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ABSTRACT 

A review of research on the shear strength of reinforced 

concrete beams is given, indicating that although reliable empirical 

conclusions can be made about beam behaviour, little is known about 

the way in which reinforced concrete beams carry shear. 

Extensive tests are described in which the distribution of 

shear force in a beam subjected to combined bending and shear is 

studied. In the first of the tests, the shear force carried by beam 

compression zones was investigated and these tests showed that only 

a quarter of the total shear force is carried by the compression 

zone. The shear force carried across the cracks in beams was then 

studied, in two investigations. Firstly the force carried across 

cracks by the main tension steel acting as a dowel was measured in 

a series of model and prototype tests. Secondly the forces carried 

across cracks by interlock of the aggregate were estimated in two 

separate tests, one on cracked blocks of concrete and one on beams 

specially designed to eliminate other methods of shear transfer. 

The strains and displacements from elastic analysis of the 

concrete cantilevers between cracks loaded by the measured force in 

the beams are shown to be consistent with the observed crack patterns 

in beams. 

A mathematical model is then described in which the path of a 

shear crack and distribution of shear forces was found in beams by 

considering the equilibrium and compatibility of displacements of 

the parts of the beams separated by a section through the crack 

and beam compression zone. 

Finally the implication of these theories in explaining the 

behaviour of beams with stirrups was considered and some experimental 

evidence is given of the internal distributions of shear forces in 

beams with stirrups. 
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CHAPTER 1 

INTRODUCTION 

Throughout the eighty years of the use of structural concrete, 

research has been carried out into the strength of reinforced 

concrete members subject to combined bending and shear. A number 

of shear failures of structures in service have occurred and as 

these are usually abrupt and cause severe structural damage, research 

work has been instigated continuously on this problem. 

So far, inadequacy of design knowledge in this subject has 

led to failures which affect the safety of structures, rather than 

their serviceability. Complaints of inadequate performance of 

structures at their working loads due to the effects of shear forces 

are almost unknown. 

Because of this and because of the difficulty of formulating 

a reliable mathematical analysis of the behaviour of beams in shear, 

research has tended to concentrate on predicting the collapse load 

of such members, usually on an empirical basis. This trend has been 

accentuated by the increasing use of new materials and by changes in 

structural form. 

Thus the use of high strength deformed steels and the doubling 

of steel working stresses over the last thirty years has made it 

essential that test work be constantly carried out. Similarly, the 

current unpopularity of haunched beams and bent up.bars, because of 

their cost, has also changed the conditions under which earlier work 

was carried out. At the moment approximately two thousand test 

results exist in the literature from which reliable design rules 

have been developed. The rules in the Draft Unified Code of Practice, 

the ACI-ASCE Code and the C.E.B. Recommendations all lean heavily on 

these tests. 

It is unfortunate that because of the need for this large amount 

of test work to be carried out, studies of basic behaviour of beams 

and the way in which they carry shear forces has been neglected. If 

this understanding was available, the extension of design rules to 



cover future changes in practice, for example the increasing use of 

high strength steel and concretes leading to members of greater 

slenderness, would be much more simple and would not involve as 

much test verification. 

The intention of the work described in this Thesis was to 

study the basic way in which beams carry shear and to provide some 

of this background knowledge. 

The most convenient way to describe the various kinds of beam 

failure mode that exist is to consider the crack patterns and form 

of failure of a series of beams of constant section and steel 

percentage, point loaded at the centre of simply supported spans of 

varying length. As the section of each beam has the same flexural 

capacity, the only variable within the test series is the shear force 

to bending moment ratio. Figure 1.1 shows the results of a series of 

such tests plotted in terms of Mu/Mfl, the actual ultimate moment 

divided by the calculated flexural ultimate moment and a/d1, the 

ratio of shear span length to beam effective depth. It may be seen 

that the presence of the shear force causes a premature failure of 

the beam if its a/d1 ratio is between 1•5 and 5. Many interaction 

diagrams of this type have been produced, mainly by Brock1 and Kani2, 

for different steel percentages, loading arrangements and beam types. 

Apart from the case of beams with steel percentages less than 0•6% 

all the interaction diagrams have the same basic shape. 

Four areas are marked in Figure 1.1 in which different failure 

modes can be identified. These failure modes have been given a 

number of different, sometimes conflicting, names in the past and 

the following summary gives the most common names and definitions. 

It is dangerous to rely too much on the description of failure and 

failure modes given in the literature as, for example, a new word 

for a particular failure mechanism pre-supposes that the mechanism 

must exist. What is more important is to study the crack pattern of 

each kind of beam as this gives the best description of its failure. 

The boundaries between the various zones are not fixed and an infinite 

variety of failure modes is possibleo 
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i Shear Proper 

Members of this shape are commonly constructed as pile caps 

and corbels. Figure 1.2 shows a corbel of this type with its final 

crack pattern marked in. The strength of this type of member 

depends largely on the detailing of the steel and the most frequent 

design approach is to consider the triangle of force shown. Special 

attention should be given to the anchorage of the tensile reinforce­

ment, both in the column and in the corbel: the provision of a 

welded transverse anchorage for the steel is sometimes considered. 

At the same time, a maximum shear force on the member is usually 

defined so as to prevent failure of the compressive concrete strut 

in the system. The Draft Unified Code of Practice10 defines the shape 

of such members and requires the provision of horizontal stirrups in 

the upper part of the corbel. 

ii Shear Compression 

The crack pattern of a beam which has failed in shear 

compression is shown in Figure 1.3. In this case, a few flexural 

cracks formed and then, at a moment sometimes considerably less than 

the flexural capacity of the beam, a shear crack formed through the 

web of the beam, extending from the load point to the support point 

in almost a straight line. In some cases, this crack crosses 

flexural cracks that have previously formed without attempting to 

follow them but in others the crack forms along the line of an 

inclined flexural crack. If the inclined crack does not cause an 

immediate failure then the beam is changed into a tied arch and may 

eventually collapse either by the steel failing in anchorage, or the 

concrete crushing at the head of the crack. It is quite possible for 

an inclined crack to form, stabilize and carry considerably more load 

before the beam fails. 

This failure mode is called Diagonal Tension by some workers. 

iii Diagonal Tension 

This is a type of shear failure which occurs most frequently 

in reinforced concrete members. It is intermediate between type ii 

'tied arch action' and type iv 'flexural action'. In this case the 

cracking is characterised by flexural cracks which form vertically 
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and gradually extend and incline towards the load point as more load 

is applied. Shear failure occurs as one of these cracks, usually 

the nearest large one to the support suddenly extends both forwards 

towards the point of load application and backwards, along the level 

of the steel, to the support. A beam with this form of crack pattern 

is shown in Figure 1.4. The way in which a beam of this type carries 

the load is not fully understood and this Thesis describes a study 

of the internal distribution of load in beams of this type. 

The shear force across any particular section of such a beam 

must be carried by the concrete above the crack, by the steel acting 

as a dowel across the crack and by mechanical interlock of the 

aggregate across the crack. The relative magnitude of each of these 

mechanisms of force transfer can only be decided by experiment as 

their contributiorl to ultimate shear capacity of a beam is a complex 

statically indeterminate problem. In the past it was assumed that 

all the shear force carried by any section of a beam must be 

concentrated above the crack and it is only recently that dowel action 

and aggregate interlock action have been considered to be worth 

studying. 

iv Flexural Failure 

Beams within this range fail by the well known bending 

mechanism. Although the flexural cracks are inclined, the failure 

of the beam is caused either by yielding of the steel or by crushing 

of the concrete in the compression zone. In each case, the failure 

moment may be accurately determined by considering horizontal 

equilibrium and compatibility across a section and using failure 

criteria for the steel, its yield point or its ultimate strength 

including the effects of strain hardening, and for the concrete, 

either experimentally determined stress blocks or an actual concrete 

stress-strain curve. 

This discussion so far has been concerned solely with beams 

unreinforced in shear. When a beam has stirrups, its cracking is 

modified by their presence but the basic modes of failure still apply. 

A stirrup may have a variety of functions, firstly to carry forces 

across inclined cracks by acting as a tie or a dowel, secondly in 
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strengthening the concrete compression zone by restraining the 

concrete from bursting and thirdly in increasing dowel action by 

restraining splitting along the line of the tensile steel. 

The crack pattern of beams with stirrups is shown in Figure 1.5. 

The behaviour of such a beam has often been described in terms of a 

truss, the steel carrying the tensile forces and the concrete 

carrying the compressive forces. This truss system may fail not 

only because the steel tension members of the truss yield or the 

horizontal compressive members crush causing one of the failure 

mechanisms described earlier but also by the inclined concrete struts 

crushing. This kind of behaviour is commonly called web crushing 

failure. 

The two chapters that follow describe some of the more notable 

research on which our knowledge of the strength of reinforced concrete 

members is based. The first chapter describes work that is basically 

empirical, investigating the effect of the various parameters of 

the problem and producing the test evidence on which our Code rules 

are based; the second chapter describes work that is generally more 

recent which studies the way in which beams carry shear forces. 
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CHAPTER 2 

REVIEW OF PREVIOUS RESEARCH - EMPIRICAL 

The earliest pioneers of reinforced concrete design assumed 

that reinforced concrete behaved in a similar way to the building 

materials that they were used to, namely steel and timber. Initially 

the failure of a reinforced concrete beam in shear was assumed to 

occur because the horizontal shear in the beam was greater than the 

shear capacity of the concrete, reflecting the design of rivets in. 

the webs of steel members. The most common equation used was of the 

form 

where V = shear force on the section. 

qh = horizontal shear stress at a distance y from the 

neutral axis. 

Ay = first moment of area about the neutral axis of the 

section between the extreme fibre and a line distance 

y from the neutral axis. 

I = moment of inertia of the section about the neutral axis. 

b = width of the cross section at a distance y from the 

neutral axis. 

In the case of a rectangular section, the equation which comes 

from the theory of elasticity defines a parabolic distribution of 

shear stress through the section, assuming it to be uncracked. This 

equation could give reasonable results for beams unreinforced in 

shear providing an appropriate limiting stress is defined depending 

on the strength of the concrete. 

When stirrups were needed, this method of design was extended 

to assume that the stirrups acted as horizontal shear keys or dowels 

in resisting shear. It was found that the strength of beams with 

stirrups in shear was seriously underestimated using this approach. 

The work of Zipkes3 is typical of the early work on this subject. 

At the same time that this method of design was being studied, 

other pioneers, led by Ritter and M~rsch, proposed the classical 

10 



distribution of shear stress across a reinforced concrete section 

and proposed that stirrups carried tensile forces across cracks and 

that a cracked beam with stirrups could be analysed as a simple 

truss. 

Figure 2.1 shows a section through a beam carrying shear forces. 

Considering first the section above the neutral axis, from the 

Theory of Elasticity 

.t dy 

Taking moments about the steel level 

~ 2M 
0 = b (d1 - d !3) d n n 

where bis beam width 

~ (x)y = ~ xL 
o d n 

< (x)y 
2M Y,. = b (d1 d /3) d 2 

n n 

_-_ 'Y xy 
J;dn 2 VI dy 

= b (d1 - dj3) d -2 
n 

where Vis the shear force on the beam 

V (dn2 
- y 2

) 

b d 2 (d1 - d /3) n n 

at the neutral axis therefore 

'Ina = b (d1 - d /3) n 

V 

Assuming that no tensile stresses exist below the neutral axis, 

no increase or decrease of shear stress is possible and the stress 

must therefore remain constant until the steel level. The shear 

stress distribution from this analysis is shown in Figure 2.1. In 

this case, assuming that the stress block at failure of the beam is 

triangular, the area of the shear stress block is 

11 



"T' x b (d1 - d /3) na n 

This must equal the total shear force on the beam and 

rearranging we obtain the design equation for finding the nominal 

ultimate shear stress that is used to this day 

V 
C 

where V 
C 

b 

1 a 

= 

= 
= 
= 

..JL 
b 1 

a 

nominal ultimate shear stress 

beam width 

internal lever arm between centroid of the 

compression block and steel forces 

In its original form the truss analogy made the following 

assumptions. 

1. The compression zone carried longitudinal compression only. 

2. The tensile reinforcement carried longitudinal tensile 

forces only. 

3. Shear forces are carried by stirrups or inclined bars. 

4. Inclined compression forces are carried by the concrete 

struts between the cracks. 

These assumptions imply that the truss is pin jointed and that 

all the members of the truss are separated from each other so that 

there is no shear transfer between them. 

The following equations may be derived from this model, 

illustrated in Figure 2.1. 

Consider the shear force carried across section A-A 

V = A f Sin Bx No. of stirrups crossing A-A sq yq r 
where Asq total are of one stirrup 

f yield stress force stirrup 
yq 

12 
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1 
• •• V = Asq fyq Sin f (Cot o<.. + Cot f ) / 1 

-~-h_ 

1 
= Asq fyq (Cos ,P + Sin f Cot ~ ) s: 

if the inclined compression struts are assumed to be at 45° to the 

longitudinal axis of the beam, 

1 
V = A · f (Cos R + Sin /J ) ..1!c. sq yq r sh 

In his paper, Ritter made the simplification that the stirrups 

are always vertical and that the stirrup spacing is the same as the 

internal lever arm. 

Then 

V = A f sq yq 

Ritter said that if the stirrup spacing were increased then the 

stress in the stirrups would increase and said that he designed in 

this way in the centre of a beam where the shear forces are low. In 

his 1899 paper he said that he did this by eye but proposed that in 

future, calculations should be carried out to compute the wider 

spacing necessary. 

6 Talbot reported in a series of papers a number of shear tests 

on reinforced concrete beams. A number of important variables were 

studied including the effect of shear span and steel percentage but 

one of the most important things that he pointed out was that the 

truss analogy was conservative. Talbot said that at failure of a 

beam the stirrups carry 2/3 of the total shear force and the concrete 

in the compression zone carried 1/3 of the shear force. This 

recommendation was accepted in America and figured in the ACI report 

in 1916 but this report was never accepted as a code of practice. 

Another important contribution to this subject was made in 

1927 by Richart, also of the University of Illinois7• Richart 

14 



2.2 
TRUSS MECHANISM IN A SHEAR SPAN 
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re-stated the fact that the ultimate shear capacity of a beam with 

stirrups was greater than that accounted for by the strength of the 

stirrups alone and attributed this to the load carrying capacity of 

the uncracked compression zone. He said that the two common design 

formulae in use were 

where 

and 

A 

V 
Vu = bl = A + ,., f yq 

a 

B rf yq 

,... = __fill_ 
b Sh 

Sh = stirrup spacing 

These equations imply two approaches to design, the first that 

the proportion of the load carried by the stirrups is not fixed, in 

fact A varied in his test between 0•6 and 1•4 N/mm2 and secondly that 

a fixed proportion of the total shear force must be carried by the 

stirrups and as previously stated, a commonly used value of Bis 2/3. 
Richart stated that he was not in favour of the 'fixed proportion' 

method of design. 

8 In 1945, Moretto as well as drawing attention to the difference 

between previous work which was concerned with relating stirrup stress 

to shear capacity and his own which was concerned with ultimate 

strength introduced another of the now acknowledged important 

variables into a design equation. 

where 

Moretto suggested the equation, at the ultimate load. 

A = 
f = C ,., = 
p = 

V 
u = 

V = A ,-fyq + 0•10 fc + 5000 p b 1 
a 

(in Imperial units) 

(Sin f + Cos /3 ) from truss analogy. 

strength of a 12" x 6" dia. concrete cylinder in compression. 

ratio of web reinforcement Asq/bd1. 

ratio of tensile reinforcement, Asq/bd1. 
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The important variable p was therefore introduced into a 

formula for the first time. 

In 1951, Clark9 derived a similar formula and this time included 

the effect of the shear span variable, which, for simply supported 

beams, is a/d1. Clark's formula was of the form:-

V = 7000p + 0•012 f 1 .£1. + 2500 R 
U C a 

Clark was careful·to point out that this formula was not for general 

use but this work; with that of the other empirical approaches before 

it had had an important influence on the ACI-ASCE Code design method 

which remains to this day. The ACI formula, for the ultimate shear 

stress in beams without shear reinforcement is:-

where v 
C 

V 
M 

= 

= 

= 1 •9 ff + 2500p lli 
c M 

in Imperial units. 

nominal ultimate shear stress of a member unreinforced 

in shear. 
the ratio of shear to moment at the section considered. 

Vd1 1 
In the case of simply supported beams, M = ~ 

Thus the ACI formula which is essentially empirical states that 

1
the nominal shear stress V increases (a) As the square root of the 

1 C 
concrete strength 

(b) With increase of steel 

percentage. 

(c) With a decrease of a/d1• 

In the Committee Report there is no account of why these parameters 

have the effect that they do but despite this the formula does provide 

a safe design approach for beams carrying ~hear, providing that 

experimental work is continuously carried out to up-date it when 

changes in design practice go outside the range of the experimental 

evidence on which it is based. 

For the design of members with stirrups, the ACI Code relied 

on the formula by Richart, 



Vu = A + ,-, fyq 

and proposed the version 

Vu = Ve + (Sin j:l + .Cos f ) r- fyq 

where Ve comes from the previous equation and (Sin j3 + Cos fl) 
comes from the truss analogy. 

The new Draft British Code10 is similar to the ACI Code except 

that the nominal ultimate shear stress for beams without stirrups is 

depend~nt on concrete strength and tensile steel percentage only. 

The stresses have been derived from an amalgam of various workers 

opinions and are therefore presented in tabular form. When stirrups 

are added, an equation of the following form is used. 

V = / + 0•8 
u c sin /3 

The factor 0•8 was included as it was found that the factor of 

safety of certain members was too low without it and the factor 
1 /Sin /1 was provided as a simplification of (Sin f + Cos f ) and 

is slightly conservative. 

The British Code encourages the use of nominal stirrups in most 

major design situations. 

One problem that has concerned experimentalists in recent years 

is that in some of the experimental work there has been a confusion 

between the load to cause diagonal cracking and the load to cause 

failure in a beam. In some tests these are coincidental, in others 

they are not. This confusion as to exactly what constitutes beam 

failure is probably responsible for some of the large scatter of 

the results of shear tests and is an unfortunate legacy of too 

much reliance on tests. 

A different approach which was intended to resolve this problem 
11 12 was produced by Laupa and Moody in 1955. In this case, failure 

of a beam was assumed to be by the crushing of the compression zone 

at the head of an inclined crack. The compression zone at this time 
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was not as deep as the zone in a beam carrying the same moment in 

pure flexure as the presence of the shear force raised the neutral 

axis. This description of beam failure obviously caters for the 

beams in which the presence of inclined cracking occurs some time 

before the beam fails, the failure mode that is commonly called 

Shear Compression. Laupa said that the only difference between a 

beam failing in shear compression and one failing in compression in _ 

flexure is that the neutral axis is higher in the shear compression 

case. A number of theoretical approaches to the problem have started 

from this proposition. 

-In 1960, Brock
1 

published details of tests of a number of 

plaster model·beams in which the effect of the basic parameters of 

the shear problem, steel percentage, concrete strength and moment 

to shear ratio were studied systematically. This work and t.hat of 

Kani2 published six years later gives a clear account of the 

interaction of the three parameters. The tests by Brock were on 

model beams using gypsum plaster with threaded brass rod as tensile 

reinforcement. This paper therefore not only puts the problem of 

shear in perspective but demonstrates the value of model testing as 

a design technique. The results of Brock's tests are shown in a very 

simplified form in Figure 1 .1 and his complete generalised design 

chart for ultimate moment capacity is shown in Figure 2.3. In this 

figur;e, the zone of shear failures for beams with a/d1 ratios less 
I . 

than 5 can be seen together with the effect of steel percentage. The 

relationship p/p 0 is the ratio of the steel percentage to the steel 

percentage causing a balanced failure in flexure. Brock used the 

term Shear Bond to describe one of the failure mechanisms and 

illustrated the various types of failure in the manner shown in 

Figure 2.4. It must be remembered that the beams were of reinforced 

plaster and not of reinforced concrete but there are great similarities 

between the crack patterns in Figure 2.4 and Figures 1.3 & 1.4. 

In his tests Kani tried to produce a similar series of 

interaction diagrams to those produced by Brock, this time using 

reinforced concrete beams. Kani looked through the literature and 

found that no suitable tests were reported that covered the full range 

of the variables f, Ast/bd1 and a/d1 that he was interested in. 
C 

Kani therefore found it necessary to test a further 133 beams before 
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he could draw his interaction diagram. The results of these tests 

are shown in three dimensional form in•Figure 2.5. 

One of the conclusions of a report of extensive work carried 

out by Leonhardt and Walther13 which has also been corroborated by 

Kani14 is that there is some scale effect on the shear strength of 

beams. Tests have shown that large beams are significantly weaker 

in shear than the scaled up results of tests on small beams would 

suggest. At the moment very little evidence is available and it is 

not clear whether this is a scale effect or an effect of shape; 

for example, do deep narrow beams show the same loss of strength as 

deep slabs? This subject is important as most of the tests on which 

our design xules are based are on shallow beams, less than 500 mm 

deep, thus by relying on tests another important parameter may have 

been missed. 

After seventy years of test work we now have the 'Basic facts 

of shear failure'. 

1. Shear failures occur in simply supported point loaded 

beams with a/d1 ratios less than 6. For beams with 

distributed loading the parameter v~1 may be used.instead 

of a/d1. 

2. The problem of shear failure is slightly less acute in 

beams with distributed loading. 

3. Beams with high steel percentages carry greater shear forces 

before failure than beams with low steel percentages but 

their failure may occur at a lower percentage of their 

ultimate flexural moment. 

4
0 

Beams with high concrete strengths carry slightly greater 

shear forces before failure than beams with low concrete 

strengths. 

5
0 

When beams are designed with stirrups, the method of the 

truss analogy may be used but this is generally conservative. 

6. The provision of nominal stirrups to beams in which the 

shear stresses are not high greatly increases their safety. 
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CHAPTER 3 

REVIEW OF PREVIOUS RESEARCH - BEHAVIOURAL 

A very common technique in the analysis of indeterminate 

structures is to cut sections through the structure to make it 

statically determinate and postulate force systems that must act 

across the sections in order to hold the parts of the structure in 

equilibrium. The correct forces must obey a further law that when 

they are acting on each part of the structure they must cause 

deformations across the sections such that the parts of the structure, 

or free bodies, will still fit together. Thus the forces on the 

free· bodies must ensure equilibrium and compatibility of displacements. 

This method of analysis has been used in the study of the shear 

strength of beams on many occasions, a number of internal force 

systems- of va~ying degrees of complexity have been proposed and 

attempts have been made to measure the forces, In some cases, forces 

that could occur have not been considered or have been neglected for 

quite arbitrary reasons and workers have then had to rely on empirical 

terms in their analyses. Attempts to reconcile these simplified force 

systems with the displacements they impose on the structure have 

naturally not been very successful. 

The earliest workers on shear made drastic assumptions that 

hav~ gradually been refined as our knowledge of shear built up. 

This may be seen by comparing a free body diagram with a rigorous 

system of forces acting on it with the more simplified versions that 

have been proposed. 

Figure 3.1 shows such a free body diagram of a reinforced 

concrete beam unreinforced in shear with the forces marked in. A 

basic and reasonable assumption has already been made, that the three 

dimensional reinforced concrete beam can be so represented in two 

dimensions. A three dimensional study of rectangular beams with 

external forces applied in two dimensions is not likely to add any 

basic knowledge to the way in which beams carry shear forces. 

Forces may be transmitted at each point on section A - A and 

these have been integrated to sets of forces in three main areas of 
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the beam, the forces in the compression zone above the crack, the 

.forces acting on the sides of the crack and the force carried by the 

tensile steel. If there are stirrups crossing such a section then 

these too may carry direct and possibly dowel forces and give terms 

that may be added to each of the equations. Thus three types of 

shear force transfer across section A - A are possible and may be 

significant, forces in the compression zone, aggregate interlock 

forces and dowel forces carried by the main steel. Most of the 

work on assessing these forces has been carried out within the last 

fifteen years although some of the pioneers in their description of 

tests mentioned these forces. 

Considering the equilibrium of the free bodies the following 

equations may be derived. 

C - T + HI = 0 

V - V1 - V2 - V3 = 0 

v'h - V2s - V3n - Hit - Tla = 0 

3. 1 

3.2 

3.3 

6 
In his early work, Talbot described the shear failure of some 

reinforced concrete beams in detail and gave some clues as to.the 

existence of dowel forces although he did not mention them specifically. 

In a description of the horizontal cracks which formed along the 

level of the tensile reinforcing bars he said 

"The condition of the beam at failure showed that the horizontal 

crack was due to vertical tension and that horizontal shear or slip 

did not take place until after this crack has formed. The indentations 

in the concrete formed by the corrugations of the bars were left in 

perfect condition and there was no crushing or tearing at the edges 

of these indentations. The bar had simply been pulled down and out 

of the place in which it had rested". 

This statement gives a clear description of dowel failure but 

the possibility that the force which caused the cracking may be 

significant was not considered until much later. 

the 

In his book written in 1924, Faber
15 

described his theory of 

behaviour of~ reinforced concrete beam in shear and proposed a 
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design method. His theory which he called a Diagonal Compression 

Theory, assumes that the shear force in a beam is carried by the beam 

acting as a truss, even when unreinforced in shear. He postulated 

that inclined compression forces exist between the point of application 

of the load and the support and act as a truss or arch in conjunction 

with the tensile steel. Figure 3.2 shows the force system proposed. 

This mechanism has been proposed since by a number of workers to 

describe the forces in a beam with a low a/d1 ratio in which the 

inclined crack has formed but has not immediately caused failure and 

the force system has changed from that of a beam to that of a tied 

arch. From the figure it may be seen that near the support at 

A - A-small tensile strains on the top of the beam are proposed 

whereas at the point of load application, B - B, the upper face of 

the beam is in compression. 

This apparent reversal of strain in the compression zone was 

measured and reported by Watstein and Mathey16 in 1958 and a free 

body type of analysis in which the dowel force was calculated was 

also presented. 

Watstein and Mathey tested four short beams and on one of them 

measured strains on the tensile steel and on three sections down the 

beams. The layout of the beams is shown in Figure 3.3. Strains were 

measured at four levels on each of the sections I, II and III as 
. \ 
indicated and at two places on the tensile steel. On the other beams, 

which were even shorter than the one shown,with an a/d1 ratio of 2, 

they only measured strains on the steel. Also on Figure 3.3 the 

crack pattern has been drawn with the extent of the crack marked at 

various stages of the test. The numbers marked on the crack mark 

its extent and the shear force on the beam in kN at that time. 

Some of the results of the strain measurement may be seen in 

Figure 3.4 & 3.5. The strains were measured on lines I and III on 

the test beams at five values of the shear forces, 34, 56, 78, 100 
and 122 kN. The beam failed in flexure when the shear force was 

133 kN. It may be seen that initially the strain profile at low 

values of the shear force was linear and the maximum compressive 

strain was on the extreme upper fibre of the beam. At a shear force 

of 78 kN for Section I and 100 kN for Section II the strain profile 
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reversed and the maximum was just above the inclined crack in the 

beam. In the case of Section I, the extreme fibre of the beam went 

into tension, agreeing with the fact that in beam tests, cracks can 

sometimes be seen in this area. The section of the beam on the 

support side of the diagonal crack had therefore initially acted as 

a beam but as the diagonal crack formed the beam transformed itself 

into a tied arch and the strain profiles at Section I reversed. This 

change of behaviour is illustrated in Figure 3.6. The forces that 

are shown acting on the block are those that were assumed by Watstein 

and Mathey: the possibility of aggregate interlock forces was not 

considered. Finally Watstein and Mathey calculated the dowel forces 

in the beam using the equation:-

= 
Vh..:. Tl 

a 
,S 

which is a simplification of equation 3.3. 

At low values of load on the beam, ranging from 42 - 46% of 

the ultimate loads they found that between 38 and 74% of the shear 

force must be carried by the longitudinal reinforcement at the base 

of the crack. At higher loads on the beam the shear carried in 

this way decreased continuously. Thus when the compressive stress 

was at its maximum at the upper face of the beam and the member was 

acting in a beam-like manner, dowel action and aggregate interlock 

must be carrying a significant shear force. When the action of the 

beam was like that of a tied arch, little shear was transferred 

across the crack. If the possibility of aggregate interlock occurring 

across the crack is considered, this conclusion still stands but the 

significance of shear forces being carried across the crack is even 

greater. For example if 5o% of the force V2 was in fact carried b;y_ 

aggregate interlock the point through which the net force acts would 

be nearer to the load point than that shown in Figure 3.6. Thus S 

would be smaller and•V2 ~ould be larger. 

This work by Watstein and Mathey was of particular importance 

as it was among the first investigations that studied force systems 

beams experimentally and it came to conclusions about the 
within 

rrl'ed across inclined cracks that are accepted today. 
forces ea 
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Another early paper··about experimental work on dowel action 

was one by Royston Jones 17• Irt this paper Jones describes tests on 

three beams with very wide pre-formed cracks. 

The layout of the test beams is shown in Figure 3.7 together 

with a drawing of the shear device which was cast into the beam at 

the crack in place of the compression zone and carried compressive 

and shear forces across the crack. The device was instrumented with 

electrical resistance strain gauges so that the compressive and shear 

forces could be measured. Strain gauges were also fixed to the 

compressive and tensile reinforcement and to the shear reinforcement 

where it crossed the crack so that it was possible to measure the 

dowel forces carried by the tensile and compressive steel. These 

tests had the disadvantage that the deformations across the crack 

were not beam-like, the width of the crack would make the dowel 

stiffness much less than a dowel in a real beam. The tests have no 

value in estimating the contribution of a dowel force to the shear 

capacity of a beam and only show that dowel forces may be significant. 

Acharya and Kemp18 produced a paper which by inference showed 

that shear force transfer across cracks must be significant and gave 

a good assessment of its magnitude. The analysis that they used did 

not include aggregate interlock forces so that, as in Watstein and 

Math~y•s work?they can be considered as an unknown component of the 
I 

dowel force. 

