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Abstract

he paper examines the effect on standard functions from life insurance mathematics when

not only mortality but also interest rates are treated as having a random component. The
analysis is concerned with a particular type of stochastic model, viz the force of interest is
modelled by an unconditional moving average process of order q. These explicit results may
be seen as extensions to those of Frees (1990) who considered the case g=1.



1. INTRODUCTORY COMMENTS

I I istorically, the theory of life contingencies has developed from deterministic beginnings.

Random fluctuations in mortality, morbidity, interest and expenses, were ignored, although
actuaries have implicitly attempted to allow for random fluctuations by using conservative
assumptions for each of the factors entering a formulae. For example, in the calculation of the
present values of the liabilities for a policy, we can assume that mortality follows an a priori
known mortality table or that the variability due to mortality (i.e. variability in future lifetimes)
can be ignored because of the presence of a very large number of identical liabilities in respect
of different lives. Similarly, the interest rate may be assumed to be constant or an implicit
allowance may be made by adopting a conservative estimate of future interest rates.

A first step forward in the development of the subject was to consider the time until decrement
(death, disability, and so on) as a random variable in the calculation of actuarial functions,
while the interest rate was assumed to be constant. This is a "semi-stochastic approach”.

It is only since about 1970 that there has been interest in actuarial models which consider both
the time until decrement and the investment rate of return as random variables.

Pollard (1971) and Boyle (1976) have considered interest rate fluctuations by treating the
force of interest as a random variable. Boyle (1976) examined the case in which the force of
interest in any year is a normal variable but uncorrelated with the force of interest in any other
year. This is a natural and simple assumption to make and is explored further in section 2.

Pollard (1971) on the other hand modelled the force of interest by using a particular stationary
autoregressive process of order two. Panjer and Bellhouse (1980) and Bellhouse and Panjer
(1981) have developed a general theory for autoregressive models of the force of interest,
including both continuous and discrete models. This theory has been developed for
unconditional and conditional autoregressive processes of order one and two.

Giaccotto (1986) has developed an algorithm for evaluating present value functions when
interest rates are assumed to follow an ARIMA process. Also Wilkie (1976), Waters (1978),
Westcott (1981), de Jong (1984), Dhaene (1989) and Frees (1990) have considered stochastic
interest models in the calculation of the standard actuarial functions of life insurance
mathematics.

The application of such time series based stochastic interest rate models has become the
response that actuaries provide to the criticism of other financial analysts that the "traditional"
actuarial approach does not take into account the uncertainty of future values of interest rates.

A question that now arises is whether the stochastic nature which is used for the calculation of
interest rates is correct. Many actuaries remain sceptical as to the use of a stochastic interest
rate model believing that the results obtained owe more to the specific model used than to any
underlying reality. This question of the significance of model sensitivity is the subject of



current research and interested readers are referred to Wright (1997) for an investigation in
the area of pension funding models.

However, in this paper, we will concentrate on models with a certain stochastic nature and the
choice of an incorrect interest model will not be considered here.

As in Frees (1990), we use the sequence {Ak} to model a stochastic environment. Here,
k} represents the random force of interest in the k-th period. {Ak} can be interpreted as a
one-period spot rate.

It is convenient to model the force of interest as a random quantity, in lieu of the effective
interest or discount rate, due to the linear nature of correlation and autoregressive models and
the multiplicative nature of compound interest.

In this paper, we consider only discrete time models, and for convenience we refer to time
intervals as years.

2. INDEPENDENT INTEREST RATE MODEL

2.1 Introduction

In this section we will consider the case in which the {Ak} are independent, identically
distributed (i.i.d) random variables.

With the interpretation of the {Ak} as one-period spot rates and the i.i.d assumption, then at

time 0 the present value of one unit payable at time k is:
k

w-T] e (-4) = exp(-3 4,)

s=1 s=1

so that the logarithm of v, is a random walk. This is a feature desirable from the viewpoint
of the theory of financial economics because the random walk is a special case of a
martingale, the structure of which does not permit riskless arbitrage (see Frees (1990)): this is
a requirement of this theory. The i.i.d assumption also provides a benchmark assumption
against which more complex models, such as those of section 3, can be compared.

We will also assume that {Ak} are distributed normally with mean 4 and variance o so that

M~N (u, o). Inthis case exp(-4) is said to be lognormally distributed with parameters
- u, 0. Then, exp(-Ay) ~ logN (-u, o).



2.2 Some Basic Results

The moment generating function of A is

E(exp(t Ay) = Ma®) = exp(tu +76° /2).

Thus with ¢ = -1

Efexp( =)= My(=1) = exp(-u + 6 / 2).

The present value at time 0 of 1 unit payable at time kis :
34

v,=e* for k>1 and v,=1 for k=10 .

So the expected value of the present value is:
. Aiid
E(ve)= E(exp(-3_4 ) = E(exp(-4) exp(-2y)... exp(-4)) =

i=1

E( exp(-4)) E( exp(-47)... E(exp(-4) ) = (exp(u-/2))* = exp(-k (u-/2) ).

Wesetd,=u—o0°/2 then E()=exp(-kd,).

vi=ep(2 L A)=E(V;) = Elep(-23,4)) = (Ms(-2) " = exp( k2 (u-)).

We set d,=2 (1 — ¢°) and then
E(v )=exp(-k dy) .
In general : E(v]') = E(exp(—niA,. ) = (Mu(1))*=exp(-k(n u-r’?/2))

and so E(v] )=exp(-k d,) where d=n y-n’d/>.
Similarly, we find that: E(v,v,)= exp(-r d}) exp(-s (d>-d;)) (s<r).

2.3 Life Insurance Actuarial Functions

@1

2.2).

23)

2.4)
2.5)

his section is based on the approach of Frees (1990) . We will assume that there is only
one decrement, mortality. We define the integer-valued random variable K to be the
curtate time of decrement, so that if 7, is the future time until decrement of a person aged x

then K< T, <K +1.

We will use the standard notation: P(K= k) = ;/q . and P(K>k) = .1 pr k= 0,1,2
discrete probability function and survival function respectively.

for the



Also we will assume that X is independent of {Ak} .

Two types of general contracts are considered: insurance and annuity contracts.

For the general insurance contract, a benefit b,,, is taken to be payable at time k+/ at the end
of the year of death, given that death occurs during the year (%, k+1).

The random present value of this insurance benefit is Zy.;= v g+ b x+1 Wwhere b g, (-
00,400 ) .

