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Abstract 

In this paper, a Smoothed Particle Hydrodynamics (SPH) method is extended to 

simulate the wave-ice interactions. The main contribution of this work is that an 

improved fluid-ice interface treatment scheme is included into SPH code to deal with 

the contact between the fluid and ice particles. The proposed SPH approach is applied 

to model two typical patterns of the wave-ice interaction process: the kinematic 

response of a small ice floe and the flexural motion of a sea ice floe, induced by water 

waves. To verify the accuracy of SPH method for the wave-ice interactions, the 

numerical results of SPH are compared with corresponding experimental data. The 

good agreement between the two demonstrates that the SPH method can be a useful 

numerical tool for simulating the wave-induced motion and bending deformation of 

an ice floe. 

Keywords: SPH; wave-ice interaction; ice floe; kinematic response; wave-induced 

flexure; fluid-ice interface 

1. Introduction 

With the climate changes, the ice-covered seas are increasing in the cold ocean 

regions (Stephenson et al., 2011). Large-amplitude ocean waves are also becoming a 

common feature in the ice-covered ocean regions (Francis et al., 2011). There is 

growing observational and modeling evidence that the wave-ice interactions play an 

important role in these areas (Squire, 2007; Williams et al., 2013, Kohout et al., 

2016). Therefore, there is a great need to understand the mechanics of wave-ice 

interaction, especially the wave-induced kinematic responses and flexures of the ice 
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floe. As it is a fundamental issue of the wave-driven impact of sea ice floes on 

offshore structure and it should be helpful to investigate the interactions between the 

water wave and sea ice, which could result in the breakup of ice into smaller floes. 

The ice floes especially some small ones on the Marginal Ice Zone (MIZ), are 

sensitive to the motion driven by the ocean waves. The wave-driven floating ice floes 

can easily collide with the sea structure (Timco, 2011). So it is of great importance to 

study the kinematic responses of the small ice floes in waves, which are crucial to the 

understanding and mitigation of the potential hazard in the field (Mcgovern and Bai, 

2014). In addition, the ocean waves can also cause ice floes to bend and flex. When 

the flexural motion is large enough, the ice floes can even break-up into many smaller 

segments. These fragmented floes are easier to be driven by ocean waves and melt 

(Steele, 1992). Thus, the wave-induced flexure of an ice floe plays a key role in the 

extent and strength of the ice cover.  

In the past few years, some model tests of the wave-ice interaction have been 

conducted. Mcgovern and Bai (2014) made an experimental study on the kinematics 

of sea ice floes in regular waves. Meylan et al. (2015) used an experimental model to 

study the wave-induced flexure of a sea ice floe. An experimental model of 

transmission of the ocean waves by an ice floe was also presented by Bennetts et al. 

(2015), while another experimental investigation on the wave attenuation by a single 

ice floe in wave flume was carried out by Toffol et al. (2015). 

In addition, many numerical models were also used to study the interaction of the 

wave and the ice. Sakai and Hanai (2002) used an empirical equation to study the 

celerity characteristics of wave that propagates in a model sea area covered with ice. 

Kohout and Meylan (2008) proposed a model based on the two-dimensional multiple 

floating elastic plate solution in the frequency domain to analyze the wave attenuation 

in the MIZ. Meylan et al. (2015) presented a theoretical model by using the potential 

flow and thin-plate theories to model flexural motion induced by the ocean waves. Bai 

et al. (2017) investigated the kinematic responses of small ice floe in regular waves by 

using the linear analysis based on the potential flow model and the CFD based on the 

viscous flow model separately. Williams et al. (2013) used a theoretical model of the 

wave-induced flexural motion to parameterize ice floe breakup. Besides, Montiel and 

Squire (2017) proposed a numerical model to investigate the ice floe breakup under 

ocean wave forcing in the MIZ. Skene et al. (2015) and Skene et al. (2018) have 

investigated the overwash and flexure of a thin floating plate and overwash of a step 

forced by regular incident waves, respectively, which is similar to the overwash and 



flexure of an ice floe in the wave fields. 

In recent years, the mesh-free approach, i.e. Smoothed Particle Hydrodynamics 

(SPH) method, is emerging as a potential tool for simulating the fluid flows and their 

interactions with highly deformable structures. SPH method has been widely applied 

to the computational fluid simulations which include weakly compressible fluid flows 

(Morris et al., 1997), strictly incompressible fluid flows (Shao and Lo, 2003; Shao, 

2010), water wave dynamics (Khayyer et al., 2008; Zheng et al., 2014) and etc. On 

the other hand, the SPH method has also been employed in quite a few solid 

mechanics problems. For example, it was first used by Libersky and Petschek (1991) 

and then by Randles and Libersky (1996) for the investigations of large deformation 

and corresponding response of a solid material. Zhang et al. (2017) applied the SPH 

method to study the bending and compression failure progress of the ice. The SPH 

method has also received some attentions in the fluid-solid interaction problems. Bui 

et al. (2007) introduced an algorithm to simulate the interactions between the water 

and the soil. By using the SPH algorithm, Antoci et al. (2006, 2007) studied the 

complex hydroelastic problems and Amini et al. (2011) made investigations on the 

fluid-hypo-elastic solid interactions using SPH model. The hydroelastic problems 

were also simulated by He et al. (2017) using a coupled weakly compressible and 

total Lagrangian (WC-TL) SPH method.  