The free body considered by Acharya and Kemp is shown in 

Figure 3.8, section 1 - 1 is the face of the applied load on the 

beam and section 2 - 2 is at the base of an inclined crack. Using 

first the assumption that the dowel force is not zero the following 

equations may be derived. 

3.5 

Secondly, assuming that the dowel force is zero the equations 

may be simplified to 
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M = Cl = Vh a 

3.6 

3.7 

Acharya and Kemp carried out a series of beam tests and, from 

strains measured in the compression zone, found the depth of the 

neutral axis of the beams at section 1 - 1 at the last load stage • 
.. 

They reported that the strain profiles that they measured were linear. 

Using the experimentally measured neutral axis depths Acharya 

and Kemp calculated the maximum compressive and shear stresses in the 

compression zone at section 1 - 1 and showed that unless a 

significant d~wel force is postulated, the stresses are so high that 

they could not be sustained by the concrete. 

The first analysis they made assumed zero dowel force and 

therefore used equations 3.6 and 3.7. Using the measured neutral 

axis depth it was possible to re-write equation 3.7 as 

Vh = Cl = <\x(ave) b d 1 a n a 

where 1 = d1 - . .k2 d a n 

. .. Vh . . < x(ave) = bd (d1 - k2 d ) 
n n 

<{ ( \ ) is the average compressive stress in the stress block. 
x ave 

From this the maximum stress was obtained by dividing by k1 and this 

was made nondimensional by dividing by fc 1
• 

Thus 

G x(max) 
f 1 

C 

Vh 
= k1 f 1 bd {d1 - k2 d) c n n 

where k2 and k1 come from the work of Hognestad, Hanson 

and McHenry19• 

Unfortunately ~charya and Kemp also divided by k3, the factor 

which relates 300 x 150 cylinder compressive strength to the maximum 

stress found in the stress block and this had the effect of making 

the compressive stresses that they calculated about 5% too high but 
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this does not affect the conclusions that they drew. 

The shear stress in the compression zone was calculated from 

equation 3.6 assuming that the shear force is distributed evenly 

down the section 

V 
T = bd 

n 

Acharya and Kemp estimated the vertical stresses at the 

section 1 - 1 by dividing the failure load on the beam by the area 

of the loading plate on the beam. 

Finally.they compared these stresses with a biaxial failure 

criterion which stated that for values of the ratio of the minor 

principal stress to the cylinder strength of less than 0•3, _ _failure 

occurs when 

; 2 -->(1+4-f-1-) 
C C 

where <', minor principal stress 

~ 2 major principal stress 

Acharya and Kemp found that the stresses that they had computed, 

on the basis of zero dowel force were so high that this failure 
\ . 

criterion predicted failure well before the beams actually did fail. 

They then repeated the calculations, this time using 

equations 3.4 and 3.5 and the assumption that the dowel force is 

6Cf/o of the total shear force i.e. 

V2 = 0•6 V 

and V1 = 0•4 V 

In this case the stresses were considerably less than the case 

from the previous calculations. Where the original beam failure was 

reported as being in shear compression, that is failure where the 

compression zone crushed sometime after inclined cracking, the 

principal stresses were unsafe. When the failure was reported as 

being by diagonal tension, the principal stresses were just unsafe. 
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The major conclusion of their work therefore was that shear forces 

carried across cracks are significant and must be of equal magnitude 

to the compressive zone shear forces in order that the failure 

criterion is satisfied. 

In the discussion of this paper, Gopalakrishnan20 pointed out 

that aggregate interlock had not beeri considered and probably was 

significant and he c-i ted as a reason the fact that the strength of 

beams increase with increasing width whereas dowel strength must 

approach a maximum value and cannot always be 6(f/o of the shear capacity 

of the beam. 

· 21 Krefeld and Thurston carried out tests to study dowel forces 

on two types of beams. In the first test, the tension zone at the 

centre of the span was completely separated from the compression 

zone by a pre-formed crack, the two parts of the beam only being 

connected by the tensile steel. The tension zone was pulled down 

during the test and the dowel force was therefore found when the beam 

split along the line of the tensile steel. This test specimen is 

illustrated in the upper part of Figure 3.9. The results of these 

tests indicated that dowels were capable of carrying significant 

shear forces in beams unreinforced in shear. In a typical test the 

dowel carried a shear force of 7•5 kN equivalent to a shear stress 

of 0•
1
19 N/mm2 on the beam. This is approximately 2o% of what would 
, I 2 be a normal ultimate shear stress of 1 N mm for such a beam. The 

dowel tests by Krefeld and Thurston are considered in more detail 

later in this Thesis. 

The second type of test specimen, on which only one test was 

conducted is illustrated in the lower half of Figure 3.9. In this 

case, a wide pre-formed crack was made in the tension zone of the 

beam and strain gauges were applied to the tensile steel and the 

compression zone so that the direct and shear forces could be measured 

in each area. The strains in the compression zone were measured with 

electrical resistance gauges in two delta rosettes. The compressive 

force and the shear force in the concrete were calculated using the 

assumption that the stresses estimated from the rosette strains were 

constant through the depth of the compression zone. The dowel force 

was calculated from the displacement of the bar across the crack, 
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measured by a pair of dial gauges bearing on the bar, one at each 

side of the crack. This test beam had a tensile steel percentage of 

3·3%. 

The results of this test are illustrated in Figure 3•10. It 

can be seen that reasonable agreement is obtained between the concrete 

compressive force C and the steel tensile force T except at high 

loads, this discrepancy possibly being due to the fact that the 

method of calculating the force C was in error. The two contributions 

to the shear force on the beam, V1 the compression zone shear and V2 

the dowel shear add up to the total shear force and are of approximately 

equal magnitude. At failure, the dowel force is 6g%, of the shear 

force and the compression zone force 31%. The ultimate strength of 

this beam was low, the average shear stress on the beam, computed 

from 

q 

being 0•5 N/mm2
• Krefeld and Thurston suggested that this was because 

of 'the exaggerated conditions imposed'. This is of course correct, 

the stiffness of the test beam in the direction parallel to the shear 

force is much less than in a normal beam, a beam with a narrow crack 

is likely to be much stronger. This same argument applies to the 

tests carried out by Royston Jones. Another and even more important 

difference between the behaviour of this test specimen and the 

behaviour of a normal beam is that the preformed crack completely 

excludes the possibility of aggregate interlocking across the crack. 

A normal beam, with the tensile steel percentage of the test specimen 

would be expected to have an average shear stress at failure of at 

least 1 N/mm2
, twice that found by Krefeld and Thurston with their" 

divided beam. Thus aggregate interlock forces possibly give a very 

significant contribution to the shear capacity of reinforced concrete 

beams. 

Once there was an accumulation of evidence that consistently 

pointed to the fact that significant forces could be carried across 

cracks by dowel action, workers naturally turned to study the sections 

of beams between cracks to see if they could sustain the forces that 

were proposed. This led to a number of papers in which an 
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idealisation was made of a beam as having two sections, one at the 

support which was uncracked and behaved as an arch and the other, 

nearer to the applied load which had a comb like structure. This 

idealisation is illustrated in Figure 3.11. 

One of the earliest published papers which postulated a theory 
22 based on this form of beam action was one by Lorentson • Lorentson 

assumed that the forces on a single section of a beam between two 

cracks and a vertical section above them to the compression face are 

as shown in Figure 3.12 and also made the further assumption that 

the sides of the crack are vertical. 

By ass•uming that the teeth between the cracks were infinitely 

narrow he produced a function for ~;,·the rate of change of tensile 

force along the beam, at which the teeth would fail. The ·theory led 

to an equation that stated that the shear strength of a beam is 

related to the strength of the laminae between cracks, the lamina 

strength being the sum of two components, k, the shear force carried 
a 

by the reinforcement by dowel action and¾• the force carried by 

the compression zone. Thus:-

Lorentson then carried out a limited series of dowel tests to 

det~rmine ka and some splitting tests on,and analyses of,concrete 

plates to find¾• 

Although this work was an interesting attempt to consider the 

strength of the laminae between cracks it had the following 

disadvantages. 

Firstly the functions that were used in the analysis were 

considered to be continuous for the cracked area of the beam and had 

a discontinuity at the first crack from the support. In practice the 

steel stress and neutral axis depth are not simple functions of the 

distance along the beam. 

Secondly, the stress analysis of the laminae between cracks, 

which had vertical sides, only considered an inclined thrust in the 

compression zone and ignored aggregate interlock forces. 
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The dowel tests were carried out on beams reinforced with 

prestressing wire as Lorentson's work was on the shear strength of 

prestressed concrete and not on reinforced concrete. These tests 

are considered in more detail later in this Thesis. 

Finally, the assumption that two contributions to the lamina 

strength are additive, without considering any compatibility of 

displacements is questionable. 

Another paper in which the strength of the concrete teeth 

between cracks was considered was one by Kani
23 • 

Kani said that under load a reinforced concrete beam cracked 

and transformed itself into a comb like structure with the tension 

cracks forming almost vertical concrete teeth held together by the 

compression zone which acts like the backbone of a comb. If the 

strength of the teeth is exceeded and they break off, a short beam is 

still capable of carrying load by acting as an arch but a long beam 

will fail immediately. Kani produced two relations which showed that 

shear strength interacted with shear span in the manner shown by tests. 

The results of this analysis are shown in Figure 3.13. The line for 

the strength of the concrete teeth came from the assumption that the 

steel stress varied uniformly along the shear span and that the only 

force acting on the teeth was the tensile steel force. Aggregate 

interlock and dowel forces were not considered in the theory. The 

arch strength line came from a geometrical consideration that the 

beam strength was a function of the size of the compression thrust 

block of concrete beneath the load point. The ratio of the arch 

strength to the beam flexural strength was therefore L, as illustrated 
a Yo 

in Figure 3.14 and thus was a function of /d1, the shear span to 

effective depth ratio. 

It is interesting to consider how it is possible to ignore the 

presence of shear forces on the concrete teeth and still get the 

theoretical results in Figure 3.13 which compare favourably with the 

test results summarised in Figure 1.1. The analysis used by Kani was 

derived from consideration of a tooth of the general shape shown in 

the upper half of Figure 3.15. From the Figure, considering the 
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tensile stress at the root of the cantilever, the following 

relationship may be derived, 

M 
= z 

where Z = section modulus of tooth. 

When the tensile strength of the concrete is reached. 

AT 
~s = 

ft • ~S • b 
6 h 

C 

where ft= tensile strength of concrete. 

e:. T 
If AS' the rate of change of the steel force along the beam is 

T assumed to be a' i.e. the steel stress increases linearly from 

support to load point, a relationship for the ultimate moment for 

the beam may be derived 

1 ft .6S • b = - . 
a 6 h 

C 

assuming that the lever arm is 7 /a d1 

M 
ft 7/e b d1 2 ~s a 3.8 = . -- . -
6 h d1 

C 

The ultimate moment of the beam is therefore a function of the 
. .6S 

concrete strength and beam size, the shape of the tooth, h, and 

the a/d1 ratio. For a particular value of fS taken from tests Kani 

plotted ~quation 3.8 in the form shown on Fi~ure 3.13. The theory 

therefore ignored the strengthening effect of dowel and agg~egate 

interlock shears on the tooth shown dashed in the upper part of 

Figure 3.15. If these forces are significant they would increase 

the shear force carried by the beam when the tooth fails and make 

the line from equation 3.2 much steeper and give a poor fit to the 

test results. The answer to this enigma lies in the fact that the 

tooth that was considered when equation 3.8 was plotted was not as 

shown in the upper part of Figure 3.15 but the tooth section that is 

shaded in the lower part of the Figure. The value of ts used was 
C 

1•9. Kani said that only the part of the tooth with vertical sides 
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should be considered in the analysis as the crack became inclined 

when arch action was starting:yet, according to Figure 3.13 the shear 

capacity of the arch was much less than the capacity of the teeth 

when a/d1 > 3 and failure would occur immediately when the teeth 

failed. In practice it is extremely difficult to justify the whole 

concept of tooth failure from the crack patterns that are observed 

in tests. A further objection to the theory is that the relationship 

certainly does not apply to a cantilever with the length to breadth 

ratio of 1•9. 

Fenwick24 has written an excellent description of how beams 

without stirrups behave in shear. Like Kani he said that beams carry 

shear forces in two ways, long beams by beam action and short beams 

by arch action. He realised that as the concrete teeth between cracks 

do not necessarily break off as the beam fails and as they are much 

stronger than the Kani teeth illustrated in the upper part of 

Figure 3.15 then the teeth must have significant shear forces on them. 

By studying the section of a beam between two cracks illustrated in 

Figure 3.16 he estimated the relative magnitude of the shear forces 

carried across the crack, V3 and V2. 

At the same time Fenwick carried out a series of dowel tests 

to find the magnitude of the force V2 and a small series of aggregate 

interlock tests from which he estimated the magnitude of the force V3. 

Neither of these tests were on beams but were carried out on small 

test specimens in which the specific method of shear transfer was 

isolated. 

The dowel tests were carried out by casting a bar into a block 

of concrete and then by pulling the bar sideways the dowel force was 

measured as the concrete cover to the bar split. The aggregate 

interlock tests were carried out by measuring the shear force that 

could be carried across a crack in a block of unreinforced concrete. 

These tests will be described in more detail later in this Thesis. 

Fenwick carried out eight tests on beams, some of which had 
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smooth preformed cracks to eliminate aggregate interlock action 

and some had foam rubber wrapped round the main tensile steel to 

eliminate dowel action. From these tests and from the measurements 

he made of the displacements across cracks Fenwick was able to 

estimate the relative significance of the various ways in which 

beams carry shear and more particularly how the concrete teeth 

between cracks carry the bond force moment. In the conclusion of his 

thesis he said that in typical rectangular beams without web 

reinforcement it was found that the bond force moment acting on the 

concrete blocks between the flexural cracks could be resisted in 

approximately the following proportions 

i 20 percent by the flexural resistance of the concrete 

at the head of the tooth. 

ii 60 percent or more by aggregate interlock action. 

iii 20 percent or less by dowel action of the reinforcement. 
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CHAPTER 4 

SHEAR FORCES CARRIED BY BEAM COMPRESSION ZONES 

The survey of previous research in chapter 3 of this Thesis 

indicates that a complete study of the distribution of the internal 

forces in beams carrying shear has not yet been made. Only Fenwick 

has attempted to measure interlock and dowel forces in one 

investigation but his work was limited because, of the eight beams 

that he tested, only one was complete and was without any form of 

device to reduce or eliminate dowel or aggregate interlock forces. 

Although the technique of eliminating internal forces in beams 

by, for example, preforming smooth sided cracks, is very useful in 

determining their significance it is important to realise that in 

doing this the stiffness of the beam and therefore the way in which 

it carries forces is also altered. 

The next three chapters of this Thesis describe a series of 

experiments in which the distribution of internal forces in beams 

was studied. Wherever possible in this work the tests were carried 

out on complete beams or on specially designed rigs that simulated 

the displacements measured in beam tests. 

This chapter describes the tests which were carried out to 

estimate the shear forces carried in beam compression zones. Two 

series of tests were carried out and the compression zone shears were 

found on a total of ten beams. The shear stresses were computed from 

strain measurements that were taken in the compression zones of the 

beams at various stages from first cracking to failure of .the beams. 

Although measurements taken on a number of strain gauges in a rosette 

are the easiest way to find shear strains in a material, this method 

was not used in the tests as rosettes require a large number of 

strain measurements to be taken and are too large for shear strains 

to be measured at a number of points on one section of a beam. 
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TEST PROGRAMME SERIES I 

Details of test beams 

Six beams were tested in this programme. All the beams were 

5•18 m long and 400 x 200 mm in cross-section. Five of the beams 

had two 20 mm diameter bars of GK 60 steel as tension reinforcement; 

one beam had three bars. All the beams had 25 mm of cover to the 

main bars. The steel percentages calculated from the expression 

A 
100 _tl 

bd1 were therefore 1•03 and 1•55. 

The beams were cast in pairs in wooden moulds and were cured 

under polythene for three weeks before being taken into the laboratory 

for instrumentation and testing. The concrete had a 9•5 mm maximum 

size aggregate so that small gauge lengths could be used on the 

surface. The details of the concrete are 

6CJ'/o 
~ 

Aggregate 9·5 - 4•75 mm 

J 
Sand 40"6 by weight 

Aggregate/cement ratio 4•5 

Compaction factor 0•88 

Twelve 150 mm cubes and six 150 x 300 mm cylinders were cast. 

The latter were tested to determine the modulus of elasticity of the 

concrete in compression. Details of the test beams and rig are shown 

in Table 4.1 and Figure 4.1. 

TABLE 4.1 

Details of test beams 1 - 6 

Beam a a/d1 Number of Steel u E I 

22 mm diameter 
w C I 

(mm) bars (%) (N/mm 2
) N/mm2 x 10.3 

1 1120 3•02 2 1•03 36•6 28•3 
2 1120 3•02 3 1 • 55 42• 1 27•6 
3 1120 3•02 2 1 •03 40•0 25 •9 
4 1470 3•99 2 1 •03 44•8 25•9 
5 915 2•48 2 1 •03 37•9 23•6 
6 1295 3•51 2 1 •03 35•2 23•6 
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Test method 

The beams were tested in the rig, one end at a time. The 

first end was tested a day before the second so that the instrument­

ation could be put on for the second test after the crack pattern 

produced by the first test had been inspected •. 

For the test of the first end, the load was increased until 

flexural cracks appeared. These were studied under magnifying 

glasses, marked in and photographed. The load was increased slightly 

and the cracks were then re-marked and photographed. The marking 

and photographing were carried out on both sides of the beam at all 

load stages. There were usually eight load stages before failure. 

The crack pattern at failure was then examined so that locations 

could be chosen for the lines of gauge positions for the test of the 

second end. The test method for the second end of the beam was the 

same as that used in the first test with the addition that strain 

readings were taken at each load stage. 

Beam 3 was tested differently and the result of this test will 

be discussed later. 

The modulus of elasticity of the concrete was determined from 

tests on 150 x 300 mm cylinders and this value was used in calculations. 

\ For the first two beams, the modulus of elasticity was determined by 

short-term tests, carried out immediately after the main tests on the 

beams. These short-term tests produced rather large values of the 

modulus of elasticity and, in order to arrive at a value of the 

modulus representative of the conditions of the beam test, a cylinder 

was put in the testing machine at the start of the beam test and was 

loaded to produce strain increments similar to the maximum strain 

increments found in the beam. While the measurements on the beam 

were being taken, the load on the cylinder was held constant ready 

to be increased at the next load stage. This gave slightly lower 

values of.the modulus of elasticity for the concrete. Table 4.1 shows 

the values of the modulus that were used. For both the beam and the 

cylinder test, strain measurements were made just before the load 

was increased. 
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Theory 

It is possible to calculate the state of stress at any point 

in an elastic material by solving the three equilibrium equations 

from the theory of elasticity. 

~ _(. X ~,xy ~ 1"xZ + X 0 ox + ~y + ~z = 

d'< y 
+ ~'iyx + ~"T'yZ + y 0 ~x = ;:,y ~z 

~ < z 
+ 

',:TZx )TZy + z 0 + = ~z ~x 2> y 

where ~ x, <( y and <S Z are the direct stresses acting in three 

orthogonal directions on the member; ,,.-ab is a shear stress 

acting on a plane perpendicular to axis a and parallel with 

axis b on the member; 

X, Y and Z are body forces per unit area at a point. 

In the case of a beam with its length along axis x and depth 

along axis y, the shears in the Z directions may be neglected. By 

also neglecting the body forces, the first equation may be simplfied 

to 

+ ~TXY = o 
"c,y 

This may further be re-written to give the expression 

Txy = f y ~<( x dy 
~x 

0 

4 .1 

This expression may be more simply derived by considering a 

section of a beam ~ x long (Figure 4. 2). The shear stress 1'"'xy may 

be found by integrating the shear stress required to keep all the 

elements y wide in equilibrium from the top of the beam to the 

section considered thus 

'Y xy = 
dy 
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Although expression 4.1 is suitable for an analytical treatment 

of the problem, its assessment numerically would involve a considerable 

amount of strain gauge instrumentation. Many rows of closely spaced 

gauge points would be required in the beam compression zone. A 

number of longitudinal strain gauge readings would be required in a 

row along one level of the beam to find 1 ~xx at the point where the 

row crosses the line where shear stress is to be calculated. Many 

rows of gauges would also be required to find i)fxx at more than one 

level on the line where shear stress is to be calculated. Readings 

on all the gauges would be required at each load stage at which shear 

stresses were required. 

It is possible to re-write expression 4.1 so that the readings 

of longitudinal strain taken at various levels down a line in a beam 

compression zone can be used to find the shear stress distributions 

in that line. Figure 4.2 shows a typical line of strain gauge 

positions on a test beam. Expression 4.1 may be re-written as 

'I xy = 4.2 

This expression now requires longitudinal strain readings 

taken across only one vertical line in the compression zone but the 

readings must be taken at more than one load stage. 

In the tests, therefore, lines of longitudinal strain gauge 

points were fixed on the beam compression zone in the manner shown 

in Figure 4.3 at critical sections of the beam. The longitudinal 

strain readings were taken with a Demec gauge with a 50 mm gauge 

length. In each line, the first gauge length was 12•5 mm_below the 

compression face of the beam and succeeding gauge lengths were 

25 mm apart. 

The steps in the calculation of ·,xy are eiven below. 

1. For a gauge length, plot ~,c against M and calculate the 

slope of the plot 

()~ C 

~M 

for each value of M. 
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In this thesis the slope used in calculations was assumed 

to be constant with respect to M. 

2. Calculate the value of 

-3 M 
:.?)x 4.4 

for the load stage. This is constant at a load stage for 

all levels and is the total shear force. 

3. Multiply expressions 4.3 and 4.4 and convert the result to 

~<x 
~M 4.5 

by multiplying by the modulus of elasticity of the concrete. 

4. Integrate expression 4.5 from the compression face of the 

beam down to each gauge level. This is the shear stress at 

the gauge length. 

5. Plot shear stress down the beam and find the area of this 

plot from the compression face of the beam to the neutral 

axis. This is the shear force carried by the compression 

zone. 

Figure 4.4 shows a typical compressive and shear stress-block 

from the analysis. 

The calculations to find the shear stresses from strain readings 

were first carried out by hand but, as such a large amount of 

computation was requir~d, a computer program was written which, from 

the strain increments, gave the shear stress at each gauge location 

and the shear force carried in the concrete, at each load stage. 

Figure 4.5 shows the flow diagram of the program. 

Results of tests 

Table 4.2 gives the shear forces carried by the beams at 

failure; two values are shown for each beam as each end of the 

beams was tested separately. From the results, the typical 

reduction in ultimate moment of shear tests on beams with low a/d1 

ratios and no web reinforcement is seen. 
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TABLE 4.2 

Results of tests 1 - 6 

Beam End Vult M /M ult flex a/d1 

kN 

1 A 61 •7 0•61 3•02 
B 75•5 0•75 3•02 

2 A 88•9 0•89 3•02 
B 100•5 0•93 3•02 

3 A 107•5 - 3•02 
B 76•0 0•51 3•02 

4 A 91 •5 1 •17 3•99 
B 86•6 1 •13 3•99 

5 A 80•5 0•65 2•48 
B 80•5 0•65 2•48 

6 A 86•6 0•99 3•51 
B 77•8 0•89 3•51 

In Table 4.2, Vult is the shear force in the beam at failure, 

Mult is the bending moment under the jack at failure of the beam 

and Mflex is the ultimate flexural strength of the beam calculated 

from a strain compatibility analysis using the stress-block reported 

by Hognestad, Hansen and McHenry19• 

Figures 4.5 to 4.11 are photographs of the crack patterns of 

each end of the beams at failure and they demonstrate that, apart 

from beam 5, the diagonal crack which caused failure had a similar 

trajectory on each end of a beam. In beam 5, the dowel splitting 

began much nearer the centre of the beam in the test of the second 

end of the beam than in that of the first end, although the shear 

force carried by each end of the beam at failure was the.same. 

After the test on the first end of each beam, the crack 

pattern was inspected before lines of gauge points were stuck on the 

second end. The positions of the lines were selected so that, if 

the crack pattern was the same at each end, the lines would go down 

the beam from the compression face to the heads of inclined cracks. 

Three or four lines of gauge points were fixed to each beam but not 

all of these ended at an inclined crack as the crack patterns of the 

two ends of a beam were never identical. The strain readings from 
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the lines that terminated at the neutral axis between cracks were 

discarded and only the results of the lines that terminated at an 

inclined crack were processed in the computer. 

The results of the computer work are shown in Tables 4.3 to 4.8 

in each of which the shear force carried by the beam and the shear 

force carried by the concrete compression block are given for each 

load stage. The shear stress-block ordinates are not reported but 

a typical stress-block is shown in Figure 4.4; the forces V and 

V1 are acting in the positions given in Figure 3.1. 

For beam 3, the forces recorded were measured in the test of 

the first end of the beam and not on the second end. 

The shear forces given in Tables 4.3 to 4.8 are plotted in 

Figures 4.12 to 4.17. The lower part of each Figure is a plot of the 

shear force carried by the concrete compression zone against the 

total shear force in the beam. The straight line is the line that 

would occur if all the shear were carried by the concrete. It can 

be seen that the concrete carried about 3Cf/o of the total shear, which 

agrees with the result of higher load stages of the test by Krefeld 

and Thurston shown in Figure 3.10. It is evident that, in Krefeld 

and Thurston's test, the proportion of the total force carried by 

the concrete decreased a~ the test progressed until the concrete was 

carrying only about 3Cf/o of the total shear on the beam. At the top 

of Figures 4.13 to 4.17, the force not carried by the compression 

zone has been plotted as a percentage of the total force on the beam. 

If in this case, in order to give a comparison with the work by 

Krefeld and Thurston, the effect of aggregate interlock is not 

represented in the equilibrium equations and the dowel.force is found 

from the vertical equilibrium equation, 

and is therefore the total shear less the shear carried by the 

concrete. 
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TABLE 4.3 

Shear force carried in compression zone 

Beam 1 

Load Reaction at Gauge line 
Stage support, V 813 mm from 

kN support V1 
kN 

1 0 0 

2 31•4 15•4 

3 37•9 17•9 

4 44•5 16•8 

5 45•8 17•2 

6 53•5 17•8 

7 56•6 18•9 

8 59·7 19• 9 

9 69•2 23•0 

TABLE 4.4 

Shear force carried in compression zone 

Beam 2 

Gauge line 
915 mm from 
support V1 

kN 

0 

9•5 

11 • 4 

11 • 9 

13•1 

13•3 

9•6 

9·35 
10•7 

Load Reaction at Gauge line 
Stage support, V 710 mm from 

kN support V1 
kN 

1 0 0 

2 36•8 11 ·5 

3 46•8 12•8 

4 56•9 13•0 

5 66•6 15•25 

6 76•7 17•5 

7 86•9 19•7 

8 89•4 20•8 
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TABLE 4.5 

Shear force carried in compression zone 

Beam 3 

Load Reaction at Gauge line Gauge line Stirrup 
Stage Support, V 760 mm from 860 mm from load 

kN support V1 
kN 

1 0 0 

2 53•6 8•94 

3 63•6 7•6 

4 73•8 9•0 

5 83•8 11 •5 

6 93•8 13•0 

7 103•8 -

TABLE 4.6 

Shear force carried in compression zone 

Beam 4 

Load Reaction at 
Stage support, V 

kN 

1 " 0 

2 36•9 

3 46•8 

4 56•8 

5 66•8 
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support V, kN 
kN 

0 0 

8•5 0 

8•1 0 

8•3 0 

10•6 20 

11 • 4 40 

13•0 60 

Gauge line 
1270 mm from 
support V1 

kN . ' 

0 

6•8 

8•6 

10•8 

13•1 



TABLE 4.7 

Shear force carried in compression zone 

Beam 5 

Load Reaction at Gauge line 
Stage support V 510 mm from 

kN support V1 
kN 

1 0 0 

2 - -
3 51•6 19•8 

4 56•8 20•9 

5 61•6 22•7 

6 66•6 26•0 

7 71•6 29•0 

8 76•6 28•8 

TABLE 4.8 

Shear force carried in compression zone 

Beam 6 

Gauge line 
610 mm from 
support V1 

kN 

0 

-
18•2 

20•4 

20•8 

19• 2 

21 •4 

20•2 

Load Reaction at Gauge line Gauge line Gauge line 
Stage support V 813 mm from 915 mm from 1020 mm from 

kN support V1 support V1 support V1 
kN kN kN 

1 0 0 0 0 

2 36•8 10• 1 9•6 .. 8•0 

3 46•6 11 •7 10•4 9•7 

4 56•8 15•3 11 • 3 11 •8 

5 61•6 15•4 11 •9 13•7 

6 71•6 18•3 13·3 15•0 
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TEST PROGRAMME SERIES II 

As the results of the Series I tests were favourable, it was 

decided to carry out more tests in which the compression zone was 

instrumented for strain measurement and this time to measure 

displacements across the cracks in the beams so that eventually the 

forces due to dowel action and aggregate interlock could be 

estimated. 

The original strain measurements in Series I were taken with a 

50 mm demec gauge and as such a large number of strain measurements 

had to be taken it was decided to use a data logger for the 

measurement and to use electrical resistance gauges in the Series II 

tests. As 9•5 mm maximum sized aggregate was used in the mix, the 

minimum sized strain gauge that was likely to give satisfactory 

results was 25 mm, the minimum being at least twice the maximum 

aggregate size. 

The data logging equipment was capable of reading 100 strain 

gauges in one run and two of the beams had nearly this number of 

gauges in a block on the compression zone so that the computational 

method could be studied and compared with the ideal method of 

measuring the rate of change of longitudinal strain in the beams with 

the shear force on the beam held constant. 

DETAILS OF TEST SPECIMENS 

A total of six tests was carried out, one on each end of three 

beams. Two of these tests were exploratory and are not reported in 

detail. The other four tests, 7, 8, 9 and 10, are reported here. 

The exploratory tests, labelled 9A and 10A, were made with the same 

shear span as was used for tests 9 and 10. The numbering system 

therefore continues from tests 1 to 6 in Series I. 

