering u, u̇, ü linearly proportional to ur according to Equation 8. The 

numerical study in Sections 3.2, 3.3 investigates the validity of the previous statement in typical isolation schemes 

with linear viscous damping, and explores its practical value in design with the aid of statistical analysis. 

 

3.2. Parametric Analysis of SDOF System 

 

Normalised relative displacements u̅(t) and total accelerations U ̅ (t) can be found either directly by solving Equation 7 

for selected values of ξ, η, ωp (or Tp), and uy, or indirectly by first solving Equation 6 with the corresponding values 

cL, V0, kp, and then by calculating the normalised response from Equation 8. In the latter case, kp is given as 4π2m / Tp
2 

and V0 is calculated from rearranging Equation 9. In both cases, u̇g,max represents the scaled PGV of the considered 

record; for a specific value of η this results in a variation of v̅0 with ground motion intensity (i.e. per record) according 

to Equation 9. Geometric means of peak normalised relative displacements u̅max, total accelerations U ̅ max, 

logarithmically transformed response quantities lnu̅max, lnU ̅ max (i.e. natural logarithms), and non-normalised peak 

relative displacements umax and total accelerations Ümax under Art B motions are presented in Figure 4. Response 

values are provided for a range of design parameters, i.e. ξe,L = 0.05, ξd,L = 0~0.25, η = 0~1.5, Tp = 1~5 s. Considering 

TD = 4 s, the mean PGV for Art B (i.e. u̇g,max = 0.604 m/s for TR ≈ 2500 yrs), and v̅0 = 0~0.15, Equation 9 yields an 

approximate range of η from 0 to 1.50; larger η values are expected if lower seismic intensities are considered, noting 

however, that in the latter case low v̅0 values will be normally selected. The yield displacement uy is considered equal 

to 10 mm representing the case of elastomer-based hysteretic isolators (e.g. LRBs)5 while the viscous damping ratio 

ξe and ξd were dealt as a single variable due to the inherent linearity of the system. An issue that requires some further 

consideration in the case of linear systems is the computation of normalised response quantities; zero strength (i.e. η 

= v̅0 = 0) results in zero ur rendering impossible the derivation of u̅(t), U ̅  (t) according to Equation 8. The issue was  

 

 
 

Figure 4  NLRHA results under Art B suite: GMs of u̅max, U ̅ max, lnu̅max, lnU ̅ max, umax, Ümax for PGA of 0.42g (TR≈2500 

yrs, γEQ=2) at bedrock 
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treated numerically by adopting η = 0 when solving Equation 6 and a relatively low value of η = 0.01 when calculating 

the normalised response, since the system response was found almost insensitive to such a small increase in strength. 

 

Each surface in Figure 4 represents a three-dimensional spectrum associated with a specific value of η. Top 

surfaces (η = 0) of normalised data are located at a greater distance compared to the cases of η ≠ 0.01 due to the 

normalisation with respect to a relatively small value of ur. Dispersion30 δ, and hence SEGM, for non-normalised 

response depends on the generation and/or scaling approach adopted for the considered suite of records, while in the 

case of normalised response the normalisation procedure of Section 3.1 is equivalent, in terms of δ, to scaling of 

records to a common PGV. In other words, if records were scaled to the same PGV, δ and SEGM for umax, u̅max and 

Ümax, U ̅ max would be identical. In Figure 5, SEGM for normalised and non-normalised response estimates are plotted 

for different values of ξ, η, Tp. Upper values of SEGM are close to 15% with a 90% CL in the case of u̅max and lower 

than 10% in the case of U ̅ max, corresponding to values of δ lower than 0.25 and 0.20, respectively, which in turn are 

lower than those reported5 for bilinear isolation systems disregarding viscous damping (0.3~0.6 referring to u̅max). 

Although such low values of SEGM imply a reliable mean response estimation, it should be noted that statistical 

processing of non-normalised response results in similar SEGM values (Figure 5) due to the low scattering of artificial 

spectra around their mean (and target) values (Figure 2A). 

 

 
 

Figure 5  NLRHA results under Art B suite: SEGM (%) for (A) umax, u̅max, and (B) Ümax, U ̅ max, for PGAs of 0.21g 

(TR=475 yrs, γEQ=1), 0.42g (TR≈2500 yrs, γEQ=2) at bedrock, ξ=5, 30%, and η=0~1.5 

 

In view of the previous considerations, the main advantage of the normalisation approach lies in the fact that the 

ground motion amplitude has indeed a negligible effect on the mean normalised peak response of linear/nonlinear 

isolation systems with/without supplemental linear viscous damping. The effect is illustrated in Figure 6 for two 

different seismic intensities. A minor influence of the increased intensity is evident only in the displacement response 

of systems with increased η and/or short Tp that are of little interest in seismic isolation of bridges. Values of SEGM 

for u̅max that are insensitive to the increase of seismic intensity (Figure 5A) support the above statement. The 

combination of increased reliability in mean response estimation and the independence of the normalised response 

from the amplitude of ground motion allows the development of GDEs. 