In this paper, the SPH method is extended to simulate wave-induced the kinematic 

responses and flexures of an ice floe. The main contributions of this paper lie in the 

following two aspects. On the one hand, a simple and effective interface treatment 

method for modeling the contact between the fluid and the ice floe is implemented in 

the SPH framework to simulate the wave-ice interactions. In this treatment, the ice 

particles from ice floe act as the dummy particles to approximate the interface 

between the fluid phase and the ice floe. The resulting forces on the ice particles from 

the fluid are derived based on the momentum balance and obtained by the volume 

integration of the fluid stresses of the neighboring fluid particles in the support area. 

Because there is no need to calculate the geometry of the ice floe boundary and the 

interface surface, this method provides a natural coupling treatment for the interaction 

between the fluid and ice particles, which is easy to implement even with complex 

geometries for ice floe in more complex and practical wave-ice interaction problems. 

On the other hand, the above literature reviews indicated that it is relatively 

challenging to simulate the kinematic responses and flexures by using the same 

numerical model. During the practical process of the wave-ice interaction, however, 



both the dynamic movement and bending deformation of the ice floe essentially occur 

together. This underlines the importance of simulating these two common processes 

in wave-ice interaction problems with a unified model.  

The present paper is structured as follows: Firstly, the governing equations of SPH 

are briefly introduced, for both the fluid and the solid phases. Secondly, some key 

numerical techniques are reviewed in Section 3, which includes the spatial derivative 

approximation of various SPH interaction terms, the imposition of Simplified Finite 

Difference Interpolation (SFDI) scheme, and the selections of computational time step 

and boundary conditions. Then the details of the fluid-solid interaction algorithm are 

developed in Section 4. Finally, the proposed SPH method is applied to simulate the 

kinematic response of an ice floe in regular waves and the wave-induced flexure of a 

sea ice floe, and validated against the experimental results. The satisfactory 

performance of the model in dealing with the complex wave-ice interactions is fully 

demonstrated by the comparisons with experimental data.  

2. Governing equations 

The governing equations in a SPH method are the mass and momentum 

conservation equations written in the Lagrangian form, based on the Navier-Stokes 

equations. 
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where   and   indicate the Cartesian components in x  and y  directions;  , 

v  and   are the particle density, velocity and stress tensor, respectively; g  is the 

gravitational acceleration; D Dt  denotes the particle derivative.  

The stress tensor can be decomposed into two parts, which are the hydrostatic 

pressure and deviatoric shear stress: 

 p s   = − +
 
                       (3) 

in which   is Kronecker delta and 1 =  if  =  or 0 =  when   .  



2.1. Fluid flow equations 

The mass conservation equation for the fluid is shown as Eq. (1). It assumes the 

fluid to be weakly-compressible and non-viscous. The momentum conservation 

equation for fluid is written as:  
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g
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                      (4) 

In order to simulate a weakly compressible fluid, the following equation of state 

(EOS) is used which defines the relation among the pressure, density and sound 

speed: 
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where 7 =  and 
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0  is the reference density, fc  is the reference sound 

speed for the fluid. max=10fc u  is adopted in this paper and 
maxu is the maximum 

flow velocity. 

 

2.2. Solid equations 

Governing equations for the ice particles are the same as Eqs. (1) and (2). Similar to 

Zhang et al. (2017), the hydrostatic pressure p  for ice particles in Eq. (3) is defined 

by using the mean stress, which means 3p = −  in this paper. The stress tensor can 

be written as follows: 

       
1

3
s     = +

                       
 (6) 

The ice floe is conducted as an elastic material based on Sergienko (2010). The 

elastic strain rate tensor  normally follows the generalized Hooke’s law: 
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in which s  is the deviatoric shear stress rate tensor; G  and E  are the shear 

modulus and Young’s modulus, respectively;   is the Poisson’s ratio. 

In order to take the superposed rigid rotation into account for the constitutive 



relations, the Jaumann stress rate is adopted when involving the large deformation. As 

a result, the final form of the stress-strain relationship of the elastic ice material can be 

shown as 

2 + +Ge K             = +                (8) 

in which 
 
and   denote the Cartesian components in x

 
and y directions, 

respectively; 
1

3
e     = −  is the deviatoric shear strain rate tensor, 

(2(1 ))G E = +
 
is the shear modulus, (3(1 2 ))K E = −  is the elastic bulk 

modulus. The components of the strain rate  are given by: 
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and   is the rotation rate tensors defined as: 
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3. SPH formulations  

3.1.Spatial derivatives and particle approximation in SPH 

In the SPH method, the quantities of particle i  can be approximated by the direct 

summation of the relevant quantities of its neighbouring particles j . Following the 

study of Colagrossi et al. (2009) and Adami et al. (2012), the continuity Eq. (1) can be 

approximated as follows: 
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where 
i  and 

im  are the density and mass of particle i  with velocity component 

iv ; 
j  and 

jm  are the density and mass of particle j  which has velocity 

component 
jv . A proper artificial diffusive term based on Antuono et al. (2010) is 

adopted into the continuity equation, which can remove the spurious high-frequency 

oscillations in the pressure field for the fluid simulation. This -SPH scheme reads: 
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and 
ji j i= −r r r . The coefficient   controls the order of magnitude of the diffusive 

term and is set to be 0.01 in this paper. 