For the general annuity contract, payments ¢, are payable at time s, at the beginning of each
year up to and including the year of death.

The random present value of the annuity benefits is then:
K

a(K) =Y v,c,wherec; € (-,+0).
5=0

By the law of conditional expectations, we have

E [g(X)] =E [E [g(X) /Y]] so for the case of the life insurance contract:

E(ZK+1)= E[E(VKH b /K=k )] =E[exp(-(K+1) d[) bK+1] =
Zze-dl(ku)bk” i q, . (2.6)
k=0

E(Z%,,)=E[E(v; b, [K=k )] =Efexp(-(K+1) d;) b2, ] =

> —dy(k+1)
=Ze ( blf+1 qu.\: . (27)
k=0
In a similar manner, we can use (2.4) to demonstrate that
E(Zg.,)= kZe"""””“ bisi ld. 238
=0

For the case of the annuity contract:

EfaK)] = E[E(ivscs /K=k )]= E[i e, ] = che“’” sPy . 2.9
5=0 5=0 5=0
X K r-1
E[am)2] — E(Ze*dzscsz) +2 E( Z e—dlse—(dz—d))rcrcs) . (210)
§=0 r=1 s=0



K
E[Zx.1 a(K)] =E(by,, Y e " We Kr1aic ). (2.11)
s=0

As an alternative approach, Waters (1978) provides simple expressions for the moments of
compound interest functions which are useful for calculating the high order moments of
certain actuarial functions which will be used later in some numerical examples.

Let & .7 be the stochastic equivalent for the annuity-certain a ,7 then d,7- ka .

k=1
Let 0= exp(-i) @ = exp(c/2), then
n
Ea.n= ), ¢4 @12)
k=1
and the following results are obtained by Waters (1978):
n k-1
E(@,f)= Z 0% "2 DD, G oY @13)
k=2 j=1
n n k-1
Ba- 3 R a3Y (g g o
k=1 k=2 j=1I
n k-1 j-1
6 ZZZ ai+j+k) ¢{5i+3j+k) (214)
k=3 j=2 i=1
n n
E(ﬁn74)= Z 16k+ 4 ZZ gk+3_1) dk-&-ljj) + gD ¢(9k+7j))+
k=1 k=2 j=I
n n k-1 j-1
6 ZZ 52k+21) (p(4k+12]) + 12 2 (di+}'+2k) ¢(7i+5j+4k)+ gititm
k=2 j=1 k=3 j=2 i=1
n k-1 j-1 i-1
¢(7i+8j+ k) 52i+_]+k) d121+3j+ k))_l_ 24 Z ah+i+j+k) ¢(7h+5i+31+k)
k=4 j=3 i=2 h=1
(2.15)
n
E(dmg = 2, 6" g/ if m>n
k=1
m n
- Z gm+k) w{m+5k)+ Z gm+k) ¢(k+3m) if m<n.
k=1 k=1
We note also that

A, (Whole Life Assurance ), A’ ., 7 ( Temporary Assurance )
4. 7(Endowment Assurance ) ,d.( Immediate Whole Life Annuity )
a, (Whole Life Annuity due ), d..,7( Immediate Temporary Annuity )



are the stochastic equivalents (i.e random variables) corresponding to the standard actuarial
functions. In order to derive expressions for the moments of these random variables we use
the rules of conditional expectation, as applied earlier.

We let g(K) be the present value of the benefit for a standard life insurance policy issued to
a life aged x. Then, for the case of a whole life policy,

8K ={vnu K20} and E[gK)"] = 1/q:E[ve"]. (2.16)

©

k=0

For the case of a temporary insurance policy:

Ve K<n " n-1 .
s® - {5 I Y ELmr =S g Bl
=n k=0
2.17)
For th £ an endowment i oy g® = {7 5" Y and
or the case of an endowment insurance policy: gX) = v Ken an
n—1
E[gK)"] = &/ q-E[viei"] + p E[ V"] (2.18)

k=i

)

We let 2(K) be the present value of a standard annuity policy issued to a life aged x.
Then, for the case of an immediate whole life annuity:

E [hK)"] = x/qx E[GT] . (2.19)

0
k=

—

For the case of an immediate temporary annuity then:

n-1

E[ME)"] =Y. «/qx E[@f"] +p<E[a.]"].

k=1

Also we know that the present value of the whole life annuity-due is equal to the present
value of the immediate whole life annuity plus 1 and the present value of the temporary
annuity-due (age x, term n ) is equal to the present value of the immediate temporary annuity
(age x, term n-1 ) plus 1.



2.4 Examples

he above formulae ( 2.6-2.20 ) enable us to compute the moments of the present values
and related functions for these simple insurances and annuities.

We will assume in the following calculations in this section and in section 3.6 that all lives are
subject to the mortality experience of A 1967-70 (Ultimate).

Tables 2.1 - 2.5, on the following pages, present calculated values of the expectation, standard
deviation, skewness and kurtosis for the case of p=0.07 and for several values of x, n, (where
appropriate) and o for the respective cases of an endowment, temporary and whole life
insurance, and a temporary and whole life annuity.

Some relevant graphs are also presented (Figures 2.1 - 2.3).

When 6 = 0 the stochastic equivalents of the actuarial functions are equal to the normal
actuarial functions calculated on a deterministic basis..

In each example, the standard deviation of the actuarial function increases as ¢ increases ( as
we can see in Fig. 2.1 for the Temporary Insurance), but the amount of increase is not
significant. This feature occurs because the greater part of the variation in these functions is
due to fluctuations in the age at death as opposed to fluctuations in the interest rates. Of
course, this situation changes if we consider a large number of independent lives and then the
fluctuations in interest rates would become more important.

The standard measures of skewness and kurtosis are calculated as !22 and ﬂ—; respectively

Hy 2

where 4, is the n™ central moment of the distribution. So, for a generic random variable X,
we have that:

_ E(X*)-3E(X*)E(X )+2E(X )’

Skewness of X = ... VAR(X)”

_ E(XH)-4E(XP)E(X ) +6E(X*)E(X )’ -3E(X )*

Kurtosis of X= ... VAR(X)®

We can see from the Tables and Figures that the values of skewness and kurtosis are both very
large. This reflects the very skew and very sharply peaked shape of the density functions.

Figures 2.2 and 2.3 also show that an increase in o is associated with decreases in the
absolute values of the skewness and kurtosis. This is because, when G increases, the density
function will tend to be spread more evenly over its range.