 

Prior to proceeding to the aforementioned task, the effect of the number and type of accelerograms on the 

normalised/non-normalised response was investigated. To this purpose, the procedure described earlier was repeated 

using Art A, C, and Nat(H1) (γEC8 = 1) suites of artificial and natural records. Normalised response quantities u̅max, 

U ̅ max are first plotted in Figure 7A revealing some divergence from the Art B suite response, mainly in the case of 

displacements under Nat(H1). Deviation of curves in plots of normalised response are attributed primarily to the 

‘goodness-of-fit’ of the GM spectrum of the selected records to the target spectrum, since the normalised inelastic 

spectra of Figure 7A are disengaged from the effect of the amplitude of ground motion. Shifting from the normalised 
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Figure 6  NLRHA results under Art B suite: GM of lnu̅max and lnU ̅ max for PGAs of 0.21g (TR=475 yrs, γEQ=1), 0.42g 

(TR≈2500 yrs, γEQ=2) at bedrock, ξ=5, 15, 30%, and η=0~1.5 

 

 
 

Figure 7  NLRHA results under Art A, Art B, Art C, Nat(H1) (γEC8=1): GM of (Α) lnu̅max, lnU ̅ max, and (Β) umax, Ümax 

for PGA of 0.42g (TR≈2500 yrs, γEQ=2) at bedrock, ξ=5, 15%, and η=0~1.5 

 

response to non-normalised one, requires the definition of a target (or design) value for PGV. Adopting, as discussed 

earlier in Section 2.1, a design value of PGV equal to the GM of PGVs of records included in Art B (i.e. 0.302 m/s for 

TR = 475 yrs), results in the non-normalised response presented in Figure 7B for TR ≈ 2500 yrs and ξ = 15%. In this 

case (i.e. non-normalised response), the accuracy in mean response estimation will depend, in addition to ‘goodness-

of-fit’ to the target spectrum, on the degree of matching of the design PGV to the GM of the PGVs of the individual 

records. This is valid for the suites of artificial records and especially Art B resulting in response estimates that clearly 

follow the target spectra in the case of ξ = 5%, η = 0, and TR = 475 yrs (Figure 8A). It is also seen (Figure 7) that the 

number of records in the case of artificial records does not have a significant effect on the estimated response; only 

the Art A (5 records) curves seem to slightly diverge from Art B results. On the other hand, the suite of natural records 

underestimates relative displacements and total accelerations for low values of ξ and η, due to the adoption of a design 

PGV that is lower than the GM of record PGVs (i.e. 0.363m/s for TR = 475 yrs). The underestimation of response 
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further distorts the spectral matching depicted in Figure 2B and implies that a larger number of natural records (i.e. 

>16) may be required to describe more efficiently the shape and the design PGV of the target spectra. These trends 

derive from a marked difference between the Ryan and Chopra5,6 approach and the extended method presented herein. 

The former uses a number of records associated with a specific seismic scenario to determine a target spectrum and a 

design PGV, while the latter sets a (code/site-specific) target spectrum (and design PGV) as the starting point, and 

requires the selection of spectrum and intensity compatible records. 

 

To assess the reliability of mean response estimates, SEGM for normalised response was calculated for the 

considered suites. In general, SEGM for u̅max was found more difficult to be limited within a preselected value, herein 

±15% of GM with a 90% CL, compared to SEGM for U ̅ max. The resulted standard deviation of inelastic response under 

Art A (i.e. δ ≈ 0.3 and 0.25 for u̅max and U ̅ max, respectively) imply that even when artificial records are used, more than 

5 records may be required to constraint SEGM for u̅max. Nevertheless, satisfactory results will still be obtained, 

according to Figure 7, leading to some conservatism in umax, as opposed to the unconservative estimates derived from 

the Nat(H1) suite. In the case of natural records, the resulting peak SEGM values for u̅max, U ̅ max are constrained 

approximately below 20% corresponding to δ values of 0.4. Such values remain at the lower limit of those reported in 

Ryan and Chopra,5 indicating the effectiveness of the normalisation procedure of Section 3.1 but also the need for a 

larger number of records to attain the predefined degree of reliability. Considering the degree of complexity and the 

computational effort involved when natural records are used to derive the normalised response (i.e. selecting records 

compatible with the shape and PGV of code-based target spectra, scarcity of recorded accelerograms, increased 

number of analyses), GDEs are hereafter developed for Art B. Artificial records can easily satisfy the above 

requirements and provide robust estimates of mean response within a deterministic design framework disregarding 

member strength degradation (which is reasonable in seismically designed bridges).8 The inherent variability of natural 

records can be considered at a later stage of design using a more refined type of analysis as in the Deformation-Based 

Design method that will be presented in a forthcoming paper. 