According to Colagrossi et al. (2009), in which the free surface effect is considered, 

the SPH approximation of the momentum equation for the fluid can be written as:  
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where 
ij is the artificial viscosity, which was proposed by Monaghan (1992). 

In this paper, an artificial stress method proposed by Monaghan (2000) and Gray et 

al. (2001) is adopted to remove the numerical instability (Swegle et al., 1995), which 

is caused by clumping of the SPH particles for the solid mechnamics. The SPH 

approximation of the momentum equation for the ice model is shown as 
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where 
iR  and 

jR  are the artificial stress tensor of particles i  and j , 

respectively, with the correction parameter   (Gray et al., 2001). For all tests 

discussed in this study, 0.3 =  and 4n =  are adopted. 
ijf  is defined as 

( ),ij ijf W W d h=  , d  is the initial distance between two neighbouring particles.  

In this paper, the quintic kernel proposed by Wendland (1995) is used. In addition, 

the position of particle i  is defined based on the XSPH method (Monaghan 1992), 

which is shown as 
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3.2. SFDI method 

The Simplified Finite Difference Interpolation (SFDI) method is applied to 

calculate the strain rate of the ice particles, more details about the SFDI method can 

be found in Ma (2011). The enhanced performance of the SFDI method in solid 

mechanics can be found in Zhang et al. (2017). The strain rate of the tensor calculated 

by the SFDI method in 2D case can be written as   
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, where m x= , k y=  or m y= , k x= , N  is the number 

of neighboring particle for particle i , m

jr  indicates the component of the position 

vector of x  or y  direction.  

3.3. Time step 

To ensure the stability and accuracy of the integration scheme in solid and fluid 

solvers, the stepping length is governed by CFL-condition (Adami et al., 2012). The 

time step for the ice model is determined as 

    0.3 i
i

i

h
t

c

 
   

   
                          (20) 

where 
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=  is the sound speed for the ice, K  is the bulk modulus, 

0  is the 

reference density of the ice.  

The time step for the fluid model is shown as 
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where 
maxa  is the maximum acceleration, 

maxu
 
is the maximum velocity.  

It needs to be noted that the sound speed is obtained by using max10fc u= ,  so its 

value depends on each different cases. During the numerical test of wave-ice 

interaction in section 5, the time step of the fluid phase is much larger than the one of 

the ice model. In order to balance the computation time of the fluid and ice model, the 



time step of the fluid ft is determined by =f it n t  , n  is a constant, which is an 

integer multiple obtained from dividing the time step of the fluid in Eq. (21) by the 

one for the ice in Eq. (20).  

3.4. Boundary conditions 

In this part, the fixed solid boundary and the wavemaker boundary with the 

free-slip condition were modeled by using the mirror particles method following 

Randles and Libersky (1996). In the interaction zone between the fluid phase and the 

solid body, the solid particles represent the dummy particles, which can act on the 

continuity equation for the fluid phase. Thereby the density of a fluid particle 

contacted with the solid particles will increase which makes the pressure of this fluid 

particle positive. The positive pressure force obtained by these solid particles can 

prevent fluid particles from passing through solid particles. So the non-penetration 

impermeability condition on the boundary of solid body can be satisfied implicitly. In 

addition, according to Adami et al. (2012), the free-slip boundary condition can be 

applied on the solid body by simply neglecting the viscous interaction between fluid 

particles and adjacent solid particles.  

4. Fluid-solid interaction scheme 

 

(a) 



 

(b) 

Fig. 1. A schematic of fluid and solid particles at interface boundary: (a) the scheme 

of the fluid particle i  calculation; (b) the scheme of the solid particle i  calculation. 

 

  During the wave–ice interaction simulation, the contact algorithm is of high 

importance on the interaction zone (Fig. 1). In this study, a simple and effective 

wave-ice interface scheme is proposed. This new method introduces the dummy 

particles to approximate the interface between the fluid particles and the solid 

particles. When solving the equations of fluid mechanics, the solid particles in the 

neighbouring domain of the fluid particle i  can act as the dummy particles for 

strengthening the boundary conditions. When solving the momentum equations of the 

fluid particle i  which have both fluid and solid particles in its neighbor supporting 

domain, the solid particles j  in the neighbouring domain of the fluid particle i  

(Fig. 1a) are taken into account in the calculation of the momentum equations:  
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When acting as dummy particles, the corresponding pressure of ice particle j  in 

above equation can be interpolated by using the values of neighboring fluid particles 

by Eq. (23) which can refer to Adami et al. (2012). 