Endowment Assurance

%e

20] 30 40] [ 20] 30] 40]

o=0 c=0.03
25] [0.250732] 0.130861] 0.075913] [ 0.252958 0.132643] 0.077098
30] [0.252214] 0.135393| 0.08456| [ 0.254441| 0.137091| 0.085801
35| [ 0.255969] 0.144352| 0.099852| | 0.258195| 0.146076| 0.101177
40| [ 0.263217] 0.159945] 0.124037|| 0.26544| 0.161706] 0.125479
45] | 0.275708] 0.184779] 0.159124| [ 0.277924| 0.186594| 0.160713
25] [0.040116] 0.054966] 0.065193] [ 0.052351] 0.059008] 0.066894
30] [ 0.043825] 0.062549] 0.075287] { 0.055305] 0.066334[ 0.077113
35| [ 0.054743] 0.07873| 0.093565| [ 0.064397| 0.082066| 0.095499
40 0.0721] 0.101686] 0.117287| [ 0.079803| 0.104664| 0.119368
45| | 0.094606] 0.128931[ 0.143257|{ 0.100758| 0.131727] 0.145534
25] [[12.16509] 9.478377] 7.736863) [ 5.611329] 7.815982] 7.334613
30 10.2824] 7.407445] 5.818319| [ 5.255787| 6.36953| 5.580754
35| [7.768355] 5.463463| 4.315624| | 4.887615| 4.958812| 4.19439
40| [5.698423] 4.026704| 3.264449| | 4.286018| 3.795818| 3.199596
45| [4.171295] 2.977109] 2.499181|| 3.611257| 2.867781| 2.4601
25] [165.9879] 106.9121] 76.5245] | 59.53698| 82.9287| 71.18357
30| [ 122.6754] 68.83172| 46.31082| | 50.67303| 56.48902| 43.71835
35 71.7015] 38.79347| 26.66794| | 39.35196| 34.27791| 25.64169
40] [39.41627 21.9352| 16.07935]| | 27.59368| 20.41533| 15.65257
45 21.8678] 12.83286| 10.20655| | 17.85284| 12.30768| 10.00679

6=0.05 o=0.07
25] [0.256965] 0.13569] 0.079256] [ 0.263096] 0.140397] 0.082616
30| [ 0.258445] 0.140165] 0.088056 [ 0.264581] 0.144912]| 0.091564
35] [0.262201] 0.149194] 0.103582] | 0.26833] 0.154005] 0.107315
40 0.26944] 0.164891| 0.128094| [ 0.2755598] 0.1698| 0.13214
45] [0.281912] 0.189871] 0.163589] | 0.288009] 0.194915| 0.168025
25] [0.070038] 0.066259] 0.070151) [ 0.092462] 0.077413] 0.075626
30| [0.672355| 0.073203] 0.08058) | 0.094324| 0.083908| 0.086342
35| [0.079653] 0.088218| 0.099146] | 0.100186 0.098[ 0.105149
40| [ 0.092743] 0.110202] 0.123267|[ 0.111106| 0.119116| 0.129624
45| [[0.111535] 0.136932] 0.149776| [ 0.127524| 0.145327| 0.156635
25| [ 2.698064] 5.816389] 6.668243] [ 1.744333[ 4.141832| 5.800229
30 2.68798| 5.0323] 5.187335| | 1.765969| 3.815507| 4.674605
35| | 2.864348] 4.238725] 3.992629| [ 1.921236| 3.488757| 3.727957
40| | 2.935804] 3.441217| 3.092483| [ 2.08443| 3.031094| 2.954378
45| [ 2.728892] 2.694033] 2.396992| [ 2.097574| 2.483059| 2.319456
25] [21.15711] 55.42012] 62.40491] [ 10.07848] 33.57412| 51.07552
30| [ 19.86285] 41.04694] 39.44889| | 9.942408| 27.41702| 33.91595
35] | 19.08772] 27.8804] 23.93996| [ 10.40519| 21.2425| 21.7187
40| | 16.92065] 18.06497| 14.9508| | 10.49502| 15.3121| 14.05671
45| [ 13.16966] 11.46342] 9.686215| [ 9.432219] 10.42355| 9.302338

(Table 2.1)

<_Term

Expectation

Standard Deviation

Skewness

Kurtosis

Expectation

Standard Deviation

Skewness

Kurtosis



Temporary Insurance

¥ o

| 30]

