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 3D full coupling model for strong interaction between a pulsating bubble 

and a movable sphere 
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In this study, we establish a full coupling model (FCM) to simulate strong bubble-sphere interaction 

based on a three-dimensional boundary integral method. Different from the traditional loose coupling 

model (LCM), FCM adopts several auxiliary functions to deal with the mutual dependence between 

the hydrodynamic force and the sphere acceleration. In addition, the weighted moving least square 

method, a mesh density control scheme and an adaptive mesh refinement scheme are implemented to 

improve the quality of mesh on the deformable bubble surface. To validate the present model, 

convergence tests on different mesh sizes and time steps are conducted at first. The numerical results 

are also compared with the axisymmetric model, in which consistent results have been achieved. We 

further make comparisons between the numerical results and those from several experiments under 

different boundary conditions. For weak interaction cases, both LCM and FCM can give the results 

that have good agreement with the experiment data. As the interaction effects become stronger, the 

advantage of the FCM over the LCM becomes increasingly obvious. Particularly, when the pulsating 

bubble is in contact with the sphere surface, the essential physical features of the experiments can be 

well reproduced by the FCM while the predictions by the LCM are significantly different from the 

experiment. The present 3D model can be further extended to study more complex underwater contact 

explosions, cavitation inception on a structure and airgun bubble dynamics.  
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1. Introduction 

Bubbles exist widely in nature and are crucial in fluid mechanics. Bubble dynamics is a focus for 

its important applications in many engineering fields. The bubbles undergo a violent oscillation when 

they are in a field of an imbalance pressure between the bubble gas and the ambient flow field. For an 

underwater explosion bubble 1-3 or an air-gun bubble 4, 5, violent expansion occurs at the very early 

stage since the gas pressure inside the bubble is much higher than the ambient hydrostatic pressure, 

which is followed by the bubble collapse as the gas pressure drops far below the ambient pressure. In 

hydraulic machinery field 6, 7, when a micro-bubble suffers from a sudden pressure drop due to high 

velocities in the flow, the bubble would expand explosively and collapse violently as the ambient 

pressure surrounding the bubble returns to a high value. Shock wave emission and high-speed liquid 

jet impact are often observed during the final stage of the bubble collapse 8, which are believed to be 

main factors responsible for cavitation erosion and devastating damages on vessels caused by 

underwater explosion bubbles. In addition, bubbles are very useful tools in ultrasonic cleaning9, 10, 

shock wave lithotripsy 11, sonoporation 12, etc.  

In the past several decades, the Boundary Integral Method (BIM) based on the potential flow 

theory has become one of the most successful numerical methods in bubble dynamic studies. It is well 

known that the BIM reduces the dimension of the problem by one, thus a much higher efficiency can 

be achieved. For a typical pulsating underwater explosion bubble, the Reynolds numbers are of the 

order of O(108) 1, 13. As such, the viscosity of the liquid hardly plays a role during the transient bubble 

motion. Additionally, the associated Mach number is larger than 0.1 only for about 0.1% of the bubble 

lifetime. Therefore, the assumptions of the BIM (the fluid surrounding the bubble inviscid and 

incompressible) stand well at least for the first cycle of an underwater explosion bubble. The BIM is 

also suitable for simulations of air-gun bubbles 14, cavitation bubbles 15, 16 and acoustic bubbles 17, 18.  

Both axisymmetric 19-21 and three-dimensional 22-24 BIM models are found in the literature and a 

variety of physical phenomena associated with bubbles and cavitation have been studied. If the size of 

a submerged structure is much larger than the bubble, the structure is often simplified as a rigid plane 

structure. Then the image method 25, 26 can be adopted and there is no need to mesh the structure surface 

in computations. Otherwise, the structure boundary needs to be meshed with the zero flux condition 

imposed on it 27. However, for a movable or deformable structure, the fast bubble pulsation and the 
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violent liquid jet impact may cause the movement of the structure. Thus, the boundary conditions for 

the flow domain are constantly changing and the bubble dynamic behaviors are affected accordingly. 

Harris28 established a 3D numerical model to simulate the interaction between a bubble and a nearby 

movable structure. Thereafter, many numerical studies were conducted on bubble-structure interaction 

based on the loose coupling model (LCM) 2, 29-31.  

This study focuses on the 3D transient bubble-sphere interaction problem, which is the most 

fundamental problem in bubble-structure interactions and still closely associated with applications to 

cavitation in silt-laden flow, ultrasonic cleaning and underwater explosion. It has been demonstrated 

that the rigid body motion of a sphere greatly affects the bubble motion while its high frequency local 

deformation has little effect 32. Thus the sphere deformation is ignored in the present study. The present 

numerical model differs from those in published papers in, but not limited to, the following three 

aspects. 

Firstly, in the framework of potential flow theory, the pressure is calculated by the unsteady 

Bernoulli equation and the force is obtained by integrating the pressure over the wetted surface of the 

structure. The main difficulty lies in the treatment of the φt term (the partial derivative of the potential 

with respect to time) in Bernoulli equation. In the LCM, the finite difference approximation is often 

adopted to calculate φt
1, 33, 34. However, since the structure is movable, the result obtained by the finite 

difference is the material derivative rather than the partial derivative. The LCM gives reasonable results 

only if the structure response (velocity) is relatively small 2, 29, 35. Besides, the small time step for a 

violently oscillating bubble leads to numerical instabilities in the LCM. To solve the problem of 

calculating the φt term, we incorporate the auxiliary function method 36 in 3D BIM to establish a full 

coupling model (FCM) that can well deal with the mutual dependence between the force and the sphere 

motion. The sphere acceleration can be accurately estimated by only using the quantities in the current 

time step without inner iteration. Compared with the traditional LCM, the FCM has a complete 

theoretical basis as well as excellent performance in numerical simulations. 