 

3.3. Derivation of Generalised Design Equations 

 

Uncoupling the response from the amplitude of ground motion allows the development of GDEs that can provide 

direct estimates of u̅max and U ̅ max as a function of ξ, η, Tp, irrespective of the performance level and associated seismic 

action under consideration. The problem can be tackled by developing regression models extending to a 3D-space 

(Tp–ξ–η). To this end, linear regression equations were fitted to the logarithmically transformed normalised response 

derived from NLRHAs as it was found that lnu̅max and lnU ̅ max vary almost linearly with lnξ and lnTp (Figure 4). 

Different linear regression models using three independent predictors (i.e. ξ, η, Tp) were developed for u̅max and U ̅ max 

since peak total accelerations (and hence maximum forces mÜmax) in the isolation and energy dissipation system 

cannot be directly associated with peak relative displacements (due to the introduction of ξ in general higher than 5%). 

Although complex regression models can be derived using the IDEC code, an effort was made to simplify the relevant 

design equations with a view to increasing their usefulness in practical design, therefore different GDEs were extracted 

for linear (η = 0) and nonlinear systems (η ≠ 0). 

 

High-degree polynomials are first fitted to the normalised response variable y̅ (i.e. u̅max or U ̅ max) resulting in GDEs 

of the general form of Equation 10 for a complete m-degree polynomial with q terms, where j, k, l indices are permuted 

accordingly, and bi coefficients are estimated using the method of least squares. Stepwise regression is finally 

employed to assess the statistical significance of terms using the R-squared criterion38 and reduce the total number of 

terms in the model. umax and Ümax response can be subsequently predicted by transforming Equation 10 to the non-

normalised space by analogy to Equation 8. GDEs in the form of y = urexp(ln y̅) provide direct estimates of umax and 

Ümax under different PLs associated with target spectra of common frequency content but different amplitude. 
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The ‘goodness-of-fit’ of the regression models was assessed both in terms of limiting the divergence of the 

predicted response from analysis results (i.e. residuals), and identifying ‘near-optimal’ isolation systems under 

different seismic intensities. A ‘near-optimal’ isolation system48 is defined herein as the one that results in ‘near-

minimum’ peak total acceleration Ümax. Representative results of different m-degree regression models (RM) with q 

terms (m × q) are presented in Figure 8 for two different seismic intensities associated with TR = 2500 yrs and TR = 



475 yrs. The intensity associated with 2500 yrs was used to develop the regression models, and the second to assess 

the robustness of models in predicting estimates of non-normalised response under a different intensity of ground 

motion. As expected, models of η = 0 were found30 to predict response quantities under different earthquake intensities 

with the same accuracy due to their inherent linearity. In general, all models present excellent fit and the larger 

divergence is mainly associated either with the upper limit of the considered period range (i.e. Tp = 5 s) (which is not 

common even in isolated bridges) or with low values of umax and Ümax. Nevertheless, when the terms in the regression 

equations are significantly reduced, the resulting models fail to predict the shape (or curvature) of displacement and 

acceleration curves. This is of particular importance when identification of ‘near-optimal’ isolation systems is 

additionally sought by the adopted model, and is more conveniently illustrated by plotting the inelastic spectra in a 

umax–v̅0, Ümax–v̅0 format (Figure 9) that facilitates the identification of isolation schemes (ξ, v̅0, Tp) with a ‘near-optimal’ 

performance (i.e. minÜmax). Ümax(opt) curves represent a visualisation of the design criterion of minÜmax per Tp, and 

umax(opt) indicates the corresponding relative displacements of the isolation system, both plotted for the case of ξ = 

5% where deviations from NLRHA are more significant and involve response quantities of higher magnitude. It is 

seen that RM2 can accurately capture the location of ‘near-optimal’ isolation systems for the range of Tp = 1~5s, 

however, the simpler RM3 model can also be adopted since it is deemed adequate for practical applications in bridge 

engineering (i.e. Tp = 1.5~4s). GDEs in the case of RM3 take the general form of Equations 11, 12 (simplified as 

shown in Table 1), wherein y represents either umax or Ümax, and the ground motion intensity is expressed for 

convenience in terms of PGA at bedrock, i.e. üg,max in m/s2. 

