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ABSTRACT    
 
The paper reports a progress on the development of a hybrid approach 
coupling the Meshless Local Petrov-Galerkin Method based on 
Rankine Solution (MLPG-R) and the Quasi Arbitrary Langangian-
Eulerian Finite Element Method (QALE-FEM) for modelling nonlinear 
water waves. The former is to solve the one-phase incompressible 
Naiver-Stokes model using a fractional step method (projection 
method), whereas the latter is to solve the Fully Nonlinear Potential 
Theory (FNPT) using a time-marching procedure. They are fully 
coupled using a zonal approach. The hybrid approach takes the 
advantage of the QALE-FEM on modelling fully nonlinear water 
waves with relatively higher computational efficiency and that of the 
MLPG-R on its capacity on dealing with viscous effects and breaking 
waves. The model is validated by comparing the numerical prediction 
with the experimental data for a unidirectional focusing wave. A good 
agreement has been achieved.  
 
KEY WORDS:  Hybrid model; MLPG-R; QALE-FEM; Nonlinear 
water waves 
 
INTRODUCTION 
 
Wave-structure interaction has been a focus for the researches on 
offshore, coastal and ocean engineering for many years.  For safety and 
survivability of the structures, extreme wave condition must be 
considered. Accurately modelling such extreme wave condition usually 
requires a large-scale (~ 10s km) and long-duration (e.g. 3-hour sea 
state) numerical simulation to capture the spatial-temporal propagation 
of the ocean wave. On the other hand, the response of the structure in 
extreme condition is considerably influenced by small-to micro-scale 
physics, such as the viscous/turbulent effect, hydro elasticity and so on. 
This implies that an effective numerical model shall be able to deal 
with both large-scale oceans wave and small-scale near-field physics 
simultaneously. The presence of the extreme waves invalids the routine 
wave diffraction analysis based on linear and second-order potential 
theory in frequency domain and a fully nonlinear analysis shall be 
considered using time domain analysis.  
 

Advances have been made on the development of fully nonlinear 
potential theory (FNPT) on modelling highly nonlinear wave waves in 
large scale and for long duration, e.g. 3-hour sea state. Various 
numerical models based on the FNPT, e.g. the quasi-arbitrary 
Lagrange-Euler finite element method (QALE-FEM, Ma and Yan, 
2006; Yan and Ma, 2010a) and Spectral Boundary Integral methods 
(e.g. Wang and Ma, 2015; Wang et al, 2016), have been developed and 
proven to be robust and highly efficient for modelling extreme water 
waves without breaking. The FNPT assumes that the flow is inviscid 
and irrotational, therefore, it cannot deal with breaking waves, 
slamming and other small-scale physics near structures.  
 
Alternatively, NS models, which relying on the solutions to the Naiver-
Stokes equation, Continuity equation and proper boundary conditions, 
have also been extensively developed and applied. These models may 
be solved by both the mesh based methods, e.g. the volume of fluid 
(VOF) and the meshless methods (particle methods), e.g. the smoothed 
particle hydrodynamics (SPH, Cummins and Rudman , 1999; Gotoh et 
al, 2004, 2014, 2016; Khayyer et al, 2008; Shao et al, 2006; Shao, 
2012; Lind et al, 2012, 2016; Zheng et al, 2014), the moving particle 
semi-implicit method (MPS, e.g. Koshizuka and Oka, 1996; Khayyer 
and Gotoh, 2009, 2010, 2012 and Khayyer et al, 2008) and the 
Meshless Local Petrov-Galerkin method based on Rankine Solution 
(MLPG-R, Ma and Zhou, 2009; Zhou and Ma, 2010). The meshless 
methods have been recognized as promising approaches for modelling 
violent waves and their interaction with structures, attributing to their 
advantages that meshes are not required and numerical diffusion 
associated with the convection terms is eliminated through a fully 
Lagrangian formulation. Comparisons with the experimental data have 
suggested that the meshless methods can accurately capture the small-
scale physics associated with breaking waves, slamming and hydro-
elasticity.  A recent review has been given by Gotoh and Khayye 
(2016) on current achievements and future perspectives for projection-
based particle methods with applications in ocean engineering; and Ma 
et al (2016) on solving Poisson’s equation in projection based particle 
methods. However, the NS models are relatively time-consuming. 
Consequently, the applications of the NS models often limit to a short 
time frame near the breaking wave impacts on structures. A large-
domain (say 20x20 wavelengths in three dimension) or long-duration 
modelling of wave-structure interaction using the NS models are 



 

practically impossible.   
 