10

20 40} | 20{ 30] 40| g—Tem
o0 o= 0.03
25] [[0.008802 | 0.015809 | 0.025669 || 0.00884 | 0.015927 | 0.025941
30] 10.013122 | 0.025255 | 0.040547 | | 0.013167 | 0.025457 | 0.040988
35| [[0622484 | 0.042475 | 0064463 | [ 0.022599 | 0.042814 | 0.065144 | Expectation
40| [0.039462 | 0.070526 | 0.099116 | | 0.039662 | 0.071074 | 0.100106
45| [0.067541 | 0.112467 | 0.144796 | [ 0.067875 | 0.113299 | 0.146125
25| [0.06884 | 0.076295 | 0.079364 | [ 0069311 | 0.077065 | 0.08039
30| {10.080006 | 0.090104 | 0.062185 | [ 0.060649 | 0.091164 | 0093552
35| ['6.102151 | 0.112644 | 0.111433 | [ 0.103023 | 0.114334 | 0.113138 | Standard Deviation
40| [0.133218 | 0141417 | 0.133424 | [ 0.134365 | 014316 | 0.13544
45| [0.170499 | 0171063 | 0.154938 ] [ 0.171965 | 0.173165 | 0.157226
25| [6.953197 | 6755749 | 5724027 | [ 8.975497 | 6745776 | 5678192
30| [6.969304 | 4922476 | 4.16433 | | 6998017 | 4922136 | 4.134205
35| [5097343 | 355062 | 3145786 || 512375 | 3563880 | 3.124647 | Skewness
40| | 3683315 | 2603671 | 2.498685 | | 3704725 | 2607934 | 2.479716
45| [2:630119 | 1.902682 | 2.056647 | [ 2647343 | 1005402 | 2.039504
25| [[61.00436 | 56.89308 | 47.46084 | [ 91.45446 | 565813 | 46.668274
30| [56.76734 | 33.43919 | 27.64519 | [ 657.13931 | 33.28769 | 27.179
35| | 3120689 | 1867756 | 17.00241 | [ 3146779 | 18.62261 | 16.73788 | Kurtosis
40| [17.07158 | 11,06223 | 11.54311 | [ 17.22666 | 11.05037 | 11.36638
45| [[9522594 | 7.047666 | 839353 | [ 9.611581 | 7.020165 | 8.268706
o= 0.05 o= 0.07
25] [0.00891 | 0.016139 | 0.026435 | [0.009016 | 0.016464 | 0.027198
30| [0.013303 | 0.075819 | 0.041786 | [ 0.013481 | 0.026374 | 0.043018
35| [0.022806 | 0.043424 | 0.066376 | | 0.023119 | 0.044358 | 0.068282 | Expectation
40| [[0.040021 | 0.672057 | 0.101896 | [ 0.040567 | 0.073562 | 0.104653
45| [[0.068476 | 0.114796 | 0.148527 | [ 0.069388 | 0.117088 | 0.152252
25] [ 0070165 | 0.078477 | 0.082202 | [[0.092462 | 0.077413 | 0.075626
30| |6.081814 | 0093106 | 0.096083 | | 0.094324 | 0.083908 | 0.086342
35| [0.104604 [ 0.116881 | 0.116295 | [ 0100186 0.098 [ 0.105149 | Standard Deviation
40| [0.136446 | 0.146354 | 0.139173 | [ 0111106 | 0.119116 | 0.120624
45| [[0.174624 | 0.177017 | 0.161462 | [ 0.127524 | 0.145327 | 0.156635
25)| [[6:031695 | 6.734988 | 5.604067 || 9123981 | 6.737299 | 5513491
30| [7.054487 | 4908545 | 4088527 || 7.152976 | 4956173 | 4.040998
35| [5175067 | 3577167 | 3.093909 52631 | 3611769 | 3.065846 | S
40| [3746162 | 2619827 | 245199 | [3.816844 | 2.649694 | 2.426167
45| [26806456 | 191433 | 2.011029 | [ 2.737365 | 1.936216 | 1.962863
25] [ 92.4058 | 5614569 | 4539441 | [[9424417 | 57.83147 | 4374943
30| [57.92817 | 33.11777 | 26.43956 | | 59.45547 | 33.13837 | 2557846
35| [32.01151 | 1858514 | 1632832 | [ 33.04223 | 18.71085 | 15.8616 | Kurtosis
40| [17.54676 | 11.03288 | 11.09886 | [ 18.15655 | 11.11486 | 10.80867
45| [9.796604 | 6.996641 | 8.076328 | [ 10.14826 | 7.032748 | 7.870315
(Table 2.2)



Whole Life Assurance

lge

a0
25| [0.046933
30} [0.062972
35| [0.085502
40| [©.116086
45| [0.155641
25 0.0739
30| [0.083738
35| [0.100591
40| [0.122126
45| [0.145857
25] [6.241921
30| | 4.808983
35| [3.769096
40| [Z.008606
45| [2.398801
25| [B5.43961
30| [34.97892
35| [22.08254
40| | 14.50455
45| [9.765005
o=0.05
25] [ 0.04908
30| [©0.085604
35| [0.088768
40 0.119843
35| [0.159978
25] [0.077178
30| [©.087896
35| [0.105554
40| [0.127834
45| [0.152282
25| [5.938401
30| [4.583711
35| [3.613735
40| [2.896926
45] [2.315474
25] [51.18419
30| [32.30988
35| [ 20.6411
40| [13.70986
45| [9.316718
(Table 2.3)

o=

0.03

0.047692

0.063904

0.086719

Expectation

0.117421

0.157185

0.075033

0.08518

0.102317

Standard Deviation

0.124116

0.148103

6.131449

4.725328

3.710624

Skewness

2.966109

2.366687

53.88551

33.98406

21.53847

Kurtosis

14.20148

9.591821

o=

0.051254

0.068256

0.091854

Expectation

0.123594

0.164288

0.080743

0.092365

0.110841

Standard Deviation

0.133868

0.159025

5.662286

4.392437

3.48828

Skewness

2.810612

2.25439

47.35429

30.07196

19.49152

Kurtosis

13.10493

8.996194

11



Temporary Annuity

ge

20] 30] 40] [ 20] 30 40| g— Term
=0 o=10.03
25 10.3242] 11.96872] 12.71783] [ 10.36248] 12.02552] 12.76646
30| | 10.29898[ 11.89758| 12.58322| | 10.33708] 11.95367| 12.65011
35| [10.23709] 11.75601| 12.34796| | 10.2748] 11.81078] 12.41202|Expectation
40] | 10.11901] 11.51195] 11.97955| [ 10.15599| 11.56452| 12.03943
45| | 9.917046] 11.12658] 11.45024| | 9.952814] 11.17582] 11.5045
25] [0.618771] 0.83109] 0.975919] [0.941087] 1.232491] 1.409108
30| [0.679557] 0.948195] 1.127272| | 0.981233| 1.311098] 1.510452
35| [0.850512] 1.192883| 1.398156| [ 1.105092] 1.492901| 1.711886|Standard Deviation
40| [1-118759] 1.536578] 1.747301]| [ 1.320614] 1.773098] 1.994143
45| [1.463675| 1.940734] 2.127609] [ 1.62034] 2.124356| 2.318852
25] [-11.8378] -9.26744] -7.60488] | -3.20914] -2.66065] -2.32707
30| [ -9.91057| -7.20182 -5.70044 | -3.13693| -2.54443| -2.17538
35| [ -7.45813| -5.30802| -4.24368| | -3.26187| -2.54737| -2.13481|Skewness
40| [ -5.46917| -3.91813| -3.22227| [ -3.21176] -2.41616] -2.01927
45 -4.0046| -2.90335] -2.47788| | -2.86105| -2.10398| -1.79248
25] [157.9609] 102.9104] 74.46677] [ 31.19068] 22.93274] 18.77073
30| [114.7629] 65.62365| 44.96435| [ 27.91833] 19.39841| 15.35806
35| | 66.62529] 36.97874| 26.01169| | 24.54627| 16.16924| 12.64791|Kurtosis
40| [ 36.66236[ 21.01373| 15.80142| [ 19.68412| 12.61449] 10.08173
45| [20.41433]  12.385] 10.1075| | 14.11653] 9.149648| 7.707116
o=0.05 o= 0.07
25} [10.43104] 12.12753] 12.90996] [ 10.53511] 12.28306] 13.09889
30| [10.40533[ 12.05439] 12.77046| | 10.50892| 12.20794| 12.9545
35| [10.34233] 11.90911| 12.52724| [ 10.44484] 12.05901] 12.70336|Expectation
40| [10.22223] 11.65891| 12.14709| | 10.32276] 11.80275] 12.31153
45| [10.01687] 11.2642| 11.60199] [ 10.11408| 11.39883] 11.75076
25] [1.346338] 1.750425] 1.98179] [ 1.812798] 2.350162| 2.666662
30 1.3735| 1.802147| 2.04441| | 1.831577] 2.392051| 2.699517
35| [1.462496] 1.931385] 2.181837| | 1.896588] 2.481522| 2,76386|Standard Deviation
40| [1.628275| 2.145003| 2.388515| | 2.022877| 2.636896| 2.9188
45| [1.874877| 2.429016] 2.638916| | 2.219585| 2.851979| 3.088018
25] [-0.80788] -0.59959] -0.48214] | 0.064039] 0.210994] 0.295443
30] [-0.86139] -0.65989] -0.53392| | 0.026046 0.164144] 0.249355
35| | -1.15124] -0.88719] -0.71997| [ -0.16288| -0.00165] 0.102133|Skewness
40| [ -1.49783] -1.11829] -0.90806] | -0.45788] -0.23156| -0.09767
45 -1.6726] -1.20324] -0.99373| [ -0.73506] -0.42551| -0.2761
25] [9.591583] 7.830894] 7.015083] [ 5.320939] 4.942853] 4.820204
30 9.30434| 7.462155| 6.603544| | 5.272849] 4.862703| 4.721178
35 9.72376| 7.461756| 6.484426| [ 5.545584] 4.937625| 4.725592|Kurtosis
40| [9.825548] 7.180295| 6.212775| | 5.881287] 4.9792| 4.704384
45| [8.800274| 6.29753] 5.582212| [ 5.841431| 4.767332| 4.520536
(Table 2.4)
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Whole of Life Annuity

