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Supervised machine learning can be used to predict properties of string geometries with previously 
unknown features. Using the complete intersection Calabi–Yau (CICY) threefold dataset as a theoretical 
laboratory for this investigation, we use low h1,1 geometries for training and validate on geometries with 
large h1,1. Neural networks and Support Vector Machines successfully predict trends in the number of 
Kähler parameters of CICY threefolds. The numerical accuracy of machine learning improves upon seeding 
the training set with a small number of samples at higher h1,1.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Ever since Kaluza and Klein extended the original insight of Ein-
stein, we regard the fundamental forces as having an intrinsically 
geometric origin. The modern realization of this paradigm is the 
compactification of superstring theory down to four dimensions in 
order to recover the particle physics probed in experiments and 
inferred from astrophysical observations. In the most straightfor-
ward approach consistent with low energy supersymmetry, the six 
extra dimensions predicted by string theory comprise a compact 
Calabi–Yau threefold. Geometric and topological properties of the 
Calabi–Yau threefold determine features of the four dimensional 
effective action. For example, the Euler character of the geome-
try fixes the number of generations of light particles. Starting from 
the work of [1] and [2], numerous constructions of this type repli-
cate the matter spectrum and gauge symmetries that we observe 
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in Nature [3–10]. Naïve extrapolation of even the simplest class of 
models suggests that there are 1023 (nearly a mole’s worth) of su-
perstring derived Standard Models [11].

The vacuum selection problem, to find a principle that expli-
cates which solution of the fundamental theory constitutes our 
world and how and why this came to be, remains an outstanding 
puzzle. It is also unknown what the typical string compactifica-
tion looks like and how closely this solution resembles the one 
we actually inhabit. There are 7890 complete intersection Calabi–
Yau (CICY) threefolds realized as the zero locus of polynomials 
in complex projective space. There are an unknown number of 
toric Calabi–Yau threefolds obtained from triangulation [12,13] of 
the 473 800 776 reflexive polytopes in R4 tabulated by Kreuzer 
and Skarke [14]. Other Calabi–Yau spaces are neither CICY nor 
toric. The largest available database [15,16] describes only the toric 
Calabi–Yau geometries with Hodge number h1,1 ≤ 6. While [17]
explores the shape of the full Kreuzer–Skarke dataset, it suffices 
to notice that the distribution peaks sharply, and 910 113 of the 
polytopes sit at (h1,1, h2,1) = (27, 27). The explicit Standard Model 
constructions to date meanwhile correspond to geometries whose 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Hodge numbers are O (1) rather than O (10). These are atypical as 
manifolds with small Hodge numbers are sparse.

Recently, a promising new approach to studying the vacuum 
selection problem has emerged. The development of Big Data tech-
niques in computer science and the broad applicability of these 
methods to such disparate fields as art, finance, chess and go, 
linguistics, medicine, music, experimental particle physics, and zo-
ology invites us to also use these tools to investigate aspects of 
string phenomenology and string mathematics. In particular, the 
paradigm of machine learning the landscape by using neural net-
works to study algebraic geometry, potentially bypassing expensive 
computations such as Gröbner bases, was proposed in [18,19] (cf.
a pedagogical introduction in [20]). Already, there has been a sig-
nificant amount of work in this direction, ranging from the studies 
of CICY geometries to the computation of line bundle cohomolo-
gies of toric hypersurfaces [18–33]. These studies have relied upon 
a multitude of algebro-geometric databases collected over the past 
few decades. A large fraction of such machine learning aided stud-
ies of the string landscape has been through the lens of neural net-
works with a variety of architectures [18,19,21–28]. A host of other 
techniques such as linear and logistic regression, Support Vector 
Machines (SVMs), and random forests, to name a few, have also 
been used, sometimes in conjunction with neural networks [21,25,
28–31,33].

In our previous work [21], using the CICY threefolds as a 
testbed, we answered the following questions. Given the configu-
ration matrix which defines a CICY threefold, can machine learning 
techniques compute the Hodge numbers of the geometry? Can the 
machine deduce whether the geometry is favorable, viz., does the 
number of projective space factors in the ambient space equal 
h1,1? This property is important because such geometries accom-
modate the construction of stable vector bundles for string model 
building. Can the machine determine which geometries enjoy dis-
crete symmetries, which are crucial for introducing Wilson lines 
that break the GUT symmetry to the Standard Model group? We 
find that even with 50% of the data for training, neural network 
classifiers identify the Hodge numbers at better than 80% accuracy. 
We select favorability with SVMs with more than 90% accuracy. Be-
cause CICYs with discrete symmetries are relatively rare (∼ 2.5% of 
all cases) [34], correctly isolating only these geometries is a com-
paratively less successful effort.