 

 
 

Figure 8  NLRHA response umax and Ümax under Art B compared to response predicted from RM2, RM3, and RM4 

for PGA of (A) 0.21g (TR=475 yrs), and (B) 0.42g (TR≈2500 yrs) at bedrock, ξ=5, 15%, η=0~1.5 

 

 
 

Figure 9  Optimal peak total accelerations Ümax (opt) and corresponding relative displacements umax (opt) derived from 

(A) NLRHA under Art B, and (B) RM2, 3, 4, for PGA of 0.42g (TR≈2500 yrs, γEQ=2) at bedrock, ξ=5%, 1D excitation 

η    

η       

η      
η       

η    
η      

(  (  

          

         

  ∙   ∙    

∙∙∙∙∙∙∙∙∙∙    

0

2

4

6

8

0

0.2

0.4

0.6

0.8

0 0.05 0.1 0.15 0.2

 
 
  
 (
 
  

 
 

 
 
  
 (
 
 

        (opt)

        (opt)

(     

    

    

        

         

        
         

      

        

      
      

      

0

2

4

6

8

0

0.2

0.4

0.6

0.8

0 0.05 0.1 0.15 0.2

 
 
  
 (
 
  

 
 

 
 
  
 (
 
 

        (opt)

        (opt)

    

    

(     

RM (q ×m ) η u max Ümax
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Table 1 RM3 regression coefficients: EN1998–1, site conditions ‘C’25, 1D excitation 

 

 
 

Since earlier studies42,43 have demonstrated that the response of isolated structures is not sensitive to the exact 

value of uy, the regression coefficients of Table 1 may also be used to approximately predict umax, Ümax of isolation 

systems consisting of friction-based devices (uy < 1mm). However, derivation of case-specific GDEs using IDEC is 

expected to yield finer response estimates primarily in terms of ‘near-optimal’ system identification. Likewise, GDEs 

presented here (and in Section 5) strictly refer to a frequency content associated with site conditions ‘C’25 and a period 

range of 1~5 s, somewhat broadened compared to the range of practical interest in the design of isolated bridges 

(1.5~4.0 s). Nevertheless, the procedure was fully automated within IDEC that can derive GDEs for ‘user-defined’ 

target spectra and period range, provided that a relatively small number of spectrum-compatible artificial records or 

(depending on the objective of the analysis) an ideally large number of natural records is specified (Section 3.2). 

 

4. ISOLATED SDOF WITH NONLINEAR VISCOUS DAMPING 

 

4.1. Dynamic Equation of Motion 

 

The procedure described in Section 3.1 is extended here to study the effect of NLVDs on the peak response of isolated 

SDOFs. In this context, the dynamic equation of motion of the idealised system of Figure 3 is re-written using from 

Section 2.2 the expressions for the shear force of the bilinear isolator and the axial force of the LVD and NLVD; 
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The constant viscous damping coefficient cd,NL (associated with NLVDs), is expressed by Equation 5 introducing 

the ‘energy-equivalence’ approach. The unknown term umax required for the calculation of cd,NL when a ≠ 1 (Equation 

4), is defined here as the peak displacement of the SDOF with an energy-equivalent LVD of ξ = ξe,L + ξd,NL and a = 1. 
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The characterisation of NLVDs by the ‘energy-equivalence’ approach (i.e. dampers of the same ξ but different a) 

is introduced as the first of the two conditions required to uncouple the response from the ground motion amplitude. 

The second condition involves the characterisation of the isolation system strength by η as described in Section 3.1. 

Dividing Equation 14 by ur, the equation of motion is reduced to the normalised form of Equations 8, 15; 
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Case y Int β γ δ ε ζ κ λ μ ν

η =0 u max 5.245 -0.428 - - - - - -1.194 0.797 -0.443

Ü max 8.952 -0.419 - 0.150 - - - -2.266 -0.226 -

η =0.25-1.5 u max 0.623 -0.178 0.097 - -1.192 -0.095 -0.175 -1.100 -0.209 -

Ü max 4.769 -0.114 0.094 0.128 -0.754 0.153 0.255 -2.393 - -



The normalised equation of motion along with the consideration of a constant uy, reduce the governing parameters 

that influence the response to Tp, η, ξ (= ξe,L + ξd,NL), and the nonlinear parameter a, as opposed to Tp, V0, ce,L, cd,NL, a, 

uy, u̇g0 in the non-normalised case, indicating that the normalised response is independent of the amplitude. The validity 

of this statement along with the effect of nonlinearity of viscous dampers are explored in the following section. 