A;e

o=0
25] [13.09734
30 12.8601
35| [12.52551
40} [12.07446
45| [11.48038
25] [1.093088
30| [1.238624
35| [1.487895
40] [1.806433
45| | 2.157448
25] [6.24192
30| [ 4.80899
35 =3.7691
40| [ -3.00861
45| [-2.39881
25] [55.43965
30| [34.978%
35| [22.08257
40| [ 1450457
45| [9.765023
o= 0.05
25] [1331247
30] [13.06377
35] [12.71511
40 12.2474
45| [11.64332
25] [2.134861
30 217524
35| [2.282771
40| [2.454176
45| [2.671955
25] [-0.38029
_30] [-0.43745
35 0.6262
40| [0.83292
45 0.951
25| [6.496247
30| [6.166195
35| [6.124692
40| [5981172
45| [5.485222
(Table 2.5)

o=

0.03

13.17409

12.93279

12.59322

Expectation

12.13625

11.54441

.535606

.625412

.803931

2.055049

Standard Deviation

2.349702

-2.03259

-1.91441

-1.9269

Skewness

-1.88862

-1.73235

15.87259

11.30506

13.20502

Kurtosis

9.441296

7.493314

o=

0.07

13.52481

1326451 |

12.90171

Expectation

12.41732

11.79431

2.863422

2.85975

2.90236

Standard Deviation

2.993636

3.125019

0.36631

0.313379

0.162477

Skewness

-0.0467

-0.24375

4.793086

4.696396

4.689028

Kurtosis

4.669524

4.505019

Charts

13



Temporary Insurance
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2.6 Cumulative Distribution Function

he approach can be used to derive the cumulative distribution function (and hence the

probability density function) for the random variables defined in section 2.3 as in Frees
(1990). As an illustration of the method, we derive an expression for and calculate the
cumulative distribution function for the present value of a whole life assurance, A, .Then,
following Frees (1990):

FO) =P <3) =E [Pl <y/K=k )] = S Pl <y) 2/qx -

k=1

=i logy+(k+1)u)k/q
k=1 ovk+1

The following graph gives the Cum. Distr. Fun.of 4, for x=30, u =0.05, o= 0.07

Distribution Function

Fig. 2.4

The median is 0.119019, but the mean is 0.138238.

The fact that the median is less than the mean is an indication that the distribution is skewed to
the right (as noted earlier).

2.6 Comments

n this section, formulae for the mean, variance, skewness, kurtosis and high order moments
have been developed, for several types of life insurance and annuity contract, in the
presence of independent and identically distributed investment returns.
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However, we have to note that the iid normality assumption will rarely be satisfied in
practice. It does though serve as a useful benchmark. In the next section, we introduce a
moving average representation of the force of interest.

3. DEPENDENT INTEREST RATE MODEL: The
MOVING AVERAGE PROCESS MA(q)

3.1 Introduction

“«

s Frees (1990) mentions, “... the assumption that the interest environment represented
by the sequence \A,§ is iid is a useful modification of the traditional assumption that

{Ak} is deterministic . This modification permits volatility of interest rates in the model .

In this section, we continue with this approach and assume that the interest rate model is
stochastic but also dependent. It is assumed that the force of interest follows a moving
average model of order g (q is a variable) . In this section we will generalise some of the ideas
of Frees (1990) and discuss the general case of the MA(g) model rather than the specific case
of g=1.

This model { MA(q) } accounts for certain autocorrelation aspects of the sequence {Ak} and

has the advantage of being tractable (in the mathematical sense) in terms of the calculation of
insurance functions. The model has also been applied to pension funding problems by
Haberman and Wong (1997) and Bédard and Dufresne (1998).

3.2 Basic Results

‘ N ] e now consider the unconditional MA4(g) model,
A=utg+ag;+agt.. + Ag&hq - @3.1)

where {g, J7 isaniid sequence with mean zero and variance o°. The coefficients
k-0
{a;}(i=1,2,...q) are usually constrained so that the roots of the characteristic equation
9 :
1 —Zaix' =0 lie outside the unit circle. If g=1, this constraint becomes -/<a;<I, while if

i=1
q=2, the conditions become:

a1+a2<1, az-a1<1, -1<a2<1.
These constraints are required so that the model is invertible, that is it can be alternatively
expressed as an autoregressive model of infinite order, or as the limit of a sequence of

autoregressive models of finite order - the invertibility requirement ensures that this sequence
is convergent (Box and Jenkins, 1976). Invertibility is similar to the stationarity condition

16



applied to autoregressive models. We define M(#) = Efe®’] to be the moment generating
function of &, and assume that M(?) exists.

The following proposition is an important building block for this section.

3.2.1 Proposition 1

E[vk] = CIe_kgl for k=1,2,..