Secondly, the singularity appears when the bubble surface and structure surface approach too 

close to each other, resulting in strong numerical instabilities. The traditional treatment is to control 

the distance between the bubble-nodes and structure-nodes no less than the mesh size 27, 31. Another 

robust treatment is to remove the thin water layer between the bubble and the structure, and then join 

the remaining bubble surface and the structure surface together. However, this algorithm has only been 
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applied so far to axisymmetric model 36, 37. In this study, we propose a 3D model for the interaction 

between a sphere and a nearly-hemispherical bubble that is attached to the sphere surface, which is 

reckoned as the key physical process to reveal the promotion mechanism of erosion in silt-laden flow 

38-41. Besides, the present 3D model can be further extended to study more complex phenomena 

involved in underwater contact explosions, and the interaction between airgun-body and attached 

airgun-bubbles. 

Thirdly, the pressure and velocity fields in the flow are very useful to reveal the underlying 

mechanisms of bubble dynamic behaviors and the associated physical phenomena. Once the velocity 

potentials are given on the flow boundaries, the pressure and velocity fields can be calculated by the 

indirect boundary integral method (IBIM) 23, 42. There are some studies on the pressure field with the 

axisymmetric model 42. In this study, the pressure and velocity fields in 3D cases will be given. 

To verify our numerical model, convergence studies on different mesh sizes and time steps are 

conducted at first. Then we compare the present 3D model with the axisymmetric model. In addition, 

several experiments are carried out for an underwater discharge bubble interacting with a suspended 

sphere under different boundary conditions. The present 3D model reproduces the experimental 

observations extremely well, including bubble dynamic behaviors and sphere motions. In particular, 

when the bubble is attached on the sphere surface, physical features including the bubble wrapping the 

sphere, the bubble necking and the mushroom shaped bubble at the final collapse stage are well 

simulated.  

This paper is organized as follows. In Sec. 2, a discourse of the physical problem is given, together 

with introducing the essential parameters and the non-dimensionalization system. In Sec. 3, we 

establish a full coupling model of bubble-sphere interaction based on the 3D boundary integral method 

and propose some improved numerical techniques. In Sec. 4, convergence studies are conducted and 

comparisons are made between the 3D model and axisymmetric model. In Sec. 5, comparisons are 

made between the FCM and LCM in terms of accuracy. Sec. 6 shows comparisons between the 

numerical results and several experimental results under various boundary conditions. In Sec. 7, the 

key conclusions are made. 
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2. Physical problem and nondimensionalization 

Consider the bubble-sphere interaction in three-dimensional configuration, as shown in Fig. 1. A 

Cartesian coordinate system O-xyz is defined, with the origin at the initial bubble center and z axis 

pointing upwards (the opposite direction of gravity). The bubble is assumed to be an initially tiny high-

pressure spherical bubble. The bubble center is located at a distance h below the initially quiescent free 

surface and at a distance dw from a vertical rigid wall. The coordinate of the initial sphere center is 

denoted by (x0, y0, z0). The sphere mass is denoted by M and the radius by Rs. 

 

Fig. 1. Sketch and coordinate system for three-dimensional bubble-sphere interaction under various boundary 

conditions. 

 

All physical quantities in the present study are defined in dimensionless form. A commonly used 

non-dimensionalization system is adopted as follows. The maximum equivalent bubble radius Rm is 

taken as the length scale, the liquid density ρ as the density scale and the hydrostatic pressure at the 

level of the initial bubble center p∞ = patm + ρgh as the pressure scale (patm is the constant at the free 

surface, g is the gravity acceleration). All other quantities can be scaled with the above three 

fundamental quantities. For example, the velocity, acceleration and time are scaled by p   , 

mp R  and mR p  , respectively. The initial dimensionless geometrical parameters are defined 

as follows:  

 ( )3, , / , 3 4w w m f m L s m sd R h R R R M R    = = = =             (1) 



6 

 

where λL and λρ are the sphere-bubble size ratio and the sphere-liquid density ratio, respectively. 

The initial dimensionless bubble radius and pressure in it are given as follows: 

 0 0 0, ,mR R R p p = =
 

            (2) 

The initial dimensionless sphere center is denoted by ( )0 0 0, ,x y z , the dimensionless sphere mass 

is denoted by M . 

3. Numerical model 

In the potential flow theory, the liquid is assumed incompressible and inviscid, and the liquid flow 

irrotational. These assumptions stand well in such transient physical problem associated with 

oscillating bubbles, at least for the first cycle of the bubble oscillation 19, 22, 23, 29, 43, 44. In this section, 

we give a brief discourse of the standard 3D BIM. Then, the auxiliary function method is incorporated 

in the 3D BIM to establish a full coupling model. After that, the indirect boundary integral method is 

introduced to calculate the pressure and velocity fields. At last, some improved mesh optimization 

techniques are proposed. 

3.1 Boundary Integral Method for bubble dynamics 

Following the standard 3D BIM 22, 45, the velocity potential φ that satisfies the Laplace equation 

and the boundary integral equation is given as follows:   

 
2 0, =   (3) 

 ( )
( ),( )

( ) ( ) , ( ) d ,
S

G
c G S

n n


 

 
= − 

  


r qq
r r r q q   (4) 

where r and q are the control point and source point, respectively; S is the flow boundary; c is the solid 

angle; G is the Green function and n is the outward normal of S.  

The kinematic boundary conditions on the bubble surface (Sb) and the free surface (Sf) are given 

by: 

 
d d d

, , .
d d d

x y z

t x t y t z

    
= = =
  

  (5) 

The dynamic boundary conditions on Sb and Sf are given by: 
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d 2
b bp z S

t





= − − +   (6) 

 ( )
2

2d
on ,

d 2
f fz S

t


 


= − −   (7) 

where pb is the pressure on the bubble surface, 𝛿  is the buoyancy parameter defined as 𝛿 =

√𝜌𝑔𝑅𝑚/𝑝∞.  

Without the viscous effect, the moment acting on the sphere keeps zero, so only the translations 

of the sphere is considered in this study. On the sphere surface (Ss), the Neumann boundary condition 

can be expressed as: 

 + ,x x y y z zU n U n U n
n


=  =   + 


U n   (8) 

where U is the velocity of the sphere.  

The pressure field inside the bubble is assumed homogeneous and the adiabatic law is adopted to 

describe the bubble gas pressure 1, 23, 26: 

 0 ,b

V
p

V




 

=  
 

  (9) 

where κ is the ratio of the specific heat for the gas, V0 is the initial bubble volume, and V is the bubble 

volume. 