In practice, the viscous effects in the problems concerned play a 
significant role only near the breaking waves and/or structures and may 
be ignored in other areas. This initiated the idea to develop hybrid 
approaches coupling FNPT and NS using a spatially hierarchical 
strategy (zonal approach), in which a relatively efficient FNPT model is 
applied to a major area without wave breaking and offshore structures; 
and a NS solver covers the remaining small area to resolve the detailed 
physics related to viscosity/turbulence and breaking wave impacts (e.g. 
Sriram, Ma and Schlurmann, 2014; Sueyoshi et al, 2007). An 
alternative strategy is to decompose the velocity/pressure in the NS 
model into two parts (model-decomposition strategy). For example, 
Edmund et al (2013) decomposed the velocity and pressure into 
irrotational and rotational parts, which are governed, respectively, by a 
Laplace problem for a velocity potential in the whole computational 
domain and a complementary NS model (the summation of two parts 
satisfies the NS model) to be solved in small subdomains near the 
structures. 
 
This paper presents the development of a hybrid approach combining 
the QALE-FEM and the MLPG-R for modelling nonlinear water waves 
using a zonal approach. The basic idea is that in a small subdomain 
near the wave breaking or structure, the MLPG-R is used and the 
relatively robust QALE-FEM covers the rest of the domain; an overlap 
zone is introduced between two sub-domains which not only exchange 
the data between two solvers but also smooth the discontinuity of the 
pressure-velocity relation in two sub-domains.  However, this paper 
only aims to focus on a preliminary investigation of the feasibility and 
accuracy of the hybrid model by using a case with non-breaking 
unidirectional focusing wave, in which an accurate reading of the 
experimental data is available. The subdomain covered by the MLPG-R 
is centered at the location, where the extreme focusing wave occurs. 
Good agreement has been achieved.  
 
MATHEMATICAL MODELS 
 
QALE-FEM 
 
The QALE-FEM method is based on a fully nonlinear potential 
theory(FNPT) for water waves, in which the flow is assumed to be 
inviscid and irrotational. In the FNPT, the velocity is computed from a 
velocity potential ( ) by u


, and the pressure is calculated by 

using the Bernoulli’s equation,  
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in which z is the vertical coordinate whose origin is located at the mean 
free surface.  The velocity potential satisfies the Laplace’s equation,  
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On the free surface, the following boundary conditions in a Lagrangian 
form is used, 
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where D/Dt is the material derivatives following the motion of the fluid 
particle.  The latter (Eq. 3b) corresponds to p = 0 at the free surface. On 
a rigid boundary, e.g. the wavemaker,  
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where bU


 and n


are the velocity and the unit normal vector of the 

rigid boundaries, respectively.   
 
In order to estimate the pressure using Eq. (1), t /  needs to be 

accurately estimated. This may be obtained using the backward finite 
difference scheme, which may lead to a numerical instability (Yan and 

Ma, 2007). In the QALE-FEM, t /  is evaluated by solving a 

similar boundary value problem, where the Laplace’s equation 
of t /  is used to govern the fluid motion. The boundary condition 

on the free surface is consistent with Eq. (3b), i.e.  
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And the boundary condition on the rigid boundary is written as, 
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where cU  and   are the translational and rotational acceleration of 

the rigid body; cU  and   are the translational and rotational velocity 

of the rigid body.  
 
The boundary value problems defined by Eqs (1-6) are solved by using 
a time-marching approach.  If the position of and the velocity potential 
at the free surface, the motions of the rigid bodies are known at nth time 
step, the following procedure is used to find the variables at (n+1) th 
step, 
 

1) Replace the boundary condition for the velocity potential on 

the free surface by a Dirichlet condition, n
p

n f , where 

n
pf is the potential values on the free surface and can be 

predicted by that at the previous step and a time integration of 
DtD / over the time step; 

2) Solve the boundary BVP of the velocity potential using the 
finite element method (FEM); 

3) Calculate the fluid velocity on the free surface and body 
surfaces using gradient calculation scheme; 

4) Update t / and DtD /  on the free surface using Eqs. 