&1 = - M1+ 3a,)) 62)

[JjM(—(Hia,-)) (—U[]ZM(—ia,-)j

[M(—(Hga,- ))Jq

C, =

(-3)

Proof

Ar=pu+gtagt.. + a8,
Ag =utetagt.. + AgE24
L=p+ &+ Qg+ ... t Quiqg

By adding the above (and collecting terms along diagonals) we have:

k k-q
ZA, =ku+ ZS,- (1+ai+..+ay + (1+a;+...+aq)) Gger +
i=] i=l

+ (1+ar+.. 4.0 Gger + ... T (1+a) g + & + (@tazt..+a) e +

+ (@rt...tade; + ..+ Qg+ g &g T AgEiy.

3 kg
- 4 —(1+ay+.+a, ) ) &
vk —e Z} i _ e_k“e q ; re—(1+a,+...+aq_,)£,,_q+, . e—(1+a1)gk__1e—5k
—(a;+.+a, )sy —(a, ;+a, )&, -a,&;_
Ry q Yy 9-17% 7o 1 I-q

G4

Each component of V, is independent so that we can write:

17



—(l+a;+.. +aq)i ..
E[v,]=e™E[e JE[e retter )t | g ettt JE o5 ] ..

.. E[e_(411+...+aq)€a ] .. 'E[e_(aq-l+aq)£2_q ]E[e_ﬂqgl"'l ] _

=e™M(M(~(1+..+a, )" " M(~(1+..+a,_,))
M (-1)M(~(a,+..a,))-M(-a,)=

_ g RO (~( 1520 )) M(—(1+..+a,_,)).M(-1)M(~(a, +.a,)).M(-a,)
(M(—(1+...+aq)))"

(3.5)

—k(p-In( M (~(l+..+a;)) -k . . "
=e 7 C , =C 1€ €7 on introducing the above definitions of g;
and C;.

Note that in the special case of a;= a,=... a,= 0, then g;=d, leading to the i.i.d result given
earlier in section 2.

3.2.2 Proposition 2

i) Efv)] =C,e * n (3.6)

WyE[v,v,] = Be ®:e (*7a (.7

where g, = nu - In(M(-n(1+ Za ))

[HM(—nS )]M(—n)(i’]M(—n(S,, -5, ))}

C, = (s (.8)
[HM( 28, + (S, -5, ) (1)(HM( 2, S,-,))}(ﬁM(—S,)]
B= i i .
(M(=28,)]" (M(=S, )"
(3.9)

;
and we use the additional shorthand notation Sp=1 and S;=1+ ) a, for j21.

i=1

18



Proof

i) From equation (3.4), we obtain directly:

_k[,,p_,,,(M(_,,(,Mﬁ“Mq)))]M(—n(] +a,+..+a_,))-M(-n)M(-n(a,+...+a,))---M(—na,)

E[v]]=e M(-n(1+a,+..+a,))

which reduces to (3.6) an substitution for g, and §;;.

W)If s<k: E[vyv,]=E[e = e & '] =E[e " J

1

7

Then, proceeding in the same manner as for the proof of Proposition 1, we write:

s s k S
A+ A =25 A+ Y A =(ksu+ 25u+ 21+ar+...va) Se, ++
=z i=] i=1

1 i=l i=s+1

+ 201+, F )t Egr T (2(1+.. 4 Ag2) A T Y Esgiat..

k—q
+2rart..rade + (I+..+ay) Y & + (1+..+0g) Eeger Tt & +

i=s+1
+ 2ar+...a)e + 2(art...tae; +.. + 20,8,
Thus we can write
E[v,v,] = Be —s@p-t( M (-2(1+a,+..+a, ) )e (k-5 )p-tn( M (=(1+..va,))))

= RBe 1g(ks)a

on substituting for g; and g> and with B given by

B=M(-2(1+..+a_,)-a JM(-2(1+..+a_,)-a_,—a ) -M(-(2+a,+..+a,))x
M(—~(1+..+a,_ ) M(-1)M(-2(a;+..+a, )M(-2(a, +.. +a, ))---M(-2a,)
M(-2(1+a,+..+a,))'M(~(1+a, +..+a,))® ’

As before if a;=a,=... a;= 0, then g,=d, and C, =/ asintheii.d result of section 2.

3.3 Life Insurance Actuarial Functions

f we consider, as in section 2, the general insurance and annuity contracts with random

K
present values, Zg.; = Vs bg:; and a( K ) = Y v.c, respectively, we can calculate again
5=0

the mean and variance of Zg.; and a(K ) .
Thus,
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Thus,

E[Zy,]=CE[e*® b, ] (3.10)
X K K
E[a(K)]=E[szcs]=E[co+zvscx]=CO+E[Zv:cs]=
s=0 s=1 s=1
=c,,+C,E[zK: e t%c ] 3.11)
s=1
and
E[Zg ]=C,E[e* " b7 ] (.12)

Efa(K )] =Ef(c,+ S v,e,) ] = E[cl +2¢,5 v.c, + (Z c] ] =

s=1

K X
c+2¢,E[Yv.e,] +E[(szcxj (3.13)
s=1 s=1
K K
where E[Y vie, ]=C,E[> e ®°c,] and
s=1 s=1

K X X r-1
E[(Y ve,))]=E[C,) e *%c]+2BY ¥ e ®fe (3:781)rc ¢ ]
s=1 s=1

r=2 s=1
3.4 Distribution of the Force of Interest

Under the simplifying assumption that e~N(0, 6%), it is then straightforward to show that
follows a normal distribution with mean gz and variance ¢ ’(1+a} +..+a}).

We then note that increasing ¢ leads to an increase in the variance of 4.
3.5 Propeosition 3
(@ If N0’ and 0< ajtayt..+ag < 1,then

1) g1 < d[
ll) g2< dz

q-1

(®)  If &~N(0,0%)and ZS ;(S,—38;)>0 then C,<I for n> and B<I (using the notation of
j=0

Proposition 2).

Proof

(@) i) di=u-&°/2. Then,
Lo’(]+...+aq )

g,=u-In(M(-(l+a,+..+a,)) =p-in(e? )=

1
=u—?cz(1+...+aq)2.
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1
g,—d,=—70'2[(1+...+aq)2—1].