3.2 Velocity computation scheme 

We use planer triangular elements to mesh bubble and sphere surfaces. On each element, linear 

interpolations are adopted for the velocity potential and the normal velocity. The boundary integral 

equation (4) transforms into a matrix form 46: 

        , = G H    (10) 

where [Ψ] and [Φ] are the column vectors of the normal velocity and the velocity potential on 

boundaries, respectively, and [G] and [H] are two matrices of influence coefficients. 

Firstly, we consider a simple situation, i.e., the bubble is not attached to the sphere surface. At 

each time step, [Φ] on the bubble surface and [Ψ] on the sphere surface are known. The known terms 

are moved to the right side and the unknown terms are moved to the left side to make the equations 
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solvable.  

In this study, we further consider an interesting and challenging situation, i.e., the bubble is 

attached to the sphere surface, which is referred to as ‘attached case’ in the following discussion. The 

bubble surface and the sphere surface are joined together. Special attention must be paid to the bubble-

sphere intersection line because the normal may not be continuous. Besides, the bubble and the sphere 

boundary conditions must be imposed simultaneously on this intersection line when calculating the 

velocity. Both the velocity potential and the normal velocity (as part of the sphere surface) on this 

intersection line are known, thus the number of the equations exceeds that of the unknowns. Liu et al.47 

adopted a double-node technique to solve this overdetermined problem in axisymmetric configuration 

with a fixed structure. This method is extended to 3D configurations with a movable structure in the 

present work. Each node on the intersection line is split into two nodes. The first one belongs to the 

bubble surface and the other one belongs to the sphere surface. Equation (10) transforms into:  

 

i i i i

i ii i i i i i i i i i i i

i ii i i i i i i i i i i i

i i i i

bb bb bs bs bb bb bs bsb b

b bb b b b b s b s b b b b b s b s

s ss b s b s s s s s b s b s s s s

s ssb sb ss ss sb sb ss ss

     
     
      =      
     
          

G G G G H H H H

G G G G H H H H

G G G G H H H H

G G G G H H H H

 

 

 

 

,








  (11) 

where the subscripts b and s denote the nodes that belong to the bubble surface and sphere surface, 

respectively, the subscripts bi and si denote the nodes on the intersection line that belongs to the bubble 

surface and sphere surface, respectively. Considering nodes bi and si share the same coordinates and 

i ib s=  , Equation (11) transforms into: 

 .

i i i i

i

i i i i i i i i i i i i i

i

i i i i

b

bb bb bs bb bb bs bs bsb
b

b b b b b s b b b b b b s b s b s

s

sb sb ss s sb sb ss ss ss

s

 
   − + − −   
      −  = + − −       
      − + − −          

G G H H H H G G

G G H H H H G G

G G H H H H G G












  (12) 

All the known terms have been moved to the right side, thus the unknown terms on the left side 

can be solved. The tangential velocity can be obtained by a finite difference scheme and the material 

velocity of nodes b and s can be obtained afterwards 22. As for a node k on the intersection line, the 

following 3×3 matrix equation is used to compute the material velocity: 
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  
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   

 =    
   − −  

n

n

r r

  (13) 

where b

kn  and s

kn  are unit normal vectors on the bubble surface and sphere surface, respectively, k   

is the neighboring node connected to node k on the intersection line.  

3.3 Auxiliary function method for sphere motion 

Firstly, we consider a simple situation where the bubble is not attached to the sphere surface. The 

kinematic equation for the sphere of three DOF is governed by Newton’s second law: 

        
3 1 3 1 3 3 3 1

,e   
+ = F F m a   (14) 

where [F] is a column of hydrodynamic force, [Fe] is a column of external force (e.g., the force due to 

gravity),   ( ), ,diag M M M=m  is the sphere mass matrix ( 3

mM M R= ) and [a] is a column of 

sphere acceleration with three translations.  

The hydrodynamic force F acting on the sphere can be obtained by integrating the pressure over 

its wetted surface Ss, 

  
2 21

, , ( 1) d .
2

s

x y z t

S

F F F z S   = = − +  + −  F n   (15) 

where the partial derivative of the potential with respect to time φt is unknown even if the velocity 

potentials on all boundaries of the flow domain are obtained. In the LCM, the backward finite 

difference approximation is often adopted to calculate φt 
1, 33, 48. However, since the sphere is movable 

in the present study, the material derivative (dφ/dt) rather than the partial derivative is obtained by the 

finite difference. In the following, the auxiliary function method is adopted to calculate the solution of 

φt. 

The term φt also satisfies the Laplace equation in the flow 32: 

 2 0.t =   (16) 

    The boundary conditions of φt on the bubble surface (Sb), the free surface (Sf) and the sphere 

surface (Ss) are given by:   
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2
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a n U              (19) 

where φt on Sb and Sf can be easily obtained via Equations (17) and (18) once the velocity potentials 

of the flow domain are solved, however, the t n   term cannot be obtained through Equation (19) 

directly because the sphere acceleration is unknown. To handle this problem, we further introduce four 

auxiliary functions σ, ζx, ζy and ζz that satisfy Laplace equation, and φt can be written as: 

 .t x x y y z za a a     = −  + + +U              (20) 

    The boundary conditions of σ, ζx, ζy and ζz can be written as: 
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1 on ,
2

b

V
z S

V


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 

=  + − −  − 
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U              (21) 

 ( )
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2
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 0 on ,sS
n
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=


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 0, 0, 0 on  and ,x y z b fS S  = = =            (24) 

 0, 0, 0 on .
y yx

sS
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The value of σ, ζx, ζy and ζz on the sphere surface can be calculated in a manner similar to that 

used for φ. Considering the sphere gravity, Equation (14) transforms into: 

 
2

0 0 0

0 0 0 ,

0 0

xx xy xz x x

yx yy yz y y

zx zy zz z z

M N N N a f
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+  = +         
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           (26) 

where 

 d ,

s

ij i j

S

N n S=               (27) 

 
2 21

( 1) d .
2

s

i i

S

f z n S   = − −  +  + − U              (28) 

The sphere acceleration a can be solved directly via Equation (26) as all the other quantities have 

been obtained.  
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We further consider a more complex situation in which the bubble is attached to the sphere surface. 