Two beams without pre-formed cracks, for tests 7, 8, 9 and 9A 

were cast at the same time; a third beam with pre-formed cracks, 

for tests 10 and 10A, was cast later. 

All the beams were cast in wooden moulds, the mix design and 

beam layout was the same as in Series I. After casting, they were 
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cured for two weeks under damp sacking before being taken to the. 

laboratory and were then allowed to dry out for one month before the 

strain gauges were installed. Details of the test beam are given 

in Table 4.9. 

TABLE 4.9 
Details of tests 7 - 10 

Beam Shear span, a a/d1 Steel 150 mm 300 X 150 mm 
cube cylinder 

(mm) (%) 
strenfth 
(N/mm) 

stren§"th 
(N/mm) 

7 860 2•32 1•03 57•5 46 
8 1170 3•16 1 •03 57•5 46 

9 1470 3·99 1 •03 60 52 
10-t 1470 3•99 1•03 49•5 43•5 
9A* 1470 3•99 1•03 60 52 
10A*-,. 1470 3•99 1 •03 49•5 43•5 

* Exploratory beam 

+ Beam with pre-formed cracks 

The beams were marked out with a grid of approximately 50 mm 

(2 in.) between load and support. This enabled the positions of 

strain gauges and cracks marked on the beams to be plotted from 

photographs taken during the tests. The surfaces of the beams were 

gently rubbed down and any small blow holes that occurred in areas 

where gauges were to be applied were filled with strain-gauge cement. 

The first gauge down the beam was then fixed 12•5 mm from the 

compressive face and subsequent gauges were fixed down the compression 

zone at 25 mm centres. Small tag strips, separate.from the gauges, 

were stuck on to the beams, one for each gauge, and these were wired 

to the gauge at one end and to the data logger at the other end. 

The tag strips added considerably to the robustness of the instrum­

entation and enabled a considerable number of gauges to be re~used, 

after the first two tests, as dummy gauges for the later tests. 

Initially, gauges on beams to be tested later were used as dummies 

for the first tests. Figure 4.18 shows a set of gauges on one of 

the beams before the test was started. 
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FIG. 4.18 Strain gauges on test beam 9 
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The layout of the gauges on beam 7 is shown in Figure 4.19. 

Seven columns of eight gauges were used on one side of the beam and 

three·columns, B', D', and F', were repeated on the back of the 

beam to provide a check on the results. The gauge layout on beams 8 : 

and 9 is also shown in the Figure. For these tests, ten columns of 

eight gauges were used, two columns, B' and H', being repeated as 

checks. 

Cracks were pre-formed on beams 10 and 10A by slotting aluminium 

alloy crack formers, 0•5 mm thick, into the sides of the moulds 

before casting. Two 30 mm square holes were cut in the crack former 

through which the tensile steel was threaded. The holes were 

slightly larger than the steel as it was only intended to destroy 

interlock action across the crack and not to affect dowel action. 

It was considered that, by leaving the concrete round the bar in 

place, the dowel action across the pre-formed crack was as realistic 

as possible. The layout of the crack formers is shown in Figure 4.19. 

It was found that these formers became loose on the second load stage 

of the test and transmitted no interlock forces from then on. Four 

rows of eight gauges were used on beam 10 and these are also shown 

in the Figure. As beams 9 and 10 had the same span, a comparison 

between these tests was expected to give an indication of the 

significance of interlock forces. 

Beam 9A was identical to beam 9 but no instrumentation was used 

during the test. This test was performed so that the crack pattern 

could be inspected and a trial run-through of the test method could 

be carried out before any measurements were taken. Beam 10A was 

identical to beam 10, with pre-formed cracks but without gauges, and 

was tested to assess the value of carrying out the test on beam 10 

with gauges added. 

The test rig was constructed so that two beams could be in 

position at one time, one due to be tested and one, unloaded~ provided 

dummies for the test. The beams were tested with single point loads 

and the centre section of the beam provided a shear span for the 

tests on the two ends; it was therefore heavily reinforced in shear 

to ensure that it did not crack excessively and could be re-used in 

the second test. 
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TEST PROCEDURE 

The first test to be carried out was that on beam 9A. Ten 

equal load stages up to failure of the beam, which occurred when 

the steel yielded, were carried out and the crack pattern was 

plotted. Trials on delta gauge rosettes, used to measure displace­

ments across the cracks, were also carried out at this stage. The 

rosettes consisted of three 'Demec' points at the corners of an 

equilateral triangle of 50 mm side length. The rosettes were put 

on to the beams across the cracks at a level of 50 mm or 100 mm 

above the tensile face of the beam as soon as the crack had formed. 

At each load stage after the points were applied, strains on the 

three sides of the triangle were measured. This information and 

the inclination of ~he sides of the triangle were sufficient to 

enable the relative movements of the three corners to be computed. 

The results of these calculations were initially compared with 

measurements of crack width taken with a crack microscope having a 

graduated scale, and agreement was found. 

The test procedure that was finally used at each load stage 

for the instrumented beams was as follows. First, the electrical 

resistance gauges were read by the logger, and then the tape was 

immediately printed so that all the strain readings could be checked. 

The first channel on the data logger contained an internal reference 

resistance enabling a rapid check on the correct functioning of the 

logger to be made. 

A series of 'Demec' measurements was then taken using the 

200 mm 'Demec' gauge on two lines of gauges on the beam, near to the· 

compressive and tensile faces of the beam. These gauge readings 

were then used as a further check on the electrical resistance 

readings. 

The cracks were then plotted and marked in and crack width 

measurements were taken on all the cracks at each of the 50 mm spaced 

grid lines on the beam. 

Finally the 50 mm 'Demec' gauge rosettes were measured and 

further rosettes were stuck on if existing cracks had extended or 

new cracks had forme~. The time taken for each load stage was 
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approximately one hour and, for a complete test, two or three 

days. Figure 4.20 shows the crack patterns and rosette positions 

on the beams after the test. 

TEST RESULTS 

The computational method already described involved the 

solution of the equation 

'Txy = 4.1 

This may ideally be carried out in one way, by holding the 

force on the beam constant and measuring the longitudinal strain in 

the beam at varying distances from the support point. Thus the rate 

of change of strain and therefore stress with distance along the 

beam may be found. 

This was not attempted in the Series I tests as a very large 

number of strains would have to be measured in order to carry out 

the calculations and a 50 mm demec gauge is not ideal for measuring 

strains for this purpose. 

The simple moment transform 

'Txy = I y ,)~x ~ M 

0 ;:)M ~x 
4.2 

was therefore used. This implies that the rate of change of strain 

at any point in the compression zone with increasing moment, holding 

x constant and varying the load is similar to the rate of change of 

strain with moment, holding the load constant and varying x. This 

is not rigorous as the strain in the beam is a ~unction of other 

effects, the main one being the neutral axis depth, as well as the 

load distance from the support. 

In the latter case for example 

f (M d) 
n 

4.6 
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As electrical resistance gauges were used in the Series II 

tests and two regular grids of gauges were used in the tests carried 

out on beams 8 & 9 it was possible to study the strains that were 

measured, see what perturbations were observed and whether significant 

changes of strain could be found near to the head of cracks. If the 

neutral axis depth is a significant variable in equation 4.6 the 

strains in the compression zone should increase considerably as a 

crack tip is approached from the support side and then decrease 

away from it. 

Figure 4,21 shows a plot of the measured strains taken during 

the test on beam 9, load stage 11. Strains were measured on the 

beam on an orthogonai grid, at ten positions along the beam, 50 mm 

apart, lettered A to J, and at eight levels down the beam, 25 mm 

apart. ,The layout of the grid is illustrated in Figure 4.19 and the. 

gauges in Figure 4.18. In Figure 4.21 the strains are plotted as 

ordinates vertically above the grid, which is drawn obliquely. The 

upper surface is therefore a surface of longitudinal strain on the 

beam and the slope of this surface in the x direction is a function 

of the shear stress. The positions of the cracks that were present 

at this load stage are marked. If the local changes in the surface 

are due to the cracks, the calculations will be in error. At first 

sight it appears that there are two hollows in this surface, one 

100 mm before the crack at line D and one 100 mm before the crack 

at line J. The highest point along the surface is between lines 

D and G. These local changes are changes in strain and not 

necessarily in stress. If the material properties change from place 

to place, a steadily increasing stress will give local changes in 

strain. Two other observations support the fact that the local . ' 

changes in strain in Figure 4.21 are a function of the material and 

not of the cracks. 

Figure 4.22 shows a second plot of strains measured in the test 

on beam 9, this time for load stage 2, before the crac~ had formed. 

The scale of this Figure is five times that of Figure 4.21 so that 

local variations in level can be compared. The general shape of the 

surface is similar to that of Figure 4.21, showing that the local 

variations were not caused by the cracks but, possibly, by material 
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variation in the concrete. It is possible, though, that the cracks 

form in areas of weak concrete, or areas of high strain, during the 

tests and that the cracks are features of the hollows in the surface 

and not the converse. 

A survey of the area covered by this grid was carried out, 

using a Schmidt hammer, to test whether the material was stronger 

in the areas where there are hollows in the surfaces. The results 

of this survey, with contours of equal hammer scaling, are shown in 

Figure 4.23. It was not possible to carry out more tests on this 

beam since the beam, with its gauges left intact, was saved for use 

as a dummy block in later tests, but Figure 4.23 gives an indication 

of the material variations that can occur. The accuracy of the 

hammer at this strength level is.± 5 divisions. This leads to the 

conclusion that the shear stress in the compression zone of a beam 

does not vary significantly between and over cracks and the 

computational method is likely to give good results. 

A similar result is found when the strain readings taken on 

beam 8 are studied. Figure 4.25 shows the strains taken on 

beam 8, load stage 4, before the cracks had formed and Figure 4.24 

shows the strains on the same area of the beam at load stage 18, 

the penultimate load stage of the test. In this case, the surfaces 

are also of similar shape to each other and the cracks that formed 

between load stages 4 and 18 appear to have little local effect on 

the strains. 

These measurements still do not show that there are no high 

local changes of strain close to the head of cracks and therefore . . 

that no local high shear stresses are produced although large 

changes in strain appear to be unlikely. The state of stress on 

the area of concrete between the heads of cracks, the roots of the 

'concrete teeth' will be studied further later in this Thesis. 

A record of the load stages taken in the tests with shear 

force at each load stage is shown in Table 4.100 The complete set 

of compression zone forces calculated by the method used with the 

Series I test results is shown in Tables 4.11 to 4.14. 
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In the case of beam 7, the calculations only go as far as 

load stage 8 as trouble was experienced with the data logger at this 

stage and the remaining results had to be discarded. It was 

eventually discovered that the logger was not capable of giving 

satisfactory results if one of the gauges was broken during the 

test. If a crack formed through a gauge, the gauge would break 

causing it to change the load on the rest of the gauges in the 

logger and make these gauges unreliable. This could immediately be 

spotted during the tests as the reference resistance changed when 

any gauge was broken. The procedure that was adopted to stop this 

occurring was to take the broken gauge out of the circuit and replace 

it by a sound dummy gauge. This would make the reference resistance 

return to its correct value and allow the test to continue. 

The tests on Beams 8 and 9 produce more load stages than 

could be handled by the computer and the results were therefore 

computed using two runs of the program. For Beam 8 the runs 

used load stages 5, 7, 9, 11, 14, 16 & 18 and then 4, 6, 8, 10, 12, 

15, 17 & 19. For Beam 9 the load stages were 2, 3, 4, 6, 8, 10, 12 

& 14 and then 5, 7, 9, 11, 13 & 14. 

As a set of strain gauges was put on Beam 9 in a regular 

grid it was possible to calculate the shear forces in the beam 

compression zone from equation 4.1 

strains from all the gauges at one 

was calculated for each horizontal 

directly. In this case, the 
·. f 

load stage were taken and* 

row of gauges on the beam. 

A straight line was fitted to the <x - x curve so that 
i>(.x ~~ X 
....._ was constant for each row. The value of ~ was converted ~x . • a x 

to ":,<", x by multiplying by the modulus of elasticity of the concrete, 
!) X: 

27•5 x 103 N/mm2 .for these tests, and integrated twice down the beam 

to the neutral axis to find the shear force in the compression zone. 

The results of the calculation, for Beam 9 load stage 11 are 

shown in Table 4.15. These compare reasonably well with the results 

in Table 4.13 and give a further idea as to the reliability of the 

computation method. 
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TABLE 4.10 

Shear force on test beams 7 - 10 (kN). 

Load Beam number 
·-Stage 7 8 9 10 

1 0 0 0 0 

2 9•0 8•9 22•3 17•8 

3 17•7 17•8 30•0 22• 1 

4 26•7 26•7 40•0 31 •O 

5 35•5 35•5 44•5 40•0 

6 44•4 44•4 49•0 53·5 

7 53•2 49•0 53•5 62•0 

8 62•7 57•7 57•8 66•6 

9 67•4 62•3 62•3 71•0 

10 72•0 66•7 66•8 71•0 

11 75•6 71 •O 71•2 

12 80•0 75·5 75•6 

13 84•5 80•0 80•0 

14 89•0 84•5 84•5 

15 93•2 89•0 89•0 

16 93•2 

17 97•8 

18 100•0 

19 106•8 .. 
failure 99•0 114•0 - 72•5 
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TABLE 4.11 

Shear force carried in compression zone 

Load Total shear 
Stage force, V 

kN A 

2 9•0 2•84 

3 17•7 6•6 

4 26•7 10•3 

5 35•4 12•6 

6 44·4 15•3 

7 '53•2 14•5 

8 62•7 15·7 

Beam 7 

B 

2•4 

4·3 

6·5 

7•4 

8·2 

8•8 

8•6 
~ 

Gauge line 

B1 C D E F 

5·9 2•5 3 • 1 2•0 2•6 

7•6 6•8 6•8 6·7 6•7 

14•2 9·3 9•4 9·5 8•2 

18•0 11 • 5 11 • 1 10•4 9• 1 

18•2 12·5 12·7 11 • 3 10• 1 

21 •0 12·9 12•6 11 •7 11 •0 

23•2 13•1 13•6 11 •7 12•0 



I..O 
\JI 

TABLE 4.12 

Shear force in compression zone 

Load Total shear 
Stage force, V 

kN A 

3 17•8 

4 26•7 

5 35•5 

6 44•4 

7 49•0 

8 57·7 

9 62•3 

10 66•7 

11 71•0 

12 75•5 

14 84•5 

16 93•2 

17 , 97•8 

18 100•0 

19 106•8 

Beam 8 

B B1 C D 

10• 1 8•6 11 ·3 9·9 

7•8 8•9 13·1 12•5 

15·5 10•5 16·5 15•4 

10•0 9•2 16•8 16·6 

17•8 11 • 7 18•6 18•8 

11 •O 9•2 17•0 16•6 

14•9 9·4 14•7 15•7 

11 •O 9•4 15•8 16•6 

17·5 10•7 16•6 17•0 

11•0 9·7 15·6 16•5 

11 • 2 10•3 16•8 17•4 

16•6 11 • 3 16•8 18• 1 

11 •0 11 • 4 15•5 17•9 

18•3 13•5 15•2 18•7 

Gauge line ! 

E F G H H, I J 

9•2 10• 1 10•7 7·9 7 • 1 7•5 8• 1 

11 ·9 8•0 1 2 • 1 9•6 7•5 9•3 9•7 

13·5 13•0 13·3 10•6 9•3 10•5 10•4 
15•0 9·4 15•4 11 • 1 8•8 11 • O 11 • 5 
16•5 13•8 14•6 12•0 11 • O 11 • 9 11 • 3 
15•5 9·9 13·9 12•8 9·2 12 • 1 12• 2 

15 • 1 13•0 14 • 1 11 ·5 10•5 12•0 12•0 

15•8 10•2 14•8 12•3 10•0 12•6 12•8 

16•5 16•3 15•8 12•8 11•7 13•7 13•2 
15•8 11 • 4 15• 2 14•0 1 O•O 14 • 1 13·5 
17•0 12• 4 16•7 13·6 12•3 15•5 14·4 
18•0 17•7 17•8 14•3 12•8 16•5 14•5 

18•3 9•8 18•3 15•0 12•2 16 •6 14•9 

19• 2 19• 2 19•7 15·7 14•4 15·9 15•2 
------
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TABLE 4.13 

Shear force carried in compression zone 

Load Total shear 
Stage force, V 

kN A B 

2 22•3 10•2 11 • 1 

3 30•0 13 • 1 14•3 

4 40•0 15•3 16•8 

5 44•5 14•2 14•2 

6 49·0 16•2 16•5 

7 53·5 15•6 15•3 

8 57•8 17·7 18• 1 

9 62•3 12•7 17•5 
10 66•8 1.3·4 18•0 

11 71•2 12•2 15•9 
12 75•6 13•0 17•2 

13 80•0 11 • 6 16 • 1 

14 84•5 11 • 3 15•3 

15 89•0 - -

Beam 9 

B1 C D 

6•8 6•3 8•6 

8•9 8•2 11 • 2 

9•9 10•2 12•7 

6·3 11 • 9 9·9 

10•5 8•7 16•5 

7·7 14•2 16•0 

1 2• 1 11 ·6 17·5 

7·9 14•6 18•3 

12•5 11 • 9 20•0 

7•7 14•7 17·5 
12 • 1 6•7 18•6 

8•2 16•0 18•0 

10•4 12•7 18•7 

- 14•0 17·5 

Gauge line 

E F G H H1 I .J 

10•5 9•8 8•7 8• 1 4•9 9·5 8•4 
13• 1 11 • 9 10•5 8•9 5·5 9•8 8•7 

14·5 13•1 11 ·5 9·9 6 • 1 11 • 4 10•6 
14•5 12•4 10•8 9•8 5•9 11 • 0 9•5 
17•0 14•2 12 • 1 11 • 2 6•9 12•6 11 • 9 
17•8 14•3 12•4 11 ·7 7•0 13•·2 11 • 6 
18•8 16•0 14 • 2 13•0 7·9 14•5 12•8 
19•9 16•7 14 •5 13·7 7·9 15 • 4 13•6 
21•8 18•4 16 • 1 15•0 8• 1 16•6 14•5 
19•9 17•2 15•0 14•8 7•8 16•2 14•3 
21•8 19·7 16·4 16•2 8•5 17·6 16•6 
21•6 19•7 16•3 16•5 8•3 18•0 15·4 
22•8 21•4 17 • 1 17•6 9· 1 19 • 1 15•9 
21 ·9 21 ·3 16•6 17•4 8•7 18•7 14•8 



TABLE 4.14 

Shear force carried in compression zone Beam 10 

Load- Total shear Gauge line 
- -Stage force, V 

- - kN A B B1 

3 22•1 4•8 5•0 5•4 

4 31 •0 6•8 6 • 1 7• 1 

5 40•d 7•6 3•0 6•7 

6 53•5 11 •7 1 0•0 9•8 

7 62•0 12•5 11 • O 10•5 

8 66•6 13·9 11•9 11 • 2 

9 71 •O 15•7 12•4 11 • 7 

TABLE 4.15 

Beam 9 Shear force, V1, in the compression zone 
Load Stage 11, calculated by direct method 

Line Shear force 
k:N 

A 13•2 

B 13:8 

C 11 •4 

D 15 •8 
-

E 15•3 

F 13•8 

G 13•2 

H 10•7 

I 14•2 

J 13•6 
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The results of the rosette measurements are shown in 

Figures 4.26 to 4.28. 6H is the horizontal displacement across 

the crack and 6.V is the vertical displacement. Not all _the rosette 

results are reported. The rosettes were put on the beam as soon as 

the first sign of a flexural crack was observed. In some cases, the 

cracks did not exterid and other flexural cracks were formed later 

which stopped the first cracks extending. The rosettes on beam 7, 

570 mm from the support, are an example of this. In other cases, 

particularly near the load points, the cracks are not inclined and 

therefore do not show any shear displacement from the rosette 

measurements. At the beginning of each line, the load stage at 

which the displacement was first measured is recorded and the other 

points on the lines are at the subsequent load stages. 

DISCUSSION OF RESULTS SERIES I 

·Two important questions arise from these results. Firstly, 

are the forces produced by this analysis reasonable? Do they satisfy 

the equilibrium equations? Secondly, are the stresses produced by 

the analysis reasonable? Do they, when compared with a failure 

criterion, show that the compression zone of the beam is sound before 

the final diagonal crack forms and that the beam compression zone 

would fail if the diagonal crack formed at high load stages? 

The equilibrium equations are 

C - T + HI = 0 3.1 

V - V1 - V2 - V3 = 0 3.2 

Vh - V2S - V3n - Hit - Tl a = 0 3.3 

.The first of these cannot be used as no attempt was made in 

the tests to measure steel strains. The instrumentation that is 

required to do this would affect the bond strength of the bars and 

probably their dowel strength. The second equilibrium equation has 

already been used, when comparing the work to that done by Krefeld & 

Thurston, to find the force not carried by the compression zone. 

The equation that remains, once more adding the effects of the 

dowel and interlock forces together and ignoring the horizontal 

interlock force, written in the form 
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Vh = V2S + Cl 
a 

can be used to check the forces that have been measured. 

4.7 

Equation 4.7 was evaluated for all the cases where lines of 

gauge readings were reported and the result of this analysis is shown 

in Table 4.16. The calculations for Table 4.16 were carried out on 

the measurements taken on the last load stage of the test on a beam, 

as this was the stage of the test nearest to failure. (This is the 

point where most of the theorists say that the compression zone is 

carrying most of the shear force.) The moment produced by the 

compression block about the steel level was evaluated by assuming 

a triangular strain profile in the compression zone of the beam, 

the modulus of elasticity for the concrete being measured from 

cylinder tests. The strain profile was determined by fitting a 

straight line to the strain readings taken in the tests. A study 

of the shape of the compression block strain profiles showed that 

this was a reasonable assumption. The force V2 was calculated from 

the vertical equilibrium equation and the distance s was measured 

from the crack patterns before failure. 

TABLE 4.16 

Solution of equilibrium equation at final load stage, Beams 1 - 6 

Beam Cl V2S Cl + V2S Cl + V2S Cl 
and a a a --1!. 

line kNm kNm kNm Vh Vh 

1-813 76•6 9•36 86 • 1 1•52 1•36 

1-915 53•6 19• 1 73•0 1 • 15 0•85 

2-710 74•0 12•5 86•5 1•33 1 • 14 

3-760 50•5 24•5 75•0 1 •05 0•71 

3-860 66•6 13•8 80•5 0•90 0•74 

4-1270 61•2 5•4 66•6 0•79 0•72 

5-510 33•2 3•6 36•8 0•95 0•85 

5-610 40•3 5•8 46•0 0•98 0•86 

6-813 44•6 8•1 52•6 0•91 0•77 

6•915 56•5 14•8 71•4 1•09 0•86 

6-1020 55•0 5•8 60•5 0•83 0•75 
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Equation 4.7 may be re-written in the form 

Vh = 

If the force not carried by the compression zone at the last 

load stage is held to be negligible (i.e. V2 = 0), then the equation 

becomes 

Cl 
~ 
Vh 

V2S + Cl Cl 
a a 6 The ratios Vh and Vh are given in Table 4.1 • The 

V2S + Cl Cl 
average value of Vh a is 1•04 and the average value of Vha is 

0•87. This indicates that, at the last load stage, the force not 

carried by the compression zone has to be put into equation 3 in 

order to satisfy equilibrium conditions. 

Beams 3, 4, 5 and 6 gave results which indicate that the forces 

measured fit the equilibrium equation. The values of internal moment 

produced by beams 1 and 2 are high because high values of the 

modulus of elasticity of the concrete from short-term tests were 

used. Where the modulus was measured at the same rate as the beam 

was tested, as in the case of the other beams, the equation was 
I 

satisfied. All the calculations were carried out again, this time 

with a modulus of 24•8 x 103 N/mm2 and this gave values of 

V2S + Cl 
a Vh of 1•37, 1•05 and 1•22 for lines 813 and 915 on beam 1 

and line 710 on beam 2 respectively. (Lines are numbered by their 

distance in mm from the support: i.e. line 813 is 813 mm from the 

support.) A change in the value of the modulus of elasticity of 

the concrete has more effect on the calculation of Cl than on the 
a 

calculation of V2. For example, for beam 1 line 915, a change from 

2•3 to 3•2 x 103 N/mm2 increased the value of V1 by 3fJ/o at the last 

load stage but this was only 4•5% of the total shear on the section 

and so the effect of a change in the modulus of elasticity of the 

concrete on the value of the force not carried by the compression 

zone is very small. 
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Before a study of the stresses derived from the experimental 

results can begin, a failure criterion is required. The stress 

conditions from the test results can then be compared with the 

failure criterion to see whether they predict failure of the concrete 

at high load stages. 

Failure criterion 

The failure criterion used in this chapter was produced by 

plotting results reported by research workers who have carried out 

tests to produce a shear-compression interaction diagram on concrete 

under stress states similar to those in the beam tests. 

The test results used for the interaction diagram were those 

of Bresler & Pister25 and Reeves26 • These tests were carried out 

on thin-walled hollow cylinders which were loaded in compression 

and torsion. The stress conditions in the cylinder were those of 

uniform compressive and shear stress. Figure 4.29 shows the results 

plotted in terms of shear stress and compressive stress at failure 

divided by the 150 x 300 mm compressive cylinder stress f '• In 
C 

this way, concretes of different strengths may be compared on the 

same diagram. Two curves are drawn on the diagram which enclose 

95% of the test results. For the purpose of this chapter, it is 

proposed that any concrete with its stresses represented by a point 

under the lower line is sound. Any concrete between the lines may 
\ 
or may not be sound whilst any concrete with stress conditions above 

the top line may be said to have failed. This assumption recognizes 

that there is considerable scatter in the test results from which 

the diagram was prepared and that the test specimens were under 

uniform compressive and shear stress whereas, in beam compression 

zones, both these stresses vary through the section. 

The line of gauges that was compared with the failure criterion 

had to be the most critical one: ·it should be at the head of a 

critical crack at the penultimate load stage. The beam would then 

fail without the crack extending when the load was increased and so 

the stresses would be from the most critical part of the beam. For 

this reason, line 915 on beam 6 was chosen (see Figure 4.11). The 

compressive and shear stress-blocks for load stages 5 and 6 (the 
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penultimate one) are shown on Figure 4.30. At each level of the 

stress-block, compressive and shear stress may be read off, divided 

by fc' and plotted as on Figure 4.31 which shows the failure zones 

from the failure criterion. The complete stress-blocks therefore 

define lines on Figure 4.31. The two lines produced by plotting the 

stress-blocks for load stages 5 and 6 are also shown on the Figure. 

It can be seen that the line for load stage 6 is slightly higher 

than that for load stage 5 but both of these are well on the safe 

side of the failure zone. It is reasonable to assume that, if the 

next increment had been similar to previous ones and the dowel ha~ 

still carried the same proportion of the shear as before, then the 

stress-block line would be only slightly higher than that for load 

stage 6 and would still be safe. 

It is possible, however, to predict the state of stress on 

line 915 if the dowel and interlock force was lost at load stage 6. 

If the assumption is used that the neutral axis depth remains the 

same, i.e. at the crack, then the equilibrium equation 3.3 may be 

used with V2 & V3 = 0 to calculate C. The stress-block which fits 

the formula is shown in Figure 4.30. The concrete is now carrying 

all the shear on line 915. Provided that the shape of the shear 

stress-block remains the same, it is very much larger than when 

the dowel and interlock force was present. These two stress blocks 

tlow define the broken line on the failure criterion in Figure 4,31. 

It can be seen that this is well outside the safe area of the Figure 

at the neutral axis level and is only very safe at the top of the 

stress-block. This will be critical for diagonal tension failure 

where the shear crack spreads upwards from the centre of the beam to 

cause a very rapid failure. If the dowel had split or the interlock 

failed at load stage 6 then the beam would have failed in diagonal 

tension. In fact the dowel failure did occur with a shear force of 

77•8 kN on the beam, only 6•2 kN higher than the shear force present 

at load stage 6. 

The test on beam 3 was slightly different from the tests on the 

other beams and gav~ more information on the nature of the stresses 

in the concrete compression zone. The test was started in the usual 

way but an external stirrup was applied to the beam at the fifth 
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load stage to restrain splitting. The stirrup consisted of three 

cross-heads, one above and two below the beam, connected by 

prestressing wire, the 'centre cross-head being a sliding fit on the 

wire. A small hydraulic jack was fixed between the lower cross-heads 

so that a vertical prestress could be applied to the beam. 

Before the test on the first end of beam 3, lines of strain 

gauges were fixed to the beam, the positions of which were dictated 

by the results of the test on beam 1 which had the same a/d1 ratio 

and steel percentage. Four rosettes for the 50 mm Demec gauge were 

also stuck on the same end of the beam. The rosettes were on the 

opposite side of the beam from the lines of gauges but at the same 

distances from the support. The rosettes consisted of a circle of 

twelve gauge points at 15° intervals with one gauge length in the 

vertical position. This arrangement is preferable to the usual 

three-gauge rosettes as one faulty reading does not invalidate all 

the rosette data. 

The test on beam 3 was started in the usual way but, before 

the beam was loaded to load stage 5, the external stirrup was applied 

to the beam and loaded to 20 kN. The test was then continued, the 

stirrup being loaded by a further 10 kN between each load stage. 

When the shear force on the beam was 103•8 kN, the beam had reached 
I . 

its theoretical ultimate strength according to strain compatibility 

analysis in pure flexure 19• The load on the stirrup was then 

released slowly to see whether the dowel could sustain the extra 

shear force. When the load on the stirrup had dropped to 10 kN the 

beam failed in shear. The load on the capsule under the support just 

before failure was 94 kN. The concrete compression zone was therefore 

able to sustain higher stresses than those obtained just before the 

dowel failure, provided that the dowel was held together. Some 

shear stress redistribution is inevitable in this type of test but 

this does demonstrate that, as long as the dowel is held together 

and its failure is averted, beam compression zones can carry far 

more severe stress states than those which exist just before diagonal 

tension failure. 