 

4.2. Parametric Analysis of SDOF System and Generalised Design Equations 

 

A numerical study is performed herein by calculating the normalised response of representative isolation and energy 

dissipation systems for a range of design parameters (i.e. ξe,L = 0.05, ξd,NL = 0~0.25, η = 0~1.5, Tp = 1~5s, a = 0.2~1, 

uy = 10 mm) under the Art B suite. In case the nonlinearity parameter a equals unity, Equation 15 is simplified to 

Equation 7 (i.e. linear viscous damping) and Section 3.2 applies. Statistical processing of parametric analysis results 

revealed that the range and trends of SEGM in u̅max, U ̅ max curves in Figure 5 are not significantly affected by the value 

of the nonlinearity parameter of viscous dampers, implying small differences in umax and Ümax compared to the case 

of linear viscous damping (a = 1). Furthermore, it was found30 that the ground motion amplitude has a negligible effect 

on the mean normalised response irrespective of the degree of the nonlinearity of viscous dampers. In other words the 

reduction of the velocity exponent a in Equation 15 reduces the maximum axial damper force (Figure 3C) without 

significantly affecting the system’s overall response (i.e. u̅max, U ̅ max). A minor influence of the intensity is mainly 

evident in the displacement response of systems with increased η and/or short Tp, similarly to Figure 6 (i.e. regardless 

of the a value). The negligible effect of a on the peak inelastic response is clearly illustrated in Figure 10A where the 

non-normalised umax, Ümax response is evaluated for energy-equivalent damper systems of a = 0.2, 0.4, 0.6, 1.0, 

different values of η, and total damping ratio of ξ = 0.15, 0.30. It is seen that the influence of damper nonlinearity on 

the displacement response becomes stronger as ξd,NL increases and a reduces. Specifically, considering the case of ξ = 

0.30, divergences (Div) in the range of -15% and +12.5% are displayed between the a = 1, and a = 0.2 cases of 

displacement response (Figure 10B). Exact values depend on η and Tp but are relatively insensitive to the ground 

motion intensity (not shown in the figure), while Divumax further reduces to ±10% with the increase of a to 0.4. Total 

accelerations are even less affected, exhibiting values of DivÜmax within -7.5~5% in the case of a = 0.2, and -7.5~2.5% 

in the case of a = 0.4. Useful from a design point of view is the remark that as ξ increases, positive Div values 

(indicating increase in seismic response due to the introduction of nonlinearity in viscous damping) are mainly 

observed for long Tp in the case of umax, short Tp in the case of Ümax, and increased values of η in both umax and Ümax 

cases. 

 

 
 

Figure 10 NLRHA results under Art B: (A) GM of umax, Ümax considering energy-equivalent dampers of a=1, 0.6, 0.4, 

0.2; (B) Div of umax, Ümax from a=1 in the case of a=0.6, 0.4, 0.2 for PGA of 0.42g (TR≈2500 yrs, γEQ=2) at bedrock 

 

The independence of the normalised response from the ground motion amplitude combined with increased 

reliability in mean response estimation, allows the development of GDEs following the procedure described in Section 

3.3. Nevertheless, as discussed above, the introduction of nonlinearity in viscous dampers was found to have a minor 
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effect on the overall response of different isolation and energy dissipation systems with maximum divergence response 

rates mainly associated with low displacement amplitudes at short periods (Figure 10). Hence, the parameters 

influencing the u̅max, U ̅ max response can be further reduced to ξ (= ξe,L + ξd,NL), η, and Tp, (i.e. excluding a), resulting in 

the regression model and GDEs that were developed earlier in Section 3.3, and thus limiting the complexity of design 

equations. The effectiveness of the RM3 model in predicting the inelastic response in the case of systems with 

nonlinear viscous damping is demonstrated in Figure 11, where response quantities predicted by GDEs (Table 1) are 

compared with analysis results derived for a = 1 and a = 0.2 under two different seismic intensities. 