(3) and (5); 

5) Solve the BVP of  t /  using the FEM; 

6) Update the position of the free surface and the velocity 



 

potential at (n+1)th step using Eq. (3) and a time integration 

scheme, i.e..   2/3 11 tuurr nnnn   
 based on the 

Adams-Moulton method. 
 
The details of the FEM formulations and the time integration scheme 
have been discussed in our previous publications, e.g.  Ma et al. (2001).  
The main differences between the QALE-FEM method and the 
conventional FEM method is that the computational mesh is moving 
during the calculation by using a novel methodology based on the 
spring analogy method but purpose-developed for wave-structure 
interaction problems. The novel methodology for moving mesh is that 
interior nodes and boundary nodes are considered separately; the nodes 
on the free surface and on rigid boundaries are considered separately; 
nodes on the free surface are split into two groups: those on waterlines 
and those not on waterlines (inner free-surface nodes); and different 
methods are employed for moving different nodes. To move the interior 
nodes which do not lie on boundaries, a spring analogy method is used. 
In this method, nodes are considered to be connected by springs. The 
positions of nodes on the free surface are determined by physical 
boundary conditions, i.e., following the fluid particles at most time 
steps. The nodes moved in this way may become too close to or too far 
from each other. To prevent this from happening, these nodes are 
relocated at a certain frequency, e.g. every 40 time steps. When doing 
so, the nodes on the waterlines is re-distributed according to a principle 
for a self-adaptive mesh.  One key issue for the QALE-FEM to be 
addressed is the technique for efficiently calculating the velocity at the 
free surface, as shown in Eq. (3). For these purpose, a three-point 
method for computing the velocity on the free surfaces and body 
surfaces suitable for unstructured/moving meshes, and a special 
technique for coping with wave overturning and impacting, are 
developed. These techniques ensure high robustness of the QALE-
FEM.  The details of those techniques will not be repeated here. 
Readers are referred to Ma and Yan (2006, 2009) and Yan and Ma 
(2007). Nevertheless, for the coupling with other numerical model 
using a zonal approach, which will be discussed in the following 
Section, the velocity and the pressure near the interface between the 
QALE-FEM domain and others shall be exchanged between two 
models. This means that near the interface, robust interpolation and 
gradient calculation schemes are demanded, e.g. to find the velocity 
using u


or find the pressure using Eq. (1).  For this purpose, a 

modified SFDI (simplified finite difference interpolation) is developed 
and applied. The details can be found in Xu et al (2015).   
 
MLPG-R 
 
In the MLPG-R model, the Navier-Stokes equation and Continuity 
equation in Lagrangian form are considered,  
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where u


, ρ, p, ν, g and t denote the velocity, density, pressure, 

kinematic viscosity, gravitational force and physical time. The 
kinematic and dynamic conditions on the free surface are given by  
 

u
Dt

rD 


                                                                                            (9a) 

0p                                                                                                 (9b) 

 

where r


 is the position vector.  On the rigid boundary surface, the 
following conditions are satisfied,  
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in which bU

  is the acceleration of the rigid boundary. If one knows the 

velocity, pressure and the position of the particles at nth time step, then 
in the MLPG-R algorithm, the following fractional step method 
(projection method) is used to find the variables at the next time step 
with a time increment of t  ,  
 

1) Calculate the intermediate velocity ( *u


) and position ( *r


) 
of the particles using  
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2) Evaluate the pressure pn+1 using the semi-implicit equation,  
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3) Calculate the velocity at all the particles using the pressure 
gradient and the gravitational force, 
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4) Update the position of the particles 
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The key task of the procedure is to solve Eq. (12) in order to evaluate 
the pressure, which is transferred in to a weak form by integrating it 
over a circular/spherical integration deomain I  centered at each 

particle, 
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where the test function   is taken as the Rankine source solution. 