Then, we note that 0 < a,+a,+...+a, = g,<d|,.
Remark:

If we take, for example, the cases of an MA(1) or MA(2) model we can also say that a
positive autocorrelated environment leads to g, < d;. To demonstrate this point we define p;
for i=1,2,... to be the autocorrelation function of the process. Then for:

e MA(1)
p1=a/(l1+a’) and p;>0 = a,;>0

* MA(2)

pi = (a1+a,a2)/(1+a12+a§) and p;>0 =>a,(1+ay)>0 (i)
p2=a/(1+al+al) and p,>0 = a>0 (i)

Then (i), (i) = a;>0, a;>0 = a; + a,>0.

This indicates that the actuary should use a higher interest assumption than for the
corresponding i.i.d environment.

ii) dy=2u~207. Then,
q q
g=2u-In(M(-24)) where L =1+ a,>1 (because) a,>0)

i=] i=1

12452

g, =2n—-In(e?  )=2p-26°N
g,-d,=20>-26’N =2c%(1-M)<0> g,<d,.

j
(b) With Sy=1 and §; = I+Za,. for j>1, it is straightforward to show that, if &~N(0,c%) so

i=1

1252
M) = e?" then

q-1
logCi=-06’>"5.(5,-S,)
j=0
log C,=n’ log C, for n>1

and logB =3logC,.
q-1

Then, if by assumption ».S,(S,~S,)>0, C,<l, fornx1, and B<I.
j=0

As remarked by Frees (1990, page 104) (but using the notation of this paper) “ ...the
interpretation is that in the case of reserves we have off-setting factors. For example in a

21



positively autocorrelated interest environment a,;> 0 thus C,<I and g,<d, . Now in general a
lower interest factor means that the reserve is higher. However this is slightly offset in the
calculation of reserves because we multiply by C, , a factor less than one .”

It is important to note that, because 4~ N( u, 02(1+a12+...+aq2) )if &~N(0, %) then we can
use the results that we have obtained in section 2 and utilise the formulae derived there to
calculate the mean, standard deviation, skewness and kurtosis for the random present values of
standard insurance and annuity contracts.

3.6 Examples

Tables 3.1 - 3.3, on the following pages, present the calculated values for the moments in the
cases of a temporary insurance, endowment and whole life assurances in the MA(1) case (with
a;=0.5) with ©=0.07 for different choices of x,n (where appropriate) and o

It is clear from the examples that, if we compare an MA(g) model with &N(0,0°) and
parameters {a,} as in equation (3.1) and an ii.d model with A ~ N(u &°), the standard
deviations of the actuarial functions in the MA(q) model are higher than for the 4, ~ N(i, o°)
model. This result follows because the MA(q) model is also an N{y, crfl ) with variance o7,

givenby &((I+a’+... +aq2) which is greater than ¢°. So the variance in MA(g) is higher than
for the equivalent N(1 0°). Also, as we mentioned in the previous section, an increase in o,
will lead to a decrease in the skewness and kurtosis as demonstrated in Tables 3.1 - 3.3.
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MA(1) Model
Temporary Insurance

Age
6 I 20| 30| a0] [ 20 | 30 o] 44—
o=0 o= 0.03
25 0.008802_| 0.015809_| 0.025669 0.00885 | 0.015956 | 0.02601
30 0.013122_| 0.025255 | 0.040547 || 0.013203 | 0.025507 | 0.041099
35 0.022484_| 0.042475_| 0.064463_| | 0.022628 | 0.042868 | 0.065316 | Expect:
40 0.030462_| 0.070528 | 0.099116_| | 0.036713 | 0.071211_| 0.100355
45 0.067541 | 0.112467 | 0.144796 | [ 0.067959 | 0.113508 | 0.14646
25 0.06884 | 0.076295 | 0.079364 0.06943 | 0.077261 | 0.080651
30 0.080006 0.092185_| | 0.080811 | 0.091432 0.0939
35 0.102151 0.111433_| [ 0.103243 | 0.114686_| 0.113573_| Standard Deviation
40 0.133218 0.133424_| [ 0.134655 | 0.143602 | 0.135953
45 0.170499 0.154938 | [ 0.172335 | 0.173698 | 0.157808
25 8953197 | 6.755749 | 5.724027 | [ 8.986409 | 6.743711 | 5667181
30 6.069304 | 4.022426 | 4.16433 | [ 7.005533 | 4.922492 | 4.127158
35 5007343 | 3.55962 | 3.145786 | | 5.130624 | 3.565300 | 3.119783 | Skewness
40 3683315_| 2.603871 | 2.498685 | [ 3.710288 | 2.609239 | 2.475344
45 2.630119 | 1.002682 | 2.058647 | [ 2.651816 | 1.906336 | 2.035061
25 91.00436 | 56.80308 | 47.46284 | [ 9157622 | 58.51052 | 46.49361
30 56.76734 | 33.43919 | 27.64519 | | 57.24011 | 33.25586 | 27.06788
31.20699 | 18.67758 | 17.00241 315379 | 1861273 | 1667545 | Kurtosis
40 17.07158 | 11.08223 | 1154311 | | 17.26828 | 11.04479 | 11.3272
a5 9522994 | 7.047866 | 8.39353 | [ 9.635416 | 7.014803 | 6.239292
o= 0.05 o= 0.07
25 0.008937 | 0.016223_] 0.026631 0.00907 | 0.016633 | 0.027598
30 0.013349_| 0.025962_ | 0.042103_| [ 0.013572_| 0.026664 | 0.043664
35 0.022887 | 0.043665 | 0.066868 | [ 0.023281 | 0.044844 | 0.069278 p
40 0.040163_| 0.072445_| 0.102605_| [ 0.040849 | 0.074346 | 0.106006
a5 0.068712_] 0.115388_| 0.149478 0.06986_| 0.11828 | 0.154152
25 0.070504_] 0.079043_| 0.083062 0.07218_| 0.081889_| 0.086996
30 0.082276_| 0.093885 | 0.097108 | [ 0.084568 | 0.097797 | 0.102332
35 0.105233_| 0.117903 | 0.117574_| [ 0.108339 | 0.123029 | 0.124084_| Standard Deviation
40 0.137273_| 0.147636_| 0.140685 0.14136_| 0.154066 | 0.148385
45 0.175681 | 0.178563 | 0.163177 | [ 0.180805 | 0.186324 | 0.171914
25 9.054062 | 6.733352_| 5577975 |] 9.178035 | 6.748013 | 5.478238
30 7.078501 | 4.933583 | 4.073612 7.21002 | 4.979339 | 4.027539
35 5196684 | 3.584425 | 3.084428 | [ 5313443 | 3.636765 | 3.060715 | Skewness
40 3.76356 | 2.626172 | 2.44337 || 3.857086 | 2.6/0927 | 2.420991
45 2.694616 | 1919302 | 2.001949 | [2.769617 | 1.955609 | 1.97563
25 92.83420 | 58.02181 | 44.92087 | [ 95.39999 57.859 | 43.07325
30 58.28404 | 33.08019 | 26.18473 | [ 60.41524 | 33.29791 | 25.27376
35 3225376 | 18.59865 | 16.19135 | | 33.68066 | 18.86745 | 15.74431 | Kurtosis
40 17.69189 | 11.04091 | 11.00921 | | 1853188 | 11.21512 | 10.72259
45 9.879167 | 6.997242 | 8.012467 | [ 10.36652 | 7.089859 | 7.810302
(Table 3.1)
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MA{1} Model

