

City, University of London Institutional Repository

Citation: Daviaud, L., Jurdziński, M. & Lehtinen, K. (2019). Alternating Weak Automata

from Universal Trees. Paper presented at the 30th International Conference on Concurrency
Theory, 26-31 Aug 2019, Amsterdam, the Netherlands. doi:
10.4230/LIPIcs.CONCUR.2019.14

This is the published version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/22614/

Link to published version: https://doi.org/10.4230/LIPIcs.CONCUR.2019.14

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Alternating Weak Automata from Universal Trees
Laure Daviaud
City, University of London, UK
Laure.Daviaud@city.ac.uk

Marcin Jurdziński
University of Warwick, UK
Marcin.Jurdzinski@warwick.ac.uk

Karoliina Lehtinen
University of Liverpool, UK
k.lehtinen@liverpool.ac.uk

Abstract
An improved translation from alternating parity automata on infinite words to alternating weak
automata is given. The blow-up of the number of states is related to the size of the smallest universal
ordered trees and hence it is quasi-polynomial, and it is polynomial if the asymptotic number
of priorities is at most logarithmic in the number of states. This is an exponential improvement
on the translation of Kupferman and Vardi (2001) and a quasi-polynomial improvement on the
translation of Boker and Lehtinen (2018). Any slightly better such translation would (if – like all
presently known such translations – it is efficiently constructive) lead to algorithms for solving parity
games that are asymptotically faster in the worst case than the current state of the art (Calude,
Jain, Khoussainov, Li, and Stephan, 2017; Jurdziński and Lazić, 2017; and Fearnley, Jain, Schewe,
Stephan, and Wojtczak, 2017), and hence it would yield a significant breakthrough.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory;
Theory of computation → Algorithmic game theory

Keywords and phrases alternating automata, weak automata, Büchi automata, parity automata,
parity games, universal trees

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2019.18

Funding This work has been supported by the EPSRC grants EP/P020992/1 and EP/P020909/1
(Solving Parity Games in Theory and Practice).

Acknowledgements We thank Moshe Vardi for encouraging us to bring the state-space blow-up
of alternating parity to alternating weak automata translation in line with the state-of-the-art
complexity of solving parity games.

1 Introduction

The influential class of regular languages of infinite words (often called the ω-regular languages)
is defined to consist of all the languages of infinite words that are recognized by finite non-
deterministic Büchi automata. The theory of ω-regular languages is quite well understood.
In particular, it is known that deterministic Büchi automata are not sufficiently expressive
to recognize all the ω-regular languages, but deterministic automata with the so-called
parity acceptance conditions are, and that the class of ω-regular languages is closed under
complementation. Effective constructions for determinization and complementation of Büchi
automata are important tools both in theory and in applications, and both are known to
require exponential blow-ups of the numbers of states in the worst case.

For applications in logic, it is natural to enrich automata models by the ability to
alternate between non-deterministic and universal transitions [21, 16]. It turns out that
alternating parity automata are no more expressive than non-deterministic Büchi automata,

© Laure Daviaud, Marcin Jurdziński, and Karoliina Lehtinen;
licensed under Creative Commons License CC-BY

30th International Conference on Concurrency Theory (CONCUR 2019).
Editors: Wan Fokkink and Rob van Glabbeek; Article No. 18; pp. 18:1–18:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Laure.Daviaud@city.ac.uk
mailto:Marcin.Jurdzinski@warwick.ac.uk
mailto:k.lehtinen@liverpool.ac.uk
https://doi.org/10.4230/LIPIcs.CONCUR.2019.18
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Alternating Weak Automata from Universal Trees

and hence neither allowing alternation, nor the richer parity acceptance conditions, increase
expressiveness; this testifies to the robustness of the class of ω-regular languages. On
the other hand, alternation increases the expressive power of automata with the so-called
weak acceptance conditions: non-deterministic weak automata are not expressive enough to
recognize all ω-regular languages, but alternating weak automata are. The weak acceptance
conditions are significant due to their applications in logic [21] and thanks to their favourable
algorithmic properties [16].

Given that alternating weak automata are expressive enough to recognize all the ω-regular
languages, a natural question is whether, and to what degree, alternating weak automata
are less succinct than alternating Büchi or alternating parity automata. Another way of
stating this question is what blow-up in the number of states is sufficient or required for
translations from alternating parity or alternating Büchi automata to alternating weak
automata. The first upper bound for the blow-up of a translation from alternating Büchi
to alternating weak automata was doubly exponential, obtained by combining a doubly-
exponential determinization construction [7] and a linear translation from deterministic
parity automata to weak alternating automata [21, 19]. This has been improved considerably
by Kupferman and Vardi who have given a quadratic translation from alternating Büchi
to alternating weak automata [15], and then they have generalized it to a translation from
alternating parity automata with n states and d priorities to alternating weak automata,
whose blow-up is nd+O(1), i.e., exponential in the number of priorities in the parity acceptance
condition [14].

Understanding the exact trade-off between the complexity of the acceptance condition –
weak, Büchi, or parity, the latter measured by the number of priorities – and the number
of states in an automaton is interesting from the algorithmic point of view. For example,
the algorithmic problems of checking emptiness of non-deterministic parity automata on
infinite trees, of model checking for the modal µ-calculus, of solving two-player parity games,
and of checking emptiness of alternating parity automata on infinite words over a one-letter
alphabet, are all polynomial-time equivalent. Since checking emptiness of alternating weak
automata on words over a one-letter alphabet can be done in linear time, it follows that
a translation from alternating parity automata to alternating weak automata implies an
algorithm for solving parity games whose complexity matches the blow-up of the number of
states in the translation.

The first quasi-polynomial translation from alternating parity automata to alternating
weak automata was given recently by Boker and Lehtinen [1]. They have used the register
technique, developed by Lehtinen [17] for parity games, to provide a translation from
alternating parity automata with n states and d priorities to alternating parity automata
with nΘ(log(d/ logn)) states and Θ(logn) priorities; combined with the exponential translation
of Kupferman and Vardi [14], this yields an alternating parity to alternating weak translation
whose blow-up of the number of states is nΘ(logn·log(d/ logn)).