The remarkable feature of Eq. (15) is that this formula does not include 
any derivatives of p. This is of great benefit because estimating 
unknown functions is much easier than estimating their gradient. 
Special techniques have been developed for the integration and 
solutions to the weak formulation within the framework. It shall be 
noted that the particles in this approaches move in a Lagrangian way 
following the material velocity, typically resulting in a 
disordered(random) particle distribution, even though they may be 
distributed uniformly in the initial state.  A recent test by Ma et al 
(2016) has confirmed that the MLPG-R has a quadric convergent rate 
for solving Poisson equations by using disordered/random particles. 
The accuracy may be further improved by considering particle 
regularization or shift schemes (Lind et al, 2012; Khayyer et al, ,2017), 
though they are not used the version of the MLPG-R adopted by this 
paper. The further details of the MLPG-R method can be found in Ma 
and Zhou (2009), Zhou and Ma (2010) and Sriram et al (2014). 
    
Two-way (Strong) Coupling Using a Zonal Approach 
 



 

As indicated above, a zonal approach is used to fully couple the QALE-
FEM with the MLPG-R. There are two types of methods coupling the 
FNPT models with NS models using the zonal approach. One is the  
weak (one-way) coupling and the other is the strong (two-way) 
coupling. For the former, the FNPT models covers the entire 
computational domain and the NS models cover small area near the 
wave breaking or structures, where the viscous effects are significant; 
the FNPT models provide boundary conditions, e.g. the volume 
fraction, velocity and pressure, for the NS models; the NS models do 
not feedback any data to the FNPT model and usually are equipped 
with a damping zone near the it outer boundary to dissipate the 
reflected/disturbed waves (e.g., Yan and Ma, 2010b; Hildebrandt and 
Sriram, 2014). The weak coupling is simpler as it needs to only transfer 
information in one direction and is more suitable to deal with the 
problem where the reflections from the structures or the disturbing due 
to the wave breaking is insignificant near the boundary of the NS 
models.  The two-way (strong) coupling exchanges solutions in the 
interface between two subdomains governed by the FNPT and NS 
models (e.g. Sriram, Ma and Schlurmann, 2014). This means that the 
reflected/disturbing waves from the NS domain is expected to be 
transferred to the FNPT model and the NS model does not require a 
damping zone to omit such waves. Nevertheless, inner iterations at each 
time step may be essential to ensure that boundary conditions at both 
subdomains are satisfied simultaneously. To secure the success of this 
approach, one critical question is how to build a coupling between the 
two models at the interfaces of the subdomains where the velocity-
pressure relationships are discontinuous at two sides (Bernoulli or Euler 
equation in the FNPT subdomains and NS equation in the NS 
subdomains).  Sriram, Ma and Schlurmann (2014) has reviewed and 
tested different approaches, including a fixed boundary interface, 
moving boundary interface and overlapping zone interface using 
various cases associated with highly nonlinear water waves. Our 
preliminary tests also concluded that a single interface (no matter is 
fixed or moving) cannot ensure a smooth transformation of the 
velocity-pressure relationships (or the viscous effects) and normally 
introduces suspicious waves near the interface. Such suspicious waves 
may be dissipated in the subdomain governed by the NS model due to 
the viscous effect but they retain/propagate in the FNPT subdomain 
unless an appreciated artificial damping is imposed in the FNPT 
formulation.    

 
Figure 1. Schematic of the coupling configuration 
 
In this work, the spatial domain is decomposed as sketched in Fig. 1, 
where an overlapping zone is introduced between the QALE-FEM 
subdomain (shadowed zone with an outer boundary denoted by 
SBC_FEM) and the MLPG-R subdomain (discretized by particles with an 
outer boundary denoted by SBC_MLPG). On the boundary of the MLPG-R 
subdomain (SBC_MLPG), the velocity and pressure at discretized particles 

are fed by the solutions in the QALE-FEM using  u


and Eq. (1); 

one the boundary of the QALE-FEM subdomain (SBC_FEM), the velocity 
potential and t /  are specified by the solutions of the MLPG-R 

model using Eq. (1).  In the overlapping zone, the solutions of the 

QALE-FEM and those of the MLPG-R are not consistent due to the 
fundamental difference, leading to, for example, a typical mismatch of 
the free surface position. To overcome this problem, the solutions of 
both the QALE-FEM and the MLPG-R in the overlapping zone need to 
be corrected by a weighted summation. In the overlapping zone, the 
velocity on the free surface, sfu