 

( )
M M

i ji j i ji ji

i fluid i fluid

j M

ji

i fluid

pW W

p

W


 



+ − 

=

 



g a r

                (23) 

The first item on the left hand in Eq. (22) is derived from the force over the solid 

particles acting on the fluid particles. When the solid particles act as the dummy 



particles for the fluid, the approximations of the force on the solid particle i  from 

the fluid particles are evaluated by using the volume integration of the fluid stresses 

tensor of its neighbouring fluid particles, which is also based on the momentum 

equation. According to Ren et al. (2015) where the wave-induced motions of a rigid 

body is considered, the force on solid particle i  from its neighbouring fluid particles 

j  (Fig. 1b) can be derived as 
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Correspondingly, the momentum equation of solid particle i  in the interaction 

zone can be written as  
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In the past few years, some FSI studies by using the SPH method have been 

conducted. Antoci et al. (2007) introduced the kinematic and dynamic interface 

conditions to model FSI problems considering a non-viscous flow by SPH. In addition, 

a repulsive force method was used to solve contact problems between the fluid and 

solid particles like Amini et al. (2011). Paredes and Imas (2013) also adopted a 

repulsive force method to model the coupling problems of fluid-structure interactions. 

Recently, He et al. (2017) used a coupled WC-TL SPH method to solve the 

hydroelastic problems. In their work, an equivalent interfacial force from fluid is 

applied to the solid body. Table.1 gives the short summary of these fluid–solid 

interaction schemes. 

 

Tab.1 Summary of four different fluid–solid interaction schemes. 
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,  ,  fluid solid sfluid ssolid  −−
= −F F  

where inta
r  is the position of the interface 

point closest to each solid particle s , a  is 

the number of rows between particle s  and 

the boundary, ˆ
sn is the normal unit vector of 

solid particle s , the subscripts +1s  and 

1s -  identify the particles preceding and 

following particle s .  

needs to be performed on 

the boundary for each 

boundary particle. This 

method requires a lot of 

complicated calculation. 

Therefore, the fluid-solid 

interaction is difficult to 

achieve, especially in the 

case of complex 

boundaries. 

 

Amini et 

al. (2011) 

Repulsive force:

2

 

1

f s

f f fs fs

s fs f s

fs

m mkh
K p W

r



  

 
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where fK  , 
1 , and

2  are constants. kh  

is the radius of the kernel and fsr is the 

distance between fluid and solid particles. 

The parameters in 

calculation of the 

repulsive force are 

uncertainty, which will 

lead to the numerical 

complexity and 

instability. 

Paredes 

and Imas 

(2013) 

Repulsive force:
2 

fsskin
fs
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m
gH W

m r
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=

r
F  

where f sp p = ,
skinm  is the mass of solid 

particle on the skin layer, m  is the mass of 

a fluid particle  

The ‘skin’ particle layer 

needs to be created to 

‘wrap’ the solid. In 

addition, the uncertainty 

of repulsive force also 

leads to the inaccuracy 

and instability of the 

numerical results. 

He et al. 

(2017) 
, 

ˆ
fluid solid s s s sp r− = F n  

1 1

1 1

2 2
s s s s sr − + = − + −r r r r  

where ˆ
sn  is the unit normal vector at 

interface solid particle s , +1s  and 1s -  

are adjacent interface solid particles of 

particle s . 

This method needs to 

identify the interface 

particles on the outer 

layer of solid body and 

get their arrangement 

order, calculate their 

normal direction, which 

increase the difficulty 

and workload of the 



calculation. 

Presented 

method ,

N
s j sj

fluid solid s s j

j fuid s j s

p p W
m m

x 
−



 + 
= −    

F  

where sp  is the corresponding pressure of 

solid particle s acting as dummy particle 

and obtained by Eq.(23). 

The presented method 

does not require explicit 

information about the 

geometry of the solid 

boundary and the 

interface surface, e.g. 

the position of interface 

surface particles and 

their normal vectors. 

 

In this work, the main advantage of the proposed interface method is simple and 

convenient of calculation, since it does not require complex processes for identifying 

the solid boundary and calculating the interface surface parameters. Hence, it is easy 

to implement and suitable for modeling the complex cases of wave and ice coupling 

problems with irregular boundaries of ice floe. The numerical tests in section 5 show 

that this proposed interface scheme can get good results for simulating the wave-ice 

interaction problems effectively and accurately. 

4.1. An elastic plate subjected time-dependent water pressure 

In order to verify the feasibility of the presented SPH method for fluid-solid 

interaction mechanics, the elastic displacement of an elastic plate subjected 

time-dependent water pressure is conducted in this part, which includes the 

comparisons with different coupling schemes. 