The main result reported in this paper is that another technique – universal trees [11, 5],
also developed to elucidate the recent major advance in the complexity of solving parity
games due to Calude, Jain, Khoussainov, Li, and Stephan [2] – can be used to further reduce
the state-space blow-up in the translation from alternating parity automata to alternating
weak automata. We give a translation from alternating parity automata with n states and
d priorities to alternating Büchi automata, whose state-space blow-up is proportional to
the size of the smallest (n, d/2)-universal trees [5], which is polynomial in n if d = O(logn)
and it is nlg(d/ lgn)+O(1) if d = ω(logn). When combined with Kupferman and Vardi’s
quadratic translation of alternating Büchi to alternating weak automata [15], we get the
composite blow-up of the form nO(log(d/ logn)), down from Boker and Lehtinen’s blow-up
of
(
nΘ(log(d/ logn)))logn.

L. Daviaud, M. Jurdziński, and K. Lehtinen 18:3

The necessary size of the state-space blow-up when going from alternating parity automata
to alternating weak automata is wide open: the best known lower bound is Ω(n logn) [15],
closely related to the 2Ω(n logn) lower bound on Büchi complementation [20], while the best
upper bounds are quasi-polynomial. On the other hand, the blow-up for the parity to weak
translation that we obtain nearly matches the current state-of-the-art quasi-polynomial
upper bounds on the complexity of solving parity games [2, 11, 9]. It follows that any
significant improvement over our translation would lead to a breakthrough improvement in
the complexity of solving parity games.

The exponential translation from alternating parity automata to alternating weak auto-
mata due to Kupferman and Vardi [14] is done by a rather involved induction on the number
of priorities. For an automaton with d priorities, it goes through a sequence of d intermediate
automata of a generalized type, which they call parity-weak alternating automata. In contrast,
our construction is significantly more streamlined and transparent; in particular, it avoids
introducing a new class of hybrid parity-weak automata. We first establish a hierarchical
decomposition of runs of alternating parity automata as a generalization of the decomposition
of runs of alternating co-Büchi automata due to Kupferman and Vardi [15], and then we use
the recently introduced universal trees [11, 5] to construct an alternating Büchi automaton,
which is a parity automaton with just 2 priorities. Our work is yet another application of
the recently introduced notion of universal trees [11, 5]. Such applications typically focus
on algorithms for solving games [11, 6, 5, 3]; our work is the first whose primary focus
is on automata.

In addition to universal trees, we use a notion of lazy progress measure. Unlike the
standard parity progress measures, which can be recognised by safety automata but require
an explicit bound to be known on the number of successive occurrences of odd priorities, lazy
progress measures are recognised by Büchi automata and can deal with finite but unbounded
numbers of occurrences of successive odd priorities. This Büchi automaton is similar to (but
more concise than) the automaton used to characterise parity tree automata that recognise
co-Büchi recognisable tree languages [18], itself a generalisation of automata used to decide
the weak definability of tree languages given as Büchi automata [22, 4].

A similar concept to our lazy progress measures was already introduced by Klarlund for
complementation of Büchi and Streett automata on words [12]. Klarlund indeed proves a
result that is equivalent to one of our key lemmas on parity progress measures. Our proof,
however, is more constructive, and it explicitly provides a hierarchical decomposition, which
clearly describes the structure of accepting run dags of parity word automata. Moreover –
unlike Klarlund’s proof, which relies on the result about Rabin measures [13] – our proof
is self-contained. We suspect that the opaqueness of Klarlund’s paper [12] may have been
responsible for attracting less attention and shallower absorption by the research community
than it deserves. In particular, some of the techniques and results that he presents there
have been rediscovered and refined by various authors, often much later [15, 14, 10, 11, 5],
including this work. We hope that our paper will help a wider and more thorough reception
and appreciation of Klarlund’s work.

2 Alternating automata

For a finite set X, we write B+(X) for the set of positive Boolean formulas over X. We say
that a set Y ⊆ X satisfies a formula ϕ ∈ B+(X) if ϕ evaluates to true when all variables
in Y are set to true and all variables in X \Y are set to false. For example, the sets {x, y }
and {x, z } satisfy the positive Boolean formula x ∧ (y ∨ z), but the set { y, z } does not. An

CONCUR 2019

18:4 Alternating Weak Automata from Universal Trees

alternating automaton has a finite set Q of states, an initial state q0 ∈ Q, a finite alphabet Σ,
and a transition function δ : Q× Σ→ B+(Q). Alternating automata allow to combine both
non-deterministic and universal transitions; disjunctions in transition formulas model the
non-deterministic choices and conjunctions model the universal choices.

We consider alternating automata as acceptors of infinite words. Whether infinite
sequences of states in runs of such automata are accepting or not is determined by an
acceptance condition. Here, we consider parity, Büchi, co-Büchi, weak, and safety acceptance
conditions. In a parity condition, given by a state priority function π : Q→ { 0, 1, 2, . . . , d }
for some positive even integer d, an infinite sequence of states is accepting if the largest state
priority that occurs infinitely many times is even. Büchi conditions are a special case of
parity conditions in which all states have priorities 1 or 2, and co-Büchi conditions are parity
conditions in which all states have priorities 0 or 1.

Let the transition graph of an alternating automaton have an edge (q, r) ∈ Q ×Q if r
occurs in δ(q, a) for some letter a ∈ Σ. We say that a parity automaton has a weak acceptance
condition if it is stratified: in every cycle in the transition graph, all states have the same
priority. Weak conditions are a special case of both Büchi and co-Büchi conditions in the
following sense: if the transition graph of a parity automaton is stratified, then every infinite
path in the transition graph satisfies each of the following three conditions if and only if it
satisfies the other two:

the parity condition π : Q→ { 0, 1, 2, . . . , d };
the co-Büchi condition π′ : Q→ { 0, 1 };
the Büchi condition π′′ : Q→ { 1, 2 };

where π′(q) = π(q) mod 2 and π′′(q) = 2− π′(q) for all q ∈ Q.
We say that a state is absorbing if its only successor in the transition graph is itself. A

parity automaton has a safety acceptance condition if all of its states have priority 0, except
for the additional absorbing reject state that has priority 1. An automaton with a safety
acceptance condition is stratified, and hence safety conditions are a special case of weak
conditions.