0] | 20] 30] 20]
o= 0.03
[ 25] [0.250732] 0.130961] 0.07591 [0.263517] 0.133068] 0.077398]

30| [0.252214] 0.135333[ O. [0.255001] 0.137513] 0.086114]
[T 35| {0.255969] 0.144352] 0.099857] 0.268756| 0.14661] 0.101511
— 40| [0.263217] 0.153845[ 0.122037| [ 0.255983( O.16215[ 0.T25643|
[ 45| [T.275708] 0.184775] 0.159127] 0.2/8487] 0.18705| 0.16111Z

30| [0-043825[ 0.062543] 0. [5.057302] 0.067289] 0.07/583]
[ 35 [0 054743 0.07873) 0.053565| [0.066563[ 0.082313] 0.055350]

0 0.0721] 0.101686] 0.11/28 [0.081673] 0.105423| 0.113307]
[~ 35| [.094806] 0.128931] 0.143257 0.102284| 0.13244| 0.146115
[ 25| [T2.T6508] 9.478377] 7.736863) [ 2873321 7.3/1233T 7.

30 70.2824] 7.407445] 5.818319] | 4.636645] 6.146473] 5.623126
L] 8 B] 5.463463 4.315624 X [4.844635] 4.
5| [A.T/T235[ 2.577703| 2-333T8T] 3375243 Z.BAT/5| 2.4
[ 25| [165.9679] 106.9121] 76.5245] 49.25991] 78.07862

30 T22.6/54| 68.831/72| 46.31082| [ 42.80372| 53.8772
[ 35 71.7015| 38.73347] 20.66794] 34.77302| 33.2608T]

40} [39.41627| 21.9352| 16.07935| | 25.49944] 20.0587]
|~ 45| [~ 21.8678] 12.632886] T7.03376| 12.18197

o= 0.05 o= 0.07
[ 25] 0.258547 go. a:s;sgmmosons 0.266282] 0.142865]

30| [0-.260031| 0. K 70.267767 0.147%

IE] [0.263783] 0.15043T| 0.10354] T.2/1514] 0.158527|

30 0.27102| 0.166164] 0.129133] 0.2/8/37) 6.172367] 0. L3
[ 45| [0.283487] O0.19117] 0.16473 0.23TT/5[ 0.19755] 0.170337}

75 0.076202] O. [~ 0.07218] 0.0B1889] 0.0856330]

3 X 7] 0.0/55471 [0 0B2558] 0.057737| 0. 102332
[~ 35| [ o0.0852| 0.0907] [0.108339] 0.123029] 0.124084]

40 0.097617] 0. [~ 0.14136| 0.154066| 0.148385]
[ 45| 0.T1571| 0.133049| [0.180305| 0.186324[ 0.171914
[~ 25| [2.2825094] 5.262720] 6.426367] [ T.6T3504] 3.642437

30} [ 2.294%37| X.641331| 5.044452| [ T.536954| 3.429733]

40| [ 2.624981| 3.320969] 3.053758 1.889946| 2.872383
[~ 45} 2.516327] 2.633357| 2.374725 X

25| [ 16.2816] 48.07694] 53.03725] [B.510328] 27.2527] 46.17847]

30| [15.58845| 36.62766] 57.90461 B.459048| 23.15619| 31.51925
[ 35] [ 75.58003| 25.857158] 23.32122 B.84362| 18.68824| 20.

40| [14.55244] 17.26216] 14.60847] 5.040327| 14.23614| 13.68631]

45 71.90856] 11.16576| 9.674239] | 8.391063] 10.0047/5] 9.159518
(Table 3.2)
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MA(1)

Whole Life Assuranc:

Age
o=0 o= 0.03
25 ~046933 [0.047885]
[0.062972] T 0.06414
35| [9.085597] 0.087004
L 0. 115080 0. TT7758]
75| [T.15584T] 0167574
[ 0.0739] 0.07532%]
3 '0.083739] [—0.08555]
0. 100597 [0.102759]
0. 722728 0. 1235 25]
0. 745857 [0 128575}
[ 28] [B.23T92T]
30| [7-808983]
[~ 35| [3.769096]
40| [ 3.0086006|
[ 45| [Z2.35880T|
25] [55.43961] 53.50037
30| {34.37/897| 33.74101
35| [22-082%4] -
30| [14.50455] [14.12656
[3.765005| [T 3.550571]
o= 0.05 o= 0.07
[ 25| [0.049635] [0.052408]
30| [T.066287) [70.069659]
35| [0.053585] [0.053634]
20| [©.120806] [0.125564]
0.161087 7 0.165545 |
[ 25] [0.078085] [0.052739]
30| [©.089012] [0.094846]
[ 95| [0.T06879] 0113756
40 [0.12935] 0.137175
45 0.153987] 0.1627
25 5.86464] [5.530547]
30 7531234 [—4.30673]
[ 35| [ 3.5780T] 3434547
10 Z7.87231% 2775742
L)
[ 25] [50.155658] 45.54467
30 31.69289| [729.08251]
[ 35| 20,3174 T5.01231
20| [T3353557) [ T2.86878]
35 9.2218, ~ 8.88314]
(Table 3.3)
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4. CONCLUDING COMMENTS

As noted by Frees (1990) and Dufresne (1992), moving average processes often lead to
tractable results and are simpler to manipulate than the full ARMA processes while still
incorporating dependence over time. This arises because of the relatively simple form of the
covariance structure. In this paper, we demonstrate the tractability and the convenience in the
case of standard present value calculations in a life insurance context. There is a duality
between the standard AR and MA models which means that, in practice, it is often difficult to
distinguish between them when fitting models to observational data (Frees (1990)). Indeed,
any lack of fit with actual data from using MA(q) models may be offset by the simplifications
arising from their use.
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