The other end of the beam was similarly tested but failed 
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before the stirrup was first tensioned. However, the failure of 

the compression zone was not complete (see Figure 4.8) and when 

the stirrup was tertsiohed after the dowel failure, the beam was 

able to carry another 26 kN before failure. The shear force on 

the beam was 103 k:N, a load similar to that carried by the first 

end that was tested. 

The readings taken on the strain gauge rosettes on one side 

of the first end of the beam also gave evidence that the stresses 

in the concrete compression zone calculated from the longitudinal 

strain measurements on the other side of the beam are reason~ble. 

Figures 4.32 and 4.33 (upper parts) show the stress-blocks 

from the computer analysis of the longitudinal strain readings taken 

on one side of the beam for load stage 4. The broken line across 

the stress-blocks gives the ordinates of stress at the level of the 

rosette on the back of the beam. The Figures also give (lower parts) 

a plot of the rosette strain measurements for the same load stage. 

The peaks of this curve give the direction of maximum compressive 

strain from measurements on the beam itself. From a principal 

stress analysis of the compressive and shear stress-block ordinates 

at the rosette level, it is possible to calculate the direction of 

maximum compressive strain. This direction is shown on the plot of 

the rosette results as a broken line. It can be seen that the 
I 
\ 

directions of principal strain calculated from the stress-blocks are 

in close agreement with the peaks of the rosette curve. The principal 

stress analysis from the stress blocks is not very sensitive to 

changes in shear stress but the results of this test, together with 

the comparison of stresses with the failure criterion, show that the 

stresses predicted by the computer program are consistent with two 

other independently measured effects - the direction of principal 

strain and the failure criterion. This indicates that the concrete 

stress-blocks in the beams were not near failure before the dowel 

split and that the dowel breakdown is probably the trigger for the 

rapid shear failure of the beams. 
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DISCUSSION OF RESULTS SERIES II 

Shear Forces 

The shear forces shown in Tables 4.11 to 4.14 are similar 

in magnitude to those found in the Series I tests and the same 

conclusions from Series I still apply. At no stage in the tests 

was the compression zone found to be over stressed, when compared 

with the simple failure criterion. 

The shear forces in the compression zone of beam 10, the beam 

with pre-formed cracks are similar to those found in beam 9, which 

had the same layout, apart from the pre-formed cracks. 

The failure mode of this beam was interesting. The beam had 

pre-formed cracks, 150 mm deep, at 150 mm centres. As the beam was 

loaded flexural cracks formed at the head of the pre-formed cracks 

and then small cracks formed at the level of the steel as the dowel 

forces across the cracks became excessive. Finally a new set of 

cracks, starting at the head of the pre-formed cracks, occurred at 

the penultimate load stage and these joined to form a horizontal 

crack along the beam as the beam failed. 

Figure 4.34 shows the final crack pattern of test 10A, the 
\ 

trial test of the beam with pre-formed cracks. Both forms of 

flexural cracking can clearly be seen in this Figure. This 

illustrates exactly the cracking predicted by the Kani theory 

described in Chapter 3 and shows that, as the secondary cracking 

when the 'teeth' break off is never present in normal beams, his 

theory, in neglecting force transfer across cracks, does not predict 

the true behaviour of beams in shear. 

Displacement across cracks 

The results of the analysis of the displacement rosette 

measurements were found to be extremely variable. In most cases, 

the amount of shear displacement was proportional to the horizontal 

displacement across the crack since all the sets of data shown in 

Figures 4.26 to 4.28 are linear. 
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Fig. 4-34 Beam 10 at failure 
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It would be extremely useful if a method of predicting the 

shear displacement across a crack were produced as this could be 

used as a compatibility condition in the development of a theory to 

describe shear failure. So far only very tentative conclusions of 

this type may be drawn from the rosette data, but it seems logical 

that the shear displacement should be a function of the moment-to­

shear ratio on the beam and the geometry of the crack. 

Table 4.17 and Figure 4.35 give a record of the slope of the 
0 rosette plots.6.H/~V and, for each rosette, the relation vlS H' 

where: 

~v is the vertical displacement at the crack; 

6H is the horizontal displacement at the crack; 

) V is the vertical distance from rosette to crack tip; 

SH is the horizontal distance from rosette to crack tip. 

The relation S vl~ H is the ratio between the vertically and 

horizontally projected distances from the rosette to the head of the 

crack and is illustrated in Figure 4.35. This ratio may be measured 

from the drawings of the crack patterns on the beams. 

Beams 7, 8 and 9 are typical reinforced concrete beams without 

pre-formed cracks and may therefore be considered together. The results 
I . 

of the rosette measurement on beam 10 are not typical of beam 

behaviour and may be used only for assessing the forces carried in 

that beam by interlock and dowel action. 

Some of the cracks near the point of maximum moment on the beam 

are not inclined as they were influenced by the stress conditio~s 

local to the loaded area and by the fact that any inclination would 

make them pass under the loaded area into an area of decreasing 

moment. Shear failure of beams does not appear to be influenced by 

these cracks and they may therefore be said to be non-typical of 

inclined cracks. These cracks have therefore been excluded from this 

consideration of compatibility conditions. 

In the test on beams 8 and 9, some of the inclined cracks 

extended downwards, past the flexural cracks that they started from, 
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TABLE 4.17 

Rosette data results 

Beam Position* .6H bV 
number ,6.V <o H 

7 780-50 2•32 c:::.o -r 
780-100 2•78 l:::)O 

..,.. 

560-100 1•82 4•7 

470-50 1•67 2•3 

.360-50 0•94 1 • 25 

8 1090-50 0•46 3 ..,. 
940-50 1•59 3•2 * 
940-100 0•58 2•5 # 

760-100 0•37 4 # 

635-50 0•76 2•3 

9 1490-50 7• 15 O,o 

1220-50 12•5 4 -t 
1140-50 1•43 2•3 

990-50 1•37 3 
890-50 4•0 4 

725-50 1 • 15 1•57 

10 1370-50 0•79 5•5 

1370-100 0•44 4•5 

1220-50 0•78 4•2 

1070-50 0•93 9•0 

920-50 0•49 4•7 

920-100 1•33 3•7 

760-50 0•58 3•2 ... 
760-100 1 •22 2•5 

610-100 0•78 1•56 

470-100 1•38 1 •O 

470-50 1 •96 1 • 66 

* Example: '780-50' denotes that the rosette was 
780 mm from the support and 50 mm from the tension face. 

-t Crack too near support 

=#= Inclined cracking affected the result 
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towards the tension face of the beam. These cracks are presumably 

associated with the loss of dowel and aggregate-interlock action in 

the area. In some cases these cracks affected the rosette measure­

ments, either by cutting across the rosettes or by starting above 

the rosettes and extending past them so that the rosettes no longer 

measured the correct displacements. These results also are not 

considered. 

The remaining eight results have been plotted on Figure 4•35. 

These conclus~ons are very tentative but illustrate that a 

simple compatibility condition based on crack geometry may be 

possible. If this is so, then, since reliable formulae for 

predicting.AH already exist, it is only necessary to postulate a 

crack trajectory in order to work out AV for any value of the steel 

stress in the beam. Tests on other beams with different depths, 

steel percentages and crack spacings would also have to be carried 

out before a general compatibility condition of this type could be 

obtained. 
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CHAPTER 5 

SHEAR FORCE CARRIED BY DOWEL ACTION 

REVIEW OF PREVIOUS WORK ON DOWEL ACTION 

Dowel tests have been carried out and reported by at least 

six workers in the last few years; Krefeld and Thurston21 , 
. 24 22 27 28 Fenwick , Lorentson , Baumann and Arroyo • 

Krefeld and Thurston carried out nine tests on divided beams 

in which the tension zone was cast separately from the compressive 

zone and was secured to it only by the main steel. The beam is 

illustrated in Figure 5.1. The dowel was tested by pulling the 

centre section of the beam downwards until a crack formed and rapidly 

propagated at the steel level. The force acting on the specimen 

when the crack formed is called, in this Thesis, the dowel splitting 

force. This test has the advantage that it is beam-like in layout, 

the main steel being in tension throughout the test. The dowel 

shear force and the tensile steel stress are related to each other 

by the geometry of the test specimen. Krefeld and Thurston carried 

out tests with a slight difference in the dimension a but, even so, 

the tensile stresses in the bars at failure were always low, 

77 N/mm2 being the highest. 

Fenwick carried out tests on short dowels and long dowels; 

the short dowel was intended to model the conditions in a beam 

between cracks and the long dowel to model the conditions at the 

end of the beam beyond the .last crack. These are illustrated in 

Figure 5.2. The tests have the disadvantage that the steel is not 

in tension and cannot therefore exactly model the behaviour of dowels 

in beams and these tests therefore gave lower values for dowel­

splttting load than those of Krefeld and Thurston. The effect of 

tension on the bar could be to unbend it on each side of the crack 

for some distance, allowing it to move both horizontally and very 

slightly vertically and thus transfer dowel force further back into 

the concrete. 

Lorentson carried out nine dowel tests with a divided beam 

(Figure 5.3). The vertical division was formed by a 1 mm wide oiled 
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plate, removed after casting. Only two of the tests were of 

reinforced concrete, the test beams having either eighty or forty­

seven 2 mm wires as main reinforcement. 

In the compression zone of the beams the concrete was cut away 

leaving either two 25 mm bars or one 32 mm bar acting over a 300 mm 

length of the compression zone. 

The splitting strength of the dowels was greater than that 

found by Krefeld and Thurston, probably because the beams had 

substantial bottom cover to the bars. 

The load-displacement relationship measured by Lorentsen was 

almost elastic-plastic and therefore markedly different from the 

relationships found elsewhere. The bars in the compression zone 
. ~ 

would effectively act as encastre beams and carry load throughout 

the dowel test, possibly modifying the load-displacement relation­

ships. Krefeld and Thurston's test method gives a less plastic curve 

than Lorentsen because the only member carrying shear across the 

crack is the tensile reinforcement. 

Baumann, in a report published after the test work described 

in this chapter was carried out, gives the results of 26 tests on 

specimens of similar shape to those tested by Krefeld and Thurston. 
\ 

One of the major variables in this programme was the diameter of the 

tension reinforcing steel, sixteen tests had 20 mm bars, three had 

16 mm bars and five had 26 mm bars. Bar diameter was found to be a 

significant.variable, and the splitting strength of the dowel varied 

linearly with bar diameter. Only four of the tests carried out by 

Baumann were without stirrups. 

In another recently published report, Arroyo gives the results 

of ten tests on beams with a pre-formed crack. The layout of the 

beams was similar to the tests by Lorentsen with the pre-formed 

crack passing right through the section. In this case, a pair of 

inclined pre-formed cracks was employed, one on either side of a 

central point load in the test beam. This test had the same 

disadvantage as the test by Lorentsen: the displacements across the 

crack were not truly beam-like and the shear force carried by the 
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compression reinforcement which passed through the inclined crack 

had to be estimated. 

As well as carrying out three tests on divided beams to isolate 
17 the effects of dowel action, R. Jones developed an expression for 

the dowel force which causes cracking by considering the bar embedded 

in the beam as a point-loaded cantilever on an elastic foundation. 

This model is illustrated in Figure 5.4. Parmelee29 suggested a 

slightly more complicated model in which the bar is embedded on each 

side of a crack in an elastic material, this model being illustrated 

in Figure 5.5. In each case, the model is far from ideal. The 

effect of crack width was neglected by Jones, who was only studying 

dowel strength, and the effect of change of crack width and 

embedment length cannot be accurately included in the second model 

owing to our incomplete knowledge of these subjects. It can be seen, 

however, that the behaviour of a dowel must be more like the second 

model than the first. It is also clearly impractical to rely purely 

on a mathematical model at this stage as the unknown effects of bond 

and local cracking can only be dealt with practically. For this 

reason it was decided to carry out tests similar to those by Krefeld 

and Thurston as they are the closest to the true beam environment 

in which dowels work. The bar forming the dowel is put in tension 

during the test and is bonded on each side of the crack in a zone 

of\varying moment. The stresses in the main steel at the dowel 

failure are of the order of 70 N/mm2
, consistent with a dowel near 

to a support or with a point of zero moment in a beam. It is this 

type of dowel that commonly fails in beam tests. 

The tests were carried out in two stages. Firstly, a series 

of model beams was tested to find the effect of the major variables 

on ultimate dowel strength and stiffness, and secondly a few full­

scale tests were carried out to verify the validity of scaling on 

stiffness. 

MODEL TESTS 

The scale for these tests was selected so that a 6 mm GK60 bar 

would model a 22 mm bar. In Imperial units, to which the bars were 

made, this gives a scale of exactly 2/7. The 22 mm bar was the size 

I 
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FIG. 5.5 MATHEMATICAL MODEL OF DOWEL ACTION 
PARMELEE 
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used by Krefeld and Thurston and the 6 mm bar is the smallest 

diameter deformed reinforcing bar available. The layout of the test 

specimen to this sc&].e is shown in Figure 5.6. 

Mix design 

Two mixes were used in the tests: a strong micro-concrete 

mix for the centre section of the beam and a 2/7 scale mix of a 

normal structural concrete for the beam itself. The mix for the 

centre section was designed to be strong enough to permit the 

elimination of stirrup reinforcement, so simplifying the casting 

process. 

The mix that was selected is detailed below (by weight). 

Aggregate 2•4 - 1•2 mm 

1•2 - 0•6 mm 

0•6 - 0•3 mm 

0•3 - 0•15 mm 

Aggregate/cement ratio 4•5 

Water/cement ratio 0•4 

58% 
2CJ'/o 

15% 

7% 

This mix proved to be satisfactory and the centre section of 

the dowel beams did not fail in any of the tests. 

As the mix used by Krefeld and Thurston was not reported, the 

mix for the outer section of the beam was designed to be a 2/7 mix 

of a normal structural concrete. The mix details were as follows 

(all by weight). 

Aggregate 4•75 2•4 mm 4(J'/o 

2•4 - 1•2 mm 15% 

1•2 - 0•6 mm 1 cY'/o 

0•6 - 0•3 mm 15% 

0•3 - 0•15 mm 2CJ'/o 

Aggregate/cement ratio 5•3 

Water/cement ratio 0•65 
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This mix produced a compressive strength on 112 x 56 mm 

diameter cylinders of 48 N/mm2 at 14 days. The mix, like other 

micro-concrete mixes, produced a tensile strength which was high 

when compared with the compressive strength. Johnson30 reported that 

the splitting strength of 1/4 scale mixes, at this water/cement ratio, 

was 11% of the compressive strength, both tests being carried out on 

150 mm cylinders; if 70 mm cylinders were used, the figure was 12%. 

As the tensile strength of the concrete was an important parameter 

in the problem, twelve 112 x 56 mm test cylinders were made whenever 

a beam was cast. These were tested at the same age as the beam, 

some in compression and some in splitting. A plot of these results 

can be seen in Figure 5.7. The line for the relation fts = fc/7 is 

included in this Figure and fits the results reasonably well. When 

comparisons between model results, the prototype tests and the tests 

by Krefeld and Thurston were made, a tensile strength of one-tenth 

of the 300 x 150 mm cylinder strength was used for the prototype 

tests. A considerable amount of experimental work has been carried 

out on the relation between compressive and indirect tensile strength 

of concrete cylinders. The results show a lot of scatter but the 

figure of 1/10 is a reasonable fit to the results. 

Manufacture 

The centre section of the specimens was cast first in a steel 
1mould, the strong micro-concrete mix being used. The sections were 

stripped after 24 hours and then cured under damp sacking for 7 days. 

They were then cleaned and stored in the laboratory for one month to 

gain strength before they were prepared for the second casting. 

Before the second casting, the centre sections of the dowel 

beams were covered with a sheet of expanded polystyrene 1•5 mm thick, 

and the beams were then fixed in a second steel mould. This was 

finally fille·d with the 2/7 scale mix to form the complete beam. The 

beams were stripped after 24 hours and then the expanded polystyrene 

was dissolved with trichloroethylene to form the crack and the beams 

were then washed thoroughly with water. Curing was for 7 days under 

damp sacking after wh_ich the beams were stored dry for a further 

7 days until they were tested. 
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Testing 

The type of load-displacement relationship expected was a 

straight line with some change of slope as failure was approached 

and the curve reached its maximum value. After this, an initially 

steep falling branch was expected, possibly levelling out at large 

displacements. The test rig should therefore be very stiff or be 

constructed in such a way that this type of curve could be measured 

if it exists. 

The dowel beams were tested in a rig, diagrammatically shown 

in Figure 5.8, which applied the load to the centre section of the 

beam through a lever system. The beam was connected to a lever by 

a threaded rod which passed through the lever and had a load cell, 

thrust washer and screw below it. Load was applied by tightening 

the screw which tilted the lever against an upper stop. The lever 

was then.balanced by adding lead shot to a bucket suspended at its 

outer end. If the dowel split, the bucket dropped and pulled the 

lever onto a lower stop, releasing the dowel load and restraining 

the splitting. In order to follow the falling branch, a fixed 

displacement could be given to the dowel and the bucket load could 

be adjusted until the lever floated between the stops. Displace­

ments were measured by using a Demec gauge with a 50 mm gauge length 

only when the lever was in the floating position. The gauge positions 

\ are shown in Figure 5.6 and the test rig in Figure 5.9. This rig 
i 

did not prove to be completely successful in following falling 

branches because of the flexibility of the lever systems, but falling 

branches were observed in some cases and these are discussed later. 

DETAILS OF TEST SERIES 

Altogether 34 model beams were tested and these can be divided 

into 8 series which explore the main variables that were considered 

to affect the problem. Details of the beams are given in Table 5.1. 

Series 1 (8 specimens) 

This series was carried out first for two reasons. The beams 

are direct scale-models of Krefeld and Thurston's beams; No. 1 is 

a model of DA-2 and No. 2 models DA-1. Four specimens of each type 
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•Fi g. 5. 9 Model test rig 
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TABLE 5• 1 

Details of dowel test beams 

No. Series Variable 

1. 1-4 1 scale 
2. 1-4 

3 2 
4 f 
5 C 

6 

7 3 
8 
9 

a 

10 

11 4 
12 C 

13 s 

14 5 
15 cb 
16 

17 6 number 
18 of 
19 bars 

20 7 number 
21 bf 
22 bars 

b d w 

(mm) (mm) (mm) 

450 87 44 625 

625 f!7 44 

535 
625 87 44 710 
800 

625 87 44 

625 87 44 

625 87 44 

49 
625 87 54 

59 

a Number cb c. f 
of C l. C 

(mm) (~) (mm) (mm) (N/mm2) bars· 

87 2 7•6 7•6 15•8 20 
174 

15 

174 2 7•6 7•6 15•8 20 
27 
35 

130 
174 2 7•6 7•6 15•8 20 218 
263 

2•5 25•9 
174 2 7•6 7•6 15•8 20 

12•7 5·7 

2•5 
174 2 7•6 7•6 15•8 20 

12•7 

1 18•5 0 
174 2 7•6 7•6 15•8 20 

3 6 • 1 6 • 1 

15 •8 
174 2 10•2 7•6 20•8 20 

25·9 

Continued/ ••• 



TABLE 5.1 

Details of dowel test beams Continued/ ••• 

23 8 bar 625 87 44 174 ' 4 10•2 7•6 15•8 20 24 layers 

25 9 
26 f 625 87 44 174 2 7•6 7•6 15•8 15 27 C 

28 

The symbols are defined in Figure 5.6. 
_.., 
\.>I 
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were tested. The effects of scale and of repeating tests with 

similar beams were therefore studied in this one series. 

Series 2 and 9 (8 specimens) 

The effect of concrete strength was studied in this group. 

Series 2 had four tests with concrete tensile strengths of 3•3 to 

4•8 N/mm2
• These were higher than those of Krefeld and Thurston 

but nearer to normal structural concrete grades; series 9 was 

therefore carried out with material tensile strengths of 1•6 to 

2•2 N/mm 2 to give a better comparison with the prototypes of Krefeld 

and Thurston. 

Series 3 (4 specimens) 

This series was included because the shear span, a, which is 

an important variable-in the problem of shear, had been considered 

by other workers to affect dowel strength. 

Series 41 51 6 and 7 (3 specimens in each series) 

The layout of the tensile steel was considered to have a 

significant effect on both strength and stiffness and, as this had 

previously not been studied by other workers, a considerable amount 

of care was devoted to this parameter. 

The effect of side cover to the steel and the distance between 

the bars, c and c., were studied in various ways. Varying c in s l. s 
beams of constant width was achieved by moving the bars together, 

thus altering c. (series 4); c. was also varied in beams of different 
l. l. 

width, keeping c constant (series 7), and both c and c. were varied s s l. 

by testing beams with varying numbers of tensile bars (series 6). The 

effect of bottom cover to the bars was studied in series 5 with three 

tests. 

Series 8 

This series was included as the use of two layers of steel had 

not been studied before and it was suspected that these tests would 

be different in character from the others. 
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Whenever possible, each series of beams contained one beam 

with the same layout as dowel beam 2, which enlarged the population 

of these beams and gave a check on the rest of the beams in the 

series. In fact, 16 beams of this type were tested - Nos. 2.1, 2.2, 

2.3, 2.4, 3~ 4, 5, 6, 8, 12, 15, 18, 25, 26, 27 and 28. 

The effect of bar diameter was not studied for two reasons: 

firstly, because these dowel tests were carried out to provide 

information on dowel layouts that had been used in previous tests 

which only used one bar size and, secondly, because of the difficulty 

in modelling other sizes of deformed bar. 

RESULTS 

Ultimate strength 

The test results from all the model tests are recorded in 

Table 5.2. The values of fc and ft are the crushing and splitting 

tensile strengths respectively of the 112 x 56 mm model cylinders. 

The value of splitting load, Pult' is the maximum load that the beam 

centre section carried during the test and this corresponds to the 

rapid propagation of the crack at the steel level. Pult is therefore 

the strength of two dowels, one at each end of the centre section. 

The strength of the dowel specimens was found to vary directly 
I 

with the splitting tensile strength of the concrete forming the outer 

part of the beams. 

Figure 5.10 shows the splitting strength (Pult) of all 16 of 

the beams which had similar layout plotted against the splitting 

tensile strength of the concrete. Although there is a consider~ble 

amount of scatter it can be seen that a linear relationship may be 

assumed from a tensile strength of 1•6 N/mm2 to 4•8 N/mm2
• An idea 

of the repeatability of these tests may be gained by studying the 

width of the band which contains them. All the model results are 

within+ 15% of the mean line. 

Except for beam 17, the failure surface in all the beams, after 

cracking, was at the steel level with a width of ~(c + c.). This 
S 1 

expression is therefore used as the most convenient way of assessing 
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TABLE 5.2 

Dowel test results 

No. Series f f pult C t.s 
(N/mm2 ) (N/mm 2 ) (kN) 

1 • 1 1 18•2 2•76 2•21 
1.2 24•0 3•17 1•99 
1.3 21 ·9 3•31 2•12 
1 ·4 21 •9 3•66 2•38 
2.1 21 •4 3·07 2• 14 
2.2 24• 1 4 •14 2•53 
2.3 19•3 3·n 2•31 
2•4 20•7 3 • i7 2•23 

3 2 18•3 3•38 2•18 
4 22 • 1 3·31 2•33 
5 1 ,9•2 3 •17 1•88 
6 38•9 4•33 2•53 

7 3 22•9 3·37 1 •91 
8 27•5 3·93 2• 12 
9 24•2 3•53 2 • 12 

10 24•5 3·79 2• I 0 

11 4 21 ·4 3•31 2•01 
12 25•8 4•03 2• 19 
13 22•1 3 • 51 2•16 

14 5 24•1 3·34 1•78 
15 26•2 3·72 2•19 
16 24 •1 2•72 2•12 

17 6 24•1 2•96 1•98 
18 20•0 3•17 2•19 
19 24•1 3•72 2•02 

20 7 24•8 3•38 2•72 
21 22•7 2•69 2•36 
22 25•2 3•38 3•13 

23 8 25•5 3•38 3•06 .. 
24 30•4 3·75 3•03 

25 9 13•1 1 • 65 1 •88 
26 - 14•8 2•00 1 •91 
27 15 •5 2•20 1 •91 
28 12•7 1 •72 1 •91 
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the effect of the layout of the tensile steel reinforcement. In 

beam 17, in the cross-section the crack sloped slightly upwards from 

the outside of the beam to the steel in the middle of the section 

but, as this made only a slight difference to the failure surface 

width, <e·(c + c.) has still been used. Figure 5.11 shows the results 
\.-- S 1 

of the nine beams in these series and a relationship between 

(.(cs + ci) and Pult may exist. Even though only a few tests have 

been carried out, a linear relationship may be assumed, provided that 

the failure surface is horizontal, which is so with beams with normal 

reinforcement layouts. 

The results of the tests that were carried out to study the 

effect of bottom cover to the bars were less conclusive, although a 

slight trend towards higher dowel-splitting strength with greater 

bottom cover is indicated in Figure 5.12 particularly when the 

material strengths of the beams are taken into account. It would 

appear that a larger variation of bottom cover is required for the 

stiffness of the concrete below the bar to alter dowel strength 

significantly. A variation as large as this would have little 

significance in practical design. 

The results of the two tests of beams with two layers of 

reinforcement indicate that the splitting strength, Pult' is 

ap~roximately 4o% greater than that with only two bars of the same 
I 

type. The load-displacement relationship is of a similar shape to 

that of the two-bar dowel tests. 

Four tests were carried out to study the effect of the dimension 

a, the distance from the crack to the support, on the dowel-splitting ... 
strength, as Krefeld and Thurston reported that this affected dowel 

strength in their tests. A study of the results of these tests, 

beams 7, 8, 9 and 10 in Table 5.2, does not show a significant change 

with varying a. 

Stiffness 

Measurements of displacement across the dowel were taken 

throughout each test enabling load-displacement curves to be drawn. 

The test rig was constructed in such a way that controlled displacement 
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tests could be carried out to investigate the behaviour of the falling 

branch of the curve. The sudden loss of stiffness after dowel 

cracking was such, however, that the rig was not always capable of 

producing a complete load-displacement curve. Figure 5.13 shows a 

typical curve (for beam 2.2). It can be seen that this is an initially 

straight line curving over until the dowel-splitting load is reached. 

The initial part of this curve, drawn to a larger scale, is shown in 

Figure 5.14. Two symbols are used in plotting Figure 5.14, one for 

each end of the beam, ~s displacements were measured across each end 

of the pre-formed crack in the tests. 

PROTOTYPE TESTS 

The technique of carrying out model tests of dowel behaviour 

is new and, before the results of these tests can be said to be 

generally applicable, comparisons with tests of previous workers have 

to be made. For this reason, the model tests were chosen as models 

of Krefeld and Thurston's tests in order to cut down the amount of 

prototype work needed. The scale of the models was 2/7 of Krefeld 

and Thurston's tests using similar materials to the prototype. 

Thus, 

model displacements= 2/7 prototype displacements 

model splitting force= 4/49 prototype splitting force 

Krefeld and Thurston carried out three tests that can be compared 

with the models and the results of these are shown to the model scale 

in Figure 5.10. The three tests had different shear spans (which the 

model tests showed not to be a variable) and have all been included 

in the comparisons. In order to study the load-displacement relation­

ship more closely, particularly the initial slope of the curve, four 

prototype tests were carried out. The test specimens were slightly 

larger than the specimens of Krefeld and Thurston as they were made 

to the same size and steel layout as the beams which were studied to 

find forces in the compression zone and reported in the last chapter. 

The specimens were therefore 400 x 200 mm in cross-section with two 

22 mm bars as main reinforcement. Side. and bottom cover to the bars 

was 25 mm. 
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The concrete used in the tests had 19 mm aggregate and was 

to the following mix design (by weight). 

Aggregate 19 - 9•5 mm 

9•5 - 4•75 mm 

25% 

38% 

Sand 37% 

Aggregate/cement ratio 5•5 

Compacting factor 0•9 

Details of the prototype specimens and tests are given in 

Table 5.3. 

TABLE 5.3 

Details of prototypes 

Beam f PulJ Crack width 
(N/itn2

) (kN (mm) 

P1 3•86 27•2 1 • 5 

P2 3•7 28•0 1 • 5 

P3 3·75 31 •5 5•0 

P4 3•65 28•9 0•2 

Beams P1 and P2 were constructed with pre-formed cracks of the 

same width as the cracks in the model beams. The stiffness of the 
I 

dowel, the initial slope of the load-displacement curve, was less in 

the model than in the prototype. As the only dimension that had not 

been scaled correctly was the crack width, beam P3 was made with a 

scaled crack width much greater than that in P1 and P2. The crack 

width of beam P3 was 5•0 mm, much nearer to the true scale from the 

model of 7•0 mm which corresponds to the model width multiplied.by 

400/87. This dowel was much less stiff than the dowel in the previous 

two prototype tests and corresponds more to the model tests. 

The crack widths found in beams in practice are between 0•02 

and 0•3 mm and, at failure, are between 0•1 and 0•3 mm; beam P4 was 

therefore constructed with a crack width of 0•2 mm to conform with 

this. The crack was formed by filling the surface voids in the centre 

part of the specimen with cement grout to give a good finish; three 
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coats of paint and one coat of grease were then applied before the 

rest of the beam was cast. 

The dowel in this case was stiffer than that in beam P3 and 

of similar stiffness to that of beams P1 and P2. Some wedging of the 

concrete across the crack occurred at high loads, so that the test 

was not satisfactory apart from giving a dowel stiffness for small 

crack width and confirming that a limiting width of 1 •5 mm in dowel ,,.,..,. 

tests is satisfactory from both a strength and a stiffness point of 

view. 

Figure 5.15 sho~s the initial part of the load-displacement 

curve for beams P1, P3, P4 and a typical model result (beam 1.2). 

Idealized load-displacement curve 

A study of the dowel strength of tensile steel in reinforced 

concrete is not complete if only the ultimate strength of the dowel 

can be predicted.• It is important also to be able to assess the 

displacements that occur in order that the contribution of the shear 

force in the dowel to the shear strength of the beam may be assessed. 