The sphere surface Ss is divided into the wetted sphere surface Ss1 and unwetted sphere surface Ss2. 

Both the hydrodynamic force and the gas dynamic force are included in the kinematic equation of the 

sphere. The bubble gas pressure acts on the unwetted sphere surface Ss2 directly. The hydrodynamic 

force is calculated by the same method as given above. Equation (26) transforms into: 

 

*

*

2 *

0 0 0

0 0 0 ,

0 0
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yx yy yz y y y
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where 

 

2
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s

i i

S

V
f n S

V




 

=  
 

              (30) 

3.4 Pressure fields computation 

It is well known that the BIM needs only the flow boundaries to be tracked. However, the pressure 

fields are very useful to reveal the underlying mechanisms of bubble dynamic behaviors. In this study, 

the pressure and velocity fields in 3D cases are calculated by the indirect boundary integral method 

(IBIM) 23, 42. 

The concept of source density   is introduced in IBIM, and the potential can be expressed as: 

 ( )( ) ( ) , d .
S

G S = r q r q              (31) 

Firstly, the control points are placed on the bubble surface, thus Equation (31) transforms into a 

matrix form: 

      ,= G               (32) 

where [G] is a matrix of influence coefficients that has been obtained when solving the boundary 

integral equation, [ ] is a column of source density, which can be obtained through    
1−
G  . The 

velocity in the flow field can be calculated by inserting [ ] into the following Equation: 

 ( )( ) ( ) , d ,
S

G S  = r q r q              (33) 

The same procedure applies to φt thus obtaining another source density. Then, the control points 

are placed in the flow field and the corresponding value of φt induced by all the sources can be 
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evaluated by the integration over the boundary surfaces. Substituting φt and the velocity term into the 

unsteady Bernoulli equation yields the pressure in the flow field. 

3.5 Mesh optimization techniques 

3.5.1 A weighted moving least-square smoother 

Zhang et al.22 proposed a smoothing scheme based on least square to eliminate the numerical 

instabilities of 3D toroidal bubbles. Wang 49 adopted a weighted moving least-square method to 

interpolate the free surface when modelling the ship waves. In this study, another weighted function is 

used, which has been proved accurate and robust. 

Consider a single node (denoted by A) and its surrounding elements that need smoothing. A local 

Cartesian coordinate system, O-XYZ, is defined with its origin at the point A and the Z axis along the 

normal direction of the bubble surface at the node. A second order polynomial is employed for the 

bubble surface as follows, 

 2 2

1 2 3 4 5 6( , ) ,Z f X Y X XY Y X Y     = = + + + + +   (34) 

where 1 2 6,     are coefficients that need to be determined by minimizing the following error 

function, 

 
2

1 2 3 4 5 6

1

( , , , , , ) [ ( , ) ] ,
An

k k k k

k

W f X Y Z      
=

= −   (35) 

where nA is the number of the nodes that surround node A and Wk  is a weighted function. The 

weighted function Wk is given by,  

 

2 3

2 3
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
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
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
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  (36) 

where 
max

s
s

s
=  and A ks = −r r , smax is the maximum distance from the surrounding nodes to node 

A. 

Let 0
j






=


, yielding 
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where 
ijA  are iB  given as below 
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  (38) 

After 1 2 6,    are found, the smoothed coordinate of node A is (0, 0, α6). The same procedure 

applies to the smoothing of the velocity potentials on the bubble surface. 

3.5.2 A mesh density controller 

In the BIM computation, nodes often overcrowd at some local positions, leading to a poor mesh 

quality. An elastic mesh technique (EMT) is put forward by Wang et al.45 to handle this problem. 

Inspired by EMT, Zhang et al.24, 50 proposed a more flexible method, i.e., density potential method 

(DPM). The DPM is used in the present study to control the mesh density (the node distribution) on 

both the bubble surface and the sphere surface. In the DPM, the node positions are updated in time 

with the true normal velocity un plus an artificial tangential velocity uτ. The latter is the key to 

achieving a desired mesh quality, which is related to the density potential Θ introduced in the DPM. A 

uniform mesh is obtained if Θ is defined as a constant all over the bubble surface, otherwise nodes 

tend to gather to the location with a relatively large Θ. The DPM is a very powerful tool when 

simulating nonspherical bubbles because a finer mesh for the part of the bubble surface with large 

curvature can be easily obtained by the DPM. Here we give the form of Θ used in our numerical 

simulation, and the details of specifying the artificial tangential velocity uτ through Θ can be found in 

our previously published papers 24, 50. 

Generally, we define the density potential Θ of node i as follows: 

 
e

,

1 e

1
( ),

n

i i j i

j

S N
n

 
=

=     (39) 

where ne is the number of the elements connected to node i, Si,j is the area of the jth element, N is a 

normalization operator. The curvature and velocity can also be incorporated in Equation (39) though 

it is not done in the present study. 

When the DPM velocity uD = un + uτ is used to update the bubble surface, the dynamic boundary 
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condition (6) is rewritten as follows: 

 

2

2d
1 ,

d 2
D bp z

t


 


=  − + − −u   (40) 

In this study, the DPM technique is applied once every 3 time steps during the collapsing phase 

of the bubble.  

3.5.3 Mesh topology treatment and refinement 

If the bubble is not attached to the sphere surface, satisfactory results can be achieved by 

combining the mesh smoother and mesh density controller. However, for the challenging ‘attached 

case’, a high quality mesh of the bubble (sphere) surface is maintained by further implementing mesh 

topology treatment and refinement.  