Heuristically, all of these investigations unfold as follows. We 
segregate the dataset into two disjoint parts: a training set T and 
its complement T c , used for validation. The machine is taught the 
associations

{a1,a2, . . . ,an} −→ {b1,b2, . . . ,bn} (1)

for elements ai ∈ T . Based on what it has learned about the train-
ing set, the machine then tries to determine the b j corresponding 
to the unseen elements a j ∈ T c . The selection of the elements in 
T is performed at random at the outset. Since the CICY threefolds 
have been studied for decades starting from the work of [35], we 
know what the answers are and can check how frequently the al-
gorithms arrive at the correct result. Choosing different training 
sets and repeating the experiment allows us to assign error bars 
to the results obtained from validation. By increasing the size of 
the training set incrementally, we examine the machine’s learning 
curve.

While this provides an unexpectedly good proof of concept, the 
methodology is not realistic for addressing the fundamental chal-
lenge in studying Calabi–Yau compactifications: the difficulty of a 
calculation increases with the Hodge numbers and the dimension. This, 
after all, is why explicit Standard Model constructions are on man-
ifolds with Hodge numbers of O (1) and why triangulating poly-
topes to populate the toric Calabi–Yau database [16] stopped at 
h1,1 = 6. One estimate of the total number of triangulations of 
the Kreuzer–Skarke dataset is 1010505 [33]. While there are 108

reflexive polytopes associated to toric Calabi–Yau threefolds, the 
best guess in the literature is that there are 1018 reflexive poly-
topes whose triangulations yield toric Calabi–Yau fourfolds relevant 
for F-theory model building [36]. There may be 103000 distinctly 
resolvable base geometries [37]. The scale of these numbers ren-
ders any systematic survey of the string landscape unfeasible. We 
would therefore like to develop techniques such that the training 
and validation sets are different in character. We aim to train with 
the easy cases and use the machine to predict solutions to harder 
problems for which the calculations are more intricate or where 
the answers could be unknown. We want as well to measure how 
reliable the results are when we segregate the data in this imbal-
anced way. By organizing the CICY dataset into a low h1,1 training 
set and a high h1,1 validation set, we report on progress in this 
effort.

The structure of this letter is as follows. In Section 2, we review 
the CICY threefolds. In Section 3, we describe the machine learning 
architectures we employ. In Section 4, we present the results of our 
investigation, which focuses on determining h1,1 starting from the 
configuration matrix as the input. In Section 5, we provide a brief 
discussion and a prospectus for future work.

2. Complete intersection Calabi–Yau threefolds

For completeness, we briefly recall the relevant geometry. We 
refer the reader to [38] for a pedagogical review and references 
therein to the original literature.

A Calabi–Yau manifold admits a Ricci flat Kähler metric. We 
enforce this requirement by ensuring that the first Chern class van-
ishes. The simplest example of a compact Calabi–Yau threefold is 
the Fermat quintic in P 4:

5∑
α=1

z5
α = 0 , (2)

where (z1, . . . , z5) ∼ λ(z1, . . . , z5) are coordinates on projective 
space and λ ∈C� . As (2) is a homogeneous equation, we designate 
this geometry P 4(5)−200. The subscript denotes the Euler charac-
ter χ = 2(h1,1 − h2,1). This is the prototype example of a class of 
geometries. Consider the configuration matrix

X =
Pn1

...

Pn�

⎛
⎜⎝

q1
1 · · · q1

K
...

. . .
...

q�
1 · · · q�

K

⎞
⎟⎠

χ

. (3)

The zero locus of a set of homogeneous polynomials defined by the 
given matrix over the combined set of coordinates in the product 
of the projective spaces Pni is a complete intersection Calabi–Yau
(CICY) threefold when

�∑
i=1

ni − K = 3 , (4)

K∑
a=1

qi
a = ni + 1 , ∀ i ∈ {1, . . . , �} . (5)

The former condition imposes the requirement that the manifold is 
a complete intersection threefold while the latter guarantees that 
c1 = 0. The simplest geometries obtained in this manner are

P 5(3,3)−144 , P 5(4,2)−176 ,

P 6(3,2,2)−144 , P 7(2,2,2,2)−128 . (6)
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The Tian–Yau manifold is another example of a CICY threefold:

P 3

P 3

(
3 0 1
0 3 1

)
−18

⇐⇒
aαβγ wα wβ wγ = 0 ,

bαβγ zαzβ zγ = 0 ,

cαβ wαzβ = 0 ,

(7)

where w and z are homogeneous coordinates on each of the two 
P 3s and a, b, c are generic coefficients.