The elastic deformation of the plate subjected to water pressure is implemented, 

which is a benchmark test to verify the validity of the proposed interface treatment 

scheme for the case of fluid-solid interactions. The experimental and numerical study 

on elastic deformation of plate subjected to water pressure were conducted by Antoci 

et al. (2007). The initial calculation model is shown in Fig. 2. The elastic plate has the 

density 1100 =  kg/m3, the elastic modulus 2.0E =  GPa and Poisson’s ratio 

0.4 = . In this case, an initial particle size 0.01dx =  m is adopted. 

 



 

Fig. 2. The cantilever beam and the dynamic loads. 

 

To quantify the numerical results, Fig. 3 shows a series of the comparisons of the 

deformation process of elastic gate under water pressure. During the comparison, the 

experimental photographs are from Antoci et al. (2007). According to the results of 

Fig. 3, the free surface profile of overall flow field and the displacement of the elastic 

gate are similar to that on the corresponding experiment photos. In order to show the 

quality of this improvement, Fig. 4 gives the comparison of the horizontal and vertical 

displacement of the free end of the elastic gate among present SPH results, other SPH 

results (Antoci et al., 2007; Amini et al., 2011; Paredes and Imas, 2013; He et al., 

2017) and the experimental data. It shows that the time histories of the displacement 

obtained by the presented SPH method get a good agreement with the experimental 

data, although there exists some differences. But the presented results show better 

agreement with the experimental data compared with other SPH results. 

Moreover, it gives an error analysis to test the accuracy of different numerical 

methods. The averaged errors of different methods are obtained by 

2 2

0 01 1
( )

N N

d i i
Er d d d

= =
= −  , where d  is the displacement of numerical results 

above from 0.0t =  s to 0.4t =  s, 0d  is the corresponding displacement of 

experimental data from 0.0t =  s to 0.4t =  s. It shows that the relative errors are 

around 10.35% for the results in Antoci et al. (2007), 4.33% for that of Amini et al. 

(2011), 10.52% for that of Paredes and Imas (2013), 5.01% for that of He et al. (2017), 

and only 2.39% for that of the presented method, when compared with the 

experimental in Fig. 4(a). In the case of vertical displacement comparison, these 

errors are about 13.89%, 8.53%, 12.42%, 6.71% and 4.82%, respectively, which is 

shown in Fig. 4(b). In general, the numerical results of the presented method can 



achieve good accuracy in predicting the displacement at the free end of the elastic gate. 

 

 

   

(a) 0.178t =  s 

   

(b) 0.292t =  s 

   

(c) 0.405t =  s 

Fig. 3. Comparisons of the deformation progress of plate between laboratory 

photograph (Antoci et al., 2007) (left) and SPH particle snapshots (right) (contours of 

water pressure) at different time. 
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(b)  

Fig. 4. Comparisons of time histories between different SPH results and experimental 

data: (a) horizontal displacement; (b) vertical displacement for the free end of the 

plate. 

 

In order to evaluate the enhanced performance of the presented SPH method in 

detail，the convergence properties of the SPH results are examined in terms of the 

horizontal displacement for the free end of the plate. For this purpose, the time 

histories of horizontal displacement of SPH are presented in Fig. 5(a) with the 

different particle numbers N . Fig. 5(b) gives the convergence tests on horizontal 

displacement. It is shown in Fig. 5(a) that the results become closer to the 

experimental value with the increasing of particle numbers. The results of Fig.5(b) 

indicate that the errors of the horizontal displacement decrease with the decreasing 

particle size, and demonstrate a roughly first-order convergence ratio. It has been 

recorded that the CPU time (Intel i7 3.4 GHz with RAM 8 GB) of present simulation 

is 168.7 s with 2304N = , 2654.5 s with 14395N =  and 5952.2 s with 28217N = , 

respectively.  
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(a)                               (b) 

Fig. 5. The convergence test of the deformation progress of plate: (a) The time 

histories of horizontal displacement with different particle numbers; (b) Error of 

numerical results corresponding to different particle sizes.  

 

During the fluid-structure interaction, the transmission of the fluid energy to the 

structure is a notable problem (Amini et al., 2014). To investigate the conservation of 

energy for the presented SPH model, Fig. 6 shows the time history of whole energy of 

the system during the simulation. It is noted that the energy losses on other fixed walls 

have been removed in Fig. 6. It shows that the presented SPH model cannot satisfy 

the energy conservation completely, which means there exist a few energy losses at 

the interface domain. This situation can be improved, as the energy losses will 

decrease with the increasing particle number 
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Fig. 6. Time history of the energy changes with different SPH particle numbers.  

 

According to the numerical results compared with other fluid-solid interaction 

treatment method employed, the presented interface treatment algorithm in SPH is 

effective and gets better performance. 



5. Numerical results and analysis 

In order to investigate the effectiveness of the proposed SPH method for the wave-ice 

interaction simulation, two typical tests are included, one is the wave-induced kinematic 

response and the other one is the flexure of an ice floe. Quantitative comparison with 

experimental data shows that the proposed SPH algorithm has good performance. 