 

 
 

Figure 11 NLRHA response umax and Ümax under Art B considering energy-equivalent dampers of a=1, 0.2, compared 

to RM3 predicted response for PGA of (A) 0.21g (TR=475 yrs), and (B) 0.42g (TR≈2500 yrs) at bedrock, ξ=15, 30%, 

η=0~1.5 

 

5. ISOLATED 2DOF WITH LINEAR VISCOUS DAMPING 

 

5.1. Dynamic Equation of Motion 

 

The proposed procedure is extended here to investigate the effect of bidirectional excitation on the peak response of 

isolated 2DOF systems with LVDs. Although 2DOF systems with nonlinear damping are not explicitly checked, the 

minor effect of nonlinearity of dampers in umax, Ümax under unidirectional excitation implies that the relevant equations 

(and GDEs) presented in the following sections can yield reasonable estimates of peak response in systems involving 

NLVDs too. In this context, the dynamic equation of motion for the idealised system is re-written considering two 

dynamic degrees of freedom along two horizontal axes and identical mass (m), stiffness (kp), isolator strength (V0) and 

damping (ce,L, cd,L) characteristics in both directions. Substituting in each horizontal direction the shear force of the 

bilinear isolator, the axial force of the LVD, and considering bidirectional interaction between the isolator yield forces 

with a circular yield surface (i.e. |z|≤1),49 result in Equation 16 (symbols in bold represent vectors). Dividing Equation 

16 by ur and substituting ce,L, cd,L, reduce the equation to the normalised form of Equations 17, 18; 
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The normalised strength η is defined according to Equation 9, where u̇g,max is substituted with u̇g,max,2D. The latter 

quantity, characterising the seismic intensity of a pair of horizontal components, is defined as the PGV of the SRSS 

spectrum (of the pair of records) scaled to the 1D target spectrum (Figure 2B). u̇g,max,2D is estimated from Equation 19; 

this definition is preferred over ‘the PGV of the stronger component of ground motion’5,6 for reasons of compatibility 

with the target spectra and the scaling approach adopted in Section 2, hence, with relevant code-based requirements.8 

Specifically, Equation 19 enables direct comparisons of response quantities derived from analysis under unidirectional 

and bidirectional excitation, since in both cases a specific η value will correspond to (nearly) the same isolation system 

strength v̅0. 
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The peak inelastic normalised and non-normalised response under bidirectional excitation is defined according to 

Equation 20 (using non-normalised quantities in the second case) as the peak values of the response histories derived 

by adding at each time-step the relevant response vectors along the x and y axes. The angles at which the relevant peak 

response quantities are developed are identical in the cases of non-normalised and normalised response (i.e. 

independent of the normalisation procedure) and are calculated from Equation 21 with respect to the x axis, where ti, 

tj represent the time instances at which u̅max,2D and U ̅ max,2D are recorded; 
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The following numerical study investigates the efficiency of the normalisation procedure in uncoupling u̅, U ̅  from 

the ground motion amplitude, and presents some useful comparisons of peak response under unidirectional and 

bidirectional excitation. 

 

5.2. Parametric Analysis of 2DOF System 

 

The numerical study of Section 3.2 is repeated here for the Art D, and Nat(SRSS) (γEC8 = 1) suites. Upper values of 

SEGM in the case of Art D were found lower than 15% with a 90% CL in the case of u̅max and lower than 10% in the 

case of U ̅ max similarly to unidirectional excitation, apart from η = 1.50 that exhibits peak values of SEGM for u̅max 

around 20% (δ ≈ 0.3). This is an indication that an increase in the number of artificial records may be required to attain 

the same degree of reliability with unidirectional excitation for increased η values. The amplitude of ground motion 

had once again a negligible effect on the normalised peak response resulting in u̅max, U ̅ max curves30 similar to those in 

Figure 6 (but of higher magnitude), indicating the effectiveness of the normalisation procedure. Relevant implications 

emerging from the use of natural records apply also in the case of bidirectional excitation. Increased computational 

effort involving a larger number of records and analyses will be required to attain the same degree of reliability with 

the case of artificial records, and effectively control the shape and the PGV of the mean spectrum of the selected 

records to match the target spectra and design PGV. Figure 12 reveals that adopting the Nat(SRSS) suite 

underestimates umax and Ümax, similarly to Figure 7, due to the adoption of a design PGV that is smaller than the GM 

of record PGVs (i.e. 0.353m/s for TR = 475 yrs, derived from Equation 19). 