In ‘attached cases’, both large deformations of the bubble surface and large variations of the 

sphere wetted surface are observed, resulting in severely stretched and distorted elements. Given this, 

the edge swapping procedure is applied in our simulations based on a principle of maximizing the 

minimal angle of all corners of the elements that sharing one edge 24. In addition, during the expansion 

phase of the bubble, the mesh size of the bubble surface increases when that of the sphere surface 

relatively decreases. The mismatch of the elements will lead to a decrease in both computational 

accuracy and efficiency, sometimes even causing an early breakdown of computation. Following 

Zhang et al. 22, the adaptive mesh refinement scheme is adopted to maintain a high quality mesh, which 

splits large elements and merges very small elements to prevent nonuniformity of element sizes from 

developing. 
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Fig. 2 Comparison of the bubble shapes (the lower ones) and sphere locations (the upper ones) 

between the present 3D model and the axisymmetric model (red dashed lines, Li et al. 36) for λL = 1, 

λρ = 1, ( )0 0 0, ,x y z  = (0, 0, 2.2), ε = 100 and κ = 1.4. The dimensionless times are 0, 0.203, 1.009, 

1.539, 1.838 and 1.932, respectively.  
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4. Convergence study and comparison with the axisymmetric BIM model 

In this section, we perform convergence tests of our 3D bubble-sphere interaction model at 

different element numbers of the bubble surface, Ne = 2000, 2880 and 5120, respectively. The number 

of elements on the sphere surface is fixed at 2000, which is adequate to achieve a convergent result. 

Meanwhile, the present 3D simulations are compared with the results obtained by the axisymmetric 

BIM model 36, 38, in which the sphere surface and bubble surface are meshed into 200 linear elements 

respectively. The dimensionless parameters are set as: λL = 1, λρ = 1, ( )0 0 0, ,x y z  = (0, 0, 2.2), ε = 100 

and κ = 1.4. Fig. 2 shows the comparison between the numerical results using 3D model (Ne = 2000) 

and axisymmetric model (denoted by red dashed lines) at typical time steps. In this case, the Green 

function in Equation (4) is taken as  

 ( )
1

, ,G =
−

r q
r q

  (41) 

As shown in Fig. 2 (a~c), the bubble keeps a spherical shape during the expansion phase, and the 

sphere is pushed upward. During the collapsing phase, the motion of the bubble top is retarded by the 

presence of the sphere, leading to a relatively high curvature of the bubble top, as shown in Fig. 2 

(d~e). During the final stage of the collapsing phase, a dent (the beginning of jet formation) is observed 

at the bubble top surface, while the bubble bottom still keeps a round shape, as shown in Fig. 2 (f). 

The underlying mechanism is given by Lauterborn 51, i.e., the highest-curvature region of the bubble 

surface collapses faster than other regions and is easier to trigger a jet, according to a proportional 

relationship between bubble radius and Rayleigh collapse time. The numerical results obtained by two 

models agree well with each other, in terms of bubble surface evolution and sphere motion. The relative 

error of the maximum sphere displacement between the present 3D model and the axisymmetric model 

is 0.12%, indicating the present 3D bubble-sphere interaction model has comparable accuracy with the 

axisymmetric model.  

Fig. 3 shows the bubble shapes just before the jet impact with different Ne. Within a quite short 

time (1.932 < t < 1.954), a sharp upward liquid jet forms at the bubble bottom while the downward jet 

has a relatively larger width. The two axial jets collide in the middle of the bubble. With the mesh 

density controller, more nodes gather to the jet zone. As Ne increases (the mesh size decreases), the 
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results of the 3D model become identical and approach to the axisymmetric result (the relative error 

of the upward jet velocity at the impact moment decreases from 6.6% to 0.68%). Ne is chosen as 5120 

in the following computations for accuracy.  

 

Fig. 3 The bubble shapes just before the jet impact t = 1.954 with different element numbers of the 

bubble surface for the same case in Fig. 2: (a) Ne = 2000, (b) Ne = 2880, and (c) Ne = 5120, compared 

to the axisymmetric model (red dashed line).  

 

We further conduct convergence test with time step for the same case in Fig. 2. The time step is 

chosen as: 

 
2 2

,
max 2 1

t

b

C
t

p z 
 =

 + + +
  (42) 

where Ct is a constant.  

  

Fig. 4 Convergence test with time step for the same case in Fig. 2: (a) time histories of sphere 

displacements, (b) time histories of sphere accelerations.  
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We set Ct as 0.04, 0.02, 0.01 and 0.005, respectively. Fig. 4 shows some quantitative comparisons 

between the four cases. The time histories of sphere displacements are given in Fig.4 (a), which implies 

that the sphere is pushed upward by the expanding bubble and pulled downward by the collapsing 

bubble. The time histories of sphere accelerations are given in Fig. 4 (b). As Ct decreases from 0.04 to 

0.005, the relative error of the maximum az decreases from 0.35% to 0.11%. It is worth noting that the 

sphere has a positive acceleration during the early expansion phase and the final collapsing phase, but 

the sphere acceleration is negative during most of the bubble life (t>0.25 and t<0.7). In both the figures, 

the results tend to coincide as Ct decreases and Ct = 0.005 is chosen in the following computations for 

studying accuracy and efficiency.  

5. Comparison between LCM and FCM 

In the present study, we propose the full coupling model (FCM) for a 3D bubble interacting with 

a movable body, in which the bubble motion and the body (sphere) acceleration are solved 

simultaneously as discussed in Section 3. However, the loose coupling model (LCM) is widely adopted 

in previous publications 1, 29, 31, 33, 35, 52, in which the output of the BIM is used as a loading condition 

for the structure and the structure solver provides a new boundary condition for the BIM. That is, the 

hydrodynamic force acting on the sphere is obtained via Equation (15), where the φt term is calculated 

explicitly using the backward difference method. The sphere acceleration is thus obtained by 

substituting the hydrodynamic force into Equation (14), and then the velocity and location of the 

sphere can be updated. Therefore, it is prudent to compare the above two methods in terms of accuracy. 

Firstly, the LCM is used to simulate the same case in Fig. 2. Ne is chosen as 5120 and different 

time steps are adopted. Fig. 5 (a) shows the time histories of sphere displacements obtained by the 

LCM and the present FCM. There exists an visible discrepancy between the LCM and the FCM. Fig. 

5 (b) shows the time histories of sphere accelerations. Numerical instabilities (high frequency 

oscillations) are observed in the results of the LCM, evidenced by  the fact that the numerical 

oscillation becomes stronger as the time step (Ct) decreases, demonstrating that the convergence 

property of the LCM with time step is poor. On the contrary, the results obtained by the FCM stay 

stable without fluctuation during the whole bubble life, indicating the higher accuracy and better 
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stability of the FCM than that of the LCM.  