For CICY threefolds, the size of the configuration matrix X is 
constrained. We find that

K ≤ N1 + Na + 3 , N1 ≤ 9 , Na ≤ 6 . (8)

Here, N1 counts the number of P 1 factors and Na counts the 
number of other projective space factors. There are 7890 config-
uration matrices ranging in size from 1 × 1 (the quintic) to 12 × 15
with elements qi

a ∈ [0, 5]. In this dataset available at [39], we find 
70 distinct Euler characters χ ∈ [−200, 0] and 266 distinct Hodge 
pairs (h1,1, h2,1). The topological invariant h1,1 counts the number 
of two cycles and four cycles and accounts for the Kähler deforma-
tions, whereas h2,1 counts the number of three cycles and accounts 
for the complex structure deformations. These are, respectively, the 
size and shape parameters of the geometry. Within the set of CICY 
threefolds,

0 ≤ h1,1 ≤ 19 , 0 ≤ h2,1 ≤ 101 . (9)

Mirror symmetry — invariance under the interchange h1,1 ↔ h2,1

— is not a property of the dataset. As χ is always negative, 
h1,1 ≤ h2,1 for any given CICY threefold. The Euler character is 
a cubic expression in the elements of the configuration matrix. 
Calculating h1,1 and h2,1 is conceptually straightforward but re-
quires some care [40–45]. One of the goals of applying machine 
learning to this dataset is to circumvent the necessity of studious 
sequence chasing. Of the CICY threefolds, 195 possess freely acting 
symmetries; 37 different finite groups appear, ranging from Z2 to 
Z8 � H8 [34]. A number of CICY threefolds also admit non-freely 
acting symmetries [46,47].

We tabulate the number of geometries with each value of h1,1

in Table 1. Among the CICY threefolds, 4874 out of the 7890 are 
favorable, i.e., for these manifolds, the second cohomology class 
descends from that of the ambient space Pn1 × . . . ×Pn� [10]. Fa-
vorability, however, is not a topological invariant. It turns out that 
all but 48 CICY threefolds can be given a favorable representation 
by splitting the configuration matrices, while the remaining can 
be described favorably in products of almost del Pezzo surfaces 
[48], resulting in the dataset of maximally favorable CICY three-
folds available at [49]. We will however work with the original 
CICY threefold dataset [39] in line with our work in the previous 
publication [21]. We finally note that h2,1 ranges over a larger in-
terval than h1,1. Fig. 1 plots the number of geometries at a given 
h2,1. Knowing h1,1, once we compute χ , the Hodge number h2,1 is 
Fig. 1. Multiplicity of h2,1 in CICY threefold dataset.

of course redundant information. The goal of machine learning is 
to determine topological invariants and properties like favorability 
using the configuration matrix as an input.

The CICY fourfolds are catalogued in [50]. (There are 921 497
configuration matrices most of which correspond to elliptically 
fibered Calabi–Yau spaces.) Fourfolds have four non-trivial Hodge 
numbers of which three are independent:

4h1,1 − 2h2,1 + 4h3,1 − h2,2 + 44 = 0 . (10)

Identifying all of the discrete symmetries in this dataset has 
not been accomplished. Thus, there is a potential benefit to ap-
plying machine learning to this effort as well. This is work in 
progress.

3. Neural networks and Support Vector Machines

Our analysis in this paper involves a neural network regres-
sor as well as a classifier, and an SVM regressor. We begin by 
specifying the input representations of the neural networks. For 
the regressor, we use the flattened form of the CICY configura-
tion matrix, whereas for the classifier, we use the configuration 
matrix itself. To ensure uniformity of input dimensions, we pad 
with zeroes. While we have not conducted a systematic study, 
preliminary investigations suggest that different representations of 
the input related by permutation of the configuration matrices, or 
padding do not significantly alter the performance of the neural 
networks. We also find that using adjacency matrices of the bi-
partite graph representations of the CICY matrices as input, does 
not yield significantly different results. The architectures for the 
regressors are similar to that in [21]. We use the Keras Python 
package with TensorFlow backend to implement the neural net-
work. The neural network consists of a 1000 neuron layer, ReLU 
(rectified linear unit) activation layer, 1 neuron summation and 
sigmoid activation. We use the quadratic programming Python 
package Cvxopt to solve the SVM optimization problem. The hy-
perparameters are selected by hand. We employ a Gaussian kernel 
Table 1
The frequency row gives the multiplicity of h1,1 in the CICY threefold dataset. N(h1,1) counts the number of CICY threefolds with Hodge number less than or equal to h1,1. 
The favorable row counts the number of favorable CICYs with a given h1,1.