Whether an infinite word w = w0w1w2 · · · ∈ Σω is accepted or rejected by an alternating
automaton A is determined by the winner of the following acceptance game G(A, w). The
set of positions in the game is the set Q × N and the two players, Alice and Elvis, play
in the following way. The initial position is (q0, 0); for every current position (qi, i), first
Elvis chooses a subset P of Q that satisfies δ(qi, wi), then Alice picks a state qi+1 ∈ P , and
(qi+1, i+ 1) becomes the next current position. Note that Elvis can be thought of making the
non-deterministic choices and Alice can be thought of making the universal choices in the
transition function of the alternating automaton. This interaction of Alice and Elvis yields
an infinite sequence of states q0, q1, q2, . . . , and whether Elvis is declared the winner or not
is determined by whether the sequence is accepting according to the acceptance condition
of the automaton. Acceptance games for parity, Büchi, co-Büchi, and weak conditions are
parity games, which are determined [8]: in every acceptance game, either Alice or Elvis
has a winning strategy. We say that an infinite word w ∈ Σω is accepted by an alternating
automaton A if Elvis has a winning strategy in the acceptance game G(A, w), and otherwise
it is rejected.

A run dag of an alternating automaton A on an infinite word w is a directed acyclic
graph G = (V,E, ρ : V → Q), where V ⊆ Q× N is the set of vertices; successors (according
to the directed edge relation E) of every vertex (q, i) are of the form (q′, i+ 1); the following
conditions hold:

(q0, 0) ∈ V ,
for every (q, i) ∈ V , the Boolean formula δ(q, wi) is satisfied by the set of states p, such
that (p, i+ 1) is a successor of (q, i);

L. Daviaud, M. Jurdziński, and K. Lehtinen 18:5

and ρ projects vertices onto the first component. Note that every vertex in a run dag
has a successor, and hence every maximal path is infinite. We say that a run dag of an
automaton A is accepting if the sequence of states on every infinite path in the run dag is
accepting according to the accepting condition of A. The positional determinacy theorem for
parity games [8] implies that an infinite word w is accepted by an alternating automaton A
with a parity (or Büchi, co-Büchi, weak, or safety) condition if and only if there is an
accepting run dag of A on w. In other words, run dags are compact representations of
(positional) winning strategies for Elvis in the acceptance games.

Run dags considered here are a special case of layered dags, whose vertices can be
partitioned into sets L0, L1, L2, . . . , such that every edge goes from some layer Li to the
next layer Li+1. We define the width of a layered dag with an infinite number of lay-
ers L0, L1, L2, . . . to be lim infi→∞ |Li|. Note that the width of a run dag of an alternating
automaton is trivially upper-bounded by the number of states of the automaton.

3 From co-Büchi and Büchi to weak

In this section we summarize the results of Kupferman and Vardi [15] who have given
translations from alternating co-Büchi and Büchi automata to alternating weak automata
with only a quadratic blow-up in the state space. We recall the decomposition of co-Büchi
accepting run dags of Kupferman and Vardi in detail because it motivates and prepares the
reader for our generalization of their result to accepting parity run dags. Our main technical
result is a translation from alternating parity automata to alternating Büchi automata with
only a quasi-polynomial blow-up in the state space, but the ultimate goal is a quasi-polynomial
translation from parity to weak automata. Therefore, we also recall how Kupferman and
Vardi use their quadratic co-Büchi to weak translation in order to obtain a quadratic Büchi
to weak translation.

3.1 Co-Büchi progress measures
The main technical concept that underlies Kupferman and Vardi’s [15] translation from
alternating co-Büchi automata to alternating weak automata is that of a ranking function for
accepting run dags of alternating co-Büchi automata. As Kupferman and Vardi themselves
point out, ranking functions can be seen as equivalent to Klarlund’s progress measures [12].
We will adopt Klarlund’s terminology because the theory of progress measures for certifying
parity conditions is very well developed [8, 12, 13, 10, 11, 5] and our main goal in this paper
is to use a version of parity progress measures to give a simplified, streamlined, and improved
translation from alternating parity to alternating weak automata.

Let G = (V,E, π : V → { 0, 1 }) be a layered dag with vertex priorities 0 or 1, and
in which every vertex has a successor. Note that all run dags of an alternating co-Büchi
automaton are such layered dags and if the automaton has n states then the width of the run
dag is at most n. (Observe, however, that while formally the third component ρ : V → Q in
a run dag maps vertices to states, here we instead consider the labeling π : V → { 0, 1 } that
labels vertices by the priorities of the states π(v) = π(ρ(v)).)

A co-Büchi progress measure [8, 13, 10] is a mapping µ : V → M , where (M,≤) is a
well-ordered set, such that for every edge (v, u) ∈ E, we have
1. if π(v) = 0 then µ(v) ≥ µ(u),
2. if π(v) = 1 then µ(v) > µ(u).
It is elementary to argue that existence of a co-Büchi progress measure on a graph is sufficient
for every infinite path in the graph satisfying the co-Büchi condition. Importantly, it is also
necessary, which can be, for example, deduced from the proof of positional determinacy for

CONCUR 2019

18:6 Alternating Weak Automata from Universal Trees

parity games due to Emerson and Jutla [8]. In other words, co-Büchi progress measures are
witnesses for the property that all infinite paths in a graph satisfy the co-Büchi condition.
The appeal of such witnesses stems from the property that while certifying a global and
infinitary condition, it suffices to verify them locally by checking a simple inequality between
the labels of the source and the target of each edge in the graph.

The disadvantage of progress measures as above is that on graphs of infinite size, such as
run dags, the well-ordered sets of labels that are needed to certify co-Büchi conditions may
be of unbounded (and possibly infinite) size. In order to overcome this disadvantage, and to
enable automata-theoretic uses of progress measure certificates, Klarlund has proposed the
following concept of lazy progress measures [12]. A lazy (co-Büchi) progress measure is a
mapping µ : V →M , where (M,≤) is a well-ordered set and L ⊂M is the set of lazy-progress
elements, and such that:
1. for every edge (v, u) ∈ E, we have µ(v) ≥ µ(u);
2. if π(v) = 1 then µ(v) ∈ L;
3. on every infinite path in G, there are infinitely many vertices v such that µ(v) 6∈ L.
It is elementary to prove the following proposition.