  

Fig. 5 Convergence tests of the traditional loose coupling model (LCM) with different time steps for 

the same case in Fig. 2, compared to the present full coupling model (FCM). (a) Time histories of 

sphere displacement. (b) Time histories of sphere acceleration.  

 

  

Fig. 6 (a) Comparisons of the sphere displacement between FCM (blue solid lines) and LCM (red 

dashed lines) with different size ratios λL. (b) The relative error of the maximum sphere displacement 

obtained by the LCM and FCM versus the size ratio. 

 

It is also noted that the accuracy of the LCM can be greatly reduced in the following two situations. 

Firstly, with the increase of the sphere velocity and displacement as λL decreases, the accuracy of 
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backward difference method cannot be ensured, resulting in the inaccuracy of the hydrodynamic force. 

To study the situation in more details, several simulations are conducted with λL ranging from 0.1 to 

10. Other parameters are set as: λρ = 1, (x0, y0, z0) = (0, 0, 2.2), ε = 100, κ = 1.4, Ne = 5120 and Ct = 

0.005. Fig. 6 (a) shows the comparison of time histories of the sphere displacement from the above 

two models. As expected, the discrepancy between the two models increases as λL decreases. The 

relative errors of the maximum sphere displacement obtained by the LCM and the FCM versus λL are 

plotted in Fig. 6 (b). As can be seen, the relative error of the FCM is always less than 0.2% while the 

relative error of the LCM increases rapidly as λL decreases below 1. For example, at λL =0.1, the relative 

error of the LCM can reach to 11%. On the other hand, when λL > 1, the relative error of LCM is only 

~2%. This may be attributed to the fact that the sphere velocity increase as λL decreases and the effect 

of the fluid-structure interaction becomes stronger. Such effect is not well accounted for by the LCM. 

Secondly, the accuracy of the LCM also decreases when the sphere-liquid density ratio λρ is 

smaller than 1. In the extreme case, the LCM stops working when the sphere mass or λρ approaches 

zero because Equation (14) has no solution. In the FCM, however, the sphere acceleration can be 

calculated through Equation (26) by taking the added mass into consideration.  

6. Comparison between experimental and numerical results 

6.1 Bubble-sphere interaction beneath a free surface 

In this and the subsequent sections, comparisons will be made between the numerical results and 

experimental observations under different boundary conditions. The experiments are conducted in a 

500×500×500 mm3 water tank, and the bubbles are generated by the underwater electric discharge 

method. A high speed camera is used to capture the transient bubble-sphere interaction. More details 

about the experimental setup can be found in our previously published papers 36, 38.  

The first experiment of bubble-sphere interaction is conducted beneath a free surface, in which 

the sphere diameter is 39.5mm, the sphere mass is 32.3g, the maximum equivalent bubble radius is 

about 18.7 mm, the minimum distance between the initial bubble center and the sphere surface is 

18.7mm, and the water depths of the initial bubble center and the initial sphere center are both 41.2mm. 

According to the experimental data, the initial parameters in the numerical simulation are set as: λL = 
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1.06, λρ = 1, ( )0 0 0, ,x y z  = (-2.05, 0, 0), γf = 2.2, ε = 100 and κ = 1.4. Since the bubble and sphere are 

located relatively far away from the free surface, the free surface almost keeps quiescent during the 

first period of the bubble. Following Klaseboer et al.27, the flat free surface is modelled using a negative 

image of the bubble and the sphere to avoid the integrals over the free surface in the simulation. The 

Green function in Equation (4) is taken as: 

 ( )
1 1

, ,G = −
− −

r q
r q r q

  (43) 

where q  is the reflected image of q  across the free surface.  

Fig. 7 shows the comparison between the experimental images and numerical results during the 

first period of the bubble. The pressure and velocity fields are also provided for better elucidation of 

the underlying mechanisms. In Fig.7 (a), the bubble containing high pressure gas is generated at the 

initial time and the pressure is almost axisymmetrically distributed about the center line of the bubble-

sphere system, except for a small region near the sphere surface. Apparently, the pressure acting on the 

right side of the sphere surface is slightly larger than that acting on the left side, leading to a large 

acceleration of the sphere directed from the bubble center to the sphere center. The bubble expands 

explosively afterwards (Fig.7 b) and the gas pressure decreases rapidly. The minimum pressure of the 

whole domain (around 0.2) is located around the bubble surface, which is much smaller than the 

hydrostatic pressure. Despite the sphere is moving leftwards at this moment, the hydrodynamic force 

acting on the sphere is directed rightward, thus decelerating the sphere. The left side of the bubble is 

flattened by the sphere when the bubble reaches the maximum volume, as shown in Fig.7 (c). 

Meanwhile, the sphere reaches the maximum displacement. In Fig.7 (a)-(c), the free surface has little 

effect on the bubble-sphere interaction , as suggested by the fact that the bubble is almost symmetric 

about the horizontal plane (O-xy plane). 

During the bubble collapsing phase (Fig.7 d), the bubble top region collapses faster than other 

regions due to secondary Bjerknes force from the free surface while the presence of the sphere retards 

the motion of the left side of the bubble. Thereafter, the bubble top region becomes flattened and a 

local high pressure region is formed near the top right region of the bubble surface (Fig.7 e). This high 

pressure region further drives the collapse of the bubble top surface and finally leads to the formation 

of a downward jet (Fig.7 f), and the maximum dimensionless pressure of the high pressure region 
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increases to 30. Again, the pressure acting on the right side of the sphere is larger than that acting on 

the left side, leading to a large acceleration of the sphere directing leftward, i.e., the rightward velocity 

of the sphere decreases rapidly. In the numerical simulation, a very thin liquid jet originates on the left 

side of the bubble (Fig.7 f), and both the mesh density controller and mesh topology treatment are 

adopted to ensure the mesh to have quality therein; however, it’s difficult to capture such detailed 

deformation features of the bubble in the present experiment due to the limited spatial resolution. As 

discussed above, overall qualitative agreement is achieved between numerical simulation and 

experimental observations.  