h1,1 0 1 2 3 4 5 6 7 8 9

frequency 22 5 36 155 425 856 1257 1463 1328 1036
N(h1,1) 22 27 63 218 643 1499 2756 4219 5547 6583
favorable 0 5 36 155 425 835 1139 0 0 0

h1,1 10 11 12 13 14 15 16 17 18 19

frequency 648 372 161 72 22 16 1 0 0 15
N(h1,1) 7231 7603 7764 7836 7858 7874 7875 7875 7875 7890
favorable 0 0 0 0 0 0 0 0 0 0
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Fig. 2. Neural network and SVM predictions of h1,1 for CICY threefolds. The first row shows predictions by the neural network classifier using the training set ̃Tx . The second 
row shows the neural network regressor predictions using training sets Tx (left) and ̃Tx (right). The third row shows the same for the SVM.
with σ = 2.74, C = 10, and ε = 0.01 for predicting h1,1, and σ = 3, 
and no slack for the remaining experiments. Calculations for the 
regressors are performed on a Lenovo Y50 laptop, i7-4700HQ, 2.4
GHz quad core with 16 GB RAM. The architecture of the neural 
network classifier, implemented on Mathematica (version 11.3), 
consists of two Long Short-Term Memory layers with a dropout of 
0.2, each followed by a tanh and ReLU activation in sequence, and 
batch normalization. This is connected to two linear layers with 
dropout of 0.2, each (again) followed by a tanh and ReLU activa-
tion in sequence. The final components are a linear layer, followed 
by a tanh and ReLU activation in sequence. Each layer has 120
nodes. The penultimate layer of the neural network is a softmax 
layer.
4. Predicting h1,1

We use machine learning to compute the Hodge number h1,1 of 
CICY threefolds. Training on the configuration matrices at low h1,1, 
the algorithms successfully predict trends in the distributions of 
Hodge numbers at higher h1,1, but do not provide accuracy com-
parable to the random sampling previously studied in [21]. This is 
corrected by including a small selection of samples at higher h1,1.

We set up the experiment in two parts. In the first part, we 
train with configuration matrices with h1,1 ≤ x, and test with con-
figuration matrices with h1,1 > x. In the second part, we repeat 
the experiment by augmenting the training set above with 10% of 
the configuration matrices with h1,1 > x, randomly sampled, and 
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Fig. 3. Accuracy, rms error and Matthews correlation coefficient (φ) of h1,1 predictions for CICY threefolds, by the neural networks and SVM. Lighter bars represent the 
training set size, and darker bars, the validation set size. Figures on the left in each row correspond to experiments using the training set Tx, and the figures on the right 
correspond to experiments using the training set ̃Tx . For the experiments involving ̃Tx , we also show the effect of using the squares and cubes of the elements of the CICY 
configuration matrices (3) as input features. For the neural network classifier we also show the effect of including square and cubic features in addition to the original 
feature, the CICY matrices.
test using the remaining configuration matrices. We denote these 
two training sets by Tx and T̃ x respectively. The integer bound x
is a tuneable parameter. In our experiments we choose 2 ≤ x ≤ 10. 
With reference to Table 1, the size of the first training set Tx is 
N(x), and the size of the validation set is 7890 − N(x). Similarly, 
the size of the second training set T̃ x is Ñ(x) := N(x) +� 7890−N(x)

10 �, 
and the size of the test set is 7890 − Ñ(x). Using the training set 
Tx (T̃ x), at h1,1 = 7, we train with ∼ 53% (58%) of the dataset while 
at h1,1 = 9, we train with ∼ 83% (85%) of the dataset.

The true distribution of CICY threefolds peaks at the value 
h1,1 = 7. Fig. 2 shows neural network and SVM predictions of this 
distribution. Fig. 3 shows the accuracy, root-mean-squared (rms) 
errors and Matthews correlation coefficient (φ) for the predictions. 
The left and right panels of these figures correspond to the use 
of the two training sets Tx and T̃ x respectively, which were de-
fined above. The neural network classifier performs rather poorly, 
when trained using the set Tx , and we exclude its predictions from 
Figs. 2 and 3.