, for both the QALE-FEM and the 

MLPG-R are corrected using 
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Figure 2. Flowchart of the coupling adopted in time domain 
 

1. QALE-FEM 
Update r and   at t* using Adams-Moulton method; 

Solve the boundary value problem Eq. (2) with 
boundary condition on SBC,FEM  is given as Eq. (4) with 

bU


 being nu


 and 1nu


  obtained by MLPG-R  

2.MLPG-R 
Updating position, velocity at t* using Eq. (11); 
Solving Eq. (12) where the boundary condition pn+1 
on SBC,MLPG is specified by Eq. (1a) with the 
parameters in the right sides are given by the 
QALE-FEM with explicit  estimation of t /   

3. QALE-FEM 
Solving the boundary value problem on  t / , 

where the boundary condition at SBC,FEM is given by 
pressure and velocity at t* from the MLPG-R at Step 
2). 

4.MLPG-R 
Solving the Pressure Poisson Equation Eq. (12) 
again where the boundary condition pn+1 on 
SBC,MLPG is specified by the implicit estimation in 
the QALE-FEM at Step 3).  Update vn+1 using Eq. 
(13) 

5. Both QALE-FEM and MLPG-R 
Correct the velocity and pressure in 
the overlapping zone  

6. Update all values and 
move to the next Steps 



 

where w is a weighting function, which is zero on SBC_MLPG and 
gradually changed to 1 on SBC_FEM ; Subscripts ‘Q ’ and ‘M’ correspond 
to the QALE-FEM solution and the MLPG-R solution.  The velocity 
and pressure at other MLPG-R particles in the overlapping zone are 
corrected using a similar way. Furthermore, the viscosity in the MLPG-
R model is also changes from 0 on SBC_FEM to the physical viscosity on 
SBC_MLPG. One may notice that Eq. (16) is not valid if a 
breaking/overturning wave occurs in the overlapping zone. Indeed, 
modelling breaking waves exceeds the capacity of the FNPT and 
QALE-FEM.  A criterion may need to be specified in the QALE-FEM 
to automatically determine the subdomain of MLPG-R based on the 
local wave steepness, ensuring no breaking waves occurs in the QALE-
FEM subdomain (so does the overlapping zone).  
 
One may also notice that the time integration scheme used in the 
QALE-FEM (i.e. the Adams-Moulton method) is different from that in 
the MLPG-R. These are taken into account in coupled procedure which 
is sketched in Fig. 2, assuming the solutions at nth steps are known. The 
main differences between this procedure and the one used by Sriram, 
Ma and Schlurmann (2014) include (1) the boundary condition for 
solving the velocity potential at Step 1 is given as a Neumann condition 
in which the normal velocity on SBC_FEM are fed by the MLPG-R using 

13  nn uu


; (2) the boundary value problem for t /  is solved in 

Step 3, which give an implicit estimation of the pressure on SBC_MLPG in 
Step 4; and (3) the boundary SBC_FEM is not a straight vertical plane but 
behaves similar to a free surface following the fluid motion. To ensure 
the boundary conditions of the MLPG_R and QALE-FEM satisfied 
simultaneously, Step (3) and Step (4) need to be repeated in an iterative 
matter. Nevertheless, one may agree that if the corresponding boundary 
values are predicted more accurately, the number of iteration will be 
reduced. This can be achieved by reducing the time step size and/or 
improve the accuracy of the time integration.  For example, the Adams-
Moulton method used in the QALE-FEM has shown its capacity on 
predicting the elevation and velocity potential at (n+1)th step using the 
corresponding data at previous two steps. We extend this idea to the 
configuration of the boundary condition of the QALE-FEM at SBC_FEM , 
i.e. the fluid velocity and pressure at this boundary is predicted using 
the corresponding values at previous two steps by the MLPG-R solver.  
In such a way, the computed velocity and pressure at SBC_MLPG ,which 
are required in Step (4),  are well predicted. Therefore, the iteration 
may be practically avoided if the time step size is sufficiently small.  
 