I Proposition 1. If a graph has a lazy co-Büchi progress measure then all infinite paths in
it satisfy the co-Büchi condition.

The following converse establishes the attractiveness of lazy co-Büchi progress measures for
certifying the co-Büchi conditions on layered dags of bounded width, and hence for certifying
accepting run dags of alternating co-Büchi automata.

I Lemma 2 (Klarlund [12]). If all infinite paths in a layered dag (V,E, π : V → { 0, 1 })
satisfy the co-Büchi condition and the width of the dag is at most n, then there is a lazy
co-Büchi progress measure µ : V →M , where M = { 1, 2, . . . , 2n } and L = { 2, 4, 6, . . . , 2n }.

Proof. We summarize a proof given by Kupferman and Vardi [15] that provides an explicit
decomposition of the accepting run dag into (at most) 2n parts from which a lazy co-Büchi
progress measure can be straightforwadly defined. The proof by Klarlund [12] is more
succinct, but the former is more constructive and hence more transparent.

Observe that if all infinite paths satisfy the co-Büchi condition then there must be a
vertex v whose all descendants (i.e., vertices to which there is a – possibly empty – path
from v) have priority 0; call such vertices 1-safe in G1 = G. Indeed, otherwise it would be
easy to construct an infinite path with infinitely many occurrences of vertices of priority 1.

Let S1 be the set of all the 1-safe vertices in G1, and let G′1 = G1 \ S1 be the layered
dag obtained from G1 by removing all vertices in S1. Note that there is an infinite path in
the subgraph of G1 induced by S1, and hence the width of G′1 is strictly smaller than the
width of G1.

Let R1 be the set of all vertices in G′1 that have only finitely many descendants; call such
vertices transient in G′1. Let G2 be the the layered dag obtained from G′1 by removing all
vertices in R1. Since G2 is a subgraph of G′1, the width of G2 is strictly smaller than the width
of G1. Moreover, G2 shares the key properties with G1: every vertex has a successor and
hence all the maximal paths are infinite, and all infinite paths satisfy the co-Büchi condition.

By applying the same procedure to G2 that we have described for G1 above, we obtain
the set S2 of 1-safe vertices in G2 and the set R2 of vertices transient in G′2, and the layered
dag G3 – obtained from G2 by removing all vertices in S2 ∪ R2 – has the width that is
strictly smaller than that of G2. We can continue in this fashion until the graph Gk+1,
for some k ≥ 1, is empty. Since the width of G is at most n, and the widths of graphs
G1, G2, . . . , Gk+1 are strictly decreasing, it follows that k ≤ n.

L. Daviaud, M. Jurdziński, and K. Lehtinen 18:7

We define µ : V → { 1, 2, . . . , 2n } by:

µ(v) =
{

2i− 1 if v ∈ Si,
2i if v ∈ Ri,

and note that it is routine to verify that if we let L = { 2, 4, . . . , 2n } be the set of lazy-progress
elements then µ is a lazy co-Büchi progress measure. J

3.2 From co-Büchi and Büchi to weak
In this section we present a proof of the following result.

I Theorem 3 (Kupferman and Vardi [15]). There is a translation that given an alternating
co-Büchi automaton with n states yields an equivalent alternating weak automaton with
O(n2) states.

Proof. It suffices to argue that, given an alternating co-Büchi automaton A = (Q, q0,Σ, δ, π :
Q→ { 0, 1 }) with n states, we can design an alternating weak automaton with O(n2) states
that guesses and certifies a dag run of A together with a lazy co-Büchi progress measure on
it as described in Lemma 2. First we construct a safety automaton S with O(n2) states that
simulates the automaton A while guessing a lazy co-Büchi progress measure and verifying
conditions 1) and 2) of its definition. Condition 3) will be later handled by turning the safety
automaton S into a weak automaton W by appropriately assigning odd or even priorities to
all states in S. We split the design of W into those two steps so that we can better motivate
and explain the generalized constructions in Section 5.

The safety automaton S has the following set of states:

Q× { 2, 4, . . . , 2n } ∪
(
π−1(0)× { 1, 3, . . . , 2n− 1 }

)
∪ { reject } ;

its initial state is (q0, 2n); and its transition function δ′ is obtained from the transition
function δ of A in the following way: for every state (q, i), and for every a ∈ Σ, the formula
δ′
(
(q, i), a

)
is obtained from δ(q, a) by replacing every occurrence of state q′ ∈ Q by the

disjunction (i.e., a non-deterministic choice)

(q′, i) ∨ (q′, i− 1) ∨ · · · ∨ (q′, 1) (1)

where every occurrence (q′, j) for which π(q′) = 1 and j is odd stands for the state reject.
In other words, the safety automaton S can be thought of as consisting of 2n copies

A2n,A2n−1, . . . ,A1 of A, with the non-accepting states π−1(1) removed from the odd-indexed
copies A2n−1,A2n−3, . . . ,A1, and in whose acceptance games, Elvis always has the choice to
stay in the current copy of A or to move to one of the lower-indexed copies of A. Since the
transitions of the safety automaton S always respect the transitions of the original co-Büchi
automaton A, an accepting run dag of S yields a run dag of A (obtained from the first
components of the states (q, i)) and a labelling of its vertices by numbers in { 1, 2, . . . , 2n }
(obtained from the second components of the states (q, i)). It is routine to verify that the
design of the state set and of the transition function of the safety automaton S guarantees
that the latter labelling satisfies conditions 1) and 2) of the definition of a lazy co-Büchi
progress measure, where the set of lazy-progress elements is { 2, 4, . . . , 2n }.

By setting the state priority function π′ : (q, i) 7→ i + 1 for all non-reject states in S,
and π′ : reject 7→ 1, we obtain from S an automaton W whose acceptance condition is
weak because – by design – the transition function is non-increasing w.r.t. the state priority

CONCUR 2019

18:8 Alternating Weak Automata from Universal Trees

function. One can easily verify that the addition of this weak acceptance condition to S
allows the resulting automaton W, for every input word, to guess and verify a lazy progress
measure – if one exists – on a run dag of automaton A on the input word, while W rejects
the input word otherwise. This completes our summary of the proof of Theorem 3. J

I Corollary 4 (Kupferman and Vardi [15]). There is a translation that given an alternat-
ing Büchi automaton with n states yields an equivalent alternating weak automaton with
O(n2) states.