If the failure of beams.in bending and shear is not triggered by dowel 

failure, then the ultimate strength of a dowel has little significance. 

\ After a study of both the model and prototype test results, it 
I • 

was decided that the most appropriate way of defining the load-

displacement relationship of a dowel was to produce an idealized 

curve, defined by the parameters of the problem. The form of the 

curve that was selected is shown to the prototype scale in Figure 5.16. 

This is a curve up to the splitting strength of the dowel, P , 
sp ... 

followed by an abrupt 5o% loss of force and then a long line of constant 

dowel force for increasing displacements. 

The initial slope of the curve (2,000 kN/mm) came from a survey 

of the prototype results with the minimum crack width, namely P1, P2 

and P4. 

The shape of the curve up to the splitting strength was found 

to fit the equation 
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PS = 1•55 P sp 
~ 0•25 kN 

where 6. is the shear displacement across the flexural 

crack in mm. 

5 .1 

This equation is applicable for the bar diameter and two-bar 
layout tested. 

The displacement at which dowels split was fixed at 0•17 mm, a 

figure derived from a survey of all the prototype and model beams and 

found not to vary with any of the beam parameters that were studied. 

From a study of all the model test results in which post­

splitting behaviour was measured, the residual section of the curve 

after the dowel had split has the ordinate 0•5 P • About 75% of the sp 
model results gave information for this analysis, which showed 

considerable variation within the beams; the figure of 0•5 was 

selected as a lower bound to the test results. The complete falling 

branch of model beam 2.2 is shown in Figure 5.13 and is typical of 

the results that were obtained. 

Finally, P is defined from a study of the model and prototype sp 
test results and the results of Krefeld & Thurston and Baumann. 

\ 

l The model tests were scaled up to the prototype size and the 

results from the other tests were collected. The variables that were 

considered to be significant and were used in the analysis were 

fts splitting tensile strength of the beam concrete 

(N/mm2
) 

<"' 
<,(c + c.) failure surface width (mm) 

s l. 

cb bottom cover the bars (mm) 

a shear span (mm) 

t bar diameter (mm) 

The data used in the analysis is shown in Table 5.4. 
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From a consideration of the way in which dowels fail, a set of 

transformations of this data were selected and, using regression 
I analysis, a number of equations were produced. The equation for 

dowel splitting strength that was finally selected, in slightly 

simplified form, was:-

P = 4•95 + 0•001 f (c + c.) ft ~ sp \. s 1. s 5.2 

Although one of Arroyo's conclusions was that the splitting 

strength increased with bottom cover to the bars this variable was 

not found to be significant with this data, probably because the 

bottom cover was not varied greatly within the tests, although the 

variation within these tests covered the practical range. 

A list of the beams, the measured P and the percentage error sp 
produced by the regression analysis are given in Table 5.5. 

This equation was selected as it is in variables that have 

physical significance. 

The units of (· ( c + c. ) ft ~ are kN which is the same as the <, s l. s 
units of P • An equation of the form of the regression equation may sp 
be derived from a consideration of the failure of the dowels. 

Figl,lre 5.17 shows a section of a reinforced concrete beam with the 
' ' dowel just starting to split and the initial failure surface drawn in. 

The force transmitted across the failure surface may be written 

as 

where n is the length of the initial splitting along the beam. 

If K~ is submitted for n where K is a constant then this equation is 

very similar to equation 5.2. 
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TABLE 5.4 

Dowel test results 

p fts f(c + C.) ~ a cb 
sp s 1. 

Model tests 

1 .1 13·5 2•76 108 22 305 26•6 

1 .2 12•2 3•14 108 22 305 26•6 

1.3 13•0 3•31 108 22 305 26•6 

1 .4 14•5 3•66 108 22 305 26•6 

2.1 13•1 3•07 108 22 610 26•6 

2.2 15•5 4 •14 108 22 610 26•6 

2.3 14 • 1 3•17 108 22 610 26•6 

2.4 13·3 3 •17 108 22 610 26•6 

3 13•6 3•38 108 22 610 26•6 

4 14·3 3•31 108 22 610 26•6 

5 11 ·5 3 • 17 108 22 610 26•6 

6 15 •5 4•83 108 22 610 26•6 

7 11 •7 3•37 108 22 455 26•6 

8 13•0 3•93 108 22 610 26•6 

9 13•0 3•58 108 22 763 26•6 

10 12•8 3•79 108 22 305 26•6 

11 12•3 3 •31 108 22 610 26•6 

12 13•4 4•03 108 22 610 26•6 

\ 13 13•0 3 •51 108 22 610 26•6 

14 10•9 3•34 108 22 610 8•70 

15 13•4 3•72 108 22 610 26•6 

16 13•0 2•72 108 22 610 44·5 

17 12 • 1 2•96 130 22 610 26•6 

18 13•4 3 •17 108 22 610 26•6 . 
19 12•4 3•72 85 22 610 26•6 

20 16 •6 3•38 127 22 610 26•6 

21 14•4 2•69 - 144 22 610 26•6 

22 19 • 1 3•38 162 22 610 26•6 

25 11 •5 1 •65 108 22 610 26•6 

26 11 •7 2•00 108 22 610 26•6 

27 11 •7 2•20 108 22 61 O 26•6 

28 11 ·7 1•72 108 22 610 26•6 

Continued / •••• 
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TABLE 5.4 Continued/ •••• 

Prototype tests 

P1 13 •6 

P2 14•0 

P3 15•7 

P4 

Baumann 

1 

2 

3 

4 

5 

6 

7 

8 

I 

9 
10 

11 

12 

13 

14 

15 

) 16 

17 

18 

21 

25 

29 

30 

31 

7•0 

9•0 

9•0 

7•0 

7•0 

11 •5 

6•0 

6•5 

11 •5 

7•5 

6•5 

17•0 

8•5 

9•0 

6•0 

6•5 

7•5 

7•5 

7•0 

11 •0 

5·5 

7•0 

9•5 

Krefeld and Thurston 

DA-2 15•9 

DA-3 14•0 

DA-1 8•9 

3 •14 

2•84 

2•84 

2•97 

2•97 

3•01 

3•14 

2•96 

3 •01 

3•14 

2•96 

~•93 
3•00 

3•05 

2•34 

2•34 
2•75 

2•75 

3•05 

3 • 16 

1 •16 

2•52 

3•98 

154 

156 

156 

156 

156 

70 

70 

70 

70 

70 

118 

78 
78 
98 
58 

58 

160 

70 

70 

70 

70 

70 

70 

70 

84 

70 

70 

70 

108 

111 

108 

22 

22 

22 

22 

610 

610 

610 

610 

25 

25 

25 

25 

20 450 30 

20 450 30 

20 450 30 

20 450 30 

20 450 30 

16 450 30 

16 450 30 

16 41 O 30 

26 450 30 

26 450 30 

26 460 30 

20 450 30 

20 450 40 

20 450 30 

20 450 .30 

20 450 61 
20 300 30 

20 600 30 

20 450 30 

26 450 30 

20 450 30 

20 450 30 

20 450 30 

22 

22 

22 

305 

456 

610 

19 

19 

19 

Continued / •••• 



TABLE 5.4 Continued / •••• 

DA-6 14•5 2•91 159 22 305 19 

DA-7 12•2 2•90 162 22 700 19 

DA-9 20•0 2•66 108 22 305 19 
DA-8 15•5 2•66 108 22 610 19 

DA-5 16•0 3•08 102 29 305 28 

DA-4 13 • 1 3•08 95 29 610 28 
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TABLE 5.5 
Comparison of tests with regression equation 

Test P (kN) sp 
Error% 

Model tests 

1 • 1 13·5 1 5 • 5 

1 •2 12•2 0• 1 

1 •3 13•0 3•2 

1 •4 14 •5 7•5 

2 • 1 13•1 8• 1 

2•2 15·5 6•5 

2•3 14•1 13•0 

2•4 13·3 7•8 

3 13•6 6•3 

4 14•3 12•0 

5 11 ·5 -6•5 

6 15•5 -3·7 

7 11 •7 -8•6 

8 13•0 -7•7 

9 13•0 -1 ·5 

10 12•8 -6•8 

11 12•3 -2•2 

12 13•4 -6•2 

13 13•0 -2•7 

14 10•9 -1 ·5 

15 13•4 -0•89 

16 13•0 13•7 

17 12• 1 -8•7 

18 13•4 8•6 

19 12•4 5•7 

20 16•6 1 5 • 1 

21 14•4 8•2 

22 19 • 1 12•9 

25 11 •5 24•0 

26 11 •7 12•3 

27 11 •7 14•4 

28 11 •7 24•0 

Continued / •••• 
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TABLE 5.5 Continued/ •••• 

Prototype tests 

P1 

P2 

P3 

P4 

Baumann 

1 

2. 

3 

4 

5 

6 

7 

8 

9 
10 

11 

12 

13 

14 

15 

16 

17 

18 

21 

25 

29 

30 

31 

Krefeld & Thurston 

DA-2 

DA-3 

DA-1 

DA-6 

13•6 

14•0 

15•7 

14•4 

7•0 

9•0 

9•0 

7•0 

7•0 

11 • 5 

6•0 

6•5 

11 •5 

7•5 

6•5 

17•0 

8•5 

9•0 
6•0 

6•5 

7•5 

7•5 
7•0 

11 •0 

5•5 

7•0 

9•5 
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-23•3 

-11 •O 

-18•7 

-31•6 

2•2 

2•2 

-28•2 

-28•2 

9• 1 

-14•7 

-31•2 

-7•1 

-27•2 

42•7 

17•5 
-6•1 

-0•9 

-35•4 
-24•9 

-15•7 
-15•7 
-29•8 

-5•8 

-18•6 

-19•6 

-8•9 

26•2 

14•8 

-21•6 

-2•2 
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TABLE 5.5 Continued/ •••• 

DA-7 12•2 -22•7 
DA-9 20•0 44•7 
DA-8 15•5 28•6 
DA-5 16•0 13•9 
DA-4 13 • 1 -0•5 

TABLE 5.6 

Prototypes with stirrups 

Beam l Stirrup ft 
(mm) diameter 

(mm) (N/mm 2 ) 

P. 1 25 6 4•36 
P.2 75 6 4•70 

P.3 125 6 4•25 
p.4 175 6 4•46 

P.5 25 10 4 •51 
P.6 75 10 3•80 
p.7 125 10 3•71 
P.8 175 10 3 •71 
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FIG. 5.17 LIMIT ANALYSIS OF DOWEL FAILURE 
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The dowel load-displacement relationship is now completely 

defined and is summarized below. 

(a) Dowel-splitting strength is calculated from the equation 

p 
sp = 4•95 + 0•001 ~ (c + c.) ft ~ kN 

' s l. s 

and occurs at a displacement of 0•17 mm. 

(b) The curve up to P is of the form sp 

P = 1 • 5 5 P ~ O • 25 kN s sp 

5.2 

5 .1 

These equations are applicable to the two-bar layout that 

was tested. 

(c) After P is reached, the force carried by the dowel sp 
drops to 0•5 P and remains at this level for all sensible sp 
displacements. 

Figure 5.18 shows the idealised curve plotted on the result of 

the test on prototype 1. 

PROTOTYPE TESTS WITH STIRRUPS 

Two series of four dowel specimens were tested to investigate 

the 1effect of the presence of stirrups on dowel strength and stiffness. 
I 

The test specimens had the same layout as the specimens previously 

tested with the addition of single stirrups near to the pre-formed 

crack. The specimen was the same size as the other prototype beams 

and is illustrated in Figure 5.19. The dimension 1 was varied from 

25 to 175 mm in 50 mm steps. The maximum distance of 175 mm was 

intended to correspond to 0•5 d1. This length would coITespond to ... 

the crack in a beam just coming on the support side of a stirrup 

leaving a long unsupported dowel length to the next stirrup. 

Details of the test specimens are given in Table 5.6. 

A similar series of tests with 10 mm diameter stirrups was 

also carried out (beams P5.5 to P5.8) and the results of these tests 

are also shown in Figure 5.20. 

160 



..... 
m ..... 

15 

z 10 
,.::,t. 

I .,, 
Q 

5 

0 

/11 
,-~. 

I 

11 

._ __ 

II 

0•5 1 1·5 2 2·5 
displacement across crack - mm 

FIG. 5.18 LOAD-DISPLACEMENT PLOT OF BEAM P1 WITH IDEALIZED CURVE 



stirrup 

-O') 
I\) In 

\ < 

""-=ff 0'"' nl • 
1405 

JI◄ 810 J 810 .~ 

all dimensions in mm 

FIG. 5.19 DOWEL SPECIMEN WITH STIRRUP 



...... 
0) 
w 

40.-----,------.------,.------------, 

z 30 
.x 

I 
0..1/) 

201 ✓~ A ..[ 

0 beam P5.1 
11 beam P5.2 
o beam P5.3 
0 beam P5.4 

0 0·5 1 1·5 2 2·5 
40 

30 z 
.x 

I 

0..1/) 20 

~ ~ I ~. - 0- I ◊ beam 5. 5 
6. beam 5.6 
0 beam 5.7 
□ beam 5.8 

0 0·5 1 1-5 2 2·5 
displacement across cracks - mm 

FIG. 5.20 LOAD-DISPLACEMENT PLOT FOR SPECIMENS WITH STIRRUPS 



,, 
The steel 'encastre beam' strength may be easily calculated. 

Assuming that plastic hinges will form at the stirrup and at 

the pre-formed crack, the following relationship applies. 

P& = 2MQ p (see Figure 5.21) 

= 4 M Q for 2 bars p 

S = Q 1 

p 

M p 

p 

where 

X 0•424 X r X f y 

= 750 kN mm 

= 4 X 750 
175 

= 17 kN 

~ = displacement across dowel 

M = plastic moment of one bar p 
r = bar radius 

Q = plastic hinge rotation 

1 = distance from pre-formed crack to stirrups -

150 mm in the case of beam P5.4 
fy = yield stress in reinforcing bar 

This figure is higher than the 'beam yield' point of 10 kN 

from Figure 5.20. This is presumably because the analysis ignores 

the tensile force in the bar and makes assumptions as to the hinge 

positions. It is possible to calculate the value of M for a given 
p 

value of T, the plastic tensile force in a bar, and to produce an p . . , 
interaction diagram between them, for a circular section. 

Figure 5.22 shows a circular section in the plastic state with 

both moment and direct force upon it. 
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The following relations apply 

T 
P - .11 - Q + sin Q ?T -

y 

M Tf = ½ sin3 (Q/2) 
y 

These are plotted in Figure 5.23. 

A small amount of tensile force will therefore decrease the 

plastic moment slightly. 

From the force at splitting and the geometry of the section it 

is possible to calculate the steel tensile force and therefore the 

reduced value of M. For beam P5.4 the tensile force in the bar at 
p 

splitting was 0•1 Tp. 

therefore 0•98 of the 

From Figure 5.23 the correct value of M is p 
full M. The discrepancy between the measured 

p 
and calculated values of M is presumably therefore due to under­

p 
estimation of the length of bar 1. 

The presence of a stirrup near to a crack can therefore affect 

the dowel load-displacement relationship in three ways. 

(1) If the stirrup is very close to the crack, the 

dowel strength after splitting is the strength 

of the stirrup. 

(2) When the stirrup is far from the crack, the 

'beam strength' may be less than the splitting 

strength and the stirrup will have no effect on 

the dowel action. 

(3) When the stirrup is at some intermediate position, 

the dowel strength after splitting is increased to 

the 'beam strength' of the tension steel. 

The change of behaviour between the stirrup being mobilized 

and the steel acting as a beam can be put in general form by carrying 

out the previous calculation with the stirrup strength equal to the 
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FJG. 5.21 LENGTH OF MAIN STEEL ACTING AS AN ,, 
ENCASTRE BEAM 
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beam strength of the main steel. Figure 5.24 shows the results of 

this calculation in the form of a graph. The distance 1 in terms 

of bar diameters of the main tensile steel may be plotted for the 

most common ranges of d/d, the ratio of the diameters of main steel 
s 

and stirrup, and f/fs' the ratio of the characteristic strengths of 

main and stirrup steel. 

Thus 

4M 
p = ___E = 2 A f 1 s s 

1 = kr d = stirrup diameter s 
A = stirrup area r = stirrup radius s s 

Hence, for a two-bar dowel held by two legs of a stirrup, 

4'Tl'r2 0•424 r f 

kr = 27't'r 2 
s f 

s 

f 
k = 0•848 (.!'.....)2 J.. 

r f s s 

: -•-

This relation is plotted in Figure 5.24, which shows that close 

stirrup spacing has to be used if dowel capacity is to be increased 

to that of the stirrup. This result is therefore of interest in the 

design of binding reinforcement in plastic hinges carrying heavy 
i 
shear forces if all the load-carrying capacity is to be realized. 

The values of k will further be modified by the presence of tensile 

force in the bar. This may be calculated by referring to Figure 1 5.23. 

It is more difficult to give a general rule as to the trarsition 

between stirrup spacings that will achieve the main steel 'beam' 

strength and those in which the splitting strength is greater, since 

so many variables are involved. 

It is possible in particular cases, however, to calculate 

quickly this transition from the splitting strength equation and the 

main steel 'beam' analysis. 

This discussion pre-supposes that for a given stirrup spacing 
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the flexural-shear cracks will form over the stirrups and that the 

dowel length to the next stirrup will therefore be the full spacing. 

In beam tests this happens very often but not always, so that the 

calculations are only for the most extreme cases that can arise. 

It is important also to remember that this discussion concerns 

only one aspect of stirrup behaviour and not the major effects of 

the forces carried across inclined cracks and the confinement of the 

concrete in the compression zone. 

Discussion of Results 

The significance of the dowel forces measured in these tests 

are discussed at the end of the next chapter, together with a discussion 

of the forces carried across cracks by mechanical interlocking of the 

aggregate. 

. . 
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CHAPTER 6 

SHEAR FORCE CARRIED BY AGGREGATE INTERLOCK ACTION 

REVIEW OF PREVIOUS WORK 

The results of the tests described in the last two Chapters 

show that the shear force on a beam is distributed over the whole of 

its section. For a typical case, Beam 9, the shear force in the 

compression zone of the beam at failure was about 2Cf/o of the total 

shear force and the ultimate dowel capacity of the reinforcement 

layout was 15 kN, 17% of the total shear force. These percentages 

are in general agreement with Fenwick's conclusions stated at the 

end of Chapter 3. The rest of the shear force in a beam must 

therefore be carried by interlocking of the aggregate. The average 

value of the interlock shear stress may be found by dividing the 

shear force not carried by the compression zone and by dowel action 

by the area of the crack. In the case of beam 9, the stress is 

0•85 N/mm2
• 

A reinforced concrete beam carrying bending and shear is shown 

in Figure 6.1. The lower part of the Figure shows a small section of 

one of the cracks. In the tests on beams described in Chapter 3 it 

was possible to measure the displacements across the cracks and these 

fhow that displacements in the vertical direction, parallel to the 

bracks (AV in Figure 6.1) do occur and that they are of sufficient 

magnitude for the opposite sides of the cracks to touch at some 

points. Figure 6.2 shows a close-up photograph of a shear crack at 

a late stage in a test on a beam. The interlocking of aggregate 

particles can clearly be seen and, in the centre of the picture, some 

spalling of the concrete is visible over the interlocking particles. 

This kind of behaviour is characteristic of inclined cracks in beams 

carrying loads near to their ultimate strength; it is never seen in 

vertical cracks in areas of constant moment and zero shear. 

Two tests have been carried out by Gergely31 , one of which 

corroborates these findings about the magnitude of the interlock 

force. Gergely cast two beams of the type shown in Figure 6.3. In 

one shear span, an inclined crack was pre-formed by casting a 1•6 mm 

wide oiled plate into the beam and removing this plate after the 
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concrete had set. The other end of the same beam was cast without 

a pre-formed crack. Thus a comparison between the ends of the beam 

shows the effect of eliminating aggregate interlock over the area of 

the pre-formed crack. 

These beams were made to the same dimensions as the beams 

reported on in Chapter 4 and may therefore be compared with the 

results of those tests. Gergely's test can only show whether or not 

aggregate interlock forces are significant and cannot be used 

quantitatively as the stiffnesses of the two ends of the beam are 

not the same. In order to estimate the shear force carried in the 

compression zone of the beam, Gergely used the first method of 

analysis in Chapter 4. The results of Gergely's test on one beam, 

with a ratio of shear span to effective depth. a/d1, of 3•02 and with 

a tensile steel percentage of 1•03, may therefore be compared with 

the test results for beam 1 in Chapter 4. 

The test results are shown in Table 6.1. The two results for 

beam 1 are from opposite ends of the beam. The concrete strengths 

are the cube strengths taken when each end of the beam was tested. 

These compare directly with Gergely's test (a) which was on the end 

of his beam without a pre-formed crack. A range of concrete 

strengths is given for Gergely's test as he did not report the exact 

strength but stated that he used the same mix as that used in his 

dowel test series. The upper three test results in Table 6.1 

therefore give the scatter that can be expected from identical shear 

tests. 

TABLE 6.1 
Comparison between tests by Gergely31 and those in Chapter 4. 

Test Ultimate shear 150 mm cube 
strength strength 

(kN) (N/mm2
) 

beam 1 65 36•5 
79•5 42•0 

Gergely ~~~ 71 24•2 to 37•0 
33•5 24•2 to 37•0 
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The result of Gergely's test (b), the test on the end with the 

pre-formed crack, is significantly lower than the others. Allowing 

for the differences in the shear carried by the compression zone and 

by dowel action in each test, Gergely estimated that 45% of the total 

shear force of end (a) was being carried by aggregate interlock. 

In his second test Gergely carried out the same procedure with 

a beam which had an a/d1 ratio of 2•48. In this case, although the 

end without the pre-formed crack behaved satisfactorily and the shear 

forces in the compression zone were calculated, the other end of the 

beam behaved as a tied arch and was as strong as the sound end. 

This behaviour is analogous to that found by Leonhardt and Walther13 

when they tested beams with good steel anchorage and poor bond. In 

this case, also, tied arch action occurred and the beams had an 

increase of shear strength over the beams with good bond. This 

second test by Gergely, as Gergely himself pointed out, does not 

therefore provide a valid comparison to determine the significance 

of aggregate interlock as interlock was not involved in the behaviour 

of the beam. 

The tests described so far, although they provide evidence of 

the significance of aggregate interlock forces, do not provide any 

reliable quantitative information. 

A series of tests has been carried out by Fenwick24 in which 

aggregate interlock forces were assessed from tests on concrete plates. 

In this case, the tests were not on beams and should therefore have 

included displacements to simulate those that occur in beams. The 

test rig used is illustrated in Figure 6.4. A large number of . 

50 mm x 50 mm x 350 mm concrete blocks were cast with a groove across 

the centre of each block. This groove was used to initiate a crack 

which passed right through the specimen. The shear transfer across 

this crack was then studied by securing the block to the test rig and 

shearing one end relative to the other. A series of tests was 

carried out for various values of crack width and concrete strength. 

Each test was carried out with a constant crack width, the crack 

width being adjusted after each application of shear force by 

applying a normal force across the crack. The results of these tests 
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are summarized in Figures 6.5 and 6.6. Each of the lines on these 

Figures comes from the combined results of six tests; the scatter 

of the six results about one typical line is shown in Figure 6.6. 

It can be seen that large stresses are possible, particularly with 

small crack widths. The value of average shear stress mentioned 

previously, 0•85 N/mm2
, is clearly possible and is in fact low 

compared with the ultimate stresses shown here. Unfortunately, the 

displacement pattern selected by Fenwick is not the same as that 

found in beams. In beams the cracks open and shear simultaneously, 

i.e. they do not shear with constant crack width. The additional 

normal forces applied in these tests must have had the effect of 

considerably enhancing the interlock stresses. 

Ideally, an aggregate interlock test should be carried out 

either on a beam, in conditions where displacements can be controlled 

and all the forces measured, or in a separate test rig where the beam 

displacements can be simulated. Both types of test have been used 

and the results of this work are given later in this chapter. 

TEST PROGRAMME 

Two types of test were carried out in this investigation. The 

first was a displacement-controlled test on an unreinforced concrete 

block and the second was a test on a beam with a pre-formed crack 

\ and with sufficient instrumentation to enable the interlock forces 

to be calculated. 

BLOCK TESTS 

In order that the measured displacements across shear cracks 

in beams could be modelled the interlock tests were conducted'in a 

rig in which the ratio of normal to shear displacement could be 

changed between tests but was constant during the test. The rig that 

was designed is shown in diagrammatic form in Figure 6.8. The test 

specimen, with a pre-cracked section 127 mm long and 140 mm wide, is 

bolted to a pair of linked crossheads. The lower crosshend is 

bolted to a test frame and the upper crosshead pulled horizontally. 

The linkage system ensures that vertical and horizontal displacements 

are induced. By casting the test blocks with the crosshead-fixing 

grooves at varying spacings, it is possible to set up the specimen 
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with varying values of the angle o<. ; each value, for the small 

displacements used in the test, defines a different value of the 

ratio of normal to shear displacement. 

Displacements across cracks in beams were measured in the 

vertical and horizontal directions, giving the ratio .6 v/.6H" These 

displacements may be converted to the normal and shear displacements 

across the crack once the slope of the crack at that point is known. 

In the interlock tests, the displacements were measured in the 

latter form and in this chapter have been denoted ~N and .6S 

respectively. Thus.6N/.6S is defined as coto<.. The forces in the 

system were measured by a load cell in the pulling system and by 

strain gauges fixed to the freely pivoting ties between the crossheads. 

Tests were carried out initially on the rig which indicated that the 

friction in the pivoting arms of the system was small and was not 

significant in comparison with the other forces that were to be 

measured. 

Test series 

were: 

The major variables that were considered to affect the problem 

displacement ratio L::::. N/.6s; 

concrete strength; 

aggregate size; 

aggregate type. 

The effect of these variables was studied in a total of 

35 tests. The complete test programme is summarized in Table 6.2. 

Series 1: 6 tests. This series was carried out to investigate the 

scatter of results from the test method and rig. 

Series 2: 8 tests. These tests were carried out to investigate the 

effect of the displacement ratio and aggregate size. The displace­

ment ratio was varied between 2.145 and 0.268, the range that was 

found in the beam tests. The values of .6.N/.6s that were used, 2.145, 

1.0, 0.466 and 0.268, correspond to ~values of 25°, 45°, 65° and 75°. 
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Series 3: 6 tests. These tests were carried out to determine the 

effect of concrete strength on the interlock force. 

Series 4: 12 tests. These tests were carried out to study the 

effect of using different types of aggregate. Thames Valley gravel, 

rounded gravel, limestone and lightweight aggregate were used. 

Series 5: 3 tests. These tests were carried out to find out whether 

the test rig could be used to find the effect of stirrups on interlock. 

Test procedure 

The test blocks were cast, three at a time, in timber moulds. 

The formwork was stripped after one day and the specimens were then 

cured under damp sacking and polythene for seven days. 

The following mix designs were used. 

Mix with 9 mm aggregate 

9 mm aggregate 

sand 

aggregate/cement ratio 

compacting factors as in Table 6.2 

Mix with 19 mm aggregate 

1 9 mm aggregate 

9 mm aggregate 

sand 

aggregate/cement ratio 

compacting factors as in Table 6.2 

Lightweight aggregate (Lytag) 

Lytag medium 

Lytag fine 

aggregate/cement ratio 

water/cement ratio 

dry density at 28 days 

185 

60'/, 

4o% by weight 

4•5 

25% 

38% 
37% by weight 

5•5 

58% 
42% by weight 

3•25 

0•92 

1680 kg/m3 
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TABLE 6.2 

Details of block test specimens 

Series No. AN Aggregate 
-- size 
AS 

19 mm 9 mm 

1 1 1 •O * 
1R 1 • O * 

2 1 •O * 
2R 1 •O * 
3 1 • O * 

3R 1 •O * 
2 4 2•145 * 

5 1·0 * 
6 0•466 * 
7 0•268 * 
8 2 • 145 * 
9 1 • O * 

10 0•466 * 
11 0•268 * 

Compacting Aggregate type 
factor 

gravel rounded limestone lightweight 
gravel 

0•9 * 
0•9 * 
0•9 * 
0•9 * 
0•9 * 
0•9 * 
0•9 * 
0•9 * 
0•9 * 
0•9 * 
0•9 * 
0•9 * 
0·9 * 
0•9 * 

Continued / •••• 



TABLE 6.2 Co.:itinued / •••• 

3 12 1 •O * 0•85 * 
13 1 •O * 0•85 * 
14 1 •O * 0•89 * 
15 1 •O * 0•89 * 
16 1•0 * 0•94 * 
17 1 •O * 0•94 * 

4 18 1 •O * 0•91 * 
19 1 •O * 0•91 * 

SS 
20 1·0 * 0•91 * 
21 1•0 * 0•91 * 
22 1 •O * 0•91 * 
23 1•0 * 0•91 * 
24 1•0 * 0•91 * 
25 1 •O * 0•91 * 
26 1 •O * 0•91 * 
27 1•0 * 0•91 * 
28 1 •O * 0•91 * 
29 1 •O * 0•91 * 

5** 30 1 •O * 0·91 * 
31 1 • O * 0•91 * 
32 1 •O * 0•91 * 

** Series 5 - all blocks had 6 mm stirrups across the crack. 



After the blocks were cured, they were brought into the 

laboratory and were dried for two weeks before being tested. The 

blocks were pre-cracked before they were set up in the test rig, by 

first applying a slight prestress normal to the grooved section in 

the block and then bending the block by means of a jack as shown in 

Figure 6.9, to form a flexural crack right across the groove. The 

crack was formed flexurally, rather than in direct tension, as the 

cracking in beams that the rig simulates is formed in flexure. The 

maximum width of the crack just after its formation was 0•1 mm; 

under the action of the prestress, this closed immediately the 

block was taken out of the cracking rig. 