5.1. Validation of numerical wave basin 

In this part, the SPH method is applied to simulate a numerical wave basin. The 

wave tank is 20 m long, the initial still water depth is 0.5d =  m. The incident wave 

height and wave period are 0.12H =  m and 1.2T =  s respectively. Two 

measurement points 1G  and 2G  are fixed to monitor the wave profile on time 

histories, which are located at 7.0x =  m and 10.0x =  m from the left end of the 

wave basin respectively. The schematic of this wave basin is shown in Fig. 7. 

Regular waves can be generated by using a piston wavemaker based on the linear 

theory. Similar to the Gotoh et al. (2004) and Gao et al. (2012), the motions of the 

wavemaker can be defined as  

( )

( )

0

0

( ) sin
2

( ) cos
2

x
S t t

x
U t t







=


 =
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    (26)  

where ( )S t  and ( )U t  are the displacement and velocity of the wave maker, 

respectively. Besides, 
0x  and   are the motion amplitude and frequency of the 

wave maker. 
0 /x H Q= , Q  is the transfer function, which can be presented as  

24sinh

2 sinh 2

kd
Q

kd kd
=

+                      
   (27)  

An artificial sponge layer is fixed at the right end of the flume to prevent the 

undesirable wave reflections. In the damping zone, the final velocity of fluid particle 

is corrected by a velocity damping coefficient (  ) at the end of each time step. 

Following Wei and Kirby (1995) and Li et al. (2012), the damping coefficient of 

velocity attenuation (  ) can be written as 

https://0-www-sciencedirect-com.wam.city.ac.uk/topics/earth-and-planetary-sciences/attenuation-coefficients
https://0-www-sciencedirect-com.wam.city.ac.uk/topics/earth-and-planetary-sciences/attenuation-coefficients
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where sx  and sl  are the starting position and length of the damping region, 

respectively, ac  and an  are the empirical damping coefficients which can be  

determined by the numerical test. 0.1ac =  and 6an =  are adopted in this paper.  

 

Fig. 7. Schematic setup of the numerical wave tank. 

Fig. 8 shows the comparison of the time history of the wave profiles with the 

analytical results obtained from the second-order Stokes waves (Madsen, 1971) at the 

two measuring points. According to the results in Fig. 8, as the particle number 

increases, the difference between numerical results and the analytical solution 

becomes smaller. This has clearly evidenced the convergence of numerical results in 

spatial domains. Furthermore, the free surfaces predicted by the SPH approach shows 

a very good agreement with the analytical solution when particle number 

100000N = , although there still exists some little differences in the area of wave 

crest. 
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Fig. 8. Comparisons of wave surface profiles between analytical and SPH results at 

two measuring points: (a) 7.0x =  m; and (b) 10.0x =  m. 

 

In order to study the performance of the wave damping zone on the wave 

propagation, Fig. 9 shows the comparison between analytical solution and numerical 

results at the last two periods of wave propagation at the measure point 10.0x =  m. 

The results of the presented SPH show a slight underestimation of the wave crest and 

trough. The average relative errors aEr  are given in Fig. 10(a). Besides, Fig. 10(b) 

shows the average phase difference d  at the wave crest and trough between the 

analytical solutions and numerical results. According to the results of Fig. 10, with a 

decrease in the particle size (or an increase in the particle number), the errors between 

the analytical and SPH results decrease accordingly.  
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Fig. 9. Comparisons of wave surface profiles between analytical and SPH results with 



different particle numbers for the last two wave periods at 10.0x =  m. 
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Fig. 10. Comparisons of errors between analytical and SPH results with different 

particle numbers for the last two periods: (a) average relative errors of wave peak and 

trough; (b) average phase difference at wave crest and trough.  

 

In order to investigate the wave amplitude and phase shifting, the discrete Fourier 

transform (DFT) has been adopted for the last two periods of the wave profiles. DFT 

convert the time series s(n) of wave surface profiles to its Fourier components S(f): 

1
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where 1/f T=  is the wave frequency, N  is the total number of the selected time 

series and 
nt ndt= . 

The wave amplitude 
fA  and wave phase 

f  
can be obtained separately by 
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According to the SPH results of wave basin simulation in the case of particle 

number 100000N = , the estimated wave amplitude by the DFT method yields 0.056 

m and the wave phase is -74.03°. In contrast, the corresponding wave amplitude and 

wave phase obtained by the DFT method is 0.06 m and -77.54°respectively for 

analytical wave surface profiles. The relative errors between analytical solution and 

numerical result are about 6.67% and 4.53% respectively. 

5.2. Response of small sea ice floes in regular waves 

In this section, a numerical investigation is presented to study the kinematic response 

of sea ice floes in waves. The surge, heave displacement and the corresponding of 



velocity are analyzed by using the presented SPH model. The numerical results are 

compared against available experimental data. The experiment on kinematics of sea ice 

floes in regular waves was conducted by Mcgovern and Bai (2014). In their study, the 

paraffin wax of density 890.0 =  kg/m-3 was used to construct the ice floe model. The 

initial model is shown in Fig. 11. The model ice floe is 30 cm long and 5 cm thick. 