The argument of Kupferman and Vardi is simple and it exploits the ease with which
alternating automata can be complemented. Given an alternating Büchi automaton A with
n states, first complement it with no state space blow-up, obtaining an alternating co-Büchi
automaton with n states, next use the translation from Theorem 3 to obtain an equivalent
alternating weak automaton with O(n2) states, and finally complement the latter again with
no state space blow-up, hence obtaining an alternating weak automaton that is equivalent
to A and that has O(n2) states.

4 Lazy parity progress measures

Before we introduce lazy parity progress measures, we recall the definition of (standard)
parity progress measures [11, 5]. We define a well-ordered tree to be a finite prefix-closed
set of sequences of elements of a well-ordered set. We call such sequences nodes of the tree,
and their components are branching directions. We use the standard ancestor-descendant
terminology to describe relative positions of nodes in a tree. For example, 〈〉 is the root;
node 〈x, y〉 is the child of the node 〈x〉 that is reached from it via the branching direction y;
node 〈x, y〉 is the parent of node 〈x, y, z〉; nodes 〈x, y〉 and 〈x, y, z〉 are descendants of nodes
〈〉 and 〈x〉; nodes 〈〉 and 〈x〉 are ancestors of nodes 〈x, y〉 and 〈x, y, z〉; and a node is a leaf
if it does not have any children. All nodes in a well-ordered tree are well-ordered by the
lexicographic order that is induced by the well-order on the branching directions; for example,
we have 〈x〉 < 〈x, y〉, and 〈x, y, z〉 < 〈x,w〉 if y < w. We define the depth of a node to be
the number of elements in the eponymous sequence, the height of a tree to be the maximum
depth of a node, and the size of a tree to be the number of its nodes.

Parity progress measures assign labels to vertices of graphs with vertex priorities, and the
labels are nodes in a well-ordered tree. A tree labelling of a graph with vertex priorities that
do not exceed a positive even integer d is a mapping from vertices of the graph to nodes in
a well-ordered tree of height at most d/2. We write 〈md−1,md−3, . . . ,m`〉, for some odd `,
1 ≤ ` < d, to denote such nodes. We say that such a node has an (odd) level ` and an (even)
level `− 1, and the root 〈〉 has level d. Moreover, for every priority p, 0 ≤ p ≤ d, we define
the p-truncation 〈md−1,md−3, . . . ,m`〉|p in the following way:

〈md−1,md−3, . . . ,m`〉|p =


〈md−1,md−3, . . . ,m`〉 for p ≤ `,
〈md−1,md−3, . . . ,mp+1〉 for even p > `,

〈md−1,md−3, . . . ,mp〉 for odd p > `.

We then say that a tree labelling µ of a graph G = (V,E) with vertex priorities π : V →
{ 0, 1, 2, . . . , d } is a parity progress measure if the following progress condition holds for every
edge (v, u) ∈ E:
1. if π(v) is even then µ(v)|π(v) ≥ µ(u)|π(v);
2. if π(v) is odd then µ(v)|π(v) > µ(u)|π(v).

L. Daviaud, M. Jurdziński, and K. Lehtinen 18:9

It is well-known that satisfaction of such local conditions on every edge in a graph is sufficient
for every infinite path in the graph satisfying the parity condition [10, 11]. Less obviously, it
is also necessary, which can be, again, deduced from the proof of positional determinacy of
parity games due to Emerson and Jutla [8]. In other words, parity progress measures are
witnesses for the property that all infinite paths in a graph satisfy the parity condition. Like
for the simpler co-Büchi condition, their appeal stems from the property that they certify
conditions that are global and infinitary by verifying conditions that are local to every edge
in the graph.

Similar to the simpler co-Büchi progress measures, parity progress measures may unfor-
tunately require unbounded or even infinite well-ordered trees to certify parity conditions
on infinite graphs, and hence we consider lazy parity progress measures, also inspired by
Klarlund’s pioneering work [12]. A lazy tree is a well-ordered tree with a distinguished subset
of its nodes called lazy nodes. For convenience, we assume that only leaves may be lazy and
the root never is.

A lazy parity progress measure is a tree labelling µ of a graph (V,E), where the labels
are nodes in a lazy tree T , such that:
1. for every edge (v, u) ∈ E, µ(v)|π(v) ≥ µ(u)|π(v);
2. if π(v) is odd then node µ(v) is lazy and its level is at least π(v);
3. on every infinite path in G, there are infinitely many vertices v, such that µ(v) is not lazy.

First we establish that existence of a lazy progress measure is sufficient for all infinite
paths in a graph to satisfy the parity condition.

I Lemma 5. If a graph has a lazy parity progress measure then all infinite paths in it satisfy
the parity condition.

Proof. For the sake of contradiction, assume that there is an infinite path v1, v2, v3, . . . in
the graph for which the highest priority p that occurs infinitely often is odd. Let i ≥ 1 be
such that π(vj) ≤ p for all j ≥ i. By condition 1), we have:

µ(vi)|p ≥ µ(vi+1)|p ≥ µ(vi+2)|p ≥ (2)

Let i ≤ i1 < i2 < i3 < · · · be such that π(vik) = p for all k = 1, 2, 3, By condition 2),
all labels µ(vik), for k = 1, 2, 3, . . . , are lazy and their level in the tree is at least p. By
condition 3), for infinitely many k, π(vk) is not lazy, so infinitely many of the inequalities
in (2) must be strict, which contradicts the well-ordering of the tree T . J

Now we argue that existence of lazy parity progress measure is also necessary for a graph
to satisfy the parity condition. Moreover, we explicitly quantify the size of a lazy ordered
tree the labels from which are sufficient to give a lazy progress measure for a layered dag,
as a function of the width of the dag. Before we do that, however, we introduce a simple
operation that we call a lazification of a finite ordered tree. If T is a finite ordered tree, then
its lazification lazi(T) is a finite lazy tree that is obtained from T in the following way:

all nodes in T are also nodes in lazi(T) and they are not lazy;
for every non-leaf node t in T , t has extra lazy children in the tree lazi(T), one smaller
and one larger than all the other children, and one in-between every pair of consecutive
children.