The time step size required by different models are different. Though 
both models adopt CFL condition, the QALE-FEM replaces the 
velocity in the CFL condition by the wave celerity (Yan et al, 2010a). 
However, the required mesh resolution is approximately 30-40 nodes 
per wave length. This leads to the time step size adopted by the QALE-
FEM is approximately 1/32 ~ 1/200 significant wave period, depending 
on the steepness of the waves. Such time step is usually an order of 
magnitude larger that the MLPG-R time step, due to the fact that the 
particle resolution in the MLPG-R is significantly higher than the 
QALE-FEM. For simplicity, we use the same time step size for both 
models in the present work. By using such time step, the iteration of 
Steps (3-4) is practically unnecessary. Necessary convergence 
investigations are carried out for all cases. This will be discussed in the 
following section. 
 
NUMERICAL RESULTS 
 
The present hybrid model is validated by comparing the numerical 
results with experimental work. In the preliminary numerical 
investigation discussed in this paper, only non-breaking unidirectional 
focus wavs are considered, attributing to the fact that the free surface 

elevations are more easily to be measured with good accuracy. The 
experiments were performed using the 3D wave basin at the University 
of Plymouth. The wave basin is 35 m long and 15.5m wide. The water 
depth (d) used to perform the experiments is 2.93m. Flap wave paddles 
are installed to generate 3D waves. The focusing waves are generated 
by using flap wave paddles whose motion is specified by using a 2nd 
order wavemaker theory using the spatial-temporal focusing mechanism.  
JONSWAP spectrum with a peak period of 1.456s is used. In order to 
explore the nonlinearity, different significant wave heights will be 
considered. For each wave component i, the phase, φi, is given by 
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where  ωi and ki  are the wave frequency and wave number, xf  and tf are 
the theoretical focusing location and focusing time. The detailed can be 
found in Ma (2007) and Sriram Schlurmann and Schimmels (2013).  For 
all focusing waves generated in the experiments, the focusing point is 
set at 13.886m from the wavemaker. Various wave gauges are used to 
record the wave elevations as sketched in Fig. 3. Though the 
experiments focus on both 3D bi-directional waves and 2D uni-
directional waves, only the latter is considered in this paper.  The 
domain decomposition in the hybrid model is shown in Fig. 4, in which 
two QALE-FEM subdomains are used at two ends of the wave basin 
and the MLPG-R domain covers small area where the wave focusing 
occurs. On the left side of the QALE-FEM domain 1, a 2nd order piston 
wavemaker is used to generate the wave, whereas on the right side of 
the QALE-FEM domain 2, a self-adaptive wave absorber is used to 
absorb the incoming waves, representing the absorbing beach in the 
experiments.  
 
 

 
Figure 3: Locations of wave gauges  
 

 
Figure 4: Domain decomposition of the hybrid method in the test case 
 
In this preliminary test, convergence tests have been carried out 
individually for QALE-FEM and the MLPG-R by modelling the entire 
case (the computational domains of both models is the same as the 
experiment). The results suggest that the particle resolution (mean 
spacing) in the MLPG-R for achieving convergent results is ~ 0.01m; 
for the QALE-FEM, the mesh size on the free surface is 0.02m and the 
mesh size in vertical direction changes following an exponential 
function (approximately 16 layers of elements distributed from the free 
surface to the tank basin). The corresponding time steps leading to 
convergent results are 0.008s and 0.004s, for the QALE-FEM and 



 

MLPG-R, respectively. To avoid defocusing our discussions on the 
hybrid modelling, the corresponding convergence tests are not 
presented here.  
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Figure 5: Comparison of the wave time histories recorded at the 
expected focusing point in the cases with different thickness of the 
overlapping zone(13.889m from the wave paddle; significant wave 
height 0.103m) 
 
To reproduce the experiment in the numerical work, the QALE-FEM 
domain 1 covers area from the wave maker to 13m from the 
wavemaker and the QALE-FEM domain 2 covers from 15 to the end of 
the wave tank (i.e. 35m). Different thickness of the overlapping 
(translational) zone, ranging from 10 particle mean spacing to one 
water depths, Lo,, are considered first to test the sensitivity of the hybrid 
model to the thickness of the overlapping zone. Figs. 5 compares the 
wave time histories recorded at the expected focusing point, i.e. 
13.889m from the wave paddle, which is located inside the MLPG-R 
domain. As observed that when Lo ≥0.5m, all results are close and the 
relative different between the results with Lo = 0.5m and that with Lo = 
2.93 is below 1%; whereas the corresponding results of Lo = 0.2m 
seems to be different from others.  It is also observed that a further 
reduction of Lo (e.g. Lo = 0.1m) may lead to numerical instability.  
 