In this and the subsequent sections, the times for experiment and simulation are not exactly the 

same, which can be explained as follows. In our experiments, bubbles are generated by the underwater 

electric discharge. The bubble contents may include vapor from water, vapor from the melted 

electrodes, plasma and so on 29, 52, 53. It is quite difficult to model the detailed physical process at the 

stage of bubble inception. Following many publications 15, 29, 52, 54, the initial bubble in numerical 

simulations is set as a tiny high-pressure spherical bubble and the gas pressure during bubble 

oscillation is approximated by using the adiabatic law, which attributes to the slight difference of the 

bubble period between experiment and simulation.  

  

  

(a) texp = 0, tnum = 2×10-4 (b) texp = 0.305, tnum = 0.301 



23 

 

  

  

(c) texp = 0.916, tnum = 0.908 (d) texp = 1.503, tnum = 1.515 

  

  

(e) texp = 1.691, tnum = 1.702 (f) texp = 1.715, tnum = 1.751 

Fig. 7 Comparison of the bubble-sphere interaction beneath a free surface between experimental 

images and numerical simulations from FCM. The parameters in the experiment are: Rs = 19.75 mm, 

M = 32.3 g, Rm = 18.7 mm, h = 41.2 mm, (x0, y0, z0) = (-38.5 mm, 0, 0). The dimensionless parameters 

adopted in the numerical computation are set as: λL = 1.06, λρ = 1, ( )0 0 0, ,x y z  = (-2.05, 0, 0), γf = 

2.2, ε = 100 and κ = 1.4.  
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Fig. 8 gives a quantitative comparison between the experimental data (red circles) and numerical 

results obtained by the FCM (blue solid line) and the LCM (green dashed line). The results obtained 

by both the methods correlate well with each other and with the experimental results during [0,0.2]t , 

but then the discrepancy becomes more and more obvious. Nevertheless, an overall quantitative 

agreement is achieved between the numerical results and the experimental data, in terms of the sphere 

displacement. In this case, the sphere-bubble size ratio is larger than 1, thus the advantage of the FCM 

over the LCM is not fully displayed.  

 

Fig. 8 Comparison of the dimensionless sphere displacement in the x axis direction between 

experiment (red circles), FCM (blue solid line) and LCM (green dashed line) for the same case in 

Fig. 7.  

 

6.2 Bubble-sphere interaction near a rigid wall 

The second experiment of bubble-sphere interaction is conducted near a vertical rigid wall. The 

parameters in the experiment are: M = 2.58 g, Rs = 8 mm, Rm = 15.6 mm, (x0, y0, z0) = (20.5 mm, 0, 

12.5 mm) and dw = 21.0 mm. In addition, the initial bubble depth is about 200 mm, thus the effect of 

the free surface on the bubble-sphere interaction is ignored in this case. The initial parameters in the 

numerical simulation are set as: λL = 0.51, λρ = 1.2, ( )0 0 0, ,x y z  = (1.31, 0, 0.8), γw = -1.34, ε = 100 
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and κ = 1.4. The Green function in Equation (4) is adopted to avoid the integrals over the rigid wall 

in the simulation, taken as: 

 ( )
1 1

, ,G = +
− −

r q
r q r q

  (44) 

where q  is the reflected image of q  across the rigid wall.  

Fig. 9 shows some selected images of the experiment and the corresponding numerical results, 

which illustrates the overall physical process during the first cycle of the bubble. Fig.9 (a)-(f) show the 

bubble-sphere interaction near a vertical wall at initiation, during expansion, at the maximum volume, 

during collapse, at the jet inception, and during the jet formation, respectively. The sphere is pushed 

upward and rightward during the bubble expansion phase (Fig.9 a-b). In Fig.9 (c), the bubble surface 

is slightly flattened by the rigid wall and the sphere simultaneously. Besides, the dimensionless 

pressure around the bubble surface decreases to less than 0.1, thus the bubble will be driven to collapse 

by the ambient hydrostatic pressure afterwards. In Fig.9 (d), a high curvature region is formed on the 

bubble surface due to the retardation effect of the sphere. As discussed above, the first jet (marked as 

A in Fig.9 e, denoted by ‘jet A’) originates on the highest-curvature region. Meanwhile, another jet 

(marked as B in Fig.9 e, denoted by ‘jet B’) is formed due to the secondary Bjerknes force from the 

rigid wall. In Fig.9 (f), the merge of the two jets is observed due to the close distance between the 

locations of jet A and jet B. However, the two jets develop in different directions, i.e., the liquids from 

different locations are rushing into a local region, leading to a splashing effect of the merged jet tip 

(marked as C in Fig.9 f) and maybe splitting of micro-droplets from the jet tip. In the 3D BIM 

simulation (FCM), although physical instabilities including the splitting of some micro-droplets are 

smoothed away by the present ‘weighted least-square smoother’, the essential physical features are 

well preserved. 
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(c) texp = 0, tnum = 1.065 (d) texp = 1.669, tnum = 1.646 
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(e) texp = 2.001, tnum = 1.987 (f) texp =2.102, tnum = 2.181 

Fig. 9 Comparison of the bubble-sphere interaction near a vertical rigid wall between experimental 

images and numerical simulations from FCM. The parameters in the experiment are: Rs = 8 mm, M 

= 2.58 g, Rm = 15.6 mm, (x0, y0, z0) = (20.5 mm, 0, 12.5mm), dw = 21.0 mm.. The dimensionless 

parameters adopted in the numerical computation are set as: λL = 0.51, λρ = 1.2, ( )0 0 0, ,x y z  = (1.31, 

0, 0.8), γw = -1.34, ε = 100 and κ = 1.4. 

 

Fig. 10 shows a quantitative comparison between the experiment and numerical results obtained 

by the FCM and the LCM. The sphere displacement in x axis direction is shown in Fig.10 (a). It’s 

worth noting that the result of the FCM agrees very well with the experimental data, while the 

maximum sphere displacement obtained by the LCM is significantly smaller than the experiment result. 