It is routine to argue that if a tree has n leaves and it is of height at most h then its
lazification lazi(T) has O(nh) nodes and it is also of height h.

CONCUR 2019

18:10 Alternating Weak Automata from Universal Trees

I Theorem 6 (Klarlund [12]). If all infinite paths in a layered dag satisfy the parity condition
and the width of the dag is at most n, then there is a lazy parity progress measure whose
labels are nodes in a tree that is a lazification of an ordered tree with at most n leaves.

Proof. Klarlund’s proof [12] is very succinct and it heavily relies on the result of Klarlund
and Kozen on Rabin measures [13]. Our proof is not only self-contained but it also is more
constructive and transparent. The hierarchical decomposition describes the fundamental
structure of accepting run dags of alternating parity automata and it may be of independent
interest. The argument presented here is a generalization of the proof of Lemma 2 – given in
Section 3 – from co-Büchi conditions to parity conditions.

Consider a layered dag G = (V,E, π) where π : V → { 0, 1, 2, . . . , d }. For a priority p,
0 ≤ p < d, we write G≤p for the subgraph induced by the vertices whose priority is at most p.

We describe the following decomposition of G. Let D be the set that consists of all
vertices of the top even priority d in G, and R0 all those vertices in the subgraph G≤d−1

that have finitely many descendants. We say that those vertices are (d − 1)-transient in
G≤d−1. In other words, D ∪R0 is the set of vertices from which every path reaches (possibly
immediately) a vertex of priority d.

Let G1 = G \ (D ∪ R0) be the layered dag obtained from G by removing all vertices
in D ∪R0. Observe that every vertex in G1 has at least one successor and hence – unless
G1 is empty – all maximal paths are infinite. W.l.o.g., assume henceforth that G1 is not
empty. We argue that there must be a vertex in G1 whose all descendants have priorities
at most d− 2; call such vertices (d− 1)-safe in G1. Indeed, otherwise it would be easy to
construct an infinite path with infinitely many occurrences of the odd priority d− 1 and no
occurrences of the top even priority d.

Let S1 be the set of all the (d − 1)-safe vertices in G1. Let H1 be the subgraph of G
induced by S1, let n1 be the width of H1, and note that n1 > 0. Set G′1 = G1 \ S1 to be the
layered dag obtained from G1 by removing all (d− 1)-safe vertices in G1.

Let R1 be the set of all vertices in G′1 that have only finitely many descendants; call such
vertices (d − 1)-transient in G′1. Finally, let G2 be the layered dag obtained from G′1 by
removing all the (d− 1)-transient vertices in G′1. Note that the width of G2 is smaller than
the width of G1 by at least n1 > 0.

Unless graph G2 is empty, we can now apply the same steps to G2 that we have described
for G1, and obtain:

the set S2 of (d− 1)-safe vertices in G2;
the subgraph H2 of G2 induced by S2, which is of width n2 > 0;
the layered dag G′2, obtained from G2 by removing all the vertices in S2;
the set R2 of (d− 1)-transient vertices in G′2;
the layered graph G3, obtained from G2 by removing all vertices in S2 ∪R2, and whose
width is smaller than the width of G2 by at least n2 > 0.

We can continue in this fashion, obtaining graphs G1, G2, . . . , Gk+1, until the graph Gk+1,
for some k ≥ 0, is empty. Since the width of G is at most n and the widths of the graphs
G1, G2, . . . , Gk are positive (unless k = 0), we have that k ≤ n and

∑k
i=1 ni ≤ n.

The proces described above yields a hierarchical decomposition of the layered dag; we
now define – by induction on d – the tree that describes the shape of this decomposition.
We then argue that the lazification of this tree provides the set of labels in a lazy parity
progress measure.

In the base case d = 0, the shape of the decomposition is the well-ordered tree T of height
h = 0/2 = 0 with only a root node 〈〉. It is straightforward to see that the function that
maps every vertex onto the root is a (lazy) progress measure.

L. Daviaud, M. Jurdziński, and K. Lehtinen 18:11

For d ≥ 2, note that all vertices in dags H1, H2, . . . ,Hk have priorities at most d− 2. By
the inductive hypothesis, there are trees T1, T2, . . . , Tk, of heights at most h− 1 = (d− 2)/2
and with at most n1, n2, . . . , nk leaves, respectively, which are the shapes of the hierarchical
decompositions of dags H1, H2, . . . ,Hk, respectively.

We now construct the finite ordered tree T of height at most h = d/2 that is the shape of
the hierarchical decomposition of G: let T consist of the root node 〈〉 that has k children,
which are the roots of the subtrees T1, T2, . . . , Tk, in that order. Note that the number of
leaves of T is at most

∑k
i=1 ni ≤ n. Consider the following mapping from vertices in the

graph onto nodes in the lazification lazi(T) of tree T :
vertices in set D are mapped onto the root of lazi(T);
vertices in transient sets R0, R1, R2, . . . , Rk are mapped onto the lazy children of the
root of lazi(T): those in R0 onto the smallest lazy child, those in R1 onto the lazy child
between the roots of T1 and T2, etc.;
vertices in subgraphs H1, H2, . . . ,Hk are inductively mapped onto the appropriate nodes
in the lazy subtrees of lazi(T) that are rooted in the k non-lazy children of the root.

It is easy to verify that this mapping satisfies conditions 1) and 2) of the definition of a
lazy parity progress measure. Condition 3) is ensured by the fact that the root of T is not
lazy and by the inductive hypothesis. Recall that every infinite path satisfies the parity
condition, thus the highest priority p seen infinitely often on a given path is even. If p = d,
the path visits infinitely often vertices labelled by the root of T . Otherwise, eventually the
path contains only vertices in one of the sets Si and we can use the inductive hypothesis. J

5 From parity to Büchi via universal trees

In this section we complete the proof of the main technical result of the paper, which is a
quasi-polynomial translation from alternating parity automata to alternating weak automata.
The main technical tools that we use to design our translation are lazy progress measures and
universal trees [11, 5], and the state space blow-up of the translation is merely quadratic in
the size of the smallest universal tree. Nearly tight quasi-polynomial upper and lower bounds
have recently been given for the size of the smallest universal trees [11, 5] and, in particular,
they imply that if the number of priorities in a family of alternating parity automata is at
most logarithmic in the number of states, then the state space blow-up of our translation is
only polynomial.