The model ice floe has the elastic modulus 2.0E =  GPa. In this case, the initial 

particle size is 0.0125 m.  

 

 

Fig. 11.  Schematic setup of the model ice floe in the regular wave. 

 

 

 

 

(a) 19.6t =  s 
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(b) 20.3t =  s 

 

 

(c) 21.0t =  s 

Fig. 12. Comparisons of the motion progress of model ice floe between laboratory 

photograph (Mcgovern and Bai, 2014) (left) and SPH particle snapshots (right) 

(contours of wave pressure) at different time. 

 

Fig. 12 shows a series of comparisons between the numerical results and 

experimental photographs for the motion progress of the model ice floe. The 

experimental data are obtained from Mcgovern and Bai (2014) with wavelength 

1.8 =  m and wave height 0.05H =  m at different time. According to the results of 

Fig. 12(a), the ice floe rises and moves forward obviously under the action of wave 

force. Then, the ice floe reaches the maximum rising position under the wave crest, as 

shown in Fig. 12(b). After that, the ice floe moves backwards and drops down as the 

wave falls, which is shown in Fig. 12(c). Generally, the agreement between numerical 

and experimental results is quite satisfactory. 
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(a) Surge displacement 

18 20 22 24 26
-0.2

-0.1

0.0

0.1

0.2

 

 

 y(
m

)

t(s)

EXP

SPH 

 

(b) Heave displacement 

Fig. 13. Comparisons of time histories of ice floe motion in regular wave between 

SPH results and experimental data: (a) surge in x  direction and (b) heave in y 

direction. 

 

In order to quantify the numerical results of the presented SPH, Fig. 13 shows the 

comparison of the model ice floe displacements in the x and y directions between the 

SPH results and experimental data. The tested cases just consider the steady state with 

the wave length 3 =  m and wave height 0.148H =  m. By examining Fig. 13(a), 

the ice floe can move forward step by step, and there are some oscillation motions 

added in the x direction during each wave period. According to Fig. 13(b), the ice floe 

moves up and down with the wave in the y direction periodically. The numerical 

results of SPH coincide reasonably with the experimental data in Mcgovern and Bai 

(2014) for the surge and heave motions, in spite of the unavoidable discrepancies. 

This provides a certain indication that the proposed SPH procedure can simulate the 



wave-induced kinematic response of a small ice floe effectively and acquire accurate 

numerical results. 
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(b)  

Fig. 14. Comparisons of the ice floe velocity in regular wave of 3 =  m, and 

0.132H =  m between SPH results and experimental data: (a) x  direction; (b) y  

direction. 

 

The velocity of ice floe is the noteworthy quantity in the calculation of wave 

induced motion of an ice floe. In this part, an investigation of the velocity of ice floe 

is conducted to verify the accuracy of the computed results. Fig. 14 gives the time 

history comparison of the ice floe velocities between SPH results and the 

experimental data in the x and y directions, respectively. The surge velocity in the 

positive direction is larger than that in the negative direction, which corresponds to the 

trend of surge displacement in Fig. 12(a). During the first few periods, the difference 

between the numerical results and the experimental data is relatively large. However 



when the steady state is reached after about 14t =  s, the trend of x  and y  

velocities predicted by the SPH method shows a good agreement with the 

experimental data. 

In addition, the drift velocity is also an important quantity for ice motion. For a 

pure wave motion in fluid dynamics, the Stokes drift velocity is the average velocity. 

The equation of the drift velocity based on the Stokes theory can be given as follows: 

2 2 cosh 2 ( y)

sinh 2
d

ga k k H
V

f kH

+
=

                      
(31) 

where k , a  and f  are the wave number, wave amplitude and wave frequency, 

respectively. 

According to Eq. (31), the drift velocity obtained by the Stokes theory is a 

quadratic function of the wave steepness ka . In this case, the wavelength is a 

constant at 1.8 =  m and the corresponding wave height and ka  value can be 

found in Mcgovern and Bai (2014). In numerical results, the period-averaged Stokes 

drift velocity dV  is obtained by searching the horizontal displacement between two 

peaks and dividing by the wave period T. Then the corresponding values for five 

wave cycles during a quasi-steady state are taken and averaged. 
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Fig. 15. Comparisons of drift velocity for the model ice floe among SPH results, 

experimental data and analytical solution. 

 

Fig. 15 shows the comparisons of drift velocity for the ice floe between the SPH 

results, experimental data (Mcgovern and Bai, 2014) and analytical solutions 

calculated by the Stokes theory. The drift velocity is normalized by the wave celerity 

C , which is a function of ka . As shown in Fig. 15, the numerical and experimental 

values are slightly larger than the theoretical results, but they are generally all in good 

agreement, which is similar to the findings in Bai et al. (2017).   