The comparisons with the experimental data are also made for 
validation purpose. Two specific issues have been checked. One is the 
solution recorded in the MLPG-R domain but outside of the 
overlapping zone. The other is the solutions in the translational zone, in 
which the weighted summations are used to ensure a smooth transition 
of the viscos effects and the consistence of the solutions by two models. 
The thickness of the overlapping zone is chosen as 1.5m to ensure 
experimental data are available in the overlapping zone.  Fig. 6 
compares the wave elevation recorded at Gauge WP11/12 at x = 
13.886m, which is close to the centre of the MLPG-R domain.  For the 
purpose of comparison, the corresponding result obtained by the 
QALE-FEM only is also accompanied. 
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Figure 6: Comparison of the wave time histories recorded at the 
expected focusing point (13.889m from the wave paddle; significant 
wave height 0.103m;) 
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Figure 7: Comparison of the amplitude spectra at WG11(13.889m from 
the wave paddle; significant wave height 0.103m) 
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Figure 8: Comparison of the wave time histories recorded two positions 
in the overlapping zone (significant wave height 0.103m) 
 
As demonstrated that the present numerical results by both the hybrid 
model and the QALE-FEM agree well with the experimental data, in 
particular near the time when the focusing occurs.  The corresponding 
comparison of the wave spectrum is illustrated in Fig.7, which again 
shown a good agreement. Attentions are also drawn to the solutions in 
the overlapping zone. The wave time histories recorded by two gauges 
in the overlapping zones are also examined and the results are shown in 
Fig.8.   Similar agreement to that shown in Fig.6 is observed. This 
implies that the present hybrid model combing the QALE-FEM with 
the MLPG-R has promising accuracy on modelling nonlinear water 
waves. 
 
Attentions are also made to the spatial distribution of the free surface 
elevation, velocity and pressure near the focusing points at different 
time steps. Some results are shown in Fig. 9 and 10. The thick lines are 
the free surface consisting the solutions of the QALE-FEM and the 
MLPG-R in their subdomains. One may observe that the free surface in 
the entire domain is smooth and the free surface in the overlapping 
zone, i.e. at 11.5~13 and 15~16.5 in the QALE-FEM subdomain agree 
well with that in the MLPG-R domain. In the inner area of the MLPG-
R domain, noises of the pressure and the velocity are not noticeable, as 
reflected by the smooth contours.   
 



 

 
(a) Pressure 

 
(b)horizontal velocity 

 

 
(c)vertical velocity 

Figure 9: Pressure and velocity distribution near the focusing point at t 
= 59.5s (thick line: free surface; contours illustrate the solutions in the 
MLPG-R domain) 
 
CONCLUSIONS 
 
This paper reports our recent progress on developing a hybrid model 
coupling the fully nonlinear potential theory and the NS models. The 
QALE-FEM and the MLPG-R method are used to solve two models, 
respectively. A zonal approach with moving overlapping zones are used 
for a strong(two-way) coupling. The hybrid model is examined by the 
experiment on uni-directional focusing waves. Good agreements have 
been achieved.   
 
Although the ultimate objective of this work is to model breaking 
waves and/or their interaction with structures, only non-breaking 
unidirectional waves have been preliminarily tested in this paper. 
However, the results have shown a success of the key technique of the 
coupling, i.e. the overlapping zone technique. The relevant conclusion 
shall stand firmly even in the cases with violent breaking waves, since 

only non-breaking wave appears in the overlapping zone by carefully 
locating the subdomain of the MLPG-R. the hybrid model will be tested 
using the cases with breaking waves and/or structures in the next stage, 
which may be reported in the conference. 
 
 

 
(a)pressure 

 
(b) horizontal velocity 

 
(c)vertical velocity 

Figure 10: Pressure and velocity distribution near the focusing point at t 
= 60.25s (thick line: free surface; contours illustrate the solutions in the 
MLPG-R domain) 
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