I Theorem 7. There is a translation that given an alternating parity automaton with n
states and d priorities yields an equivalent alternating weak automaton whose number of
states is polynomial if d = O(logn) and it is nO(lg(d/ lgn)) if d = ω(logn).

Before we proceed to prove the theorem, we recall the notion of universal ordered trees.
An (n, h)-universal (ordered) tree [5] is an ordered tree, such that every finite ordered tree
of height at most h and with at most n leaves can be isomorphically embedded into it. In
such an embedding, the root of the tree must be mapped onto the root of the universal tree,
and the children of every node must be mapped – injectively and in an order-preserving
way – onto the children of its image. In order to upper-bound the size of the blow-up in our
parity to weak translation, we rely on the following upper bound on the size of the smallest
universal trees.

I Theorem 8 (Jurdziński and Lazić [11]). For all positive integers n and h, there is an
(n, h)-universal tree with at most quasi-polynomial number of leaves. More specifically, the
number of leaves is polynomial in n if h = O(logn), and it is nlg(h/ lgn)+O(1) if h = ω(logn).

CONCUR 2019

18:12 Alternating Weak Automata from Universal Trees

We also note that Czerwiński et al. [5] have subsequently proved a nearly-matching quasi-
polynomial lower bound, hence establishing that the smallest universal trees have quasi-
polynomial size.

In order to prove Theorem 7, we establish the following lemma that provides a translation
from alternating parity automata to alternating Büchi automata whose state-space blow-up
is tightly linked to the size of universal trees.

I Lemma 9. There is a translation that given an alternating parity automaton with n states
and d priorities yields an equivalent alternating Büchi automaton whose number of states is
O(ndLU) where LU is the number of leaves in an (n, d/2)-universal ordered tree U .

Note that Theorem 7 follows from Lemma 9 by Theorem 8 and Corollary 4.

Proof of Lemma 9. Given an alternating parity automaton A = (Q, q0,Σ, δ, π : Q →
{ 0, 1, . . . , d }) with n states, we now design an alternating Büchi automaton that guesses and
certifies a dag run of A together with a lazy parity progress measure on it. As for the co-Büchi
to weak case, we first construct a safety automaton that simulates the automaton A while
guessing a lazy parity progress measure and verifying conditions 1) and 2) of its definition.
Condition 3) will be later handled by turning the safety automaton into a Büchi automaton
by appropriately assigning priorities 1 or 2 to all states in the safety automaton.

Below we give a general construction of an alternating Büchi automaton BT from any
lazy well-ordered tree T , and then we argue that the alternating parity automaton A is
equivalent to the alternating Büchi automaton Blazi(U), for every (n, d/2)-universal tree U .

Let T be a lazy tree of width n and height d/2. The construction is by induction on d.
The safety automaton ST has the following set of states, which are pairs of an element of Q
and of a node in T .

If d = 0, then the set of states of ST is (Q× {〈〉}) ∪ { reject }.
Otherwise, let 〈x1〉, 〈x2〉, . . . , 〈xk〉 be the children of the root, and 1 ≤ i1 < i2 < . . . <

im ≤ k are the indices of its leaves that are lazy.
For i /∈ { i1, i2, . . . , im }, let Ti be the lazy subtrees of T of height at most d/2− 1 rooted
in 〈xi〉. By induction, for all i, we obtain an alternating Büchi automaton that is obtained
from the lazy tree Ti and from the alternating parity automaton A restricted to the
states of priority up to d− 2. Let Ωi denote its set of non-reject states. They are pairs
consisting of an element of Q and of a node in a tree of height d/2 − 1; the latter is a
sequence 〈md−3,md−5, . . . ,m`〉 of at most d/2− 1 branching directions. Let Γi be the set
consisting of the pairs (q, 〈xi,md−3,md−5, . . . ,m`〉) for (q, 〈md−3,md−5, . . . ,m`〉) ∈ Ωi.
Set Q(d) (resp. Q(<d)) the set of states of priority d (resp. < d) in A. The states of ST
are defined as:

(
Q(d) × {〈〉}

)
∪
(
Q(<d) × {〈xi1〉, 〈xi2〉, . . . , 〈xim〉}

)
∪

k⋃
i=1

Γi ∪ { reject } .

The initial state is (q0, t) where t is the largest tuple such that (q0, t) is a state. Let us
now define the transition function: for every state (q, t), and for every a ∈ Σ, the formula
δ′
(
(q, t), a

)
is obtained from δ(q, a) by replacing every occurrence of state q′ ∈ Q by the

disjunction (i.e., a non-deterministic choice)∨{
(q′, t′) : t|π(q) ≥ t′|π(q)

}
,

where every occurrence (q′, t′) which is not in the set of states stands for the state reject.

L. Daviaud, M. Jurdziński, and K. Lehtinen 18:13

In other words, the safety automaton ST can be thought of as consisting of copies of A,
for each node of the tree T , in whose acceptance games Elvis always has the choice to stay
in the current copy of A or to move to one of a smaller node with respect to the priority
of the current state. Since the transitions of the safety automaton ST always respect the
transitions of the original parity automaton A, an accepting run dag of ST yields a run dag
of A (obtained from the first components of the states (q, t)) and a labelling of its vertices by
nodes in T (obtained from the second components of the states (q, t)). It is routine to verify
that the design of the state set and of the transition function of the safety automaton ST
guarantees that the latter labelling satisfies condition 1) and 2) of the definition of a lazy
parity progress measure.

In order to obtain the Büchi automaton BT from the safety automaton ST , it suffices to
appropriately assign priorities 1 and 2 to all states: we let the state reject and all states
(q, t) such that t is a lazy node in tree T have priority 1, and we let all states (q, t) such
that t is not a lazy node in tree T have priority 2. Note that this ensures that a run of BT
is accepting if and only if the tree labelling of a run dag of A that the underlying safety
automaton ST guesses – in the second component of its states – satisfies condition 3) of the
definition of a lazy parity progress measure.