After cracking, the linked crossheads were bolted round the 

block and the lower crossheads were secured by filling any small 

gaps left in the fixing grooves with building plaster. The upper 

crossheads were only loosely bolted at this stage. The block with 

its crossheads was then lifted onto the rest of the test rig and 

the prestress on the block was released. Any gaps between the lower 

crossheads and the test frames were filled with steel shims and the 

crossheads were securely bolted to the frame. In some cases the 

pre-formed crack opened slightly at this stage; when this occurred, 

the crosshead was released and more shims were packed under it. This 

enabled the lower crosshead to be secured in the rig without any 
\· 

Opening of the crack in all but a few cases where distortions of the 

block made some opening inevitable, Finally, the upper crossheads 

were bolted firmly and the gaps around them were plastered. The rig, 

with a specimen in it, is shown in Figure 6.10. 

The specimens were tested by applying small increments of-load 

to the jack which pulled the top of the specimen horizontally. The 

forces in the ties linking the crossheads and in the load cell in 

the pulling mechanism were measured, and the displacement across 

the crack, in the vertical direction only, was measured with a Demec 

gauge of 50 mm gauge length. At later load stages attempts were 

made to apply increments of displacement rather than increments of 

load to the blocks. 
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Fig. 6 . 9 Test block cracking rig 
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In the initial trial tests, which are not reported, and in 

the first tests of Series 1, the crack did not open uniformly, the 

front tending to bind while the rear part opened. This was accompanied 

by cracking between the plaster and the crossheads, showing that some 

rotation of the block was occurring. Finally, failure occurred_by 

an inclined crack forming half-way along the pre-formed crack and 

running to the point where the crosshead joined the front of the 

block. This kind of failure is analogous to that found by Fenwick 

as illustrated in Figure 6.4. This problem was finally overcome by 

adding extra restraints to the blocks to prevent the rotation from 

developing. The arrangement of these additional bolts can be seen 

in Figure 6.11. (The block shown in this Figure is one with a 

stirrup across the crack and the failure mechanism is not typical of 

the behaviour of the unreinforced blocks.) The modification of the 

rig helped considerably in keeping the crack parallel-sided as it 

opened, but the initial binding of the front of the crack still 

occurred in some cases. Because of the very small displacements 

involved, it would be almost impossible to force the sides of the 

crack to remain parallel without increasing the scale of the test 

rig and reducing the sc~le of the block. Problems would then arise 

in designing load-measuring devices on the rig to work with adequate 

sensitivity. 

\ 

Te'st results 

A typical test result, for block 20, is shown in Figure 6.12. 

The upper curve is the relation between shear stress and displacement 

and the lower curve the relation between normal stress and displace­

ment; a positive normal stress denotes compression across the crack. 

The horizontal line denoted by fsu indicates the ultimate interlock 

stress that was measured. The displacement that is recorded on the 

graph is the normal displacement, the crack width. This normal 

displacement is related to the shear displacement by the set-up of ,,,_. 

the rig; the ratio between them, ~N/..,as, is given in Table 6.2. 

The full set of results is shown in Table 6.3 where the material 

strength, fSu and the normal ultimate stress fNu' are all recorded. 

The shape of the shear stress-displacement curve was generally 

of the type shown in Figure 6.12 except where the upper block gripped 
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Fig . 6 . 10 Aggregate interlock test rig 

Fig . 6 .11 Modification to test rig 
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the lower one. In these cases the curve was steeper until the block 

finally separated, when the slope changed abruptly. The cases where 

gripping occurred at the front of the block are marked in Table 6.3 

together with the cases where one side of the crack opened 

significantly more than the other. In these cases the order of 

magnitude of the differential movement between one side of the crack 

and the other was about ten. The reason for this behaviour appears 

to have been a lack of symmetry of the crack: on one side of the. 

block the crack was straight while on the other side, which gripped, 

the crack had undulations. 

Series 1. The results of the tests on series 1 blocks show the 

variations that can occur with nominally identical specimens. It 

was after the first three blocks of this series were tested that the 

rig was modified as shown in Figure 6.11. 

Series 2. The results of series 2 showed the effect of different 

displacement patterns on both the strength and ductility of interlock. 

Clearly there is a relationship between fsu and~N/~S' as can be 

seen in Figure 6.15 which is a plot of the results in Table 6.3. 

The effect ofA NbS on the ductility of interlock was most marked. 

In the tests on blocks 4 and 8, which had high~N/~3 values of 

2.145 (i.e. the crack opened 2.145 times further than it sheared), . 

the upper half of the block suddenly lifted clear of the lower half 

at failure. The curve of f 3/fsu against.6N Figure 6.13) did not 

flatten appreciably. At the other extreme, blocks 7 and 11, with 

~N/.oC:i. 5 values of 0.268, had considerable ductility; failure·was 

accompanied by spalling of the concrete along the face of the crack. 

The results of the tests on the series 2 blocks are plotted 

in Figure 6.13. Tests 4 and 8, 5 and 12, 6 and 10, 7 and 11 are 

comparable as far as the shape of the curve is concerned: the 

difference between each pair is that tests 4 to 7 used 19 mm gravel 

aggregate and tests 8 to 11 used 9 mm gravel aggregate. The effect 

of aggregate size variation in this range did not appear to be very 

significant, presumably because the displaqements were small compared 

with the aggregate size. The 9 mm aggregate had interlock strengths· 

between 61 and 100 percent of the 19 mm aggregate interlock strengths. 
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The test result on block 9 in which the sides of the crack gripped 

badly during the test has not been plotted with the result of the 

block 5 test in Figure 6.13; tests 9 and 12 are comparable and this 

latter result has therefore been substitutedo The test results in 

Figure 6.13 have been plotted in terms of f 8/fsu so that the shape 

of the curves may be compared. The trilinear curves that have been 

drawn represent a simple rationalization of the block behaviour. 

The co-ordinates of the turning points are: 

fs/fsu .6 N(mm) 

0•55 0•06 

0•7 0•15 

1 •O 6 Nu 

The ultimate value of .6N' .6Nu' varies with6N/~8 and is 

plotted in Figure 6.14. For any value of~NbS within the range 

tested, the value of~Nu may be read from this Figure and the curve 

of f 8/fsu against~N may be reconstructed. Before these curves may 

be used quantitatively, a value of fSu must be determined. This is 

subject to a considerable amount of scatter, but a plot of fSu against 

,6N/.6 8 is shown in Figure 6.15. A straight-line relationship has 

been assumed to exist. The typical results already given in Figure 6.12 

show a plot of the normal stress that existed across the crack as 

well as the shear stress; the full list of the ultimate normal 

stresses is given in Table 6.3. The test results from series 2 may 

also be studied to determine the relation between normal stress and 

displacement as well as that between shear stress and displacement. 

Figure 6.16 shows plots of normal stress against displacement . 
in a form similar to that of Figure 6.13. It may be seen that the 

peaks of the normal stress curves occur before the shear stress 

curves shown in Figure 6.13 reach their maximum values and that after 

this the stress reduces and sometimes becomes tensile. This result 

may be because the opposite sides of the crack are sorrugh that they 

produce frictional forces as they are moved away from each other for 

large displacements whereas, in the case of the initial small 

movements, these frictional forces do not develop. The fact that 

the falling branches of the curves on Figure 6.16 show an increase 
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TABLE 6.3 

Block test-results 

Series No. 150 mm cube strength f Su fNu 

(N/mm2 ) (N/mm2 ) (N/mm2 ) 

1 1 0•688* 0•16 

1R 37•6 0•791 0•20 

2 0•950 0•30 

2R 37•6 0•812* 0•28 

3 0•899 0•26 

3R 40•6 0•623 0•14 

2 4 32•2 0•309* 0•19 

5 32•2 1 • 214 0•13 

6 32•2 1 •000 0•27 

7 32•2 1 • 1 09 0•27 

8 31 •8 0•278* 0•19 

9 37•5 0•74* 0•26 

10 31 •8 1 •013 0•30 

11 31 •8 0•814 0•30 

3 12 40•7 1•058 0•16 

13 40•7 1 •087 0•32 

14 48•5 1 • 251 * 0•33 

15 48•5 1 •381** 0•43 
16 . 30•0 0•973 0•34 

17 30•0 0•864* 0•22 

4 18 51 • 5 0•691 0•15 

19 51 • 5 0•775 0• 15 

20 51 ·5 0•735 0•f5 

21 52•8 0•742 0•24 

22 52•8 0•496 0•10 

23 52•8 0•766 0•16 

24 32•2 0•571 0• 15 

25 35•0 0•508** 0• 11 

26 41 •0 0•418 0• 11 

27 29•4 0•561 0•23 

28 30•0 0•897* 0•25 

29 30•0 0•911** 0•35 

Continued / •••• 
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TABLE 6.3 

5 

Continued / •••• 

30 

31 

32 

51 •0 

51•0 

54•0 

* block gripped at the front 

** block gripped at the side 

196 

2•600 

2•840 

2•582 



j 

I 
. 

i - I I 

- I I I 
- _ _l_ --~ 

I 
I 

/':,N /1'::.s = 2 · 14 5 I':, N/1'::. S = 1 · 0 
I 
I 

0 block 4 0 block 5 

I':, block 8 I':, block 12 

~N-mm I'::. N -mm 

I 1---~-------l _I'::. _ ___._ ___ ------..----<----.J 

I I 

I 
I 

2 --l--7 
..._ ' -- I I 

~u--__ _.__ __ ...__ ____ -; .__ __ ..____ ___ --~t --~; : 

/\N/6s =0·466! 

I O block 6 -~-------.. 
' I 

; I':, block 10 l 

I I 
A /6 , I 
UN S =0·268: I 

---~-----........ ' ___ _J 

· 0 block 11 
1 6 block 7 
I 

I 

FIG. 6.13 TEST RESULTS, SERIES 3: 
SHEAR STRESS - DISPLACEMENT PLOTS 

197 



of slope with an increase of~N/~S is evidence that this hypothesis 

is correct. It is nevertheless proper to treat this result with 

caution until more work is done on the subject. 

Figure 6.17 shows the relationship between fNu and.6.N/~s• 

This Figure is plotted in a similar form to Figure 6.15. The fact 

that these normal forces exist is not unexpected and they may have 

to be assessed before the equilibrium equations 1 and 3 can be 

satisfied. 

Series 3. Series 3 specimens were tested t:, see if there was a 

simple relationship between interlock strength and concrete strength. 

The results of Fenwick's tests, shown in Figure 6.6, indicate that 

concrete strength does affect interlock strength. The effect becomes 

less marked, however, as the concrete strength is increased. There 

is not a great variation of interlock strength for normal structural 

grades of concrete with cube strength between 33 and 45 N/mm2
• 

The results of all the tests in this investigation are shown 

plotted in Figure 6.18. In this case, within the range of strength 

covered, a linear relationship has been assumed between fsu and 

concrete strength with the exception of three of the tests from· 

series 4, in which limestone aggregate was used. 

Series 4. The results of the tests on series 4 blocks give more 

information on the effect of the concrete properties, including 

strength and aggregate type. Within limits, it can be estimated 

that aggregate interlock strength depends on concrete strength, but 

that the type of aggregate is also important. 

The test results show that the type of aggregate is important 

and that the parameter is probably the relative strength of aggregate 

and matrix within the concrete. Although the highest stresses in 

concrete systems are in the matrix, because the aggregate produces 

stress concentrations, Swamy32 has shown that the strength of the 

aggregate-matrix bond is low and that the failure of concretes of 

normal strength is probably caused by a breakdown of this bond. 
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Figure 6.19(a and b) shows the cracked surfaces of typical 

blocks. The first illustration shows the surface of a block with 

-~ mm gravel aggregate and the second illustration shows the surface 

of a block with a rounded 19 mm gravel aggregate. In each case it 

is apparent that, whenever it was possible, the aggregate-matrix 

bond failed when the crack formed. These surfaces therefore have 

the maximum roughness that is possible. 

Figure 6.19c shows the cracked surface of block 22, a block 

with limestone aggregate in the mix. The cracked surface here is 

much flatter than the previous ones as the concrete was stronger and 

the aggregate failed as the crack formed. In this case the interlock 

strength was also low. Because of this, the tests with limestone 

aggregate were repeated with a lower strength mix (tests 27-29) and 

this time th~ crack surface passed round tre aggregate. The three 

blocks all had a higher interlock strength than block 22, and two 

of the values of interlock strength were higher than all three of 

the values from tests 21-23. Thus a decrease of concrete stren~th 

gave an increase of interlock strength. The results of tests 21-23 

and 27-29 are included in Figure 6.18. 

Figure 6.19d shows the cracked surface of a block containing 

Lytag. In this case, there is only a little aggregate failure and 

th~se blocks had interlock strengths between 0•4 and 0•57 N/mm 2
• 

The cracked surfaces of lightweight concretes of other types have 

been studied and some of these are considerably smoother than the 

one shown. This is clearly an area where future research would be 

useful, not only to see whether these observations fit the reported 

results on tests on beams using lightweight aggregate but also to. 

see if the effect of using very high-strength concrete for beams in 

shear may be explained in this way. In the latter case, for example, 

the new draft Code of Practice for structural concrete
10 

does not 

allow any increase of shear strength in members where the concrete 

has a characteristic strength greater than 45 N/mm2
• 

Series 5. The series 5 blocks contained two legs of a 6 mm diameter 

stirrup of plain reinforcing bar with a yield stress of 420 N/mm2
; 

the position of the stirrup is shown dotted in Figure 6.8. The stirrup 
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was fixed at an angle of 45° to the crack and the block was oriented 

so that the stirrup was leaning towards the direction in which the 

crack was subsequently sheared. This simulated a crack in a beam, 

inclined at 45°, with a vertical stirrup passing across it. The 

strength of these blocks was considerably greater than that of the 

unreinforced blocks. The increase in shear strength of the block 

may easily be calculated on the assumption that the stirrup is 

yielding •. This increase, written in terms of a stress across the 

crack, is 1•05 N/mm2
• If this figure is subtracted from the fs . u 

values given in Table 6.3, the resulting shear stress compares 

favourably with the fSu values obtained from the unreinforced blocks. 

The relative contributions of the shear force carried by aggregate 

interlock and by the stirrup at other stages of the test are more 

difficult to determine as the presence of the stirrup may change 

the interlock properties of the crack. This is clearly an area where 

further study is needed. The design of the test rig was suitable for 

this study but the rig would have to be increased in scale before 

more work is carried out. The mode of failure of the blocks was 

different from that of the unreinforced blocks and is illustrated 

in Figure 6.11. The inclined crack at the lower half of the block 

is obviously a feature of the testing apparatus as the crack leads 

to the point where the block is clamped in the rig. This crack is 

analogous to the failure cracks produced by Fenwick, illustrated in 

Figure 6.4. 
I 
I 

BEAM TESTS 

In a series of frame tests by Cranston and Crackne1133 one test 

was reported where a shear failure occurred in one column of a 

single-bay portal frame. In this case, because the rest of the frame 

had a reserve capacity of strength, a large rotation was able to 

occur at the point of the column failure before the frane test was 

completed. Figure 6.20 shows the column after failure of the complete 

frame. It is apparent from the photograph that most of the deform­

ation of the column occurred across the inclined crack and that the 

upper part of the col~ rotated about the point where crushing of 

the concrete occurred, In the upper part of the crack, therefore, 

aggregate interlock was carrying shear force, although in this case 

stirrups were present in the section. It was considered that if a 
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crack of this kind could be induced in a beam, and if the dowel 

forces and the force in the compression zone could be either 

eliminated or measured, then this would be a good test for interlock. 

Figure 6.21 shows, in schematic form, how this crack geometry 

was imposed on a beam and how the necessary force measurements were 

made. The compression zone was substituted by a steel packer, jack 

and load cell so that the load carried by it could be varied during 

the test. The dowel force was virtually eliminated in this case by 

casting a notch around the bars, and the compression zone direct 

force, C, and the shear force, V1, were measured with the load cells 

shown. The strain in the steel was measured by means of a 50 mm 

Demec gauge with points stuck onto the bar. It was therefore possible 

to calculate the shear and normal forces acting across this crack by 

considering the equilibrium of the end of the beam. 

Test specimens 

Three beams of. the type shown in Figure 6.22 were cast and six 

tests were then carried out. The beams were of 300 x 150 mm cross­

section and were cast with the mix containing 9 mm aggregate described 

earlier. The beams were cured under damp sacking for one week and 

were then moved into the laboratory where they were instrumented and 

store~ for three weeks before testing. Details of the beams and the 
I 

strength of the beam concrete, measured on 150 mm cubes, are given 

in Table 6.4. 

TABLE 6.4 

Details of beam tests D1-6. 

Beam Dimension A 150 mm cube 
(Figure 25) strength 

(mm) (N/mm2
) 

D1 100 57•0 

D2 100 57•0 

D3 100 42•5 

D4 100 42•5 

D5 150 50•0 

D6 150 50•0 
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Details of tests 

Test D1. This first test was carried out to see how the crack could 

be pre-formed. The crack was induced in this case by placing the 

beam on its side and supporting it on parallel line supports, 300 mm 

apart, with one on either side of the proposed crack location. A 

line load was then applied to the other side of the beam and this 

load was gradually increased until the crack formed. Because the 

supports were so close the crack was formed partly in flexure and 

partly in splitting. It was not possible to control the formation 

of the crack and therefore its width immediately after formation was 

approximately 0•4 mm. A further problem was that the crack was 

slightly S-shaped, which is not typical of shear cracks. The beam 

was still tested and carried a shear force of 22•5 kN before it 

failed. The beam did not have the two load cells to measure the 

shear force carried through the pin in the compression zone as this 

was assumed to be very small. It was found, however, that it was 

not possible to satisfy all the equilibrium equations with the forces 

that were measured. Either the pin was carrying a large shear force 

or there was a normal force acting across the crack that had not been 

eliminated. 

Tests D2, 3 and 4. These were three tests in which the test method 

and rig,were developed further until the final test rig was as shown 
I 

in Figure 6.21. Firstly, a plate backed by horizontal rollers was 

put behind the pin and this plate was trapped between load cells which 

in turn were bolted to the main part of the beam through a clamp. 

Thus any shear transferred by the pin would result in the load cells 
. . 

altering their readings by the amount of the force. It is possible, 

though, that there was a significant amount of friction in the roller 

system and that the shear force may have been carried in this way, 

without affecting the load cells. However, if the coefficient of 

friction is assumed to be 0•1, then the percentage of the total shear 

carried by the rollers was less than 5% in all the tests. The greatest 

shear force measured by this apparatus in any of the subsequent te~ts 

was 100 N, indicating that no significant shear forces were carried by 

the pin. The compression block arrangement illustrated in Figure 6.21 

was therefore considered to be satisfactory. 
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A second feature that was developed during these tests was 

the method of forming the crack. • The method that was finally adopted 

involved forming the crack while the beam was being loaded in bending 

and shear in the correct way; this is explained in the description 

of the next two tests. The shape of the crack resembled the shape 

shown in Figure 6.20 during all the tests and the width of one end 

of the crack was never.greater than 1•25 times the width of the 

other end. 

Test D5. This test was the first one in which reliable quantitative 

results were obtained. The test procedure was as follows. The beam 

was set up in the test rig and the compression zone jack was adjusted 

until it was just finger-tight. The beam was then loaded until a 

flexural crack had formed at the notch above the dowel. The shear 

force on the beam at this point was 22•5 kN. The beam was then 

unloaded until the shear force was 6•5 kN and the compression zone 

jack was tightened until the crack formed right through the beam; 

this load stage is shown in Figure 6.23. The beam was then loaded 

to failure which occurred at a shear force of 24•8 kN; the beam at 

failure is shown in Figure 6.24. The new crack, which started at 

about the mid-point of the beam and travelled backwards towards the 

support side of the dowel notch, formed just as the beam failed. 

This form of crack, sometimes called a 'back-up' crack, is quite 

often seJn in shear tests and is presumably caused by the concrete 

lamina between cracks failing because of the shears imposed on it by 

aggregate interlock and dowel action. 

At each load stage, all the load cell readings were taken and 

Demec readings were taken across the crack. From these it was 

possible to calculate the normal and shear interlock forces across 

the crack and to produce a force-displacement graph. The ultimate 

interlock shear stress was 1•47 N/mm2 and the normal stress was 

0•49 N/mm2
, compressive. 

I 

The val~e of~/~S measured during the test was similar to the 

AN/As ratio imposed on the test blocks 6 and 10. The values of 

f /fs and AN from this beam test should therefore compare with the 
s u . 

curve for blocks 6 and 10 shown in Figure 6.13. Figure 6.25 shows 
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FIG. 6.23 Preformed crack on beam D5 at start 

of test 

FIG. 6.24 Preformed crack on beam D5 at finish 
of test 
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the curve from Figure 6 • 1 3 with the values of f s/ f Su and A N from 

the test on beam D5 plotted in. 

The difference between these lines and the test results at 

high load stages is probably due to the difference in the method of 

test and to different stiffnesses of the test rigs. In the block 

tests there was invariably some form of falling branch as the rig 

was fairly stiff and it was therefore possible to measure all the 

load cells at a load very near to fSu' thus fixing the top of the 

curve accurately. In the beam tests, the beam failed immediately 

fsu was reached, making it impossible to read the cells at that load 

stage. The fsu values plotted in the Figures are calculated from 

the highest readings that were measured in the test and are, for 

both tests D5 and D6, slightly less than the true maximum values. 

This would have the effect of lowering the plotted points on 

Figure 6.25, the amount being greater for the higher values of 

fs/fsu than for the lower values •. The value of the ultimate shear 

stress has been plotted on Figure 6.18; here, the effect would be 

to raise the points slightly. 

Test D6. This test was similar to the previous one and was conducted 

in the same way. The shear force at failure was 23•6 kN, corresponding 

to an interlock stress of 1•27 N/mm.2 and a normal stress of 0•39 N/mm.2
• 

This result\, is plotted in Figure 6.18 and the fs/fsu -AN curve is 

·shown in Figure 6.25. This result shows good agreement with the 

previous tests. 

COMPARISON OF TEST METHODS 

Each type of test has its advantages and disadvantages. The 

block test has the disadvantage of large scatter, but this could be . 
improved if a much larger test rig were constructed, providing the 

forces in the rig could be measured accurately. This test, however, 

has the advantage that it can be carried out more rapidly than the 

beam test and that the test specimen is made more economically. The 

beam test has the advantage that it is a test of aggregate interlock 

in a beam environment but requires a considerable amount of skill 

from the experimenters before the crack formation can be controlled. 

On balance, the block test is the more satisfactory one and this test 
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provided most of the information for this chapter. 

DISCUSSION OF RESULTS 

It is useful at this stage to summarize the test results and 

show how interlock curves may be drawn for comparison with.beam 

tests. 

Firstly, the ultimate interlock strengths may be obtained by 

referring to Figure 6.18. This Figure has been drawn using the 

results of the tests in which AN/AS = 1 •O. 

Secondly, knowledge of the AN/~S relation for any one crack 

allows values of fsu and fNu to be read from Figures 6.15 and 6.17. 
These two Figures were drawn from .the results of tests in which the 

concrete strength was 32 N/mm2 and can therefore be modified, using 

the appropriate value of fsu from Figure 6.18. Thus the value of 

fSu for 32 N/mm2 concrete, from Figure 6.18, is 0~78 N/mm2 and this 

agrees with the value of fsu from Figure 6.15 for.6.N/.A 5 = 1 •0. 

Thirdly,ANu may be found using the appropriate value of 

6-N/L:i. 5 in Figure 6.14. Using the following co-ordinates of, the 

f 5 -l:i.N curve, the interlock curve (Figure 6.13) may then be 

constructed: 1 
\ 

0•55 fSu' 

0•7 fSu' 

fSu' 

This curve applies to concretes with similar mix proportions 

to the ones used and with gravel aggregate, maximum si'ze between 

9 and 19 mm. 

This representation of the test results may now be compared 

with Fenwick's tests and may be used to see if the vertical equilibrium 

conditions of the beam tests reported in Chapter 4 can be satisfied 

using the dowel forces and these interlock forces. 

In g~neral, th~ results of all the tests reported here were 

lower than those found by Fenwick. As mentioned previously, it seems 
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likely that his results were high due to the nature of his test. 

The summation of the compression zone, dowel and interlock 

forces in tests that were conducted and reported earlier are now 

giveno For this study the results from the beam tests reported in 

Chapter 4 were used. 

In this chapter a series of graphs (Figures 6.26 - 6.29) have 

been produced in which, for all cases where the displacement 

measurements across cracks were adequate, the dowel shear force and 

interlock forces have been added. The graphs were drawn by first 

plotting the shear force in the compression zone against the shear 

force on the beam, using the values given in the Tables in Chapter 4. 

The diagonal line, which is the correlation line between the internal 

and external shears on the beam, was then drawn. The sum of all the 

methods of shear transfer in the beam should add up to this line. 

Two other straight lines are also drawn in. The vertical dotted line, 

drawn approximately half-way along the V axis, marks the point at 

which the section first cracked. The other vertical dotted line 

marks the point at which shear failure occurred. In the case of 

beam 9, however, this line does not appear as this beam failed in 

flexure by yielding of the steel. 

I 
The dowel force was added to the compression zone force using 

the test results from Chapter 5. In this case, the actual test 

results for the 200 mm beam tests were used. In the cases shown it 

may be seen that the dowel is carrying up to 25% of the total shear 

force in the beams without the pre-formed cracks, and is carrying 

nearly 3(11/o of the total shear force in the other beam. 

The aggregate interlock force was then calculated. The basic 

stress was taken as 1•0 N/mm2 and this was modified using the 

.6N~S measurements taken on the beams, as described earlier. As 

the displacement rosettes were either 50 or 100 mm above the tension 

face of the beams, these values of interlock stress apply to the 

areas of the beam between the rosettes and the neutral axis. In most 

cases, the cracks were not significantly inclined and the same interlock 

stress was assumed to act throughout the depth of the beam up to the 

neutral axis. This is possibly a conservative assumption for the 
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cases where the crack extends past the line where th~ shear forces 

in the compression zone were measured. If the crack ends at the 

point where the compression zone shear is measured, then, 

theoretically, as the cracking at its head is in a direction of 

principal tensile stress, there can be no shear displacement across 

the crack and therefore no interlock force. In this case, there 

must be a marked kink in the shear stress curve across the section 

as the shear stress becomes zero at the head of the crack and rises 

to the interlock strength below it. 

Figure 6.30 shows a section of a beam with the neutral axis 

drawn in. Also shown is a shear stress diagram across the beam 

section, in this case for beam 9, line G, load stage 14. The three 

contributions to the shear strength of the beam are drawn to scale, 

showing their relative magnitude. This diagram is typical of a 

series of diagrams that may be drawn, one for each load stage of the 

tests on beams 7, 8, 9 and 10. 

The shear stress distribution is very like the classical M6rsch 

one shown in Figure 2.1 in that the stress is distributed through the 

section. It is now possible to see how shear forces are carried 

across cracks and now that this mechanism has been isolated it is 

possible to study the implications of it in beams of widely differing 

types. I 
\ 
' 

The results of the summation of the three effects in Figures 6.26 

to 6.29 are interesting. It was only possible to put the displacement 

rosettes onto the beam after it had cracked and to then start to 

measure the movement of the cracks. It was naturally not possible to 

measure the displacements from the point at which the section just 

cracked as this would require the rosettes to be stuck on before the 

crack appeared. In practice, there were at least two load stages 

between the stage at which the section cracked and the stage when 

the interlock and 4owel stresses are first given, one for the crack 

to rise sufficiently for the rosette to be positioned and one for a 

set of zero rosette readings to be taken. All the dowel and interlock 

readings are therefore conservative, which probably explains why the 

sum of the contributions to the shear capacity of the beams does not 

add up to the total shear force on the beams. 
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The results of the test on beam 7, shown in Figure 6.26, 

indicate that the three contributions are short of the total shear 

force on the beam, particularly for line C. This is presumably 

because the ratio between shear span and effective depth for this 

beam is very small and the beam is carrying shear also by acting as 

a tied arch. The threshold between tied arch action and beam action 

for beams with the steel percentage of beam 7 is at a/d1 = 3. The 

tied arch behaviour of beams with a/d1 ratios less than this are not 

within the terms of reference of this Thesis. The results of the 

tests on beams 8 and 9 are much more satisfactory. The proportions 

of the total shear force carried by aggregate interlock, by the 

compression zone and by dowel action respectively are 5o%, 2o% and 

2o%. The exact proportions vary in each case, depending on the 
' inclination of the crack, the roughness of the crack and the depth 

of the compression zone. 

The results of the test on beam 10 are also satisfactory. In 

this case, the aggregate interlock forces shown are for the section 

of the crack that formed above the pre-formed crack. In the case 

of line A, the one nearest to the support, the displacement reading 

showed that no interlocking was occurring. The shear forces else­

where are shown in Figure 6.29. Clearly there must have been some 

shear force transfer across the crack unless the compression zone 

shear fotces were underestimated. The other two lines on beam 10 

show better agreement and all the shear force is accounted for. 

In Chapter 3, the work by Kani and Leonhardt was mentioned in 

which, when the size of a member was increased, a loss was found in 

the ultimate strength. The aggregate interlock work reported in 

this Chapter points to the fact that pr~viding the crack spacings 

increased in scale, the cracks will be wider and the interlock 

strength less in a large beam than in a small one. If the aggregate 

size is kept the same, a large beam could thus fail at a lower shear 

stress than a smaller beam. 

If increasing the size of a specimen and keeping the aggregate 

size constant is likely to reduce the strength then increasing the 

size and the aggregate size to scale could cause the strength to 

remain the same. A further complication is that in general, large 

226 



concrete specimens are weaker than small ones, a point which may be 

explained by the theory that failure may be likened to beihg caused 

by the weak link of a chain and that a weak link has a higher 

probability of being found in a long chain than in a short one. 

A series of tests on beams of different scale was carried out 

to see if these predictions were true; to see if the effect of scale 

reported by Kani was sufficiently serious to be considered in design; 

and to see whether increasing the aggregate size could be a design 

solution for very large members. 