 

Figure 13A presents a comparative evaluation of umax and Ümax resulting from NLRHA under unidirectional and 

bidirectional excitation associated with TR≈2500 yrs. A significant increase in peak response estimates is observed in 

the case of bidirectional excitation wherein umax and Ümax incorporate the effect of the transverse component of seismic 

action according to Equation 20. More importantly, Figure 13A displays the expected increase in umax and Ümax when 

the 2D target spectrum is defined according to EN1998–2.8 It should be noted that the adopted intensity ratio of the 

horizontal component spectra (i.e. γH2 / γH1 = 0.75) was found to have a rather insignificant effect on the peak resultant 

response derived from Equations 20 (e.g. compared to the case of γH2 / γH1 = 1.0). In fact, the ratio of 0.75 was selected 

to evaluate in a more realistic context32 the angle of peak response quantities. Furthermore, design codes (e.g. 8,9) 



usually constraint response spectrum and nonlinear dynamic analysis results by relevant response quantities calculated 

from the fundamental mode method,8 without providing specific guidelines on the proper consideration of the 

transverse component in the latter method. Hence, the expected increase in umax and Ümax can serve as a means to 

evaluate the consistency of results among different analysis types by appropriately scaling the response calculated 

from the fundamental mode method; in this context, it is quantified with the aid of regression analysis in Section 5.3. 

 

 
 

Figure 12 NLRHA results under Art D, Nat(SRSS) (γEC8=1) suites: GM of (A) lnu̅max, lnU ̅ max, and (B) umax, Ümax, for 

PGA=0.42g (TR≈2500 yrs, γEQ=2) at bedrock, ξ=5, 30%, and η=0~1.5 

 

 
 

Figure 13 NLRHA results under Art B, Art D (H1 assigned to y axis): (A) GM of umax, Ümax; (B) angles θ with respect 

to x axis (discrete dots) and GM of θ per η for umax, Ümax, PGA=0.42g (TR≈2500 yrs) at bedrock, ξ=5, 30% and η=0~1.5 

 

Returning to the issue of the angle of peak response, Figure 13B reports θumax, θÜmax values derived from parametric 

analysis using Art D and Equation 21; solid lines represent GM of observed values from analyses under the 10 pairs 

of records, and solid dots recorded values per individual analysis. Interestingly, mean angles are stabilised close to the 

value associated with the intensity ratio of horizontal components adopted in analysis (i.e. tan-1(1 / 0.75) = 53o) 

representing approximately the incidence angle of the resultant of components. However, the reliability of the mean 
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values is significantly low with peak SEGM in umax, Ümax values exceeding 100% due to the increased scattering of 

observations. Clear response patters cannot be identified and θumax, θÜmax may take any value within 0–90o; this justifies 

and encourages the common practice of designing isolators to sustain the peak relative displacement in any random 

direction (which unfortunately is not always required by codes, e.g. 8). It further indicates the need for applying the 

selected records at different angles of incidence when designing the substructure of isolated bridges, unless a more 

conservative approach is adopted. Results from analysis using the suite of natural records support the previous 

statements. 

 

5.3. Derivation of Generalised Design Equations 

 

Regression models and associated GDEs for the case of bidirectional excitation were first developed, and subsequently 

assessed in terms of accuracy in peak response prediction and effectiveness in ‘near-optimal’ system identification for 

practical applications.30 The efficiency of the adopted model (i.e. RM3) in predicting the peak inelastic response is 

demonstrated in Figure 14. GDEs in this case (RM3, elastomer-based isolators and a target spectrum with site 

conditions ‘C’25), take the general form of Equations 11, 12 simplified as shown in Table 2. The ground motion 

intensity is expressed in terms of PGA at bedrock (m/s2) of the target spectrum under unidirectional excitation 

(Equation 19). 

 

 
 

Figure 14 NLRHA response umax and Ümax under Art D compared to response predicted from RM3 and RM5 for (A) 

PGA of 0.21g (TR=475 yrs), (B) PGA of 0.42g (TR≈2500 yrs) at bedrock, ξ=5, 30%, and η=0~1.5 

 

 

Table 2 RM3 regression coefficients: EN1998–1, site conditions ‘C’25, 2D excitation. 
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Case y Int β γ δ ε ζ κ λ μ ν

η =0 u max 5.418 -0.440 - - - - - -1.206 0.803 -0.438

Ü max 9.425 -0.305 - - - - - -3.165 0.756 -0.399

η =0.25-1.5 u max 0.865 -0.222 0.106 - -1.126 -0.131 -0.230 -1.074 -0.185 -

Ü max 4.890 -0.163 0.116 0.152 -0.715 0.157 0.249 -2.335 - -



Table 3 RM5 regression coefficients: EN1998–1, site conditions ‘C’25, 2D excitation. 