Focusing first on the experiment using the training set Tx , 
wherein we use the neural network and SVM regressors, we note 
that the algorithms predict a peak in the h1,1 distribution for each 
value of x, though the position of the peak is slightly incorrect. 
Both the algorithms consistently overpredict the number of mani-
folds with low h1,1, regardless of the parameter x. This is not sur-
prising since the only data the machine has seen for training are 
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those geometries with h1,1 ≤ x. This stagnates the neural network, 
with it eventually predicting most of the manifolds with h1,1 > x
to have h1,1 ≤ x, causing the growth in the rms error after the 
initial dip (Fig. 3). The dip itself corresponds to the better predic-
tions as seen in the neural network plot (Fig. 2). From the accuracy 
and rms error plots (left panels in Fig. 3), we note that the SVM 
performs significantly better than the neural network, though the 
overall predictive powers of both the algorithms are limited. This 
analysis shows that the regressors are capable of predicting trends 
in the distribution of Hodge numbers from the limited data.

We now compare the results above with those from the exper-
iment using the modified training set T̃ x . The right panels in Fig. 2
show the level of agreement of the predictions with the true h1,1

distribution, demonstrating a marked improvement in the machi-
nes’ predictive ability, from above. This is further evidenced by the 
higher accuracies and Matthews coefficient, and lower rms errors 
(in the right panels of Fig. 3). This significant enhancement of pre-
dictive ability is seemingly disproportionate to the expected gain 
of these algorithms (especially the neural networks) from the use 
of an increased number of training examples. This indicates that 
adding a small fraction of randomly sampled data from the list of 
manifolds with h1,1 > x to the training set results in significantly 
improved predictions. Finally, we note that the neural networks 
perform better than the SVM in the domain of low x, and the 
SVM performs marginally better in the domain of high x. The ac-
curacy, which is lower than what we report in [21], corresponds 
to an exactly correct identification of a manifold’s h1,1 based on 
an imbalanced training set. The misidentifications follow a Gaus-
sian profile: a prediction is more likely to be off by a little than 
by a lot. Even with a simple Mathematica implementation, the 
algorithm is much better at distinguishing large from larger h1,1.

As we have noted in Section 2, the Euler character is cubic in 
the elements of the configuration matrix. It is also proportional 
to the difference between h1,1 and h2,1. Instead of training with 
the elements mij of the CICY configuration matrix, suppose we use 
m2

i j or m3
i j as inputs.1 We can nudge the performance slightly. The 

square and cubic inputs both yield nearly the same results (Fig. 3). 
The neural networks respond more favorably to the alternative in-
put than the SVM.

5. Discussion

The difficulty of exploring the string landscape and character-
izing the vacuum space of solutions is technical. We cannot per-
form detailed calculations, for instance, in Standard Model build-
ing, when the Hodge numbers are large. Indeed, even finding all 
triangulations of a reflexive polytope at h1,1 ≥ 7 to determine the 
full set of toric Calabi–Yau threefolds that are candidate geometries 
for superstring compactification has not been accomplished [16]. 
A similar systematic effort for fourfolds in F-theory has not even 
been attempted. As a result, we do not know how many string 
vacua there are and what fraction of these resemble the real world.

Supervised machine learning provides a structure to attack this 
class of problems in the face of incomplete data. Studying CICY 
threefold geometries, this letter suggests that the strategy to em-
ploy is to compute simple examples and a representative smat-
tering of the harder cases. This supplies the information that the 
machine requires to predict trends in the data and achieve re-
sults roughly comparable to sampling from the entire dataset. The 
same methodology should be extensible to other large datasets 
of Calabi-Yau manifolds including the Kreuzer-Skarke dataset [14], 

1 We thank Andre Lukas for suggesting this experiment.
CICY fourfolds [50], generalised CICYs [51] and Calabi-Yau man-
ifolds in weighted projective spaces [52]. We hope to return to 
these cases in the future. Something similar happens when neu-
ral networks learn the hyperbolic volume of knot complements 
from Jones polynomials [53]. The answers we obtain offer a start-
ing point by flagging geometries that a string phenomenologist or 
a string theorist might find interesting. Because the answers are 
not always error-free, we view this as an example of probably ap-
proximately correct learning [54].

The topological invariants of CICY geometries are by now ex-
tremely well studied. We have therefore not learned anything new 
about these manifolds as a result of this investigation. The work 
of [18–21] and what we report here nevertheless teaches us some-
thing profound. The traditional methods for computing topological 
features of Calabi–Yau geometries — sequence chasing, doubly ex-
ponential Gröbner basis algorithms, etc. — may not be the most ef-
ficient way to proceed. Machine learning responds to these queries 
in polynomial time. We therefore conclude that there are better 
ways to calculate.

How does a machine learn? At the most basic level, the prob-
lems we confront in computational algebraic geometry reduce to 
finding the (co-)kernels of integer matrices. We have a black box 
that applies this process to land on useful semantics without 
knowing any syntax. The central open question is to dissect the 
black box and translate these algorithms into something a human 
can understand and implement. We aim to report progress in this 
endeavor in future work.
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