Three beam sizes were used, one to a normal scale and two 

others, twice and four times the original scale. The basic beam 

was 100 x 250 mm in section, with 1•5% of GK60 reinforcement and was 

tested with an a/d1 ratio of 3•5. Details of the test beams are 

given in Table 6.5. Five beams of the type 15 were tested so that 

the standard deviation could be found and one of each of the other 

beams were cast. Beam 15 had 4 No. 10 mm reinforcing bars with 

12•5 mm side and bottom cover. The distance between the outer bars 

was 50 mm and between the inner bars was 40 mm. All the dimensions 

in Beams 16 and 17 were scaled exactly. After a series of trial mixes 

was made, the following _mix designs were found to give equivalent 

strengths. The 9 mm aggregate mix was tested in 70 mm cubes, the 

19 mm mix dn 100 mm cubes and the 38 mm mix in 150 mm cubes. 
1, 

' 

Mix with 9 mm aggregate 

9 - 5 mm aggregate 40% 
5 - down 5o% by weight 

aggregate/cement ratio 7•0 

water/cement ratio 0•76 

Mix with 19 mm aggregate 

19 - 9 mm 

9 - 5 mm 

aggregate 

aggregate 

45% 

14% 

5 - down 41% by weight 

aggregate/cement ratio 7•2 

water/cement ratio 0•72 
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TABLE 6.5 

Details of beams 15 - 17 

Beam Beam Beam a/d1 Aggregate Scale 
width effective size 

mm depth 
mm 

15 •1-5 100 232•5 3·5 9 1 

16 • 1 200 465 3·5 9 2 

16•2 200 465 3·5 19 2 

16•3 200 465 3·5 38 2 

17 • 1 400 930 3•5 19 4 

17•2 400 930 3·5 38 4 

TABLE 6.6 

Shear force at failure of beams 15 - 17 

Beam Shear Standard Strength Concrete 
; force deviation to scale strength 

kN kN % N/mm2 

15 • 1-5 24•2 2•20 100 32•4 

16 • 1 80~0 - 82•8 31•0 

16•2 83•0 - 85•9 39•5 
16•3 99 - 102 

17•1 328•4 - 84•9 34·5 
17•2 358•4 - 92•5 36•6 
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Mix with 38 mm aggregate 

38 -

19 -

9 -

19 mm 

9 mm 

5 mm 

5 - down 

aggregate 

aggregate 

aggregate 

aggregate/cement ratio 7•8 

water/cement ratio 0•72 

4o% 
16% 

12% 

32% by weight 

The crack patterns from a typical beam 15, 16 and 17 are 

shown in Figure 6.31 shown to the same scale. There was no 

significant difference between the crack patterns of beams using 

different aggregate sizes and it can be seen from the Figure that 

the difference between crack patterns of different scaled beams is 

negligible. As the spacing of the cracks scaled then so did their 

widths. 

The results of the tests are shown in Table 6.6 and Figure 6.32. 

In Table 6.6 the actual shear force carried by the beams is given 

taking the difference in dead weight of the beams into account and 

the strength of the beams is also given reduced to the smallest scale 

size. The coefficient of variation of the Beam 15 tests is 9•1. 

The results, to the beam 15 scale are shown in Figure 6.36. In this 

Figure the ultimate moment of the beams, to the 250 mm scale, is 

given as a tatio of the ultimate moment from the 250 mm beams and is 

plotted against the actual beam depths. The lines on the Figure come 

from the tests by Kani on beams with 2•88 percent of steel and from 

tests by Leonhardt and Walther on beams with 1•6 percent of steel. 

The Leonhardt beams were true scale models without the aggregate 

size being scaled but the Kani beams were all the same width and 

were not scaled exactly. 

It can be seen from the Figure that at the steel percentage 

level used in these tests, 1•5%, which is reasonable for such 

structural members, the effect of scale, regardless of aggregate size 

is not serious. In each case shown, increasing the scale and leaving 

the aggregate size constant reduced the strength and increasing the 

scale and increasing the aggregate size increased the strength. The 

beams with the aggregate size kept in proportion to the scale did not 
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have significant reduction in strength. These results are only just 

significant when the scatter of the lowest scale results are considered, 

68% of the results of an infinitely large series of type 15 beams 

would be within the range marked on the Figure, assuming them to be 

normally distributed. These results do not confirm Kani's tests and 

show that in this range of member size, there is no design problem. 

The design clauses in all Structural Concrete Codes are based on tests 

of beams which were generally between 200 and 400 mm in depth and are 

sufficiently accurate for large scale beams. 

Two effects contributed to the loss of strength reported by 

Kani. Firstly, all his beams had a constant width of 150 mm and the 

dowel effect could not therefore scale. The dowel strength of the 

large beams, which had a number of bars in the 150 mm width was very 

low. Secondly, the crack spacings did not scale in Kani's tests. 

The large beams had many more cracks at the steel level than the small 

beams because of the influence of the large a.mount of steel in the 

narrow section. Thus for small vertical displacements, a large shear 

force was transmitted across the closely spaced narrow cracks at the 

steel level and only a little shear force was transmitted across the 

wider shear cracks. For large vertical displacements, the concrete 

at the steel level could only carry small shear forces because of 

the dowel breakdown but the main shear cracks were then capable of 
I 

carrying large interlock forces. The two effects were therefore never 

additive. The loss of strength effect reported by Kani is only a 

design problem for beams with large depth to width ratios (the largest 

beam tested by Kani had a depth to width ratio of six) and with 

a/d1 ratios greater than 2•5. 

Where the compression zone shear forces were estimated in 

Chapter 4, they were compared with a failure criterion for the concrete 

to see if they were capable of being carried by the concrete. In the 

same way, it should be possible to apply the dowel and aggregate 

interlock forces isolated in this and the last Chapter, to a section 

of a beam tensile zone between two cracks to see if the section of 

the beam is capable of carrying the forces. Secondly, the deform­

ations of the tensile zone under the action of the forces should agree 

with the measured displacements in beams. This analysis has been 

carried out and is presented in the Appendix to this Thesis. 
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CHAPTER 7 

MATHEMATICAL MODEL OF A BEAM WITHOUT STIRRUPS 

The next step in this work is to see if the information found 

from the detailed study of a few beams can be used to build up a 

mathematical model of the behaviour of beams in shear. This model 

would have two immediate uses. Firstly it would confirm that the 

breakdown of the shear force in the members is correct if the 

behaviour of the original beams is predicted and secondly the model 

could be used to study the effect of some of the other parameters 

of the shear problem mentioned in Chapter 2. If the effect of the 

parameters is predicted then this further confirms that this 

description of beam behaviour is correct. If the model is very 

successful it could be used to study the effect of some parameters 

for which there is as yet no experimental evidence. 

The problem of analysing a beam in bending and shear has been 

shown to be a complex statically indeterminate one. The horizontal, 

vertical and rotational equilibrium of any section of a beam must be 

ensured, with the compatibility of displacements on either side of· 

the section. 

The equilib;rium of a section of a beam bounded by an inclined 
I 

crack and a vertical section through the compressive zone has already 

been studied experimentally and the general equilibrium equations have 

been given in Chapter 3. The equations are repeated here for 

convenience and are derived from Figure 3.1. 

C - T + HI = 0 

V - V1 - V2 - V3 = 0 

Vh - V2s - V3n - H t - Tl = 0 I a 

7 .1 

7.2 

The mathematical model, in the form of a computer program is 

designed to predict the shape of the inclined crack shown in Figure 7.1 

and to solve the equilibrium equations. The compatibility condition 

used was based on the measurements taken on the test beams that were 

described in Chapter 3. Compatibility will be discussed later in 

this Chapter. A final basic feature in such a model is that a set of 
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failure criterion must be included which predict the failure of the 

various parts of the member under the combined actions of the shear 

and longitudinal forces that are proposed. It is only necessary 

here to accurately predict the failure of those parts of the force 

system that do fail in practice for if it can be shown that the rest 

of the member can never be stressed to failure then its strength is 

irrelevant. 

The mathematical model considers the section of a beam shown 

in Figure 7.1. A basic step in the program is to extend the crack 

from point a where ail the equilibrium and compatibility conditions 

have already been satisfied to a new location b which also marks a 

possible stable location for the head of the crack. At point a the 

curvature on the beam is ~a and a new curvature ~b which is slightly 

more than~ is proposed by the program. The basic step of the program a 
is therefore defined by increments of curvature, the curvature 

increment being part of the initial data. All possible locations 

between a and bare studied to see if the equilibrium equation and 

compatibility conditions may be solved until a stable point is found. 

This process is then repeated continuously until one of the failure 

criteria is reached. 

The content of the program will now be described in more detail. 
I 
\ 

Equilibrium Equations 

The equilibrium equations 7.1 - 7.3 have been simplified in 

the program as the horizontal component of the interlock force has 

been neglected. This is not essential as some data have been given 

in Chapter 6 but its addition would add considerably to the complexity 

of the program and in Chapter 6 some doubts were cast on the 

reliability of the normal forces. The implication of missing out the 

horizontal interlock force is that the equilibrium equation 7.1 would 

not be solved at the correct neutral axis position. The order of 

magnitude of the ultimate normal interlock force is 0•25 N/mm 2 and 

this, particularly near to the failure of the beams, is much less 

than the average force in the compression zone so that the error in 

neutral axis position would not be great. 

234 



\ 
\ 

---
(\) b 

b 

FIG. 7,1 CRACK ANALYSED BY MATHEMATICAL MODEL 

235 



The equations that were solved by the program in the simplified 

form are 

C - T = 0 

Vh - V2s - V3n - Tl = 0 a 

7.4 

7.5 

7.6 

As has already been explained the curvature in the compression 

zone is used in the program and the increment of curvature is used 

as a basic step in the analysis. The assumption is made that plane 

sections remain plane in the compression zone and that the head of 

the crack is at the neutral axis. This assumption is reasonable and 

has been justified by the strain readings taken in beam compression 

zones described in Chapter 4. From this it is a simple matter to 

find the strain at any point in the compression zone and by substituting 

this into a stress-strain curve for the concrete to find the concrete 

compressive force. The stress-strain curve assumed for the concrete 

is shown in Figure 7.2. The compression part of the curve is 

initially parabolic, joining a straight line at a strain of 

~5000. The straight line was used rather than a falling branch 

as this then avoided the possibility of trouble in the program which 

may not find a solution as the outer compressive face of the beam 

went onto the falling branch. This possibility was very remote 

however and the shJpe of this part of the stress-strain curve was 

largely irrelevant as shear failures usually occur before large 

strains occur in the concrete compressive zone. 

The concrete was assumed to have the tensile stress-strain 

properties shown in the Figure and the tensile force was subtracted 

from the force C in equation 7.4. The tensile stress strain curve 

for the concrete was added to the program at a late stage as it was 

found that without it, the crack tended to rise very rapidly up the 

beam to the depth that comes from normal elastic cracked section 

analysis. In practice the crack moves up the beam more slowly due to 

the loss of tensile stress in the concrete. The tensile stress-strain 

curve that was used simulated the vertical movement of the crack 

reasonably well. The work of Evans and Marathe34 suggests that in 

pure tension, tensile stress is possible for small strains. At some 
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stage, when shear displacements are present across the crack, the 

stress across the crack becomes compressive and the work in Chapter 6 

shows that at even larger displacements this stress may once again 

become tensile. ·As the normal stress across the crack was neglected, 

the tensile stress-strain curve that was used in the model had a cut 

off at a strain corresponding to a stress of 0•067 u. w 

The ~teel force T was found from the steel-strain curve shown 

in Figure 7.2(b) and the assumption shown in Figure 7.1 that the 

point c rotates about a. 

The vertical equilibrium equation may only be solved by 

calculating the values of the three contributions to the shear force, 

V1, V2 and V3. 

The work described in Chapter 4 showed that shear force in the 

beam compression zone is distributed parabolically in a way similar. 

to that from the classical distribution proposed by M6rsch. Because 

of the great similarity between the classical M6rsch analysis and 

the results of the tests the classical approach was used in the model 

to find the shear capacity of the compression zone. The shear force 

V1 was therefore calculated from 

2 V dn 
= 

The only other way to calculate V1 is to assume a direct strain 

distribution about the section of the compression zone being considered 

and analyse this with the method used in Chapter 4. As no experimental 

strain readings are available, the results would be the same as those 

from equation 7.7. The dowel force V2 and the aggregate interlock 

force V3 both require the use of a compatibility condition as the 

basic data required to calculate dowel or aggregate interlock forces 

across the crack is a displacement. The displacements will be ' 

considered in detail later in this Chapter. 

Once the vertical displacement across the dowel is known the 

dowel force is calculated by the method proposed in Chapter 5 from 

equations 5.1 and 5.2. The steel percentage of the beam being 

analysed was a part of the initial data and in all cases apart from 
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some large scale beams, this steel was assumed to be in two bars with 

25 mm cover, regardless of their size. This means that the model is 

likely to under-estimate the dowel strength of beams with high steel 

percentages as these in practice would tend to have steel in more 

than one layer, giving a very high dowel strength. 

The aggregate interlock force was calculated by dividing the 

crack into four sections and working out the interlock stresses at 

each section separately. These stresses were then integrated up the 

crack by Simpson's Rule to give the aggregate interlock force. The 

interlock stress was calculated using the information given in 

Chapter 6 to calculate the appropriate interlock stress - normal 

displacement curve. The way that the interlock was calculated is 

shown in Figure 7.3, the head of the crack is at points and the 

horizontal displacement was then calculated at points 1, 2, 3 and 

4. Using the compatibility condition the vertical displacement was 

then found at the same points. These displacements were then 

resolved into the normal and shear displacements across the crack 

and this data was used to construct the interlock curves. 

A further refinement of the calculations for the interlock 

strength was that the concrete near to the reinforcing bars was 

assumed to have different displacements from the rest of the concrete 
\ 

and therefore to have more interlock strength. Work on cracking on 

reinforced concrete members35 has shown that the cracking phenomenon 

can be successfully explained by the theory that the width of a crack 

at the steel-concrete interface is very low and the crack tapers 

outwards in width as it travels to the surface. This was later 

confirmed by basic research and analysis on bond by Lutz36 • The crack 

in the area around the bars equal to the full width of the beam, 

multiplied by twice the difference between the depth and effective 

depth of the beam was therefore assumed to have the full vertical 

displacement from the displacement condition and half the horizontal 

displacement, when calculating the interlock strength. 

Compatibility Condition 

The results of the rosette measurements given in Chapter 4 

indicate that a compatibility condition may be developed from 
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knowledge of the shape of the crack and of the horizontal displacement 

across the crack. 

The simple displacement condition shown in Figure 7.1 can be 

used to calculate the horizontal displacement across the crack by 

assuming an average crack width and that the curvature shown in the 

Figure is in fact the average curvature for that spacing. The 

curvature may then be used to calculate a rotation between consecutive 

cracks and hence to find the displacement between cracks. 

In the last few years a lot of work has been carried out on the 

prediction of crack widths and crack spacings. This has led to the 

general conclusion that the spacing of cracks in reinforced concrete 

beams is dependent on the layout of the bars in the beams and more 

particularly the distance from the surface of the member to the nearest 

reinforcing bar. Recent work by Beeby37 has shown that the spacing 

of flexural cracks in a member is not only dependent on the layout of 

the reinforcing bars but also on the initial height of the cracks 

when they are first formed. This latter conclusion agrees reasonably 

well with the observed crack spacing in the shear span of beams. The 

spacing of the main cracks which become inclined and reach the beam 

compression zone is governed by the initial crack height and the 

cracks which form later between the main cracks are governed by the 

layout of the reinforcement. The final crack pattern is therefore 
' 

dependent on the layout of the reinforcing bars. As the spacing of 

the initial cracks is governed by the crack height, this was the 

value used to calculate the horizontal displacement between cracks. 

The photographs of the beams shown in Chapter 4 i~dicate that at the 

time that beams fail in shear the major cracks had formed and only a 

few secondary cracks were present. The assumption that the displace­

ment in the tension zone is concentrated in the major cracks is 

therefore reasonable. 

The initial crack height may be calculatedfrom elastic theory, 

taking into account the tensile strength of the concrete. From 

Figure 7.4 the following equations may be obtained. 
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From the equilibrium of forces 

a = n +/ n2 - 2mp (1 - n) 

where p is Ast/bd1 
m is the modular ratio 

or 

n = a 2 + 2m]2 
2(a + mp) 

From the equilibrium of moments 

n3 +(a+ nl 3 + 3m]2 (1 - n) 2 

3 a - n) . 
M 

= bd1 2 ft 
\ 

Using these equations it is possible to compute the crack depth 

at any load. 

When M = Mc (the cracking moment) there are two ~olutions: 

(a) a = c 

(b) a = a 0 (the initial crack depth) 

Using (a) to compute Mc/bd1 2 ft, (b) may then be computed for 

any value of m and\p. As this is an iterative process, a simplified 
; h m Ast fit to plotted curves of~ - bd1 was made and this was used in the 

program to calculate the initial crack height and the crack spacing. 

The simplified formula fits the curves to within five percent and is 

.hll. 
d = [0•955 - (mp + 0•01) (4•87 (L) 2 

- 17 i.. d1 d1 

+ 15•8)] 2 

where h 0 is the initial crack height. 

Once the horizontal displacement across the crack is determined 

the next step is to calculate the vertical displacement. One way to 

calculate the vertical displacement across a crack is to work out the 

vertical displacement from Figure 7.1. This gives a small displace­

ment, much smaller than that found experimentally as it ignores the 
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movements of the beam tension and compression zones under the action 

of the shear and longitudinal forces imposed on them. The analysis 

described in the appendix shows that considering the forces on the 

concrete •teeth' between cracks, the displacements are in the direction 

that are found in practice. 

The displacement measurements taken across the cracks in the 

beam tests described in Chapter 4 are summarised in Figure 4.38. 
This Figure relates the shape of the crack, in terms of ~V/bH 
(where Sv is the vertical projection of the distance from a point on 

the crack to its tip and ~ H is the horizontal projection) and 

t:::..H;AV (where AH is the horizontal displacement of the crack at the 

point considered and L:::,.V is the vertical displacement. The points 

on Figure 4.38 fit roughly on a straight line with the equation 

AH = 
~v 0•55 ~v 

~H 

and are confirmed by the finite element analysis described in the 

appendix. 

Fenwick tested three beams in which he measured the displacements 

across the cracks. The displacements have been taken from his Thesis 

and have been plotted in the style of Figure 4.38 in Figures 7.5 and 

7 .6. Details of the1 beams are given in Table 7.1. 

TABLE 7.1 

b mm 

FA 4 152 
SC 3 152 
CA 1 152 

Details of displacement test beams 
- Fenwick 

dl a/d1 AS t x 100 Uw f mm N/mm2 N/fum 2 
bdl 

356 4 1 •43 41 480 
,05 3 2•18 39 303 
356 4 1 ·87 41 296 

The beams also had the following peculiarities. Beam FA 4 had 

preformed cracks with smooth crack formers 25 mm wide in the side of 

the specimen. The bars were wrapped with foam plastic and were only 

connected to the concrete teeth halfway between the cracks. Beam 

CA 1 had studs welded onto the bars in holes cast into the side of 

the beam, thus the dowel stiffness was very low as the cracks formed 
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through the holes. Beam SC 3 had 20 mm crack formers cast into its 

side touching the main steel so that the only concrete holding the 

dowel was between the bars. In each case therefore the vertical 

stiffness of the beams was much less than that found in normal beams. 

The lines shdwn on Figures 7.5 and 7.6 come from the equation 7.8 

which fits the test data in Chapter 4. 

This leads to the apparent paradox that the vertical stiffness 

of the beam decreases with decrease of steel percentage. This can 

only be explained by the fact that the cracks are more inclined in 

beams of low steel percentage so that steel percentage interacts with 

i ~ in the Figures. The beams tested by Fenwick had cracks that were 

considerably more inclined than the cracks on the beams described in 

Chapter 4. 

This is the only information that is available on the 

displacements and before it can be generally used it should ideally 

be extended to cover beams of different stiffness. The main factors 

which affect the vertical stiffness of the beam a.re the steel percentage 

which governs the height of the crack and the dowel layout. In the 

model the dowel layout was fixed by having two bars in the tension 

zone, a simplification that, as has already been explained, under­

estimates the dowel capacity of beams with high steel percentages. 

The way that a generalised compatibility condition was built up was 

to use a version of equation 7.8 in the form 

AH sv 
~v = n ,S H 

where n = e -ap 

100p is the steel percentage 

Thus when 

n = 0•55 p = 1•0 

n = 1 •O p = 0 

The first relation comes from the tests described in Chapter 4 

and the next comes from considering the possible displacements at an 

extreme. When there is no steel, the cantilevers between the cracks 
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would simply rotate around the compression zone so that~~ would 
Sv f , equal '._S-H and thus corresponds to the results o Fenwick s Tests. 

Equation 7.8 in its final generalised form is 

-0•6p ~ V 
e ~H 7.9 

The value of n = e-0•6p is shown plotted for a sensible range 

of steel percentage in Figure 7.7. This equation has no practical 

base, apart from at the 1•0% steel level and the rest of the curve 

is only derived using the logic mentioned above. 

A very useful area of further study would be to find experimental 

displacement conditions for beams of widely differing steel percentages 

to modify the equation 7.9. 

Failure Criterion 

Flexural tensile or compressive failure was never found at the 

section considered but in some cases, the flexural moment at the load 

point, calculated by multiplying the shear capacity of the crack 

being considered by the length of the shear span was greater than 

the flexural capacity of the beam. These cases were recognised from 

the data by comparing ;each set of results with a flexural design 
I 

chart that was prepared from another program. 

The compression zone was never stressed in flexure and shear 

beyond the failure criterion mentioned in Chapter 4 and this was 

therefore not checked in the program. 

The aggregate interlock and dowel forces were both capable of 

being lost causing the failure of the beam. The dowel force was 

usually on the falling branch mentioned in Chapter 5 before the beam 

failed. 

If the vertical equilibrium equation was not capable of being 

solved because of the loss of their forces, the program was halted 

as soon as the crack reached the load point at the centre of the beam. 
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Program Description 

The flow chart of the program is shown in Figure 7.8. The 

program can be divided into a number of small sections which are 

described in detail below. 

a. The initial data for the program consists of defining the basic 

beam properties, 

Beam Width 

Beam Depth and Effective Depth 

Bar Layout 

Bar size 

Steel Strength 

Concrete Strength 

Shear Span 

Crack Positions 

These are all self explanatory apart from the last item. The starting 

point of the crack that is to be considered has to be defined and the 

program develops a crack for each given location. The shear strength 

of the beam corresponds to the crack which reaches failure first. 

b. The initial crack height and curvature are calculated using the 

method that has already been described. 

I 
\ 

c. Four iterations are carried out in which the horirontal 

equilibrium equation 7.4 is solved, without considering the other 

equations, in order to simulate the initial vertical movement of the 

crack. This is the part of beam behaviour in which it has not been 

possible to find exactly how the shear force is distributed, as has 

been shown in the conclusions to the experimental work in Chapter 6, 

in Figures 6.26 to 6.29. 

d. In this section of the program, the horizontal equilibrium 

equation 7.4 is solved, just as in section (c) apart for the fact 

that the program now goes on to satisfy the two other equilibrium 

equations. 

e. A solution of the vertical equilibrium equation 7.5 is now 

attempted and if it is not satisfied the crack is moved horizontally 
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and a new value of V from the rotational equilibrium equation, 

equation 7.6, is re-calculated and then this section is repeated. 

f. Finally the curvature is incremented and steps c and dare 

repeated until a solution of one of the equations is impossible or 

the crack extends to the support. When this happens, the output is 

produced in which the crack position, the curvature, all the forces 

in the equilibrium equations and the bending moment at the centre of 

the beam is punched out, for all curvature stages. 

The computer time taken for each crack is approximately 3 

minutes. 

It can be seen from this description that equation 7.4 is solved 

separately from equations 7.5 and 7.6 which are solved simultaneously. 

This naturally leads to an error as all the equations should be solved 

simultaneously but, providing the curvature increment was low, the 

error was found to be not large and the error between the true and 

computed values of both C and T was less than five percent. A version 

of the program was written which did solve the equations simultaneously 

and this took more than ten times the computer time than the simple 

version of the program. 

I 

Future versions of programs of this type must have very efficient 

"hill climbing techniques" in order to solve the equations quickly and 

not use too much computer time. 

Results 

A typical set of results from the analysis of a beam with the 

following properties is shown in Figures 7.9 and 7.10. 

Beam width 

Beam depth 

185 mm 

370 mm 

Beam effective depth 335 mm 

Steel percentage 1•00 

Shear span 1665 mm 

Distance of crack from support 

253 

500 mm 



The extent of the crack at various stages of the analysis is 

shown in Figure 7.9 and in Figure 7.10 the relative contributions 

of the compression zone, aggregate interlock and dowel forces are 

shown. It can be seen in Figure 7.9 that the crack does not 

incline gradually as in practice and this difference between the 

true and predicted behaviour is probably due, as has previously been 

stated, to inaccuracies in simulating the normal forces across the 

crack. The dotted parts of the crack have been added to show when 

the crack runs to the support and the beam fails and when the 

reversed inclined crack occurs. 

The distribution of shear force predicted by the model shown 

in Figure 7.10 is very similar to that found in the experiments 

described in Chapter 6. On this Figure, the dotted lines are 

extrapolations into the sections of the program where the crack 

initially formed and became inclined. This part of beam behaviour 

is particularly difficult to explore experimentally as very sudden 

changes in the internal force distributions in the beam are possible 

just as it cracks. _Figure 7.10 however points to the possibility 

that, as the crack forms, the dowel force builds up quickly and then 

as this is lost, the aggregate interlock force builds up. 

A number of runs of the program was made in order to study its 

predictions of the eff~ct of the various parameters in the shear 

problem. These were to study the effect of the following parameters; 

steel percentage, concrete strength, steel strength and scale. 

Steel Percentage and Concrete Strength 

These two parameters are now considered in the Draft Unified 

Code10 in a table of nominal shear stresses from the equation 

q =¾,,for use at the Ultimate Limit State. 

The stresses were established from a study of all the 

available experimental data and therefore give a good picture of 

the effect of the parameters. Table 7.2 shows some of the stresses 

in the Draft Code, with the material partial safety factor removed. 
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Table 7.2 Shear stress from 
Draft Unified Code N/mm2 

Characteristic Concrete Strength N/mm2 

22•5 30 37•5 45 
and more 

0•5 0•40 0•50 0•60 0•65 

1 •O 0•50 0•60 0•70 0•80 

Steel 1 ·5 0•60 0•70 0•80 0•90 

percentage 2•0 0•65 0•75 0•85 1•00 

2•5 0•70 0•80 0•90 1•05 

3•0 0•75 0•85 0•95 1 • 10 
and more 

The partial safety factor of 1 •5 was removed by copying the 

stresses in each column of Table 7.2 from a column in the Draft Code 

corresponding to a concrete characteristic strength 1•5 times that 

in the Table 7.2 column. Thus the stresses in the 30 N/mm 2 column 

in Table 7.2 come from the 45 N/mm2 column in the Code. Even then, 

the stresses all form a lower bound to test results and the mean 

stresses from tests are likely to be about 1•3 times higher than the 

ones in the table. 

A series of beams with various steel percentages and concrete 

strengths of 22•5 and 45 N/mm2 was analysed by the model program 

and the shear stresses at the failure of the beams were calculated. 

The stresses are shown in Table 7.3. 

Table 7.3 Shear stresses from 
Mathematical Model N/mm2 

0•5 

1•0 

Steel 1 •5 

percentage 2·0 

2•5 

3•0 

257 

Concrete characteristic 
strength N/mm2 

22•5 45 

0•590 

0•769 0•832 

0•772 0•902 

0•780 0•880 

0•885 1•052 

0•905 1•090 



There is a reasonable agreement between the model and the test 

results but the model does not predict shear stresses as low as those 

found in tests when the steel percentage is reduced. This is 

presumably because the compatibility condition is inaccurate, although 

there is very little experimental evidence to justify the stresses 

for beams with steel percentages less than 1•0. 

The inaccuracies in predicting the dowel strength of the high 

steel percentage beams would also make the stresses in the high steel 

percentage beams from the model too low. 

Another way of presenting the information is in a plot of 

moment capacity against shear span. Such a plot for point loaded 

beams with a concrete strength of 45 N/mm 2 is shown in Figure 7.11 

and it can be seen that this is very similar to the experimental 

curve, Figure 2.5. 

Effect of scale 

A series of beams of full, one and a half and twice full scale 

models of a beam with'1•o% of steel, a/d1 of 3 and a full scale depth 

of 370 mm was analysed to see if the mathematical model confirmed the 

loss of strength with increasing size of beam that was reported at 

the end of the last Chapter. 
: \ 

\ 
i 

The results of this analysis are given in Table 7.4. 

Table 7.4 Effect of scale on strength of beams 

Failure 
moment/scale 
kNm 

57•5 

Scale 

1½ 

51•0 

2 

52•0 

The beam with a depth of 740 mm has a strength to scale that 

is 9o% of the strength of the smallest beam, a result that is in 

good agreement with the experimental results shown in Figure 6.32. 
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So far the model has only been used to predict the behaviour 

of beams with point loads but it should be capable an analysing 

beams with uniformly distributed load after a few modifications. 

The chief problem would be to predict the position of the failure 

crack and a number of runs of the program would have to be made for 

each beam before the critical crack could be located. 

The work with the model has shown that it is possible to 

simulate the behaviour of beams in shear using the experimental 

results from the previous chapters and despite the simple compatibility 

condition used this simulation correctly predicts the trends of some 

of the important parameters in the problem although the degree of 

the effect of the parameters is not always correct. 
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CHAPTER 8 

DISTRIBUTION OF SHEAR FORCES IN BEAMS WITH STIRRUPS 

In this chapter, previous research in which test evidence is 

given of the internal distribution of forces in beams with stirrups 

is discussed and a limited series of tests is described in which 

aggregate interlock and dowel forces in beams with stirrups were 

measured. 

In Chapter 2 the truss analogy for beams with stirrups 

introduced by M8rsch was described. It was soon recognised that 

the analogy, in which the stirrups and tension steel were considered 

to act as tension members of a pin jointed statically determinate 

truss, was conservative and was wasteful when used in design. 