 

 
 

Representing an alternative to RM3, RM5 model (Table 3, Figure 14) was developed by constraining the regression 

coefficients (except for the Intercept Int term) to the values obtained from RM3 under unidirectional excitation, as the 

relevant coefficients were found to be reasonably similar (i.e. Table 2 vs. 1). This approach allows further 

simplification of the adopted models since the peak response under bidirectional excitation can be calculated from 

GDEs of unidirectional excitation by scaling relevant response quantities according to the data in Table 3. The 

provided ratios of peak inelastic response reflect in addition the ‘mean increase’ in umax, Ümax due to the introduction 

of the transverse component of seismic action when target spectra are defined according to EN1998–2,8 thus, offering 

an effective means to evaluate results deriving from different types of analysis according to Section 5.2. 

 

6. CONCLUSIONS 

 

A methodology for the direct estimation of peak inelastic response in bilinear isolation systems was extended here 

with a view to properly capturing the effect of linear/nonlinear viscous damping, and hence addressing a wide range 

of isolation and energy dissipation configurations. The suggested approach consists of a normalisation procedure 

aiming at the development of generalised design equations (GDEs) capable of providing reliable estimates of peak 

inelastic response under different performance levels associated with code-based target spectra of common frequency 

content but different amplitude. Three different cases were explicitly considered, namely, (i) isolated SDOF systems 

with linear and (ii) nonlinear viscous damping, and (iii) isolated 2DOFs with linear viscous damping, representing 

idealised isolated bridge decks under unidirectional and bidirectional excitation. The following conclusions, regarding 

the development of the methodology and its usefulness in practical applications, were drawn from extensive 

parametric nonlinear dynamic analyses: 

 

• The dynamic equation of motion was normalised, aiming at uncoupling the normalised response from the 

amplitude of ground motion and limiting the dispersion in peak normalised relative displacements u̅max and total 

accelerations U ̅ max. Two conditions were introduced in this respect. The first condition involved the 

characterisation of the isolation system strength by η (i.e. strength at zero displacement V0 normalised to the ground 

motion intensity as expressed by PGV). The second was associated with the characterisation of nonlinear viscous 

dampers by the ‘energy-equivalence’ approach (i.e. dampers of the same damping ratio ξ but different velocity 

exponent a). The above conditions along with the assumption of a constant value for the yield displacement reduce 

the governing parameters that significantly affect the response, to the isolation period Tp, η, and ξ. Further, they 

allow the development of GDEs (with the aid of regression analysis) for the direct estimation of non-normalised 

relative displacements umax and total accelerations Ümax, since the maximum force of the isolation and energy 

dissipation system cannot be directly associated with umax. The developed regression models were assessed both 

in terms of accuracy in peak response prediction and effectiveness in ‘near-optimal’ system identification, while 

the procedure was fully automated within a developed MATLAB code to facilitate the development of GDEs in 

cases different from those considered herein. 

• Tailoring to the needs of practical design by means of using code-type target spectra and scaling procedures, entails 

the selection and/or generation of records with mean characteristics (i.e. mean spectrum, mean PGV) that closely 

match the target properties (i.e. shape of target spectrum, design PGV). The above requirements are associated 

with increased computational effort when natural records are used. On the other hand, artificial accelerograms 

(notwithstanding their known pitfalls)50 may easily satisfy the above requirements and provide robust estimates of 

mean response when member strength degradation is not considered. Alternative ‘spectrum-matching’ approaches 

(e.g. 51) will be explored in future studies. 

• In the case of bidirectional excitation, the large dispersion in the angles at which peak response occurs, justifies 

and encourages the common practice of designing isolators to sustain umax in any random direction; it also points 

Case y Int

η =0 u max 5.445

Ü max 9.148

η =0.25-1.5 u max 0.978

Ü max 5.001

β  γ  δ  ε  ζ  κ  λ  μ  ν

Table 1

u max,2D / u max,1D or Ü max,2D / Ü max,1D = e
Int,2D

 / e
Int,1D

1.22

1.22

1.43

1.26



to the need for applying the selected records at different angles of incidence when designing the substructure. 

Development of regression models by constraining the regression coefficients of relevant models under 

unidirectional excitation, provided magnification factors that offer an effective means to evaluate results derived 

from different types of analysis according to code requirements. 

Considering that GDEs can be extracted for prescribed target spectra and provided as ready-to-use design tools, 

the suggested procedure represents an alternative to equivalent linearisation approaches commonly adopted by codes. 

As such, it can be implemented either as a ‘stand-alone’ tool in bridges with stiff substructure and insignificant 

torsional effects, or for preliminary design purposes in more complex systems. In this context, a key aim for developing 

the proposed procedure is to incorporate it in the Deformation-Based Design method for seismically isolated bridges 

(under uni/bidirectional excitation), as it will be presented in a forthcoming paper. 
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