For the sphere displacement in z axis direction, similar results can be found. In this case, the FCM has 

higher accuracy than the LCM and the advantage of the FCM over the LCM is exhibited. 
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Fig. 10 Comparison of the sphere displacement in (a) x axis direction and (b) z axis direction between 

the results from experiment (red circles), FCM (blue solid line) and LCM (green dashed line) for the 

same case in Fig. 9. 

 

6.3 Attached-bubble-sphere interaction 

We further consider an interesting and challenging case, i.e., the interaction between a sphere and 

an attached-bubble near a vertical rigid wall. The parameters in the experiment are: M = 15.12 g, Rs = 

16 mm, Rm = 18.5 mm, (x0, y0, z0) = (0, 0, -16 mm) and dw = 23.7 mm. The effect of the free surface is 

also ignored in this case. The initial parameters in the numerical simulation are set as: λL = 0.86, λρ = 

0.88, ( )0 0 0, ,x y z  = (0, 0, 0.86), γw = 1.28, ε = 37.35, 
0R  = 0.3 and κ = 1.4. The initial bubble center 

is placed on the top of the sphere in the experiment, thus the initial bubble shape cannot be treated as 

a sphere in this special case. Instead, we assume a nearly hemi-spherical bubble is attached to the 

sphere surface with a radius of R0. We set 
0R  as 0.3 and adjust the strength parameter ε until 

mR  

equals 1.  

Fig. 11 shows the comparison between experimental observations and numerical results from 

FCM. During the early expansion phase of the bubble (Fig. 11 a), the pressure between the bubble and 

the rigid wall is enhanced, thus the bubble and sphere are slightly repelled by the rigid wall. When the 

bubble over-expands (Fig.11 b), the pressure between the bubble and the rigid wall is weakened, and 
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thus the bubble and sphere will be attracted towards the rigid wall. In Fig.11 (c), when the bubble 

reaches the maximum volume, the top part of the bubble is still expanding while the lower part of the 

bubble (the bubble-sphere intersection part) begins to collapse. An annular neck at the bubble-sphere 

intersection is observed in the experiment, and this important feature is well reproduced by the present 

numerical model. During the bubble collapsing phase, the annular neck further develops with an 

increase in the neck height, as shown in Fig.11 (d-e). Meanwhile, we note the great imbalance in the 

pressures on the left and right sides of the bubble, indicating that the bubble is pushed towards the rigid 

wall at this stage. In Fig.11 (e), an obvious asymmetric characteristic of the bubble shape is observed 

due to the faster collapse of the left side of the bubble. Thereafter, as shown in Fig.11 (f), the rightmost 

of the bubble surface is almost motionless under the retardation effect of the rigid wall while some 

liquid from the left side rushes into the neck and finally penetrates the top of the bubble surface 

(marked as A in Fig.11 f). The subsequent breakup of the bubble is beyond scope of this work. 

 

 

                             

      
(a) texp = 0.122, tnum = 0.122 (b) texp = 0.426, tnum = 0.425 (c) texp = 1.005, tnum = 1.044 
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(d) texp = 1.462, tnum = 1.464 (e) texp = 1.675, tnum = 1.677 (f) texp = 1.828, tnum = 1.917 

   

Fig. 11 Comparison of the attached-bubble-sphere interaction near a vertical wall between 

experimental images and numerical simulations from FCM. The parameters in the experiment are: 

Rs = 16 mm, M = 15.12 g, Rm = 18.5 mm, (x0, y0, z0) = (0, 0, -16 mm) and dw = 23.7 mm. The 

dimensionless parameters adopted in the numerical computation are set as: λL = 0.86, λρ = 0.88, 

( )0 0 0, ,x y z  = (0, 0, 0.86), γw = 1.28, ε = 37.35, 
0 0.3R =  and κ = 1.4. 

 

Fig. 12 shows a quantitative comparison of sphere displacement in the z axis direction between 

the experiment and numerical results obtained by the FCM and the LCM. Since the bubble is 

attached to the sphere surface, the FSI effect is extremely strong in this case and the maximum value 

of the sphere displacement reaches 0.2, which is several times that of the foregoing cases. 

Apparently, the numerical result obtained by the LCM is very different from the experimental result 

while the FCM gives the results that quite well agree with these of experiments, reflecting the distinct 

advantage of the FCM over the LCM. 
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Fig. 12 Comparison of the sphere displacement in the z axis direction between experiment (red 

circles), FCM (blue solid line) and LCM (green dashed line) for the same case in Fig. 11.  

 

7. Conclusions 

Under the potential flow assumptions, a three-dimensional full coupling model (3D FCM) is 

established to simulate the transient pulsating-bubble-sphere interaction under various boundary 

conditions with particular focus on the dynamics of an attached bubble on the sphere surface. The FCM 

has complete theoretical basis as well as excellent performance in numerical simulations. In the present 

model, the auxiliary function method is used to deal with the mutual dependence between the 

hydrodynamic force and the sphere acceleration. Besides, several latest mesh optimization techniques 

are adopted to maintain a high quality of mesh on the surface. For a bubble attached on the sphere 

surface, the velocity at the three-phase contact line is calculated by the double-node technique, in which 

the bubble and the sphere boundary conditions are imposed on the contact line simultaneously. For 

axisymmetric-configuration case, the numerical results obtained by the present 3D FCM have 

extremely good agreement with those obtained by the axisymmetric model. Additionally, the pressure 

and velocity fields in 3D cases are calculated by the indirect boundary integral method, which help to 

reveal the underlying mechanisms of bubble dynamic behaviors. 

Numerical results obtained by the traditional loose coupling model (LCM) and the present FCM 
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are compared in this study. It is noted that the accuracy of the LCM is greatly reduced in the following 

two situations: (i) the sphere-bubble size ratio λL decreases, especially when λL < 1; (ii) the sphere-

liquid density ratio λρ decreases, especially when λρ < 1. Compared with the traditional LCM, the FCM 

maintains a higher accuracy and better stability. 

At last, the present 3D FCM is proved to reproduces the experimental observations very well, 

including a challenging case in which the bubble is in contact with the sphere surface. The accuracy 

and robustness of the present model make it possible to be further extended to study more complex 

physical phenomena involved in underwater contact explosions, interaction between airgun-body and 

attached airgun-bubbles, etc. 
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