Because of this, design Codes allowed the shear force carried by an 

equivalent beam without stirrups to be added to the shear capacity 

of the truss. This proved to be a very successful method and is in 

use to this day. One way of visualising this approach is to assume 

that until the main shear cracks are formed in a beam, the stirrups 

are not effective and after this point is reached they begin to carry 

force in the way that the truss analogy suggests. The shear force to 

cause cracking is never lost. 

I 
\ 

Since the truss analogy was first proposed, workers have 

suggested that its conservatism may be due to a variety of reasons. 

Firstly the truss is statically determinate, implying pin joints 

between stirrups and compression zone, compression zone and inclined 

struts and stirrups and main reinforcing steel. Secondly, the 

designer rarely uses the true slope of the compression struts between 

the lower tensile and upper compressive booms of the truss. When 

close spacings of stirrups are used it is often very difficult to 

rationalise the crack pattern and stirrup positions to a truss at all. 

Thirdly, the forces carried by dowel action are ignored and, in a 

previous chapter, these have been shown to be quite considerable, 

particularly if the crack is close to a stirrup. 

The effect of dowel action has been considered in a proposed 

design method by R. Taylor38• Taylor said that as the cracks in 
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beams not only penetrate upwards and then incline towards the point 

of application of loaa they also propagate backwards towards the 

support point. He therefore suggested that the inclined crack 

across which all the shear force should be carried by stirrups 

should be lengthened to account for the reversed cracking. This 

meant that for a given spacing at least one extra stirrup was 

considered to carry shear forces across the crack. This design 

approach had the effect of considerably reducing the number of 

stirrups in a beam compared with the current British Code, which 

says that all shear forces must be carried by stirrups when the 

shear cracking load of a section is exceeded. The new approach 

predicted strengths that agreed well with tests. Leonhardt39 has 

developed a method of shear design from a study of extensive tests 

that he has carried out. This method, which he calls the method of 

reduced reinforcement for shear, gives a way of reducing the shear 

reinforcement from the truss analogy amount so that the conservatism 

may be allowed for in design. Figure 8.1 shows a typical curve which 

gives the factor of shear coverage to be applied to the shear 

requirements of the truss analogy to reduce it to a design value, 

in this case, for working stress design. Different curves are 

proposed for simply supported and continuous beams. 

The vertical axis of the Figure has the nominal shear stress 
I 

on the section plotted as a ratio of the concrete strength and the 

factor "Y/ which is dimensionless, plotted horizontally. It is 

possible to take values of 'Yl_ from the Figure and plot f~, -1c Y 
which is the contribution of the concrete to the shear capacity 

(i.e. the shear stress not carried by truss analogy). 

This is shown in Figure 8.2 and has nearly a constant value 

indicating that the method is simply another way of stating the 

truss analogy. 

A very different concept as to how stirrups carry shear forces 

was described in a paper by Kam40• Kani said that the stress 

trajectories in a beam in shear follow the shape of a series of 

arches which support the compression zone. This concept is illustrated 

in Figure 8.3. In the Figure the arches can be seen with the stirrup 
I 
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reinforcement proposed by Kani. The reinforcement should ideally 

be inclined to converge at the point where the support and compression 

zone thrusts meet although vertical stirrups, shown dotted, may 

also be used but are slightly less effective. Kani said that only 

the stirrups shown are necessary and the other areas of the beam do 

not need shear reinforcement. This has been recognised before by 

a number of workers who have pointed out that the provision of an 

area of concentrated stirrups at the mid point of the shear span of 

a beam merely turns it into two shorter beams with a/d1 ratios half 

that of the original. Kani's description of the behaviour of stirrups 

illustrates that a number of analogies of how stirrups carry forces 

are possible and each such equilibrium solution should produce a 

safe lower bound to the strength of the beams. 

A good experimental study of the forces carried by stirrups 

was carried out by Rilsch and Mayer41 • The tests are summarised in 

Table 8.1 and Figure 8.4. In the tests, the main steel and stirrups 

were instrumented so that it was possible to measure the strains in 

them. Small studs were welded onto the steel with a small hole 

drilled in the top of each stud to take a mechanical strain gauge of 

the demec type. The beams were cast with sleeves over the studs 

and when the concrete had set the sleeves were removed leaving the 

studs free standing in holes in the sides of the beams. By providing 

studs on the bars at regular spacings and reading the strains from 
I 

one stud to another\it was possible to draw a histogram of strain 

down the beam in the form shown in Figure 8.5. A smooth curve may 

then be drawn over the histogram with the same area underneath it 

as the area under the histogram. The maximum point of the curve 

usually coincides with the point where an inclined crack crossed 

the stirrup and from this peak strain given in the report it has 

been possible to estimate the force carried by the stirrups in the 

beams. The force carried by the stirrups is plotted against the 

total shear force on the beams in Figures 8.6 to 8.9. The letters 

on the curves correspond to the end of the beam and the numbers to 

the number of the stirrup as shown in Figure 8.4. In the case of 

Figures 8.6 and 8.7, the truss system was assumed to consist of two 

trusses superimposed on each other, the inclined concrete compressive 

struts have been assumed to go from the bottom of one stirrup to the 
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TABLE 8.1 

Test 

di 
mm 

62/1 319 

62/4 321 

62/3 319 

62/2 323 

62/5 322 

beam properties 

b a a/di 
mm mm 

107 1100 3•82 

110 1100 3•91 

108 1100 3·84 

110 1100 3•90 

111 1100 3•86 

Riisch and Mayer Details of Tests 

steel properties Concrete 

Yield stress N/mm2 Diameter mm strength 
N/mm2 

t-- Ast% Main Stirrup Main Stirrup 
mm ocr:- 0 i 

139 3•6 410 450 2 No.26•6 9·9 57•8 

360 3·6 425 475 2 No.26•6 11 •8 58•4 

550 3•6 440 465 2 No.26•6 11 • 9 57•8 

790 3·6 420 460 2 No.26•6 11 ·9 66•5 

360 3•6 470 490 2No.25•2 11 ·4 63•6 
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top of the next stirrup but one, from stirrup n ton+ 2. Each 

stirrup, according to the truss theory should therefore carry half 

the shear force on the beam. The lines on Figures 8.6 and 8.7 show 

this theoretical truss theory line. In the other beams, the system 

was assumed not to overlap and each stirrup must therefore carry the 

whole of the shear force on the beam. 

The failure loads of the beams are shown in the F:igures and 

are given more accurately in Table 8.2 below. 

Table 8.2 Failure loads of beams tested 
by Rilsch and Mayer (kN) 

Beam 
62/1 62/4 62/3 62/2 62/5 

Load 
95 95 81 52 72 kN 

If the shear strength of the beams is compared with the shear 

capacity from the truss analogy it will be seen that none of the 

beams reached the truss analogy shear strength. This is because 

beam 62/1 failed in flexural compression in the zone of constant 

moment between the pointsof load application and the other beams 

failed because the stirrups were too widely spaced to stop the small 

sections of beam between them failing in shear. The first beam was 
I 

therefore over-reinforced in shear and the rest had too wide a 

stirrup spacing for the stirrups to be effective. 

This does not mean that the stirrup forces that were measured 

are not useful as they show how the stirrups effect the shear 

capacity of the beams. 

The Figures show that the line of force carried by the stirrups 

is very variable, it is not always parallel to the truss theory line 

but tends, in some cases, to incline towards it. The variability is 

mainly explained by the difference in cracking over each stirrup 

and partly by the fact that the plots of strain given in Rusch's 

report from which the Figures in this Chapter have be~n derived are 

to a very small scale, making precision of calculation difficult. 
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The next section of this Chapter describes four tests on beams 

with stirrups in which measurements were taken on the beam compression 

and tension zones in a manner similar to that used in the tests on 

beams without stirrups. In this case, the same analysis of compression 

zone strains was made but this time with less success than before. 

Details of the test beams are given in Table 8.3. 

Table 8.3 

Details of beams 11 -14 

Beam Shear a/d1 Steel Stirrup Stirrup Stirrup Concrete 
No. Span percentage diameter spacing yield cube 

(mm) mm mm stress strength 
N/mm2 N/mm2 

11 1470 3•99 1•03 6 180 410 43 

12 1170 3• 16 1•03 6 180 410 41 
-·· 

13 864 2•32 1•03 6 180 410 49 

14 864 2•32 1 •03 6 288 250 54 

The first three beams had high strength stirrups at a close 

spacing and failed in flexure as they were over-reinforced in shear 

but inclined cracking had advanced to an extreme stage, especially 

in the case of beam 13, before the beams failed. Beam 14 was 

provided with mild steel 'stirrups at a wider spacing and this did 

reach a stage where the inclined crack was almost at failure before 

the beam failed. It is particularly difficult to design a rectangular 

beam with a low tensile steel percentage and a close stirrup spacing 

to fail in shear, although if the test beams were of T section this 

would be possible. These tests were carried out on rectangular beams 

as the methods of estimating the shear force are all much simpler to 

apply, particularly in the case of the compression zone forces. 

The layout of the crack patterns at the final load stages of 

the beams are shown in Figure 8.10 and the details of the shear 

forces for each load stage are shown in Table 8.4. The crack 

patterns can be compared with the patterns of beams 7, 8 and 9 shown 

in Figure 4.20. Beam 11, apart from the addition of stirrups was 

identical in layout to beam 9. Both beams failed in flexure at a 
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similar load, the shear force was 89•0 kN for beam 9 and 82•0 kN 

for beam 11. Beam 12 was comparable with beam 8 and both of them 

failed in flexure. The shear forces were 114•0 kN for beam 8 and 

105•0 kN for beam 12. Beams 13 and 14, of which beam 13 failed in 

flexure and beam 14 was at the point of shear failure, compare with 

beam 7 which failed in shear. The shear force at the failure of 

beam 7 was 99•0 kN and at the failure of beams 13 and 14 was 130•2 

and 107•2 kN. The failure of beam 14 was therefore a shear failure, 

intermediate between the behaviour of beams 7 and 13. 

Longitudinal strains were measured in the compression zone of 

all the beams in vertical sections at the positions shown in 

Figure 8.10 and these strains were used in the program described in 

Chapter 4 to compute the compression zone shear stresses and shear 

forces. Not all the computations were successful as it was found 

that when the large inclined crack formed and did not, in the case 

of the beams with stirrups, cause failure, it did produce large 

discontinuities in the strain readings which made further calculations 

impossible. Because of this only the shear forces before the 

discontinuities occurred are given in Table 8.5 - 8.7. No compression 

zone shears are given for Beam 13 as the only shear forces that were 

calculated were at very low loads and were of little use in defining 

the shear stress distributions in the beam at high load stages. 

When the inclined cracks formed, the strain in the compression 

zone at the outer fibre of the beam at the head of the crack 

decreased>the strain just above the crack increased and the beam 

behaved as an arch, much as in the way found by Watstein and Mathey 

in short beams unreinforced in shear. Another possible contributary 

effect to the change in the stress conditions in the compression 

zone was that as the crack formed there was some shear displacement 

across the crack which enabled the stirrups to act as dowels and 

produced some interlock shear force which, as the cracks were inclined 

at less than 45 degrees to the horizontal, produced a longitudinal 

compressive force at the level of the crack. 

Delta rosettes for the 50 mm demec gauge were fixed over the 

cracks in the way described in Chapter 4 so that the normal and 

276 



beam 11 

beam 12 

beam 13 

beam 14 

FIG.8.10 LAYOUT OF BEAMS 11 TO 14 
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TABLE 8.4 

Test results from beams 11 - 14 

Shear force kN 

Load 11 12 13 14 stage 

1 0 0 0 0 

2 26•0 31 •O 45•8 45•8 

3 39•0 43·5 53·5 53•6 

4 52•0 55·9 61 • 1 61 •2 

5 58•5 68•4 68•8 68•8 

6 65•0 80•6 76•5 76•5 

7 71•5 93• 1 84•0 84•3 

8 78•0 99•5 91·9 91•9 
-

9 82•0 105•0 99·5 99•6 

10 107• 1 107•2 

11 114•8 

12 112•4 

13 130•2 
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TABLE g.5 

Load 
Stage 

2 

3 

4 

5 
6 

7 
8 

9 

VkN 

26•0 

39•0 

52•0 

58•5 

65•0 

. 71•5 

78•0 

82·0 

Beam $1 - shear force, V1 in the compression zone kN 

Gauge Line 

A B C D E F 

6•7 7•6 6•5 3•8 9•2 6•3 

8•9 9•6 8•9 5•2 10•9 7•9 
.. -· · 9•6 · 11 •4 11 •2 6•9 10•9. 9·3 

12•2 12•5 11 ·9 7·5 . 12•0 10•3 

12•6 14·2 16·4 8•3 13•2 11 ·3 

13•8 15 •6 17•8 9•1 14•0 12•3 

14•7 16•3 18·0 9•8 14•0 12•3 

15·3 17•2 18•2 10•3 13•7 12•5 

-.;.~~:~-~~-



TABLE 8.6 

Beam 12 
Shear force Vi in the compression zone kN 

Load VkN Gauge Line 
stage 

A B D 

2 31 •O 5•0 8•6 6•7 

3 43•5 6 • 1 9·7 8•2 

4 55·9 6•8 12 • 1 10• 1 

5 68•4 9•7 15·5 9·4 
6 80•6 12•7 19•7 - 'i 

7 93• 1 18•2 22•6 -
8 99·5 29•8 23•8 -
9 105 ·5 37•5 25•6 -

TABLE 8.7 

Beam 14 
\ 

Shear force Vi in the compression zone kN 

Load VkN Gauge Line 
Stage 

B 

2 45•8 5•2 

3 53•6 6•4 

4 61 • 2 8•1 

5 68•8 9 • 1 

6 76•5 1 O•O 

7 84•3 10•0 
8 91 •9 -
9 99•6 -

10 107•2 -
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shear displacements across the cracks could be measured. The 

position of the rosettes are shown in Figure 8.10. 

The aggregate interlock and dowel forces across the cracks 

were calculated using the measured displacements and the methods 

described in Chapters 5 and 6. In the case of the dowel forces, 

the presence of the nearest stirrup to the dowel was considered and 

taken account of in the manner shown in Figure 5.20. 

The relative amounts of the shear force carried by the 

compression zone, aggregate interlock and dowel action are shown in 

Figures 8.11 - 8.14. The compression zone force is shown, whenever 

it was calculated and in the case of beam 13 is ignored. In the 

other Figures, the compression zone shear line is extrapolated 

whenever necessary. 

Inclined cracking was never extensive in beams 11 and 12 so 

that the beams behaved in a way very similar to beams 8 and 9 although 

not as much of the total shear force on the beams was accounted for. 

The rest of the force is presumably carried by the stirrups. The 

large increase of aggregate interlock force in beam 13, line B, 

corresponds to the time when the inclined crack formed and a large 

area of crack was suddenly available to carry shear forces. Assuming 
I 

that the compression zone is only carrying a low shear force, the 

shear force carried by the stirrup is quite considerable. The same 

situation arises as the aggregate interlock force suddenly increases 

in beam 14 at a shear force of 91•9 kN when the large diagonal crack 

formed. 

Assuming that the shear force unaccounted for is carried by 

the stirrups it should be possible to plot a series of Figures 

similar to 8.6 - 8.9 but, as the same inaccuracies in Figures 6.26 -

6.29 apply in Figures 8.11 - 8.14, the plots would be very 

unreliable. The general conclusion that the stirrup forces are low 

until the large inclined cracks form and open is still admissible. 

An important area of future work would be to carry out experiments 

similar to the ones just described, including the measuring of 
II 

stirrup strains by Rusch's methods on a number of beams, preferably 

T beams, to tie these two pieces of work together. 
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A number of theories for the behaviour of beams with stirrups, 

assuming that the stirrups are yielding at failure and considering 

the shear capacity of the compression zone using a failure criterion 

for the concrete, exist and give good results. The theories by 

Walther43 and Regan44 are examples of this work. The fact that 

these theories are reliable
1

points to the conclusions above being 

reasonable and hence,possibly~that the consideration of the dowel 

. shears in such theories would add considerably to this accuracy. 

Another way of carrying out this work would be to extend the 

mathematical model described in the last Chapter to deal with stirrups 

and then the whole of the behaviour of beams with stirrups could be 

p~edicted. This is possible but some more very careful tests to 

determine the falling branch characteristics of dowel and aggregate 

interlock action would have to be carried out first of all. 

The work described so far in this chapter indicates that a 

beam with stirrups acts in much the same way as a beam without 

stirrups until the large diagonal crack forms. At this stage, as 

the crack opens, the aggregate interlock force is gradually lost 

and the stirrups carry more and more shear force. It is reasonable 

to assume that the stirrups in such a beam will yield when the beam 

fails in shear and that the conservatism of the truss approach is 

due to the shear capacity of the compression zone, the dowel 
. \ 

capnci ty of the IllP..i:r.. steel and any residual aggregate interlock 

forces across the crack. More experimental work is necessary to 

confim this description of beam behaviour. 
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CHAPTER 9 

CONCLUSIONS 

Content of the work 

(1) The primary object of this work was to investigate the 

behaviour of reinforced concrete beams without stirrups in shear and 

. to measure the internal distribution of forces in them. 

(2) Tests were carried out on a series of specimens that were 

designed to isolate the effect of the forces that can be carried 

across cracks and to obtain a quantitive assessment of their 

magnitude. 

(3) A mathematical model of a beam in shear was developed to see if 

the measured force distributions and observed crack shapes could be 

predicted and to study the implications of the theory throughout the 

range of the major parameters to the shear problem. 

(4) A limited number of tests was carried out on beams with stirrups 

to see if the behaviour of the beams could be explained in terms of 

the internal forces that were measured in the earlier tests. 

Conclusions 

(1) The tests to measure the shear forces carried in beam compression 

zones showed that 10 to 25 percent of the shear force on a beam was 

carried in this way. This shear force produced shear stresses in the 

compression zone that were consistent with a simple failure criterion. 

(2) The tests to measure the forces carried across cracks by dowel 

action of the reinforcement showed that 15-25 percent of the shear 

force on a beam without stirrups was carried in this way. A small 

series of tests of dowel specimens with stirrups showed the effect 

stirrups have on restraining dowel splitting and showed that close 

stirrup spacings are required if the first stirrup restraining the 

dowel is to yield when a beam fails. 
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(3) The tests to measure the forces carried across cracks by 

interlocking of the aggregate showed that between 33 and 60 percent 

of the total shear force on a beam was carried in this way. The 

aggregate interlock tests were carried out on unreinforced concrete 

blocks and in order to confirm the results a limited series of tests 

was carried out on beams which were specially designed to carry shear 
I 

only by interlocking of the aggregate. Good agreement was found 

between the tests. 

(4) A series of tests on beams of different scales using three 

aggregate sizes showed that some of the previously reported scale 

effect was due to the aggregate not being properly scaled. When 

scaled aggregate was used, the strength of the beam was always 

greater than the strength of a similar beam made with smaller 

aggregate. The scale effect, for normally shaped beams was not 

serious but deep beai;ns, with a large steel percentage concentrated 

in a narrow web width had a dowel capacity that was so low as to 

demand extra stirrups in design. 

(5) In the aggregate interlock work, three tests were carried out 

with a Lytag mix with a strength between 32 and 41 N/mm2 and these 

gave interlock strengths that were 62% of the strength of the dense 

concrete specimens. Thus,for this aggregate type which has a fairly 
I 

rough crack, and assuming that' the same internal force distributions 

apply as in dense concrete beams, the ultimate shear strength should 

be 1 - 0•38 x 0•6 times the strength from Table 7.2. Although not 

all lightweight aggregates give cracks of the same roughness as 

Lytag, it should be possible to put the current lightweight aggregates 

into two grades and allow shear strengths of say 0•8 times the Code 

values in Table 8.2 for the first grade, and the current design 

values of 0•5 times the values in Table 8.2 for the lower grade. 

(6) The mathematical model that was developed predicted the shape 

of shear cracks and simultaneously produced a distribution of internal 

forces in beams that agreed with the experimental results. The 

ultimate shear strengths of a series of beams with a variety of steel 

percentages and concrete strengths were computed and, despite the 

limitations of the compatibility condition in the mathematical model, 
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the results compared well with the results of tests. 

(7) It has not been possible to find the relative proportions of 

the internal forces in beams for the full range of the important 

parameters of steel percentage and concrete strength as this would 

require a considerable amount of new test work to be carried out but 

the following basic points apply. 

(a) The compression zone shear forces are likely to be high 

when the compression zone is large, as in the case of beams 

with high steel percentages and at the same time the 

aggregate interlock force, because the crack is shorter, is 

1ikely to be low. 

(b) The dowel force is dependent on the amount.of steel 

present in the beam and a beam with_two layers of well 

separated steel is likely to have a very high dowel force. 

The test described in Chapter 5 showed that this dowel force 

could be 5~ greater than the force carried in a beam of the 

same width with a two bar dowel. 

(8) A study of the beam tension zone, described in an appendix to 

this Thesis, has shown that the dowel and interlock forces restrain 

the concrete cantilevers between cracks and stop the bond force 

moment at the root of the cantilevers from becoming excessively high. 

Theories of beam behaviour which neglect interlock forces have been 

shown to predict that the cantilevers break off prematurely and give 

very low shear capacities to the beams. 

(9) The behaviour of beams with stirrups has been shown to be 

explained by the internal force distributions described in this Thesis 

although very little test evidence is available to confirm this 

conclusion. 

Future Work 

(1) Detailed tests in which the distribution of shear force in beams 

with stirrups is measured are needed to provide basic data for 

extensions of the methods of analysis described in this Thesis. 
I , 
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(2) Although the description of beam behaviour presented in this 

Thesis explains the results of many shear tests and confirms the 

known interactions between the basic parameters, much more experimental 

work of the type described in this Thesis should still be carried out. 

The effect of many common dowel arrangements has not yet been 

investigated and more interlock tests, with a variety of test 

arrangements, are needed. 

(3) The compatibility condition used in the mathematical model needs 

refinement and, in order to do this, displacement measurements should 

be carried out across cracks on beams with a wide range of steel 

percentages to provide the basic data. 

(4) It is possible to extend the mathematical model to include 

beams with stirrups and in conjunction with this, more detailed 

studies of the falling branch behaviour of the interlock and dowel 

mechanisms are necessary. 
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APPENDIX 

THE BEAM TENSION ZONE 

In Chapter 4, when the shear force carried by the beam 

compression zone was estimated, a comparison of the stresses was made 

with a failure criterion to show that the compression zone was 

capable of carrying the measured shear forces without distress. Now 

that the shear forces in the beam tension zone are lmown, it is 

possible to carry out a similar check to see that the stresses in 

the tension zone are consistent with the observed cracking and to 

see if the displacements are similar to those that were measured 

in the tests. 

In this Appendix, the results of a series of finite element 

analyses of a section of a beam tension zone are presented to 

illustrate that the stress conditions and deformations are consistent 

with observations of test beams. 

The equilibrium of a section of a beam tension zone between . 
two cracks has already been mentioned in Chapter 3 and Kani's theory, 

which assumes no aggregate interlock forces across cracks, was 

described. Figure A.1 shows such a section between two cracks drawn 
\ 

on a beam the shape of beams 9 and 10. The cantilever shown in the 

Figure is connected to a section of the beam compression zone and it 

was on this section of the beam that the analysis described in this 

Chapter was carried out. 

This particular beam was used as it was possible to select a 

cantilever that fits the crack pattern of Beam 9 and at the same time 

has the shape of the partially smooth cracks of beam 10. Three 

analyses are therefore possible. Firstly the cantilever may be 

analysed with the forces,found from the tests on Beam 9 and this 

would simulate the conditions in a complete beam. Secondly the 

cantilever can be loaded with the forces found in the tests on 

Beam 10, which was not a true beam as the cracks were partly smooth 

sided, and this would be a halfway case between the first and third 

load cases. The third loading system could be for a 'Kani' cantilever 

with smooth sides. 
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The magnitude of the loading that was selected was derived 

from the last load stage on Beam 10 and the corresponding equal load 

stage on Beam 9. 

Details of the distributions of the shear force on the 

cantilevers are given below. 

Case I Beam 9 Load Stage 11 

V 71 kN 

v, = 0•25 V 

V2 = 0•22 V 

V3 = 0•53 V 

Case II Beam 10 Load Stage 9 

V 71 kN 

V1 = 0•36 V 

V2 = 0•22 V 

V3 = 0•42 V 

Case III 

V 71 kN 

v, = 0•78 V 

V2 = 0•22 V 

V3 = 0 

In each case, the dowel force was assumed to be the same and 

interlock force came either from tests or was zero. 

From these shear forces and assuming that the main tensile 

steel stress increases uniformly from support to load point it was 

possible to derive the compressive and tensile force, C and T, 

necessary to hold the tooth in equilibrium. The final systems of 

forces were then applied to the cantilever in the analysis. The 

compression zone shear force was not included as the analysis was 

primarily carried out to study the stresses and deformations in the 

beam tension zone where compression shears would not have a significant 

effect. 
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The layout of the finite element grid, boundary conditions 

and the loads that were applied in the three load cases are shown in 

Figure A.2. The finite element program was an elastic plane stress 

program using six noded triangular elements. These elements have 

nodes at their corners and at the centre of each side and are more 

accurate than three noded triangular and four noded rectangular 

elements in plane stress problems. A total of 80 nodes were used 

in the grid and the lower four elements of the grid all had a higher 

stiffness than the other elements to simulate the presence of the 

reinforcement. This was the maximum complexity allowed by the program 

and computer although ideally more elements should be used at the 

steel level. 

The compression zone force was applied to the beam in a 

triangular distribution and the steel force from the previously 

described calculations was applied to the nearest node to the steel 

position. The dowel forces were applied to the same node and the 

aggregate interlock forces, where appropriate, were distributed 

uniformly along the crack. 

The results of the analysis are in the form of displacements 

and principal stresses at each node point. Both sets of results are 

presented in Figures A.3 to A.5~ The deformations and principal 

stresses are not shown to any particular scale but the same scale 

was used throughout ~he Figures so that comparisons can be made. 

Looking at the deformations it may be seen in Figure A.5 that 

the cantilever is deformed most with the loads from load case III 

applied, and the deformations from the other two load cases were very 

similar to each other. 

This situation is also shown by the principal stresses at the 

bottom of each Figure. As there were so many stresses produced by 

the program, only the tensile stresses relevant to the cantilever are 

shown. 

In the case of load case I, the moment on the cantilever from 

the shears almost balances the bond force moment and the principal 
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tensile stresses at the cantilever root are low. This shows that 

the tooth is stable .with that load configuration and is unlikely in 

practice to have broken off. The second Figure shows a higher stress 

just at the leve1 at which cracking would be expected and the Kani, 

third tooth, has a very high tensile stress at the root, much higher 

than that which can be carried by the concrete. 

A very simple check that these stresses are correct may be 

obtained by working out the net moment on the cantilever and then 

assuming a linear stress distribution at the root. In the case of 

the Kani tooth, this gives a vertical stress of 10•05 N/mm2
• This 

compares well with the finite element result of 13•64 N/mm2 which is 

a principal stress and is at a slightly different angle. 

High tensile stresses are predicted at the outer face of the 

cantilever where the higher steel force is applied. These stresses 

are caused by the dowel and interlock forces at the foot of the 

crack and, although the finite element simulation of the dowel 

behaviour is crude, these stresses indicate that dowel cracking would 

occur. The stresses at the foot of the crack would also cause cracking 

in the cantilever above the dowel, when the inclined part of the crack 

travelled downwards. This form of cracking is found in practice and 

in this Thesis is called reversed inclined cracking. A beam with a 

number of these cracks may be seen in Figure 4.6. 

The analyses of the single tooth cantilevers have shown that 

the stresses produced by the aggregate interlock and dowel loading 

are not high and are easily capable of being sustained by the concrete 

teeth. Next a series of three double tooth cantilevers were analysed 

to see if the displacements from the three loading patterns were 

reasonable and agreed with the measurements that were taken on the 

beams described in Chapter 4. 

The layout of the finite element grid, boundary conditions and 

the loadings for the three load cases with full, partial and no 

aggregate interlock, are shown in Figure A.6. The two cantilevers 

were separated by a crack of zero width and the interlock, dowel and 

tensile steel force were applied to each side of the crack in the 
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appropriate directions. As before, the lower four elements were 

stiffened to talce account of the stiffness of the steel and concrete 

in the section. It was not possible to have a finer grid of elements 

than the one shown owing to space limitations in the computer. 

The deformed shape of the cantilevers from the analysis are 

shown in Figures A.7 - A.8. The scale to which the displacements are 

plotted is common throughout the three Figures. The displacements 

from load cases I and II are similar and this is because the aggregate 

interlock forces are distributed in a similar way in the two load 

cases. Because of the relatively coarse grid used in the analysis, 

it was not possible to distribute the aggregate interlock forces 

correctly. The displacements from load case II however do show less 

shear distortion as less interlock forces are applied. The 

displacements from load case III are much different from the other 

two load cases and the crack does not open but closes so that the 

cantilevers interfere. This is quite possible in the analysis as 

the analytical model can be likened to two separate cantilevers which 

may slide over each other. 

It is possible to obtain the ratio of horizontal to vertical 

movement of opposite sides of the crack from the analysis, L::,,.H/L::,,.v, 
and plot this against th1 parameter defining the shape of the crack, 
r·v l 
~ / $°H' in the same way;that the experimental results are plotted 

in Figure 4.35. This has been done in Figure A.10. In the Figure 

the displacements from the analyses on load cases I and II are plotted 

together with a line that passes through the experimental results in 

Figure 4.35. It can be seen that both load cases give good results, 

the displacements from load case I gave more vertical movement for 

a given crack slope than the displacements from load case II, in 

accordance with the additional shear distortions. 
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load case 1. 

FIG.A.7 RESULTS OF DOUBLE CANTILEVER ANALYSIS, 
LOAD CASE 1 
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load case 2 . 

FIG.A. 8 RESULTS OF DOUBLE CANTILEVER ANALYSIS 
LOAD CASE 2 
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load case 3 

FIGA.9 RESULTS OF DOUBLE CANTILEVER ANALYSIS 
LOAD CASE 3 
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