We now argue that if U is an (n, d/2)-universal tree then the alternating Büchi automaton
Blazi(U) is equivalent to the alternating parity automaton A. Firstly, all words accepted
by BT for any finite lazy ordered tree T are also accepted by A. This is because – as we have
argued above – every accepting run dag of any such automaton BT yields both a run dag
of A (in the first state components) and a lazy parity progress measure on it (in the second
state components), and the latter certifies that the former is accepting.

It remains to argue that every word accepted by A is also accepted by Blazi(U). By
Theorem 6, for every accepting run dag of A, there is a lazy progress measure whose labels
are nodes in a tree lazi(T), where T is an ordered tree of height at most d/2 and with at
most n leaves. It is routine to verify that if an ordered tree can be isomorphically embedded
in another, then the same holds for their lazifications. By (n, d/2)-universality of U , it follows
that lazi(T) can be isomorphically embedded in lazi(U). Therefore, for every word on which
there is an accepting run dag of A, the automaton Blazi(U) has the capacity to guess the run
dag of A and to guess and certify a lazy progress measure on it.

In order to conclude the O(ndLU) upper bound on the number of states of Blazi(U), it
suffices to observe that if the number of leaves in an ordered tree T of height h is L then the
number of nodes in lazi(T) is O(hL). J

6 Open questions

Our use of universal trees to turn alternating parity automata into Büchi automata, like
Boker and Lehtinen’s [1] register technique, does not exploit alternations (although the
further Büchi to weak translation does): all transitions that are not copied from the original
automaton are non-deterministic. Can universal and non-deterministic choices be combined
to further improve these translations? Can the long-standing Ω(n logn) lower bound [20] be
improved, for example by a combination of the full-automata technique of Yan [23] and the
recent lower bound techniques for non-deterministic safety separating automata based on
universal trees [5] and universal graphs [3]?

CONCUR 2019

18:14 Alternating Weak Automata from Universal Trees

References
1 U. Boker and K. Lehtinen. On the way to alternating weak automata. In FSTTCS 2018,

volume 122 of LIPIcs, pages 21:1–21:22. Schloss Dagstuhl–Leibniz-Zentrum für Informatik,
2018.

2 C. S. Calude, S. Jain, B. Khoussainov, W. Li, and F. Stephan. Deciding parity games in
quasipolynomial time. In STOC 2017, pages 252–263. ACM, 2017.

3 T. Colcombet and N. Fijalkow. Universal graphs and good for games automata: New tools for
infinite duration games. In FoSSaCS 2019, volume 11425 of LNCS, pages 1–26. Springer, 2019.

4 T. Colcombet, D. Kuperberg, C. Löding, and M. Vanden Boom. Deciding the weak definability
of Büchi definable tree languages. In CSL 2013, volume 23 of LIPIcs, pages 215–230. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2013.

5 W. Czerwiński, L. Daviaud, N. Fijalkow, M. Jurdziński, R. Lazić, and P. Parys. Universal
trees grow inside separating automata: Quasi-polynomial lower bounds for parity games. In
SODA 2019, pages 2333–2349. ACM/SIAM, 2019.

6 L. Daviaud, M. Jurdziński, and R. Lazić. A pseudo-quasi polynomial algorithm for solving
mean-payoff parity games. In LICS 2018, pages 325–334. IEEE, 2018.

7 D. Drusinsky and D. Harel. On the power of bounded concurrency I: Finite automata. Journal
of the ACM, 41(3):517–539, 1994.

8 E. A. Emerson and C. Jutla. Tree automata, mu-calculus and determinacy. In FOCS 1991,
pages 368–377. IEEE, 1991.

9 J. Fearnley, S. Jain, S. Schewe, F. Stephan, and D. Wojtczak. An ordered approach to solving
parity games in quasi polynomial time and quasi linear space. In SPIN 2017, pages 112–121,
2017.

10 M. Jurdziński. Small progress measures for solving parity games. In STACS 2000, volume
1770 of LNCS, pages 290–301. Springer, 2000.

11 M. Jurdziński and R. Lazić. Succinct progress measures for solving parity games. In LICS
2017, page 9pp. IEEE, 2017.

12 N. Klarlund. Progress measures for complementation of ω-automata with applications to
temporal logic. In FOCS 1991, pages 358–367. IEEE, 1991.

13 N. Klarlund and D. Kozen. Rabin measures. Chicago J. Theor. Comput. Sci., pages 1–24,
1995. Article 3.

14 O. Kupferman and M. Y. Vardi. Weak alternating automata and tree automata emptiness. In
STOC 1998, pages 224–233. ACM, 1998.

15 O. Kupferman and M. Y. Vardi. Weak alternating automata are not that weak. ACM Trans.
Comput. Log., 2(3):408–429, 2001.

16 O. Kupferman, M. Y. Vardi, and P. Wolper. An automata-theoretic approach to branching-time
model checking. Journal of the ACM, 47(2):312–360, 2000.

17 K. Lehtinen. A modal µ perspective on solving parity games in quasi-polynomial time. In
LICS 2018, pages 639–648. IEEE, 2018.

18 K. Lehtinen and S. Quickert. Σµ
2 is decidable for Πµ

2 . In CiE 2017: Unveiling Dynamics and
Complexity, pages 292–303, 2017.

19 P. Lindsay. On alternating ω-automata. Theoretical Computer Science, 43:107–116, 1988.
20 M. Michel. Complementation is more difficult with automata on infinite words. CNET, Paris,

15, 1988.
21 D. E. Muller, A. Saoudi, and P. E. Schupp. Alternating automata, the weak monadic theory

of the tree and its complexity. In ICALP 1986, volume 226 of LNCS, pages 275–283. Springer,
1986.

22 M. Skrzypczak and I. Walukiewicz. Deciding the topological complexity of Büchi languages.
In ICALP 2016, volume 55 of LIPIcs, pages 99:1–99:13. Schloss Dagstuhl–Leibniz-Zentrum
für Informatik, 2016.

23 Q. Yan. Lower bounds for complementation of ω-automata via the full automata technique.
Logical Methods in Computer Science, 4:1–20, 2008.

	Introduction
	Alternating automata
	From co-Büchi and Büchi to weak
	Co-Büchi progress measures
	From co-Büchi and Büchi to weak

	Lazy parity progress measures
	From parity to Büchi via universal trees
	Open questions