5.3. Wave-induced flexure of an Ice Floe 

In this part, the flexural deformation of ice floe caused by regular wave impact is 

given The experimental investigation of wave-induced flexure of a sea ice floe was 

conducted by Meylan et al. (2014), in which a thin plastic plate was applied to model 

the ice floe. The general layout of initial calculation model is shown in Fig. 16. The 

model ice floe has density 500.0 =  kg/m3, thickness 10h =  mm, length 1.0l =  

m and the elastic modulus 500E =  MPa, which are same with that in the model 

test by Meylan et al. (2014). In this case, the initial particle size is 0.015 m. In 

addition, the model ice floe is moored loosely. The mooring line system is taken as a 

light spring model and the value of mooring force can be written as 

  

( )0 0

0

     0
 

                 

t t t tk l l l l

else

− − 
=


moor
F                         (32) 

where k  is the coefficient of elasticity of mooring line. tl  and 0tl are the transient 

length and the initial mooring line length, respectively. 

 

 

Fig. 16.  The general layout of computational model of wave-induced flexure of an 

ice floe. 
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Fig. 17. Comparisons of the model ice floe overwash between the experimental 

results ( upper snapshots ) and the SPH results ( lower snapshots ) for wavelength 

1 =  m: (a) Wave stepness 0.1ka = ; (b) Wave stepness 0.15ka = . 

 

Fig. 17 shows the comparisons of the mode ice floe overwash with different wave 

steepness between the experiment snapshots from Meylan et al. (2014) and numerical 

results of the presented SPH. The model ice floe exhibits obvious bending 

deformation according to the results in Fig. 17. The overwash of the mode ice floe at 

the left end can be captured obviously in numerical results, although there exists a 

little difference with the experimental snapshots, especially for the case of wave 

stepness 0.15ka = , where k  is the wave number and a  is the wave amplitude. 
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Fig. 18. Comparisons of flexure of the ice floe in regular wave between SPH results 

and experimental data when wave steepness is 0.04: (a) 0 = ; (b) / 2 = ; (c) 

 = ; (d) 3/ 2 = . 

 

Fig. 18 gives the comparisons of bending motion of the model ice floe between the 

presented SPH and experimental data for a period 0.6 s in which the steepness is 0.04 

and the  indicates the wave phase. According to Fig. 18, the model ice floe has four 

typical bending patterns during one wave period. In addition, the flexure motions 

obtained by the SPH method are generally in reasonable agreement with the 

experimental results although there are some differences. The SPH results show more 

significant bending deformation than that of experimental data, especially for the case 

of = /2  . One probable reason is that the SPH results are based on 

two-dimensional case while the experiment data is in three-dimension.  
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Fig. 19. Comparisons of flexure of the model ice floe between SPH results and 

experimental data in regular wave with wave steepness of 0.15: (a) 0 = ; (b) 

/ 2 = ; (c)  = ; (d) 3/ 2 = . 

 

In order to validate the numerical model further, Fig. 19 gives the equivalent 

comparison as Fig. 18 for the wave steepness of 0.15. According to the results of Fig. 



19, the presented SPH model can give satisfactory results for predicting wave-induced 

flexure of ice floe when the wave steepness increases. The flexural displacement of 

ice floe increases with the increasing of the wave steepness. According the results of 

Fig. 18 and Fig. 19, the displacement of the ice floe flexure predicted by the presented 

SPH is slightly larger than the one of the experimental data in Fig. 19. There exist 

some obvious differences of the bending deformation on both ends of the ice floe 

between the SPH results and the experimental values. One important reason is the 

uncertainty of the mooring force on both ends of the ice floe. 

During the flexural motion, the ice floe will get the biggest flexural displacement. 

The maximum flexural displacement of the ice floe is a noteworthy quantity and 

reflects the response amplitude of the ice floe caused by wave impact. So the biggest 

flexural displacement in the middle of the ice floe is investigated in Fig. 20. In this 

case, the maximum flexural displacements in the middle of the ice floe changes with 

different length l  and wave height H by the presented SPH method. The maximum 

flexural displacements can increase linearly with wave height. In addition, the larger 

length l  of ice floe can cause greater flexural displacements with the same wave 

height. 
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Fig. 20. Comparisons of maximum flexural displacements in middle of ice floe 

predicted by the presented SPH with different floe length l  and wave height H . 

Conclusion 

The SPH model including a simple and effective fluid-ice interaction algorithm is 

presented to simulate the wave-ice interaction. The proposed treatment scheme has 

the advantages of computational simplicity and avoiding the issues in other interface 



methods, such as the requirement to calculate the normal direction of the interface 

surface or interface particles. The proposed interface algorithm is validated through 

the elastic deformation of a plate subjected to the water pressure. Then the SPH model 

is applied to study two typical cases of wave-ice interaction, including the kinematics 

of a small ice floe in waves and the wave-induced flexure of an ice floe. According to 

the comparisons between the numerical results and the experimental data, the 

performance of the presented SPH is found to be satisfactory in view of accuracy and 

stability, although there still have some kinds of differences. Future work is needed to 

improve the method to simulate more practical and complex water wave-ice 

interactions, such as the wave-induced ice floe breakups. 
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